Define glaucoma.
Define glaucoma. Glaucoma is a group of optic neuropathies that present with progressive ONH damage and characteristic VF loss.
Define glaucoma. Glaucoma is a group of optic neuropathies that present with progressive ONH damage and characteristic VF loss.

Why isn’t elevated IOP mentioned above?
Define glaucoma. Glaucoma is a group of optic neuropathies that present with progressive ONH damage and characteristic VF loss.

Why isn’t elevated IOP mentioned above? Elevated IOP is a strong risk factor for glaucoma, but it need not be present—IOP can be normal, or even low.
Define glaucoma.
Glaucoma is a group of optic neuropathies that present with progressive ONH damage and characteristic VF loss.

Why isn’t elevated IOP mentioned above?
Elevated IOP is a strong risk factor for glaucoma, but it need not be present—IOP can be normal, or even low.

In addition to being the strongest risk factor for glaucoma, IOP has another quality that renders it unique—what is it?
Define glaucoma.
Glaucoma is a group of optic neuropathies that present with progressive ONH damage and characteristic VF loss.

Why isn’t elevated IOP mentioned above?
Elevated IOP is a strong risk factor for glaucoma, but it need not be present—IOP can be normal, or even low.

In addition to being the strongest risk factor for glaucoma, IOP has another quality that renders it unique—what is it?
It is the only risk factor that is modifiable in a manner proven to influence the risk of glaucoma progression.
Define glaucoma. Glaucoma is a group of optic neuropathies that present with progressive ONH damage and characteristic VF loss.

Why isn’t elevated IOP mentioned above? Elevated IOP is a strong risk factor for glaucoma, but it need not be present—IOP can be normal, or even low.

In addition to being the strongest risk factor for glaucoma, IOP has another quality that renders it unique—what is it? It is the only risk factor that is **modifiable** in a manner proven to influence the risk of glaucoma progression.

That’s why glaucoma management concerns nothing but IOP-lowering maneuvers!
The first thought you should have when encountering a pt you suspect has glaucoma is…
The first thought you should have when encountering a pt you suspect has glaucoma is…

What is the status of the angle?
The first thought you should have when encountering a pt you suspect has angle-closure glaucoma is…
The first thought you should have when encountering a pt you suspect has angle-closure glaucoma is…

is it primary or secondary?
Is there a racial predilection regarding the risk of PACG?
Is there a racial predilection regarding the risk of PACG?
Yes, individuals of Inuit heritage have the highest known risk of PACG--their relative risk has been estimated to be as high as 40x that of whites.
Is there a racial predilection regarding the risk of PACG?
Yes, individuals of Inuit heritage have the highest known risk of PACG–their relative risk has been estimated to be as high as 40x that of whites.
Is there a racial predilection regarding the risk of PACG?
Yes, individuals of Inuit heritage have the highest known risk of PACG--their relative risk has been estimated to be as high as 40x that of whites.

What about people of Asian descent?
Is there a racial predilection regarding the risk of PACG?
Yes, individuals of Inuit heritage have the highest known risk of PACG--their relative risk has been estimated to be as high as 40x that of whites.

What about people of Asian descent?
Their relative risk is somewhere between that of the Inuit and whites.
Is there a racial predilection regarding the risk of PACG?
Yes, individuals of **Inuit** heritage have the highest known risk of PACG--their relative risk has been estimated to be as high as **40x** that of whites.

What about people of Asian descent?
Their relative risk is somewhere between that of the Inuit and whites

Is age a risk factor?
Is there a racial predilection regarding the risk of PACG?
Yes, individuals of Inuit heritage have the highest known risk of PACG--their relative risk has been estimated to be as high as 40x that of whites.

What about people of Asian descent?
Their relative risk is somewhere between that of the Inuit and whites

Is age a risk factor?
Yes, the incidence increases with age
Is there a racial predilection regarding the risk of PACG?
Yes, individuals of Inuit heritage have the highest known risk of PACG--their relative risk has been estimated to be as high as 40x that of whites.

What about people of Asian descent?
Their relative risk is somewhere between that of the Inuit and whites

Is age a risk factor?
Yes, the incidence increases with age

Is gender a risk factor?
Is there a racial predilection regarding the risk of PACG?
Yes, individuals of Inuit heritage have the highest known risk of PACG--their relative risk has been estimated to be as high as 40x that of whites.

What about people of Asian descent?
Their relative risk is somewhere between that of the Inuit and whites

Is age a risk factor?
Yes, the incidence increases with age

Is gender a risk factor?
Yes, women are at higher risk
Is there a racial predilection regarding the risk of PACG?
Yes, individuals of Inuit heritage have the highest known risk of PACG--their relative risk has been estimated to be as high as 40x that of whites.

What about people of Asian descent?
Their relative risk is somewhere between that of the Inuit and whites

Is age a risk factor?
Yes, the incidence increases with age

Is gender a risk factor?
Yes, women are at higher risk
Is there a racial predilection regarding the risk of PACG? Yes, individuals of Inuit heritage have the highest known risk of PACG--their relative risk has been estimated to be as high as 40x that of whites.

What about people of Asian descent? Their relative risk is somewhere between that of the Inuit and whites.

Is age a risk factor? Yes, the incidence increases with age.

Is gender a risk factor? Yes, women are at higher risk.

Is refraction a risk factor?
Is there a racial predilection regarding the risk of PACG?
Yes, individuals of Inuit heritage have the highest known risk of PACG--their relative risk has been estimated to be as high as 40x that of whites.

What about people of Asian descent?
Their relative risk is somewhere between that of the Inuit and whites.

Is age a risk factor?
Yes, the incidence increases with age.

Is gender a risk factor?
Yes, women are at higher risk.

Is refraction a risk factor?
Yes; PACG is more likely to occur in...
Is there a racial predilection regarding the risk of PACG?
Yes, individuals of Inuit heritage have the highest known risk of PACG--their relative risk has been estimated to be as high as 40x that of whites.

