Optics Quiz 5

This quiz is intended to be taken after completion of Chapters 20-23

Note: Some questions herein may have appeared first in a copyrighted source. If you own the copyright to a question and would like an acknowledgement or to have the question removed, please contact me EyeDentistAAO@gmail.com

No, you can't use a calculator (and you don't need one anyway)

Note that some questions are callbacks from previous quizzes

An ophthalmologist (PD* $=6 \mathrm{~cm}$) performs binocular indirect ophthalmoscopy (BIO) on a phakic child (PD = 3 cm) using a 20D condensing lens. She notes an elevated retinal lesion. If the image has a height of 4.5 mm , what is the height of the lesion itself?

An ophthalmologist (PD* $=6 \mathrm{~cm}$) performs binocular indirect ophthalmoscopy (BIO) on a phakic child (PD = 3 cm) using a 20D condensing lens. She notes an elevated retinal lesion. If the image has a height of 4.5 mm , what is the height of the lesion itself?

$$
\text { Image axial mag }=\frac{\left(\text { Total dioptric power of the pt's eye }{ }^{* *} / \text { Condensing lens power }\right)^{2}}{\text { Examiner's PD in mm/BIO headpiece PD in mm*** }}
$$

(Note that the pt's PD is irrelevant)

[^0]An ophthalmologist (PD* $=6 \mathrm{~cm}$) performs binocular indirect ophthalmoscopy (BIO) on a phakic child (PD = 3 cm) using a 20D condensing lens. She notes an elevated retinal lesion. If the image has a height of 4.5 mm , what is the height of the lesion itself?

Image axial mag $=\frac{\left(\text { Total dioptric power of the pt's eye**/Condensing lens power) }{ }^{2}\right.}{\text { Examiner's PD in mm/BIO headpiece PD in } \mathrm{mm}^{* * *}}$

$$
=\frac{(60 / 20)^{2}}{60 / 15}=\frac{3^{2}}{4}=\frac{9}{4}=2.25
$$

An ophthalmologist (PD* $=6 \mathrm{~cm}$) performs binocular indirect ophthalmoscopy (BIO) on a phakic child ($\mathrm{PD}=3 \mathrm{~cm}$) using a 20D condensing lens. She notes an elevated retinal lesion. If the image has a height of 4.5 mm , what is the height of the lesion itself?

Image axial mag $=\frac{\left(\text { Total dioptric power of the pt's eye }{ }^{* * / C o n d e n s i n g ~ l e n s ~ p o w e r) ~}{ }^{2}\right.}{\text { Examiner's PD in mm/BIO headpiece PD in } \mathrm{mm}^{* * *}}$

$$
=\frac{(60 / 20)^{2}}{60 / 15}=\frac{3^{2}}{4}=\frac{9}{4}=2.25
$$

Take careful note of the meaning of the ' 2.25 ' result-it indicates the size of the lesion's image is 2.25 times its actual size. It does not mean the lesion is 2.25 mm tall! Answering the question that was asked (actual lesion height) requires one more calculation:

[^1]**Always 60D (from the Güllstrand eye) unless otherwise specified
***Always 15 unless otherwise specified

An ophthalmologist (PD* $=6 \mathrm{~cm}$) performs binocular indirect ophthalmoscopy (BIO) on a phakic child ($\mathrm{PD}=3 \mathrm{~cm}$) using a 20D condensing lens. She notes an elevated retinal lesion. If the image has a height of 4.5 mm , what is the height of the lesion itself?

