Vergence: The Vergence Formula

Basic Optics, Chapter 3

Vergence: The Vergence Formula

We have seen how the dioptric power of a lens affects incoming parallel rays.

Vergence: The Vergence Formula

We have seen how the dioptric power of a lens affects incoming parallel rays. But what if the rays are not parallel?

A -1D lens will 'focus' parallel rays ?m to the ? of the lens

Diopters $=-1$
Reciprocal = ?
Distance = ?

Vergence: The Vergence Formula

We have seen how the dioptric power of a lens affects incoming parallel rays. But what if the rays are not parallel? We need a more generalized concept concerning the relationships among incoming/outgoing rays, and lenses.

Vergence: The Vergence Formula

We have seen how the dioptric power of a lens affects incoming parallel rays. But what if the rays are not parallel? We need a more generalized concept concerning the relationships among incoming/outgoing rays, and lenses.

This is provided by The Vergence Formula

A -1D lens will 'focus' parallel rays ?m to the ? of the lens

Diopters $=-1$
Reciprocal = ? Distance = ?

Vergence: The Vergence Formula

- The Vergence Formula

Vergence: The Vergence Formula

- The Vergence Formula
- Crucial concept in optics

Vergence: The Vergence Formula

- The Vergence Formula
- Crucial concept in optics
- Describes the vergence relations among rays before, during and after encountering a refractive surface (e.g., lens)

Vergence: The Vergence Formula

- The Vergence Formula
- Crucial concept in optics
- Describes the vergence relations among rays before, during and after encountering a refractive surface (e.g., lens)
- Head's up: We will also use the Vergence Formula in describing the relations among rays interacting with reflecting surfaces, i.e., mirrors

Vergence: The Vergence Formula

- The Vergence Formula

$$
U+P=V
$$

Vergence: The Vergence Formula

- The Vergence Formula

Vergence of
incoming light
(in diopters)

$$
\mathrm{U}+\mathrm{P}=\mathrm{V}
$$

Vergence: The Vergence Formula

- The Vergence Formula

Vergence of incoming light
(in diopters)

Vergence contributed by lens (in diopters)

$$
U+P=V
$$

Vergence: The Vergence Formula

- The Vergence Formula

Vergence of	Vergence contributed	Vergence of
incoming light	by lens (in diopters)	light leaving lens
(in diopters)		(in diopters)

$$
U+P=V
$$

Vergence: The Vergence Formula

- The Vergence Formula

Vergence of	Vergence contributed	Vergence of
incoming light	by lens (in diopters)	light leaving lens
(in diopters)		(in diopters)

$t l ; d r$ The vergence of light leaving a lens is the sum of the vergence of the light entering the lens and the vergence contributed by the lens itself

Vergence: The Vergence Formula

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

Vergence: The Vergence Formula

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

Vergence: The Vergence Formula

Plugging these values into the Vergence Formula:

$$
\begin{gathered}
U+P=V \\
0+(+1)=V
\end{gathered}
$$

Vergence: The Vergence Formula

Plugging these values into the Vergence Formula:

$$
\begin{gathered}
U+P=V \\
0+(+1)=V \\
+1=V
\end{gathered}
$$

Vergence: The Vergence Formula

$$
U+P=V
$$

Plugging these values into the Vergence Formula:

$$
\begin{gathered}
U+P=V \\
0+(+1)=V \\
+1=V
\end{gathered}
$$

Distance?