What about people of Asian descent?
Their relative risk is somewhere between that of the Inuit and whites

Is age a risk factor?
Yes, the incidence increases with age

Is gender a risk factor?
Yes, women are at higher risk

Is refraction a risk factor?
Yes; PACG is more likely to occur in hyperopes
What are the four subtypes of PACG?
Angled Closure Glaucoma

Primary
- Acute
- Subacute
- Chronic
- Plateau Iris

Secondary

What are the four subtypes of PACG?
Angle-Closure Glaucoma

Primary
- Acute
- Subacute
- Chronic
- Plateau Iris

Secondary

In what fundamental way do these three...
Angle-Closure Glaucoma

Primary
- Acute
- Subacute
- Chronic
- Plateau Iris

Secondary

In what fundamental way do these three... differ from this one?
Angle Closure Glaucoma

Primary
- Acute
- Subacute
- Chronic
- Plateau Iris

Secondary

These share a common mechanism: Pupillary block
Angle Closure Glaucoma

Angle-Closure Glaucoma

Primary
- Acute
- Subacute
- Chronic
- Plateau Iris

Secondary

These share a common mechanism: **Pupillary block**
Angle Closure Glaucoma

Angle-Closure Glaucoma

Primary
- Acute
- Subacute
- Chronic
- **Plateau Iris**

Secondary

These share a common mechanism: **Pupillary block**

In plateau iris, angle closure is due primarily to anterior displacement of the ciliary processes (although some cases of plateau iris demonstrate a pupillary block component as well)
The first thought you should have when encountering a pt you suspect has secondary angle-closure glaucoma is…
Angle-Closure Glaucoma

Primary

- Acute
- Subacute
- Chronic
- Plateau Iris

Secondary

- w/ Pupillary Block
- w/o Pupillary Block

The first thought you should have when encountering a pt you suspect has secondary angle-closure glaucoma is…

is it with or without pupillary block?
Another way to think about the etiology of secondary angle closure glaucoma is…
Another way to think about the etiology of secondary angle closure glaucoma is…
To consider whether the peripheral iris is being ‘pushed’ forward from behind, or being ‘pulled’ forward from the front.
Angle Closure Glaucoma

Primary
- Acute
- Subacute
- Chronic
- Plateau Iris

Secondary
- w/ Pupillary Block: 'Push'
- w/o Pupillary Block: 'Pull'

Q
Angle Closure Glaucoma

Angle-Closure Glaucoma

Primary
- Acute
- Subacute
- Chronic
- Plateau Iris

Secondary
- w/ Pupillary Block: Push
- w/o Pupillary Block: Pull
 - Lens-Induced
 - Aphakic/Pseudophakic
 - RD
Angle Closure Glaucoma

Primary
- Acute
- Subacute
- Chronic
- Plateau Iris

Secondary
w/ Pupillary Block: 'Push'
- Lens-Induced
- Aphakic/Pseudophakic

w/o Pupillary Block: 'Pull'
- ?
- ?
- ?
- ?
- ?
- ?
- ?
- ?
- ?
- ?
A

Angle Closure Glaucoma

Angle-Closure Glaucoma

Primary

- Acute
- Subacute
- Chronic
- Plateau Iris

Secondary

w/ Pupillary Block:

‘Push’

- Lens-Induced
- Aphakic/Pseudophakic
- RD

w/o Pupillary Block:

‘Pull’

- Neovascular
- ICE
- Inflammatory
- Nanophthalmos
- ROP/PHPV
- Aqueous misdirection
- Epithelial downgrowth
- 2° to retinal issues
In this context, what does the acronym NVG stand for?

Neovascular glaucoma.

What two-word phrase (not 'diabetic retinopathy') describes the cause of most cases of NVG?

'Retinal ischemia'.

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?

The ischemic retinal cells release the signaling molecule vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?

-- Diabetic retinopathy
-- CRVO
-- Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

Where on the iris does NVI typically appear first, and what does it look like?

It usually appears as small 'tufts' of vessels at the pupillary margin. As it develops further, it grows in a meandering fashion toward the angle (normal iris vessels typically grow in a rather direct radial fashion).

How does NVA cause angle closure?

The new blood vessels don't travel alone, rather, they are accompanied by fibroblasts and similar cells. These fellow-travelers have contractile properties, and thus can 'pull' the iris across the angle, thereby closing it.
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

Neovascular glaucoma

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?

The ischemic retinal cells release the signaling molecule *vascular endothelial growth factor* (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?

- Diabetic retinopathy
- CRVO
- Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

Where on the iris does NVI typically appear first, and what does it look like?

It usually appears as small 'tufts' of vessels at the pupillary margin.

As it develops further, how does it grow (i.e., direction, and course)?

It grows in a meandering fashion toward the angle (normal iris vessels typically grow in a rather direct radial fashion).

How does NVA cause angle closure?

The new blood vessels don't travel alone, rather, they are accompanied by fibroblasts and similar cells. These fellow-travelers have contractile properties, and thus can 'pull' the iris across the angle, thereby closing it.
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?

Neovascular

ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2° to retinal issues
In this context, what does the acronym NVG stand for? Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG? ‘Retinal ischemia’
In this context, what does the acronym NVG stand for?

Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?

‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?

The ischemic retinal cells release the signaling molecule **vascular endothelial growth factor (VEGF)**, a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?

--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

Where on the iris does NVI typically appear first, and what does it look like?

It usually appears as small ‘tufts’ of vessels at the pupillary margin.

As it develops further, how does it grow (ie, direction, and course)?

It grows in a meandering fashion toward the angle (normal iris vessels typically grow in a rather direct radial fashion).

How does NVA cause angle closure?

The new blood vessels don’t travel alone, rather, they are accompanied by fibroblasts and similar cells. These fellow-travelers have contractile properties, and thus can ‘pull’ the iris across the angle, thereby closing it.
In this context, what does the acronym NVG stand for? Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG? ‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?

The ischemic retinal cells release the signaling molecule [vascular endothelial growth factor (VEGF)], a potent inducer of new blood vessel formation.
In this context, what does the acronym NVG stand for?

Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?

‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?

The ischemic retinal cells release the signaling molecule **vascular endothelial growth factor (VEGF)**, a potent inducer of new blood vessel formation.
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?
The ischemic retinal cells release the signaling molecule vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--
--
--
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?
The ischemic retinal cells release the signaling molecule vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)
In this context, what does the acronym NVG stand for?

Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?

‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?

The ischemic retinal cells release the signaling molecule, vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

CRVOs are classified into one of two categories. What are these?