Image axial mag $=\frac{\left(\text { Total dioptric power of the pt's eye }{ }^{* * / C o n d e n s i n g ~ l e n s ~ p o w e r) ~}{ }^{2}\right.}{\text { Examiner's PD in } \mathrm{mm} / \mathrm{BIO} \text { headpiece } \mathrm{PD} \text { in } \mathrm{mm}^{* * *}}$

$$
=\frac{(60 / 20)^{2}}{60 / 15}=\frac{3^{2}}{4}=\frac{9}{4}=2.25
$$

Take careful note of the meaning of the '2.25' result-it indicates the size of the lesion's image is 2.25 times its actual size. It does not mean the lesion is 2.25 mm tall! Answering the question that was asked (actual lesion height) requires one more calculation:

$$
\text { Actual lesion height }=\frac{\text { Lesion image height }}{2.25}=\frac{4.5 \mathrm{~mm}}{2.25}=\mathbf{2} \mathbf{~ m m}
$$

[^2]**Always 60D (from the Güllstrand eye) unless otherwise specified
***Always 15 unless otherwise specified

What is the angular magnification of a simple stand magnifier with a 10D lens?

What is the angular magnification of a simple stand magnifier with a 10D lens?

Knowledge of the following relationships is assessed by this question:

Angular magnification = angular size θ^{\prime} / θ

Unmagnified retinal angular size

What is the angular magnification of a simple stand magnifier with a 10D lens?

Knowledge of the following relationships is assessed by this question:

What is the angular magnification of a simple stand magnifier with a 10D lens?

Knowledge of the following relationships is assessed by this question:

Angular magnification =
Magnified retinal θ^{\prime} / θ

Substituting...

$\theta^{\prime}=$ Object size x lens power \longrightarrow Object size x lens power
0.25 m

Unmagnified retinal angular size

By convention, a viewing distance of 25 cm $(0.25 \mathrm{~m})$ is used in stand-magnifier problems

What is the angular magnification of a simple stand magnifier with a 10D lens?

Knowledge of the following relationships is assessed by this question:

What is the angular magnification of a simple stand magnifier

 with a 10D lens?Knowledge of the following relationships is assessed by this question:

What is the angular magnification of a simple stand magnifier with a 10D lens?

Knowledge of the following relationships is assessed by this question:

Angular magnification =

A friend just purchased an astronomical telescope. She says it has $5 x$ mag, and the objective lens has a power of 10D (but she can't recall whether it has a 'plus' or 'minus' sign in front of it).
a) Is it a +10 or $\mathrm{a}-10 \mathrm{D}$ objective lens?
b) What is the power (and sign) of the eyepiece lens?
c) Absent intervening prisms, will the image be upright or inverted?
d) If it were a Galilean scope, what would be the answers to a, b and c ?

A friend just purchased an astronomical telescope. She says it has $5 x$ mag, and the objective lens has a power of 10D (but she can't recall whether it has a 'plus' or 'minus' sign in front of it).
a) Is it a +10 or $\mathrm{a}-10 \mathrm{D}$ objective lens?
b) What is the power (and sign) of the eyepiece lens?
c) Absent intervening prisms, will the image be upright or inverted?
d) If it were a Galilean scope, what would be the answers to a, b and c ?
a) The objective lens is (+) in both Galilean and astronomical scopes

Don't forget this minus sign! It keeps the magnification value consistent with our image orientation sign convention
Angular magnification $=-\frac{\text { Eyepiece lens }}{\text { Objective lens }}=-\frac{\text { Eyepiece lens }}{+10 \mathrm{D}}$

A friend just purchased an astronomical telescope. She says it has $5 x$ mag, and the objective lens has a power of 10D (but she can't recall whether it has a 'plus' or 'minus' sign in front of it).
a) Is it a +10 or a -10D objective lens?
b) What is the power (and sign) of the eyepiece lens?
c) Absent intervening prisms, will the image be upright or inverted?
d) If it were a Galilean scope, what would be the answers to a, b and c ?
a) The objective lens is (+) in both Galilean and astronomical scopes
b) $+50 \mathrm{D}(50 \mathrm{D} / 10 \mathrm{D} \rightarrow 5 \mathrm{x})$. Astronomical scopes have (+) eyepiece lenses

$$
\begin{aligned}
\qquad \text { Angular magnification }=-\frac{\text { Eyepiece lens }}{\text { Objective lens }}=-\frac{\text { Eyepiece lens }}{+10 \mathrm{D}} \\
\text { Angular magnification }=5=-\frac{\text { Eyepiece lens }}{\text { Objective lens }}=-\frac{+x}{+10 \mathrm{D}}=-\frac{+50 \mathrm{D}}{+10 \mathrm{D}}
\end{aligned}
$$