Distance equals the reciprocal of the outgoing vergence, ie, $1 / \mathrm{V}$

Vergence: The Vergence Formula

$$
U+P=V
$$

Plugging these values into the Vergence Formula:

$$
\begin{gathered}
U+P=V \\
0+(+1)=V \\
+1=V
\end{gathered}
$$

$$
\text { 1/+1 = } 1 \text { meter }
$$

Distance equals the reciprocal of the outgoing vergence, ie, $1 / \mathrm{V}$

Vergence: The Vergence Formula

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

Vergence: The Vergence Formula

$$
U+P=V
$$

Vergence: The Vergence Formula

$$
U+P=V
$$

 $\mathrm{U}+\mathrm{P}=\mathrm{V}$

 $\mathrm{U}+\mathrm{P}=\mathrm{V}$}
Vergence: The Vergence Formula

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

To determine the vergence \boldsymbol{U} of the incoming light, take the reciprocal of the distance from its source or focal point:

Vergence: The Vergence Formula

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

To determine the vergence \boldsymbol{U} of the incoming light, take the reciprocal of the distance from its source or focal point:
$\mathrm{U}=1 /-.4 \mathrm{~m}=-2.5 \mathrm{D}$

Vergence: The Vergence Formula

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

Plugging these values into the Vergence Formula:

$$
\begin{gathered}
U+P=V \\
-2.5+(+3)=V \\
+0.5=V
\end{gathered}
$$

$$
V=+0.5 D
$$

Vergence: The Vergence Formula

$$
\begin{array}{ll}
U+P=V & \text { Plugging these values into the Vergence Formula: } \\
U+P=V
\end{array}
$$

$$
\begin{gathered}
U+P=V \\
-2.5+(+3)=V \\
+0.5=V
\end{gathered}
$$

Distance equals the reciprocal of the outgoing vergence, ie, $\mathbb{1} / \mathrm{V}$

Vergence: The Vergence Formula

$\mathrm{U}+\mathrm{P}=\mathrm{V}$Plugging these values into the Vergence Formula:

$$
\begin{gathered}
U+P=V \\
-2.5+(+3)=V \\
+0.5=V
\end{gathered}
$$

Distance equals the reciprocal of the outgoing vergence, ie, $\mathbb{1} / \mathrm{V}$

Vergence: The Vergence Formula

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

Vergence: The Vergence Formula

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

Plugging these values into the Vergence Formula:

$$
\begin{gathered}
U+P=V \\
-1+(-1)=V \\
-2=V
\end{gathered}
$$

Vergence: The Vergence Formula

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

Plugging these values into the Vergence Formula:

$$
\begin{gathered}
U+P=V \\
-1+(-1)=V \\
-2=V
\end{gathered}
$$

Plugging these values into the Vergence Formula:

$$
\begin{gathered}
U+P=V \\
-1+(-1)=V \\
-2=V
\end{gathered}
$$

This of course is not what happens. Nonetheless, the lens does cause the exiting rays to diverge as if they did! Weirder still, this point is considered a focal point, even though the rays act as if they are leaving, not approaching it. More shortly!

Vergence: The Vergence Formula

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

To determine U, we need to know...

Vergence: The Vergence Formula

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

Vergence: The Vergence Formula

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

Plugging these values into the Vergence Formula:

$$
\begin{gathered}
U+P=V \\
+2+(-1)=V
\end{gathered}
$$

$$
+1=V
$$

$$
U=1 /+0.5=+2 D
$$

Vergence: Ton object is located $1 / 2 \mathrm{~m}$ to the left of a +4 D lens, which $\begin{aligned} & \text { An in turn } 1 \mathrm{~m} \text { to the left of a }+3 \mathrm{D} \text { lens. Where will the }\end{aligned}$ final image be with respect to the second lens??

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

Vergence: TAn object is located $1 / 2 \mathrm{~m}$ to the left of $\mathrm{a}+4 \mathrm{D}$ lens, which is in turn 1 m to the left of a +3D lens. Where will the

 final image be with respect to the second lens??1 m to the right of the second lens. To solve vergence problems such as this one, the key is to solve $\mathrm{U}+\mathrm{P}=\mathrm{V}$

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

 for the first lens, then treat the image thus produced as the object for the next lens. This can be continued for any number of lenses.