--Diabetic
--CRVO

--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures)

What are the three most common causes of NV-inducing ischemia?

--Diabetic retinopathy--
--CRVO
--Ocular ischemic syndrome

Where on the iris does NVI typically appear first, and what does it look like?

It usually appears as small ‘tufts’ of vessels at the pupillary margin.

As it develops further, how does it grow (ie, direction, and course)?

It grows in a meandering fashion toward the angle (normal iris vessels typically grow in a rather direct radial fashion).

How does NVA cause angle closure?

The new blood vessels don’t travel alone, rather, they are accompanied by fibroblasts and similar cells. These fellow-travelers have contractile properties, and thus can ‘pull’ the iris across the angle, thereby closing it.

CRVOs are classified into one of two categories. What are these?

‘Ischemic’ and ‘non-ischemic’

Which sort is implicated in the development of NVG?

Seriously?

What is the typical timeframe for development of NVG after CRVO?

It usually occurs about 3 month’s after. Because of this, NVG after CRVO is often called ‘100-day glaucoma’ (or, ‘90-day glaucoma’).
In this context, what does the acronym NVG stand for? Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG? ‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)? The ischemic retinal cells release the signaling molecule vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

CRVOs are classified into one of two categories. What are these? Ischemic and nonischemic

What are the most common causes of NV-inducing ischemia?

--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures)

Where on the iris does NVI typically appear first, and what does it look like? It usually appears as small ‘tufts’ of vessels at the pupillary margin.

As it develops further, how does it grow (ie, direction, and course)? It grows in a meandering fashion toward the angle (normal iris vessels typically grow in a rather direct radial fashion).

How does NVA cause angle closure? The new blood vessels don’t travel alone, rather, they are accompanied by fibroblasts and similar cells. These fellow-travelers have contractile properties, and thus can ‘pull’ the iris across the angle, thereby closing it.

CRVOs are classified into one of two categories. What are these?

Ischemic and nonischemic

‘Pull’ Neovascular

ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2° to retinal issues
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?
The ischemic retinal cells release the signaling molecule, vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

CRVOs are classified into one of two categories. What are these?
Ischemic and nonischemic

Which sort is implicated in the development of NVG?

‘Pull’

Neovascular

ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2° to retinal issues
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?
The ischemic retinal cells release the signaling molecule vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

CRVOs are classified into one of two categories. What are these?
Ischemic and nonischemic

Which sort is implicated in the development of NVG?
Seriously?

Neovascular

ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2° to retinal issues
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?
The ischemic retinal cells release the signaling molecule, vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

CRVOs are classified into one of two categories. What are these?
Ischemic and nonischemic

Which sort is implicated in the development of NVG?
Seriously?

What is the typical timeframe for development of NVG after CRVO?
It usually occurs about 3 months after. Because of this, NVG after CRVO is often called ‘100-day glaucoma’ (or, ‘90-day glaucoma’).
In this context, what does the acronym NVG stand for?

Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?

‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?

The ischemic retinal cells release the signaling molecule, vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

CRVOs are classified into one of two categories. What are these?

Ischemic and nonischemic

Which sort is implicated in the development of NVG?

Seriously?

What is the typical timeframe for development of NVG after CRVO?

It usually occurs about 3 month’s after. Because of this, NVG after CRVO is often called ‘100-day glaucoma’ (or, ‘90-day glaucoma’).
Can NVG develop after a CRAO?

What is the typical timeframe for development of NVG after CRVO? It usually occurs about 3 month’s after. Because of this, NVG after CRVO is often called ‘100-day glaucoma’ (or, ‘90-day glaucoma’)

‘Pull’

Neovascular

ICE

Inflammatory

Nanophthalmos

ROP/PHPV

Aqueous misdirection

Epithelial downgrowth

2° to retinal issues
Can NVG develop after a CRAO?
Yes

What is the typical timeframe for development of NVG after CRVO? It usually occurs about 3 month’s after. Because of this, NVG after CRVO is often called ‘100-day glaucoma’ (or, ‘90-day glaucoma’)

‘Pull’

Neovascular
- ICE
- Inflammatory
- Nanophthalmos
- ROP/PHPV
- Aqueous misdirection
- Epithelial downgrowth
- 2° to retinal issues
Can NVG develop after a CRAO?
Yes

Is NVG more, or less likely to develop after CRAO compared to CRVO?

What is the typical timeframe for development of NVG after CRVO?
It usually occurs about 3 month’s after. Because of this, NVG after CRVO is often called ‘100-day glaucoma’ (or, ‘90-day glaucoma’)

‘Pull’

Neovascular

ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2° to retinal issues
Can NVG develop after a CRAO?
Yes

Is NVG more, or less likely to develop after CRAO compared to CRVO?
Much less likely

What is the typical timeframe for development of NVG after CRVO?
It usually occurs about 3 month’s after. Because of this, NVG after CRVO is often called ‘100-day glaucoma’ (or, ‘90-day glaucoma’)

‘Pull’

Neovascular

ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2° to retinal issues

CRVO
Ocular is structures

Can NVG develop after a CRAO?
Yes

Is NVG more, or less likely to develop after CRAO compared to CRVO?
Much less likely

But surely a CRAO causes more retinal ischemia than does a CRVO. Given this, why isn’t NVG more common after CRAO?

What is the typical timeframe for development of NVG after CRVO?
It usually occurs about 3 month’s after. Because of this, NVG after CRVO is often called ‘100-day glaucoma’ (or, ‘90-day glaucoma’)

‘Pull’

Neovascular

ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2o to retinal issues
Can NVG develop after a CRAO?
Yes

Is NVG more, or less likely to develop after CRAO compared to CRVO?
Much less likely

But surely a CRAO causes more retinal ischemia than does a CRVO. Given this, why isn’t NVG more common after CRAO?
Because the retina is too ischemic after CRAO. That is, CRAO-induced ischemia is so profound that retinal cells die prior to being able to produce and release VEGF. Contrast this with CRVO, in which enough blood flow is maintained to allow the dying retinal cells time to ‘cry for help.’