A friend just purchased an astronomical telescope. She says it has $5 x$ mag, and the objective lens has a power of 10D (but she can't recall whether it has a 'plus' or 'minus' sign in front of it).
a) Is it a +10 or a -10D objective lens?
b) What is the power (and sign) of the eyepiece lens?
c) Absent intervening prisms, will the image be upright or inverted?
d) If it were a Galilean scope, what would be the answers to a, b and c ?
a) The objective lens is (+) in both Galilean and astronomical scopes
b) $+50 \mathrm{D}(50 \mathrm{D} / 10 \mathrm{D} \rightarrow 5 \mathrm{x})$. Astronomical scopes have (+) eyepiece lenses
c) Inverted

$$
\begin{gathered}
\text { Angular magnification }=-\frac{\text { Eyepiece lens }}{\text { Objective lens }}=-\frac{\text { Eyepiece lens }}{+10 \mathrm{D}} \\
\text { Angular magnification }=5=-\frac{\text { Eyepiece lens }}{\text { Objective lens }}=-\frac{+\boldsymbol{x}}{+10 \mathrm{D}}=-\frac{+50 \mathrm{D}}{+10 \mathrm{D}}
\end{gathered}
$$

The minus sign renders the value negative, indicating the image is inverted

A friend just purchased an astronomical telescope. She says it has $5 x$ mag, and the objective lens has a power of 10D (but she can't recall whether it has a 'plus' or 'minus' sign in front of it).
a) Is it a +10 or a -10D objective lens?
b) What is the power (and sign) of the eyepiece lens?
c) Absent intervening prisms, will the image be upright or inverted?
d) If it were a Galilean scope, what would be the answers to a, b and c ?
a) The objective lens is (+) in both Galilean and astronomical scopes
b) $+50 \mathrm{D}(50 \mathrm{D} / 10 \mathrm{D} \rightarrow 5 \mathrm{x})$. Astronomical scopes have (+) eyepiece lenses
c) Inverted
d) +10D, -50D, upright

$$
\begin{aligned}
& \text { Angular magnification }=-\frac{\text { Eyepiece lens }}{\text { Objective lens }}=-\frac{\text { Eyepiece lens }}{+10 \mathrm{D}} \\
& \text { Igular magnification }=5=-\frac{\text { Eyepiece lens }}{\text { Objective lens }}=-\frac{+x}{+10 \mathrm{D}}=-\frac{-50 \mathrm{D}}{+10 \mathrm{D}}
\end{aligned}
$$

(Changed to represent the eyepiece sign for a Galilean scope)
Because of the minus value of the eyepiece lens on a Galilean telescope...

A friend just purchased an astronomical telescope. She says it has $5 x$ mag, and the objective lens has a power of 10D (but she can't recall whether it has a 'plus' or 'minus' sign in front of it).
a) Is it $a+10$ or $a-10 \mathrm{D}$ objective lens?
b) What is the power (and sign) of the eyepiece lens?
c) Absent intervening prisms, will the image be upright or inverted?
d) If it were a Galilean scope, what would be the answers to a, b and c ?
a) The objective lens is (+) in both Galilean and astronomical scopes
b) $+50 \mathrm{D}(50 \mathrm{D} / 10 \mathrm{D} \rightarrow 5 \mathrm{x})$. Astronomical scopes have (+) eyepiece lenses
c) Inverted
d) +10D, -50D, upright

$$
\begin{gathered}
\text { Angular magnification }=-\frac{\text { Eyepiece lens }}{\text { Objective lens }}=-\frac{\text { Eyepiece lens }}{+10 D} \\
\text { Angular magnification }=5=-\frac{\text { Eyepiece lens }}{\text { Objective lens }}=-\frac{+x}{100}=\frac{-50 D}{+10 D}
\end{gathered}
$$