Vergence: TAn object is located $1 / 2 m$ to the left of $\mathrm{a}+4 \mathrm{D}$ lens, which is in turn 1 m to the left of a +3D lens. Where will the

 final image be with respect to the second lens??1 m to the right of the second lens. To solve vergence problems such as this one, the key is to solve $\mathrm{U}+\mathrm{P}=\mathrm{V}$

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

 for the first lens, then treat the image thus produced as the object for the next lens. This can be continued for any number of lenses.
For the +4D lens:

$U=1 /-0.5=-2 D$

Vergence: TAn object is located $1 / 2 m$ to the left of $\mathrm{a}+4 \mathrm{D}$ lens, which is in turn 1 m to the left of a +3D lens. Where will the

 final image be with respect to the second lens??1 m to the right of the second lens. To solve vergence problems such as this one, the key is to solve $\mathrm{U}+\mathrm{P}=\mathrm{V}$

$U+P=V$

 for the first lens, then treat the image thus produced as the object for the next lens. This can be continued for any number of lenses.```
For the +4D lens:
\(U=1 /-0.5=-2 D\)
\(P=+4 D\)
```



## Vergence: TAn object is located $1 / 2 \mathrm{~m}$ to the left of $\mathrm{a}+4 \mathrm{D}$ lens, which is in turn 1 m to the left of a +3D lens. Where will the

 final image be with respect to the second lens??1 m to the right of the second lens. To solve vergence problems such as this one, the key is to solve $\mathrm{U}+\mathrm{P}=\mathrm{V}$

## $U+P=V$

 for the first lens, then treat the image thus produced as the object for the next lens. This can be continued for any number of lenses.```
For the +4D lens:
\(U=1 /-0.5=-2 D\)
\(P=+4 D\)
\(V=-2+(+4)=+2 D\)
```


$$
+3 D
$$

Vergence: TAn object is located $1 / 2 \mathrm{~m}$ to the left of $\mathrm{a}+4 \mathrm{D}$ lens, which is in turn 1 m to the left of a +3D lens. Where will the

 final image be with respect to the second lens??1 m to the right of the second lens. To solve vergence problems such as this one, the key is to solve $\mathrm{U}+\mathrm{P}=\mathrm{V}$

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

 for the first lens, then treat the image thus produced as the object for the next lens. This can be continued for any number of lenses.
For the +4D lens:

$$
\begin{aligned}
& U=1 /-0.5=-2 D \\
& P=+4 D \\
& V=-2+(+4)=+2 D
\end{aligned}
$$

The image from the first lens is $1 / 2$
$=.5 \mathrm{~m}$ to the right of the first lens

Vergence: TAn object is located $1 / 2 \mathrm{~m}$ to the left of $\mathrm{a}+4 \mathrm{D}$ lens, which is in turn 1 m to the left of a +3D lens. Where will the

 final image be with respect to the second lens??1 m to the right of the second lens. To solve vergence problems such as this one, the key is to solve $\mathrm{U}+\mathrm{P}=\mathrm{V}$

$U+P=V$

 for the first lens, then treat the image thus produced as the object for the next lens. This can be continued for any number of lenses.```
For the +4D lens:
```

```
U = 1/-0.5 = -2D
```

U = 1/-0.5 = -2D
P=+4D
P=+4D
V = -2 + (+4) = +2D
V = -2 + (+4) = +2D
The image from the first lens is 1/2
The image from the first lens is 1/2
=.5 m to the right of the first lens

```
=.5 m to the right of the first lens
```

For the +3D lens:

$$
U=1 /-0.5=-2 D
$$



|  | 0.5 m | -0.5 m |
| :---: | :---: | :---: |
| -0.5 m | 1 m |  |

## Vergence: TAn object is located $1 / 2 \mathrm{~m}$ to the left of $\mathrm{a}+4 \mathrm{D}$ lens, which is in turn 1 m to the left of a +3D lens. Where will the

 final image be with respect to the second lens??1 m to the right of the second lens. To solve vergence problems such as this one, the key is to solve $\mathrm{U}+\mathrm{P}=\mathrm{V}$

## $U+P=V$

 for the first lens, then treat the image thus produced as the object for the next lens. This can be continued for any number of lenses.```
For the +4D lens:
U = 1/-0.5 = -2D
P = +4D
V = -2 + (+4) = +2D
The image from the first lens is 1/2
=.5 m to the right of the first lens
```