What is the typical timeframe for development of NVG after CRVO?
It usually occurs about 3 month’s after. Because of this, NVG after CRVO is often called ‘100-day glaucoma’ (or, ‘90-day glaucoma’)

‘Pull’

Neovascular

ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2° to retinal issues
Can NVG develop after a CRAO?
Yes

Is NVG more, or less likely to develop after CRAO compared to CRVO?
Much less likely

But surely a CRAO causes more retinal ischemia than does a CRVO. Given this, why isn’t NVG more common after CRAO?
Because the retina is too ischemic after CRAO. That is, CRAO-induced ischemia is so profound that retinal cells die prior to being able to produce and release VEGF. Contrast this with CRVO, in which enough blood flow is maintained to allow the dying retinal cells time to ‘cry for help.’

If NVG develops after CRAO, what is the typical timeframe?

What is the typical timeframe for development of NVG after CRVO?
It usually occurs about 3 month’s after. Because of this, NVG after CRVO is often called ‘100-day glaucoma’ (or, ‘90-day glaucoma’)

‘Pull’

Neovascular

• ICE
• Inflammatory
• Nanophthalmos
• ROP/PHPV
• Aqueous misdirection
• Epithelial downgrowth
• 2° to retinal issues
Can NVG develop after a CRAO?
Yes

Is NVG more, or less likely to develop after CRAO compared to CRVO?
Much less likely

But surely a CRAO causes more retinal ischemia than does a CRVO. Given this, why isn’t NVG more common after CRAO?
Because the retina is too ischemic after CRAO. That is, CRAO-induced ischemia is so profound that retinal cells die prior to being able to produce and release VEGF. Contrast this with CRVO, in which enough blood flow is maintained to allow the dying retinal cells time to ‘cry for help.’

If NVG develops after CRAO, what is the typical timeframe?
It usually occurs about 1 month after. Because of this, NVG after CRAO is often called ‘30-day glaucoma.’

What is the typical timeframe for development of NVG after CRVO?
It usually occurs about 3 month’s after. Because of this, NVG after CRVO is often called ‘100-day glaucoma’ (or, ‘90-day glaucoma’)

‘Pull’
Neovascular
ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2º to retinal issues
In this context, what does the acronym NVG stand for? Neovascular glaucoma.

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG? ‘Retinal ischemia’.

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)? The ischemic retinal cells release the signaling molecule vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

There’s an important difference in the clinical presentation of NVG in DBR and CRVO vs the presentation of ‘NVG’ in OIS. What is it?

Angle closure in DBR and CRVO inevitably produces a dramatic spike in IOP. However, angle closure in OIS frequently is not accompanied by a high IOP.

Why doesn’t the IOP spike during angle closure in OIS?
In a word—hypoperfusion. That is, the same lack of blood flow that resulted in ocular ischemia leads to ciliary-body shutdown, such that very little aqueous is made.

What is the most common cause of OIS?
Carotid occlusive disease.

If an eye has a zipped-up angle secondary to NVA from OIS, what can happen to IOP after successful CEA re-establishes blood flow to the ciliary body?
IOP often spikes dramatically. The patient’s ophthalmologist must be prepared for this development in OIS pts who undergo CEA!
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells and/or angle (NVA)?
The ischemic retinal cells release vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

There’s an important difference in the clinical presentation of NVG in DBR and CRVO vs the presentation of ‘NVG’ in OIS. What is it?
Angle closure in DBR and CRVO inevitably produces a dramatic spike in IOP. However, angle closure in OIS frequently is not accompanied by a high IOP.

Angle-Closure Glaucoma

Acute
Chronic

Lens-induced
Aphakic/Pseudophakic
RD
Inflammatory
ICE
Aqueous misdirection
ROP/PHPV

Plateau Iris w/ Pupillary Block: w/o Pupillary Block:
2° to retinal issues

Neovascular

‘Pull’
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells and/or angle (NVA)?
The ischemic retinal cells release vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome

There’s an important difference in the clinical presentation of NVG in DBR and CRVO vs the presentation of ‘NVG’ in OIS. What is it?
Angle closure in DBR and CRVO inevitably produces a dramatic spike in IOP. However, angle closure in OIS frequently is not accompanied by a high IOP.

Why doesn’t the IOP spike during angle closure in OIS?
In a word—hypoperfusion. That is, the same lack of blood flow that resulted in ocular ischemia leads to ciliary-body shutdown, such that very little aqueous is made.

What is the most common cause of OIS?
Carotid occlusive disease

If an eye has a zipped-up angle secondary to NVA from OIS, what can happen to IOP after successful CEA re-establishes blood flow to the ciliary body?
IOP often spikes dramatically. The patient’s ophthalmologist must be prepared for this development in OIS pts who undergo CEA!
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells and/or angle (NVA)?
The ischemic retinal cells release vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (which involves ischemia of non-retinal structures as well)

There’s an important difference in the clinical presentation of NVG in DBR and CRVO vs the presentation of ‘NVG’ in OIS. What is it?
Angle closure in DBR and CRVO inevitably produces a dramatic spike in IOP. However, angle closure in OIS frequently is not accompanied by a high IOP.

Why doesn’t the IOP spike during angle closure in OIS?
In a word--hypoperfusion. That is, the same lack of blood flow that resulted in ocular ischemia leads to ciliary-body shutdown, such that very little aqueous is made.

Why doesn’t the IOP spike during angle closure in OIS?
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not 'diabetic retinopathy') describes the cause of most cases of NVG?
'Retinal ischemia'

How can ischemia of retinal cells and/or angle (NVA)?
The ischemic retinal cells release growth factor (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (non-retinal structures as well)

There’s an important difference in the clinical presentation of NVG in DBR and CRVO vs the presentation of 'NVG' in OIS. What is it?
Angle closure in DBR and CRVO inevitably produces a dramatic spike in IOP. However, angle closure in OIS frequently is not accompanied by a high IOP.

Why doesn’t the IOP spike during angle closure in OIS?
In a word--hypoperfusion. That is, the same lack of blood flow that resulted in ocular ischemia leads to ciliary-body shutdown, such that very little aqueous is made.

What is the most common cause of OIS?

Carotid occlusive disease

Neovascular

ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2° to retinal issues
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells and/or angle (NVA)?
The ischemic retinal cells release vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

There’s an important difference in the clinical presentation of NVG in DBR and CRVO vs the presentation of ‘NVG’ in OIS. What is it?
Angle closure in DBR and CRVO inevitably produces a dramatic spike in IOP. However, angle closure in OIS frequently is not accompanied by a high IOP.