Because of the minus value of the eyepiece lens on a Galilean telescope...this minus sign renders the value of the fraction positive, indicating the image is upright

A friend just purchased an astronomical telescope. She says it has $5 x$ mag, and the objective lens has a power of 10D (but she can't recall whether it has a 'plus' or 'minus' sign in front of it).
a) Is it a +10 or a -10D objective lens?
b) What is the power (and sign) of the eyepiece lens?
c) Absent intervening prisms, will the image be upright or inverted?
d) If it were a Galilean scope, what would be the answers to a, b and c ?
a) The objective Iens is (+) in both Galilean and astronomical scopes
b) $+50 \mathrm{D}(50 \mathrm{D} / 10 \mathrm{D} \rightarrow 5 \mathrm{x})$. Astronomical scopes have (+) eyepiece lenses
c) Inverted
d) +10D, -50D, upright
$\underset{\text { mag }}{\text { Angular }}=-\frac{\text { Eyepiece lens }}{\text { Objective lens }}=-\frac{\text { Plus }}{\text { Plus }}=(-)$

Astronomical telescope (image is рәцəли!)

Galilean telescope (image is upright)

How far apart are the object and the final image?

This problem
 requires a three-step solution:

How far apart are the object and the final image?

$$
\begin{gathered}
U+V=P \\
-3+(-1)=-4 \\
1 /-4=-0.25 m
\end{gathered}
$$

Step 1:
Use the Vergence Formula to determine the location of the image formed by the first lens

How far apart are the object and the final image?

$$
\begin{gathered}
U+V=P \\
-3+(-1)=-4 \\
1 /-4=-0.25 m
\end{gathered}
$$

$$
\begin{gathered}
U+V=P \\
-1+(+5)=4 D \\
1 / 4=0.25 \mathrm{~m}
\end{gathered}
$$

Step 2:
Treat the first image as an object for the second lens

How far apart are the object and the final image?

$$
\begin{gathered}
U+V=P \\
-3+(-1)=-4 \\
1 /-4=-0.25 m
\end{gathered}
$$

$$
U+V=P
$$

$$
\begin{gathered}
-1+(+5)=4 D \\
1 / 4=0.25 \mathrm{~m}
\end{gathered}
$$

Step 3:
Determine the distance between the initial object and final image

--Indicate where the parallel rays will meet for each refractive status by extending the rays.
--What is the name for this location?

Parallel rays from infinity (vergence $=0$)

--Indicate where the parallel rays will meet for each refractive status by extending the rays.
--What is the name for this location? Secondary focal point

Parallel rays from infinity (vergence $=0$)
'The place where parallel rays will meet after encountering a refractive structure' is the definition of the secondary focal point!

Indicate the location of the far point for each refractive status (ie, draw rays from the far point to where they meet in the eye)

Hyperopic Eye

Emmetropic Eye

Indicate the location of the far point for each refractive status (ie, draw rays from the far point to where they meet in the eye)

The far point is the location in visual space conjugate with the retina when the eye is not accommodating

A pt is a +5 hyperope. He is capable of a total of 10D of accommodation.
a) Draw the appropriate error lens
b) Indicate the location of his far point (draw and label it)

Absent corrective lenses or surgery:
c) Where is his near point relative to the corneal plane?
d) His range of clear vision is from where to where?

A pt is a +5 hyperope. He is capable of a total of 10D of accommodation.
a) Draw the appropriate error lens
b) Indicate the location of his far point (draw and label it)

Absent corrective lenses or surgery:
c) Where is his near point relative to the corneal plane?
d) His range of clear vision is from where to where?

A pt is a +5 hyperope. He is capable of a total of 10 D of accommodation.
a) Draw the appropriate error lens
b) Indicate the location of his far point (draw and label it)

Absent corrective lenses or surgery:
c) Where is his near point relative to the corneal plane?
d) His range of clear vision is from where to where?