For the +3D lens:

$$
\begin{aligned}
& U=1 /-0.5=-2 D \\
& P=+3 D
\end{aligned}
$$

	0.5 m	-0.5 m
-0.5 m	1 m	

Vergence: TAn object is located $1 / 2 \mathrm{~m}$ to the left of $\mathrm{a}+4 \mathrm{D}$ lens, which is in turn 1 m to the left of a +3D lens. Where will the

 final image be with respect to the second lens??1 m to the right of the second lens. To solve vergence problems such as this one, the key is to solve $\mathrm{U}+\mathrm{P}=\mathrm{V}$

$U+P=V$

 for the first lens, then treat the image thus produced as the object for the next lens. This can be continued for any number of lenses.```
For the +4D lens:
U = 1/-0.5 = -2D
P = +4D
V = -2 + (+4) = +2D
The image from the first lens is 1/2
=.5 m to the right of the first lens
```


## For the +3 D lens:

$$
\begin{aligned}
& U=1 /-0.5=-2 D \\
& P=+3 D \\
& V=-2+(+3)=+1 D
\end{aligned}
$$



## Vergence: TAn object is located $1 / 2 \mathrm{~m}$ to the left of $\mathrm{a}+4 \mathrm{D}$ lens, which is in turn 1 m to the left of a +3D lens. Where will the

 final image be with respect to the second lens??1 m to the right of the second lens. To solve vergence problems such as this one, the key is to solve $\mathrm{U}+\mathrm{P}=\mathrm{V}$

## $U+P=V$

 for the first lens, then treat the image thus produced as the object for the next lens. This can be continued for any number of lenses.```
For the +4D lens:
U = 1/-0.5 = -2D
P = +4D
V = -2 + (+4) = +2D
The image from the first lens is 1/2
=.5 m to the right of the first lens
```

For the +3 D lens:
$U=1 /-0.5=-2 D$
$P=+3 D$
$V=-2+(+3)=+1 D$
The image formed by the second lens is $1 / 1$
$=1 \mathrm{~m}$ to the right of the second lens

Vergence: TAn object is located $1 / 2 m$ to the left of a $-2 D$ lens, which is in turn 1 m to the left of a +1D lens. How far is the final image from the object?

$U+P=V$

Vergence: $\begin{aligned} & \text { An object is located } 1 / 2 \mathrm{~m} \text { to the left of a }-2 \mathrm{D} \text { lens, } \\ & \text { which is in turn } 1 \mathrm{~m} \text { to the left of a }+1 \mathrm{D} \text { lens. How far } \\ & \text { is the final image from the object? }\end{aligned}$ is the final image from the object?

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

For the -2D lens:
$U=1 /-0.5=-2 D$

-0.5 m	1 m

Vergence: TAn object is located $1 / 2 m$ to the left of a $-2 D$ lens, which is in turn 1 m to the left of a +1D lens. How far is the final image from the object?

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

For the -2D lens:

$$
U=1 /-0.5=-2 D
$$

$$
P=-2 D
$$

Vergence: TAn object is located $1 / 2 m$ to the left of a $-2 D$ lens, which is in turn 1 m to the left of a +1D lens. How far is the final image from the object?

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

For the -2D lens:

```
U = 1/-0.5 = -2D
P=-2D
V = -2 + (-2) = -4D
```


Vergence: TAn object is located $1 / 2 m$ to the left of a $-2 D$ lens, which is in turn 1 m to the left of a +1D lens. How far is the final image from the object?