Why doesn’t the IOP spike during angle closure in OIS?
In a word--hypoperfusion. That is, the same lack of blood flow that resulted in ocular ischemia leads to ciliary-body shutdown, such that very little aqueous is made.

What is the most common cause of OIS?
Carotid occlusive disease
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells and/or angle (NVA)?
The ischemic retinal cells release vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (which involves ischemia of non-retinal structures as well)

There’s an important difference in the clinical presentation of NVG in DBR and CRVO vs the presentation of ‘NVG’ in OIS. What is it?
Angle closure in DBR and CRVO inevitably produces a dramatic spike in IOP. However, angle closure in OIS frequently is not accompanied by a high IOP.

Why doesn’t the IOP spike during angle closure in OIS?
In a word--hypoperfusion. That is, the same lack of blood flow that resulted in ocular ischemia leads to ciliary-body shutdown, such that very little aqueous is made.

What is the most common cause of OIS?
Carotid occlusive disease

If an eye has a zipped-up angle secondary to NVA from OIS, what can happen to IOP after successful CEA re-establishes blood flow to the ciliary body?
IOP often spikes dramatically. The patient’s ophthalmologist must be prepared for this development in OIS pts who undergo CEA!
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells and/or angle (NVA)?
The ischemic retinal cells release vascular endothelial growth factor (VEGF), a potent angiogenic factor.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

There’s an important difference in the clinical presentation of NVG in DBR and CRVO vs the presentation of ‘NVG’ in OIS. What is it?
Angle closure in DBR and CRVO inevitably produces a dramatic spike in IOP. However, angle closure in OIS frequently is not accompanied by a high IOP.

Why doesn’t the IOP spike during angle closure in OIS?
In a word--hypoperfusion. That is, the same lack of blood flow that resulted in ocular ischemia leads to ciliary-body shutdown, such that very little aqueous is made.

What is the most common cause of OIS?
Carotid occlusive disease

If an eye has a zipped-up angle secondary to NVA from OIS, what can happen to IOP after successful CEA re-establishes blood flow to the ciliary body?
IOP often spikes dramatically. The patient’s ophthalmologist must be prepared for this development in OIS pts who undergo CEA!
In this context, what does the acronym NVG stand for?

Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?
The ischemic retinal cells release the signaling molecule **vascular endothelial growth factor (VEGF)**, a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

Where on the iris does NVI typically appear first, and what does it look like?

As it develops further, how does it grow (ie, direction, and course)?
It grows in a meandering fashion toward the angle (normal iris vessels typically grow in a rather direct radial fashion).

How does NVA cause angle closure?
The new blood vessels don’t travel alone, rather, they are accompanied by fibroblasts and similar cells. These fellow-travelers have contractile properties, and thus can ‘pull’ the iris across the angle, thereby closing it.
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?
The ischemic retinal cells release the signaling molecule **vascular endothelial growth factor (VEGF)**, a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

Where on the iris does NVI typically appear first, and what does it look like?
It usually appears as small ‘tufts’ of vessels at the pupillary margin.

How does NVA cause angle closure?
The new blood vessels don’t travel alone, rather, they are accompanied by fibroblasts and similar cells. These fellow-travelers have contractile properties, and thus can ‘pull’ the iris across the angle, thereby closing it.
In this context, what does the acronym NVG stand for?

Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?

‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?

The ischemic retinal cells release the signaling molecule **vascular endothelial growth factor (VEGF)**, a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?

-- Diabetic retinopathy
-- CRVO
-- Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

Where on the iris does NVI typically appear first, and what does it look like?

It usually appears as small ‘tufts’ of vessels at the pupillary margin.

As it develops further, how does it grow (ie, direction, and course)?

The new blood vessels don’t travel alone, rather, they are accompanied by fibroblasts and similar cells. These fellow-travelers have contractile properties, and thus can ‘pull’ the iris across the angle, thereby closing it.
In this context, what does the acronym NVG stand for? Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG? ‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?
The ischemic retinal cells release the signaling molecule vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

Where on the iris does NVI typically appear first, and what does it look like? It usually appears as small ‘tufts’ of vessels at the pupillary margin.

As it develops further, how does it grow (ie, direction, and course)? It grows in a meandering fashion toward the angle (normal iris vessels typically grow in a rather direct radial fashion).
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?
The ischemic retinal cells release the signaling molecule *vascular endothelial growth factor* (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

Where on the iris does NVI typically appear first, and what does it look like?
It usually appears as small ‘tufts’ of vessels at the pupillary margin.

As it develops further, how does it grow (ie, direction, and course)?
It grows in a meandering fashion toward the angle (normal iris vessels typically grow in a rather direct radial fashion).

Is NVA always preceded by NVI?

‘Pull’

Neovascular

ICE

Inflammatory

Nanophthalmos

ROP/PHPV

Aqueous misdirection

Epithelial downgrowth

2° to retinal issues
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?
The ischemic retinal cells release the signaling molecule vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

Where on the iris does NVI typically appear first, and what does it look like?
It usually appears as small ‘tufts’ of vessels at the pupillary margin.

As it develops further, how does it grow (ie, direction, and course)?
It grows in a meandering fashion toward the angle (normal iris vessels typically grow in a rather direct radial fashion).

Is NVA always preceded by NVI?
No--in a small minority of cases, NVA appears de novo.
In this context, what does the acronym NVG stand for?

Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?

‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?

The ischemic retinal cells release the signaling molecule vascular endothelial growth factor (VEGF), a potent inducer of new blood vessel formation.

What are the three most common causes of NV-inducing ischemia?

--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

Where on the iris does NVI typically appear first, and what does it look like?

It usually appears as small ‘tufts’ of vessels at the pupillary margin.

As it develops further, how does it grow (ie, direction, and course)?

It grows in a meandering fashion toward the angle (normal iris vessels typically grow in a rather direct radial fashion).

How does NVA cause angle closure?