A pt is a +5 hyperope. He is capable of a total of 10 D of accommodation.
a) Draw the appropriate error lens
b) Indicate the location of his far point (draw and label it)

Absent corrective lenses or surgery:
c) Where is his near point relative to the corneal plane?
d) His range of clear vision is from where to where?
c) The pt must use 5 of his 10 total diopters of accommodation to see clearly at infinity. This leaves 5D for near. Therefore, his near point is $1 / 5=0.2 \mathrm{~m}=20 \mathrm{~cm}$ anterior to the corneal plane.

A pt is a +5 hyperope. He is capable of a total of 10 D of accommodation.
a) Draw the appropriate error lens
b) Indicate the location of his far point (draw and label it)

Absent corrective lenses or surgery:
c) Where is his near point relative to the corneal plane?
d) His range of clear vision is from where to where?
c) The pt must use 5 of his 10 total diopters of accommodation to see clearly at infinity. This leaves 5D for near. Therefore, his near point is $1 / 5=0.2 \mathrm{~m}=20 \mathrm{~cm}$ anterior to the corneal plane.
d) His range of clear vision is from 20 cm to infinity.

A pt is a +2 hyperope. He is capable of a total of 6D of accommodation. Absent corrective lenses or surgery: a) Where is his near point relative to the corneal plane?
b) His range of clear vision is from where to where?

A pt is a +2 hyperope. He is capable of a total of 6D of accommodation. Absent corrective lenses or surgery: a) Where is his near point relative to the corneal plane?
b) His range of clear vision is from where to where?
a) To see clearly at distance, this +2 hyperope must first employ 2D of the 6 diopters of accommodation he possesses.

A pt is a +2 hyperope. He is capable of a total of 6D of accommodation. Absent corrective lenses or surgery: a) Where is his near point relative to the corneal plane?
b) His range of clear vision is from where to where?
a) To see clearly at distance, this +2 hyperope must first employ 2D of the 6 diopters of accommodation he possesses.
To focus at his near point, he will crank in the remaining 4D of accommodation.
Thus he will be focused at $1 / 4=.25 \mathrm{~m}(25 \mathrm{~cm})$ anterior to the corneal plane.

A pt is a +2 hyperope. He is capable of a total of $6 D$ of accommodation. Absent corrective lenses or surgery: a) Where is his near point relative to the corneal plane?
b) His range of clear vision is from where to where?
a) To see clearly at distance, this +2 hyperope must first employ 2D of the 6 diopters of accommodation he possesses.
To focus at his near point, he will crank in the remaining 4D of accommodation.
Thus he will be focused at $1 / 4=.25 \mathrm{~m}(25 \mathrm{~cm})$ anterior to the corneal plane.
b) His range of clear vision is from infinity to 25 cm anterior to the corneal plane.

A pt is a -2 myope. She is capable of a total of 3D of accommodation. Absent corrective lenses or surgery: a) Where is her near point relative to the corneal plane?
b) Her range of clear vision is from where to where?

A pt is a -2 myope. She is capable of a total of 3D of accommodation. Absent corrective lenses or surgery: a) Where is her near point relative to the corneal plane?
b) Her range of clear vision is from where to where?
a) This pt has a +2 error lens. When she cranks in her 3D of accommodative ability, she has a total of $+5 D$ in play. This puts her near point at $1 / 5=0.20 \mathrm{~m}(20 \mathrm{~cm})$ anterior to the corneal plane.

A pt is a -2 myope. She is capable of a total of 3D of accommodation. Absent corrective lenses or surgery: a) Where is her near point relative to the corneal plane?
b) Her range of clear vision is from where to where?
a) This pt has a +2 error lens. When she cranks in her 3D of accommodative ability, she has a total of +5 D in play. This puts her near point at $1 / 5=0.20 \mathrm{~m}(20 \mathrm{~cm})$ anterior to the corneal plane.
b) Because of her error lens, this pt cannot see clearly at distance. The farthest point at which she can see clearly is her far point, which is located at $1 / 2=0.50 \mathrm{~m}(50 \mathrm{~cm})$ anterior to the corneal plane.