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

For the -2D lens:
$U=1 /-0.5=-2 D$
$P=-2 D$
$V=-2+(-2)=-4 D$
The image from the first lens is $1 /-4$
$=.25 \mathrm{~m}$ to the left of the first lens

Vergence: FAn object is located $1 / 2 \mathrm{~m}$ to the left of a -2 D lens, which is in turn 1 m to the left of a +1D lens. How far is the final image from the object?

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

```
For the -2D lens:
U = 1/-0.5 = -2D
P=-2D
V = -4D
```

The image from the first lens is 1/-4
$=.25 \mathrm{~m}$ to the left of the first lens

For the +1 D lens:

$$
\mathrm{U}=1 /-1.25 \mathrm{~m}=-0.8 \mathrm{D}
$$

Vergence: FAn object is located $1 / 2 \mathrm{~m}$ to the left of a -2 D lens, which is in turn 1 m to the left of a +1D lens. How far is the final image from the object?

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

```
For the -2D lens:
U = 1/-0.5 = -2D
P = -2D
V = -4D
```

The image from the first lens is 1/-4
$=.25 \mathrm{~m}$ to the left of the first lens

For the +1 D lens:

$$
\begin{aligned}
& U=1 /-1.25 \mathrm{~m}=-0.8 \mathrm{D} \\
& \mathrm{P}=+1 \mathrm{D}
\end{aligned}
$$

Vergence: FAn object is located $1 / 2 \mathrm{~m}$ to the left of a -2 D lens, which is in turn 1 m to the left of a +1D lens. How far is the final image from the object?

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

For the -2D lens:
$U=1 /-0.5=-2 D$
$P=-2 D$
$V=-4 D$
The image from the first lens is 1/-4
$=.25 \mathrm{~m}$ to the left of the first lens

For the +1 D lens:

$$
\begin{aligned}
& U=1 /-1.25 m=-0.8 D \\
& P=+1 D \\
& V=-0.8+(+1)=+0.2 D
\end{aligned}
$$

Vergence: FAn object is located $1 / 2 \mathrm{~m}$ to the left of a -2 D lens, which is in turn 1 m to the left of a +1D lens. How far is the final image from the object?

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

For the -2D lens:
$U=1 /-0.5=-2 D$
$P=-2 D$
$V=-4 D$
The image from the first lens is 1/-4
$=.25 \mathrm{~m}$ to the left of the first lens

For the +1 D lens:
$\mathrm{U}=1 /-1.25 \mathrm{~m}=-0.8 \mathrm{D}$
$P=+1 D$
$V=-0.8+(+1)=+0.2 \mathrm{D}$
The image formed by the second lens is $1 /+0.2=5 \mathrm{~m}$ to the right of the second lens

Vergence: TAn object is located $1 / 2 m$ to the left of a $-2 D$ lens, which is in turn 1 m to the left of a +1D lens. How far is the final image from the object? 6.50 m

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

For the -2D lens:
$U=1 /-0.5=-2 D$
$P=-2 D$
$V=-4 D$
The image from the first lens is 1/-4
$=.25 \mathrm{~m}$ to the left of the first lens

For the $+1 D$ lens:
$U=1 /-1.25 m=-0.8 D$
$P=+1 D$
$V=-0.8+(+1)=+0.2 \mathrm{D}$
The image formed by the second lens is $1 /+0.2=5 \mathrm{~m}$ to the right of the second lens

Distance from object to image $=6.50 \mathrm{~m}$

Vergence: TAn object is located $1 / 2 \mathrm{~m}$ to the left of a -2 D lens, which is in turn 1 m to the left of a +1D lens. How far is the final image from the object? 6.50 m

U + $\mathrm{P}=\mathrm{V}$

which is in turn 1 m to the left of a +1D lens. How far is the final image from the object? 6.50 m

$\mathrm{U}+\mathrm{P}=\mathrm{V}$

For But it looks like the rays from the first image/second object have to pass through the $-2 D$ lens $\cup=$ twice before reaching the $+1 D$ lens. Doesn't this refract those rays again?
$P=N O$. After the light bouncing off the physical object passes through the -2D lens, it acts as if it $V=$ came from the first image/second object location, but it's not really coming from there. In fact,
m object .50 m

The as we will come to see, clinical optics is less a description of what light actually does than it is
$=.2$ a powerful metaphor that allows us to make useful descriptions (and prescriptions!) of what light does. In essence, clinical optics is a convenient fiction. More on this (much) later.