The new blood vessels don’t travel alone, rather, they are accompanied by fibroblasts and similar cells. These fellow-travelers have contractile properties, and thus can ‘pull’ the iris across the angle, thereby closing it.
In this context, what does the acronym NVG stand for?
Neovascular glaucoma

What two-word phrase (not ‘diabetic retinopathy’) describes the cause of most cases of NVG?
‘Retinal ischemia’

How can ischemia of retinal cells induce neovascularization of the iris (NVI) and/or angle (NVA)?
The ischemic retinal cells release the signaling molecule vascular endothelial growth factor (VEGF) , a potent inducer of new blood vessel formation

What are the three most common causes of NV-inducing ischemia?
--Diabetic retinopathy
--CRVO
--Ocular ischemic syndrome (OIS; which involves ischemia of non-retinal structures as well)

Where on the iris does NVI typically appear first, and what does it look like?
It usually appears as small ‘tufts’ of vessels at the pupillary margin

As it develops further, how does it grow (ie, direction, and course)?
It grows in a meandering fashion toward the angle (normal iris vessels typically grow in a rather direct radial fashion)

How does NVA cause angle closure?
The new blood vessels don’t travel alone, rather, they are accompanied by fibroblasts and similar cells. These fellow-travelers have contractile properties, and thus can ‘pull’ the iris across the angle, thereby closing it.
In this context, what does ICE stand for?

Iridocorneal endothelial syndrome

In a nutshell, what is ICE?

A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?

--Iris changes--Corneal changes--Peripheral anterior synechiae (PAS)--Elevated IOP

Who is the typical patient?

A young-to-middle-aged adult female

What three sorts of complaints will she have?

--Changes in the eye’s appearance--Ocular pain --Decreased VA

What ‘pertinent negative’ will be elicited when taking a history?

She will deny any family history of similar eye findings
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?

A nonhereditary condition in which corneal endothelial cells maldifferentiate. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?

--Iris changes--Corneal changes--Peripheral anterior synechiae (PAS)--Elevated IOP

Who is the typical patient?

A young-to-middle-aged adult female

What three sorts of complaints will she have?

--Changes in the eye’s appearance--Ocular pain --Decreased VA

What ‘pertinent negative’ will be elicited when taking a history?

She will deny any family history of similar eye findings

A

Angle Closure Glaucoma

Angle-Closure Glaucoma

In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

w/o Pupillary Block:

‘Pull’

Neovascular

ICE

Inflammatory

Nanophthalmos

ROP/PHPV

Aqueous misdirection

Epithelial downgrowth

2° to retinal issues
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
-- Iris changes -- Corneal changes -- Peripheral anterior synechiae (PAS) -- Elevated IOP

Who is the typical patient?
A young-to-middle-aged adult female

What three sorts of complaints will she have?
-- Changes in the eye’s appearance -- Ocular pain -- Decreased VA

What ‘pertinent negative’ will be elicited when taking a history?
She will deny any family history of similar eye findings

Angle Closure Glaucoma

‘Pull’

ICE

Neovascular

Inflammatory

Nanophthalmos

ROP/PHPV

Aqueous misdirection

Epithelial downgrowth

2° to retinal issues
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--
--
--

Who is the typical patient?
A young-to-middle-aged adult female

What three sorts of complaints will she have?
--Changes in the eye’s appearance--Ocular pain --Decreased VA

What ‘pertinent negative’ will be elicited when taking a history?
She will deny any family history of similar eye findings

Q
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
-- Iris changes
-- Corneal changes
-- Peripheral anterior synechiae (PAS)
-- Elevated IOP

Angle Closure Glaucoma

Angle-Closure Glaucoma

SecondaryPrimary

Acute

Chronic

Lens-Induced

Aphakic/Pseudophakic

RD

Neovascular

ICE

Aqueous misdirection

ROP/PHPV

Subacute

Plateau Iris

w/o Pupillary Block: w/o Pupillary Block:

2° to retinal issues

‘Pull’

Neovascular

ICE

Inflammatory

Nanophthalmos

ROP/PHPV

Epithelial downgrowth

A

Angle Closure Glaucoma
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
-- Iris changes
-- Corneal changes
-- Peripheral anterior synechiae (PAS)
-- Elevated IOP

What sort of iris changes will be present?

Angle Closure Glaucoma

2° to retinal issues
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings

Neovascular
ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2° to retinal issues
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, ICE is a nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet's) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
-- Iris changes
-- Corneal changes
-- Peripheral anterior synechiae (PAS)
-- Elevated IOP

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center.

What is the formal term for displacement of the pupil from its normal location?
Corectopia

Q

Neovascular
ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2º to retinal issues

Pull
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet's). These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
-- Iris changes
-- Corneal changes
-- Peripheral anterior synechiae (PAS)
-- Elevated IOP

What are the three sorts of complaints she will have?
-- Changes in the eye's appearance
-- Ocular pain
-- Decreased VA

What 'pertinent negative' will be elicited when taking a history?
She will deny any family history of similar eye findings.

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center.

Q/A

Angle Closure Glaucoma

Angle-Closure Glaucoma

Pull

Neovascular

ICE

Inflammatory

Nanophthalmos

ROP/PHPV

Aqueous misdirection

Epithelial downgrowth

2º to retinal issues
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, ICE is:
A nonhereditary condition in which corneal endothelial cells maldifferentiate. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?

-- Iris changes
-- Corneal changes
-- Peripheral anterior synechiae (PAS)
-- Elevated IOP

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center

A normal pupil is located in the dead-center of the iris. It is slightly nasal of dead center.

What is the formal term for displacement of the pupil from its normal location?
Corectopia

Angle Closure Glaucoma

w/o Pupillary Block:
‘Pull’

Neovascular

ICE

Inflammatory

Nanophthalmos

ROP/PHPV

Aqueous misdirection

Epithelial downgrowth

2° to retinal issues
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet's) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center

What is the formal term for displacement of the pupil from its normal location?
Corectopia

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings

Neovascular
ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2° to retinal issues

Angle Closure Glaucoma

w/o Pupillary Block:
‘Pull’
In this context, what does ICE stand for?

Iridocorneal endothelial syndrome

In a nutshell, what is ICE?

A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?

-- Iris changes
-- Corneal changes
-- Peripheral anterior synechiae (PAS)
-- Elevated IOP

Who is the typical patient?

A young-to-middle-aged adult female

What three sorts of complaints will she have?

-- Changes in the eye’s appearance
-- Ocular pain
-- Decreased VA

What ‘pertinent negative’ will be elicited when taking a history?