A pt is a -2 myope. She is capable of a total of 3D of accommodation. Absent corrective lenses or surgery:
a) Where is her near point relative to the corneal plane?
b) Her range of clear vision is from where to where?
a) This pt has a +2 error lens. When she cranks in her 3D of accommodative ability, she has a total of +5 D in play. This puts her near point at $1 / 5=0.20 \mathrm{~m}(20 \mathrm{~cm})$ anterior to the corneal plane.
b) Because of her error lens, this pt cannot see clearly at distance. The farthest point at which she can see clearly is her far point, which is located at $1 / 2=0.50 \mathrm{~m}(50 \mathrm{~cm})$ anterior to the corneal plane. As noted above, her near point is at 20 cm . Therefore, her range of clear vision is from 50 to 20 cm anterior to the corneal plane.

Convert each power cross to its spherocylindrical equivalent in... a) Plus-cylinder format
b) Minus-cylinder format
c) Calculate the S.E. for each lens
d) What type of astigmatism does each represent?
e) Which one is a Jackson cross?

+2

Convert each power cross to its spherocylindrical equivalent in... a) Plus-cylinder format
b) Minus-cylinder format
c) Calculate the S.E. for each lens
d) What type of astigmatism does each represent?
e) Which one is a Jackson cross?

+2
(a) Plus: $-2+4 \times 180$

Plus: -8 +2 x 135

Plus: +1 sph

Convert each power cross to its spherocylindrical equivalent in... a) Plus-cylinder format
b) Minus-cylinder format
c) Calculate the S.E. for each lens
d) What type of astigmatism does each represent? e) Which one is a Jackson cross?

+2
(a) Plus: $-2+4 \times 180$
(b) Minus: $+2-4 \times 090$

Plus: $-8+2 \times 135$ Minus: -6-2 x 045

Plus: +1 sph Minus: +1 sph

Convert each power cross to its spherocylindrical equivalent in... a) Plus-cylinder format
b) Minus-cylinder format
c) Calculate the S.E. for each lens
d) What type of astigmatism does each represent? e) Which one is a Jackson cross?

+2

Plus: -8 +2 x 135 Minus: -6-2 x 045 S.E.: -7

Plus: +1 sph Minus: +1 sph S.E.: +1

Convert each power cross to its spherocylindrical equivalent in... a) Plus-cylinder format
b) Minus-cylinder format
c) Calculate the S.E. for each lens
d) What type of astigmatism does each represent?
e) Which one is a Jackson cross?

$+2$

Plus: $-2+4 \times 180$ Minus: +2 -4 x 090
S.E.: Plano

Mixed astigmatism

Plus: -8 +2 x 135
Minus: -6 -2 x 045
S.E.: -7

Compound myopic

Plus: +1 sph Minus: +1 sph S.E.: +1 Not astigmatic, ie, is a spherical lens

Convert each power cross to its spherocylindrical equivalent in... a) Plus-cylinder format
b) Minus-cylinder format
c) Calculate the S.E. for each lens
d) What type of astigmatism does each represent?
e) Which one is a Jackson cross?

+2
(a) Plus: $-2+4 \times 180$
(b) Minus: +2 - 4×090
S.E.: Plano
(d) Mixed astigmatism
(e) Jackson cross


```
Plus: -8 +2 x 135
Minus: -6 -2 x 045
S.E.:-7
Compound myopic
```


Plus: +1 sph
Minus: +1 sph
S.E.: +1

Not astigmatic, ie, is
a spherical lens

[^0]: *PD = Interpupillary distance
 **Always 60D (from the Güllstrand eye) unless otherwise specified
 ***Always 15 unless otherwise specified

[^1]: *PD = Interpupillary distance

[^2]: *PD = Interpupillary distance