Vergence: FAn object is located $1 / 2 \mathrm{~m}$ to the left of a -2 D lens, which is in turn 1 m to the left of a +1D lens. How far is the final image from the object?

OK, but there's another problem. Clearly, the rays that have passed through the $-2 D$ are far too divergent to pass through the $+1 D$ lens-they're going to miss it by a mile! How can these rays possibly be refracted by the second lens?

For the -2D lens:
$U=1 /-0.5=-2 D$
$P=-2 D$
$V=-4 D$

For the +1D lens:
$U=1 /-1.25 \mathrm{~m}=$
$P=+1 D$
$\mathrm{V}=+0$

The image from the first lens is 1/-4
The mage from the second lens is $1 /+0.2$

Vergence: FAn object is located $1 / 2 \mathrm{~m}$ to the left of a -2 D lens, which is in turn 1 m to the left of a +1D lens. How far is the final image from the object?

OK, but there's another problem. Clearly, the rays that have passed through the $-2 D$ are far too divergent to pass through the $+1 D$ lens-they're going to miss it by a mile! How can these rays possibly be refracted by the second lens? Don't let such 'drawing artifacts' fool you-some of the light will make it through the second lens.

For the -2D lens:
$U=1 /-0.5=-2 D$
$P=-2 D$
$V=-4 D$

The image from the first lens is 1/-4 $=.25 \mathrm{~m}$ to the left of the first lens

For the +1D lens:
$\mathrm{U}=1 /-1.25 \mathrm{~m}=$
$P=+1 D$
$\mathrm{V}=+0$

Vergence: FAn object is located $1 / 2 \mathrm{~m}$ to the left of a -2 D lens, which is in turn 1 m to the left of $\mathrm{a}+1 \mathrm{D}$ lens. How far is the final image from the object?

OK, but there's another problem. Clearly, the rays that have passed through the $-2 D$ are far too divergent to pass through the $+1 D$ lens-they're going to miss it by a mile. How can these rays possibly be refracted by the second lens? Don't let such 'drawing artifacts' fool you-some of the light will make it through the second lens.

Vergence: T

- The ability of a lens to induce vergence is expressed in diopters
- Dioptric power of a lens: The reciprocal of the distance (in meters) to the point where incoming parallel light rays would intersect after passing through the lens

We encountered this slide a few minutes ago...
The notion that a diopter does something to light over the course of a meter should remind you of the effect a prism has on light...

Vergence: T

A prism diopter (PD, or Δ) displaces light 1 cm at 1 meter.

Vergence: T

Vergence: T

1 PD

A prism diopter (PD, or Δ) displaces light 1 cm at 1 meter.

Which do prisms induce: convergence or divergence? Neither--prisms do not induce vergence! Prisms cause light
 rays to change direction, but not to converge or diverge.

Vergence: T

But, if we placed two prisms base-to-base or apex-to-apex, we could get light to converge and diverge, respectively

Vergence: T

In fact, we will at times find it very useful to think of lenses as being composed of prisms arranged in just this manner!

Vergence: The Vergence Formula

Of course, prisms also disperse white light into its component colors. They do this because the different wavelengths are refracted different amounts. And because they are composed of prisms...

Vergence: The Vergence Formula

Of course, prisms also disperse white light into its component colors. They do this because the different wavelengths are refracted different amounts. And because they are composed of prisms...lenses do too.

Vergence: The Vergence Formula

As we shall see in a later chapter, this property accounts for an important ocular phenomenon called chromatic aber ation.