She will deny any family history of similar eye findings

What sort of iris changes will be present?

The pupil may be out of round or displaced, and it may have one or more extra openings.

Is a normal pupil located in the dead-center of the iris?

No, it is slightly nasal of dead center

What is the formal term for displacement of the pupil from its normal location?

Corectopia
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, ICE is a nonhereditary condition in which corneal endothelial cells maldifferentiate. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
-- Iris changes
-- Corneal changes
-- Peripheral anterior synechiae (PAS)
-- Elevated IOP

Who is the typical patient?
A young-to-middle-aged adult female

What three sorts of complaints will she have?
-- Changes in the eye’s appearance
-- Ocular pain
-- Decreased VA

What ‘pertinent negative’ will be elicited when taking a history?
She will deny any family history of similar eye findings

What iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

What is the formal term for the presence of an extra pupil or pupils?
Polycoria

So, polycoria is a feature of ICE?
No. True polycoria requires that each extra pupil have associated dilator and miosis musculature. In ICE, no such musculature is present; rather, the extra ‘pupils’ are the result of local trauma by the ICE membrane tearing the iris stroma. (As an aside, true polycoria is a phenomenally rare condition.)

If ICE pts don’t have true polycoria, what do they have in this regard?
Pseudopolycoria

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center

What is the formal term for displacement of the pupil from its normal location?
Corectopia

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

What is the formal term for the presence of an extra pupil or pupils?
Polycoria

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center

What is the formal term for displacement of the pupil from its normal location?
Corectopia

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

What is the formal term for the presence of an extra pupil or pupils?
Polycoria

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center

What is the formal term for displacement of the pupil from its normal location?
Corectopia

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

What is the formal term for the presence of an extra pupil or pupils?
Polycoria

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center

What is the formal term for displacement of the pupil from its normal location?
Corectopia

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

What is the formal term for the presence of an extra pupil or pupils?
Polycoria

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center

What is the formal term for displacement of the pupil from its normal location?
Corectopia

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

What is the formal term for the presence of an extra pupil or pupils?
Polycoria

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center

What is the formal term for displacement of the pupil from its normal location?
Corectopia

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

What is the formal term for the presence of an extra pupil or pupils?
Polycoria
Angle-Closure Glaucoma

In this context, what does ICE stand for?
- Iridocorneal endothelial syndrome

In a nutshell,
- A nonhereditary condition in which corneal endothelial cells maldifferentiate.
- The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet's) as it goes.
- These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
- Iris changes
- Corneal changes
- Peripheral anterior synechiae (PAS)
- Elevated IOP

Who is the typical patient?
- A young-to-middle-aged adult female

What three sorts of complaints will she have?
- Changes in the eye's appearance
- Ocular pain
- Decreased VA

What 'pertinent negative' will be elicited when taking a history?
- She will deny any family history of similar eye findings

What sort of iris changes will be present?
- The pupil may be out of round or displaced, and it may have one or more extra openings.

What is the formal term for the presence of an extra pupil or pupils?
- Polycoria

Is a normal pupil located in the dead-center of the iris?
- No, it is slightly **nasal** of dead center

What is the formal term for displacement of the pupil from its normal location?
- Corectopia

What is the formal term for the presence of an extra pupil or pupils?
- Polycoria

Is a normal pupil located in the dead-center of the iris?
- No, it is slightly **nasal** of dead center

What is the formal term for displacement of the pupil from its normal location?
- Corectopia

What sort of iris changes will be present?
- The pupil may be out of round or displaced, and it may have one or more **extra openings**

What is the formal term for the presence of an extra pupil or pupils?
- Polycoria
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Who is the typical patient?
A young-to-middle-aged adult female

What three sorts of complaints will she have?
--Changes in the eye’s appearance
--Ocular pain
--Decreased VA

What ‘pertinent negative’ will be elicited when taking a history?
She will deny any family history of similar eye findings

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

What is the formal term for displacement of the pupil from its normal location?
Corectopia

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

What is the formal term for the presence of an extra pupil or pupils?
Polycoria

So, polycoria is a feature of ICE?

Angle-Closure Glaucoma

‘Pull’
--Neovascular
--ICE
--Inflammatory
--Nanophthalmos
--ROP/PHPV
--Aqueous misdirection
--Epithelial downgrowth
--2° to retinal issues
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet's) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
-- Iris changes
-- Corneal changes
-- Peripheral anterior synechiae (PAS)
-- Elevated IOP

Who is the typical patient?
A young-to-middle-aged adult female

What three sorts of complaints will she have?
-- Changes in the eye's appearance
-- Ocular pain
-- Decreased VA

What 'pertinent negative' will be elicited when taking a history?
She will deny any family history of similar eye findings

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

What is the formal term for displacement of the pupil from its normal location?
Corectopia

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center

What is the formal term for the presence of an extra pupil or pupils?
Polycoria

So, polycoria is a feature of ICE?
No. True polycoria requires that each extra pupil have associated dilator and miosis musculature. In ICE, no such musculature is present; rather, the extra 'pupils' are the result of local trauma by the ICE membrane tearing the iris stroma. (As an aside, true polycoria is a phenomenally rare condition.)

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center

What is the formal term for displacement of the pupil from its normal location?
Corectopia

Extra openings

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

So, polycoria is a feature of ICE?
No. True polycoria requires that each extra pupil have associated dilator and miosis musculature. In ICE, no such musculature is present; rather, the extra 'pupils' are the result of local trauma by the ICE membrane tearing the iris stroma. (As an aside, true polycoria is a phenomenally rare condition.)
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, ICE
A nonhereditary condition
The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet's) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
-- Iris changes
-- Corneal changes
-- Peripheral anterior synechiae (PAS)
-- Elevated IOP

Who is the typical patient?
A young-to-middle-aged adult female

What three sorts of complaints will she have?
-- Changes in the eye's appearance
-- Ocular pain
-- Decreased VA

What 'pertinent negative' will be elicited when taking a history?
She will deny any family history of similar eye findings

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

What is the formal term for the presence of an extra pupil or pupils?
Polycoria

So, polycoria is a feature of ICE?
No. True polycoria requires that each extra pupil have associated dilator and miosis musculature. In ICE, no such musculature is present; rather, the extra 'pupils' are the result of local trauma by the ICE membrane tearing the iris stroma. (As an aside, true polycoria is a phenomenally rare condition.)

If ICE pts don’t have true polycoria, what do they have in this regard?
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, ICE
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet's). These abnormal, migrating endothelial cells account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
-- Iris changes
-- Corneal changes
-- Peripheral anterior synechiae (PAS)
-- Elevated IOP

Who is the typical patient?
A young-to-middle-aged adult female

What three sorts of complaints will she have?
-- Changes in the eye's appearance
-- Ocular pain
-- Decreased VA

What 'pertinent negative' will be elicited when taking a history?
She will deny any family history of similar eye findings

What sort of iris changes will be present?
The pupil may be out of round or displaced, and it may have one or more extra openings.

What is the formal term for displacement of the pupil from its normal location?
Corectopia

What is the formal term for the presence of an extra pupil or pupils?
Polycoria

So, polycoria is a feature of ICE?
No. True polycoria requires that each extra pupil have associated dilator and miosis musculature. In ICE, no such musculature is present; rather, the extra 'pupils' are the result of local trauma by the ICE membrane tearing the iris stroma. (As an aside, true polycoria is a phenomenally rare condition.)

If ICE pts don't have true polycoria, what do they have in this regard?
Pseudopolycoria

Is a normal pupil located in the dead-center of the iris?
No, it is slightly nasal of dead center

What is the formal term for displacement of the pupil from its normal location?
Corectopia

extra openings

‘Pull’

Neovascular

ICE

Inflammatory

Nanophthalmos

ROP/PHPV

Aqueous misdirection

Epithelial downgrowth

2° to retinal issues
Angle Closure Glaucoma

What sort of corneal changes will be present?

What are the classic signs of ICE syndrome?
-- Iris changes
-- Corneal changes
 -- Peripheral anterior synechiae (PAS)
 -- Elevated IOP

Pull

What are the classic signs of ICE syndrome?
-- Iris changes
-- Corneal changes
 -- Peripheral anterior synechiae (PAS)
 -- Elevated IOP

Pull

Neovascular

ICE

Inflammatory

Nanophthalmos

ROP/PHPV

Aqueous misdirection

Epithelial downgrowth

2° to retinal issues
What sort of corneal changes will be present?
The pt may note that their cornea appears hazy or milky as a result of corneal edema.
On slit lamp exam, endothelial changes will be noted.

What are the classic signs of ICE syndrome?
--Iris changes
 --Corneal changes
 --Peripheral anterior synechiae (PAS)
 --Elevated IOP

What is the classic term describing the SL appearance of the abnormal endothelium?
'Hammered silver'

Hammered silver? I thought that was the classic term for the appearance of the endothelium in Fuchs dystrophy.
No, the term for that is 'beaten bronze'.
Angle Closure Glaucoma

What sort of corneal changes will be present?
The pt may note that their cornea appears hazy or milky as a result of corneal edema. On slit lamp exam, endothelial changes will be noted.

What is the classic term describing the SL appearance of the abnormal endothelium?

What are the classic signs of ICE syndrome?
--Iris changes
 --Corneal changes
 --Peripheral anterior synechiae (PAS)
 --Elevated IOP

Q
What are the classic signs of ICE syndrome?
--Iris changes
---Peripheral anterior synechiae (PAS)
---Elevated IOP

What sort of corneal changes will be present?
The pt may note that their cornea appears hazy or milky as a result of corneal edema. On slit lamp exam, endothelial changes will be noted.

What is the classic term describing the SL appearance of the abnormal endothelium? ‘Hammered silver’
What sort of corneal changes will be present? The pt may note that their cornea appears hazy or milky as a result of corneal edema. On slit lamp exam, endothelial changes will be noted.

What is the classic term describing the SL appearance of the abnormal endothelium? ‘Hammered silver’

Hammered silver? I thought that was the classic term for the appearance of the endothelium in Fuchs dystrophy.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
 --Peripheral anterior synechiae (PAS)
 --Elevated IOP
What sort of corneal changes will be present?
The pt may note that their cornea appears hazy or milky as a result of corneal edema. On slit lamp exam, endothelial changes will be noted.

What is the classic term describing the SL appearance of the abnormal endothelium?
‘Hammered silver’

Hammered silver? I thought that was the classic term for the appearance of the endothelium in Fuchs dystrophy. No, the term for that is ‘beaten bronze’

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Q/A

Angle Closure Glaucoma

Neovascular
ICE
Inflammatory
Nanophthalmos
ROP/PHPV
Aqueous misdirection
Epithelial downgrowth
2° to retinal issues
What sort of corneal changes will be present?
The pt may note that their cornea appears hazy or milky as a result of corneal edema. On slit lamp exam, endothelial changes will be noted.

What is the classic term describing the SL appearance of the abnormal endothelium?
‘Hammered silver’

Hammered silver? I thought that was the classic term for the appearance of the endothelium in Fuchs dystrophy.
No, the term for that is beaten bronze

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Two words are used to describe the appearance of the PAS in ICE. What are they?

'Push' and 'Pull'

--Neovascular
--ICE
--Inflammatory
--Nanophthalmos
--ROP/PHPV
--Aqueous misdirection
--Epithelial downgrowth
--2° to retinal issues
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Two words are used to describe the appearance of the PAS in ICE. What are they? ‘Broad’ and ‘high’

Why is this considered ‘high’?
That the PAS extend beyond Schwalbe’s line (SL)

Why do neo-related PAS end at SL?
Because neo can’t grow over ‘normal’ endothelium

Two words are used to describe the appearance of the PAS in ICE. What are they? ‘Broad’ and ‘high’
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)

Two words are used to describe the appearance of the PAS in ICE. What are they?
‘Broad’ and ‘high’

What does high mean in this context?
That the PAS extend beyond Schwalbe’s line (SL)
Why is this considered ‘high’?
Because neovascular PAS end at SL
Why do neo-related PAS end at SL?
Because neo can’t grow over ‘normal’ endothelium
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Two words are used to describe the appearance of the PAS in ICE. What are they?
‘Broad’ and ‘high’

What does high mean in this context?
That the PAS extend beyond Schwalbe’s line (SL)
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Two words are used to describe the appearance of the PAS in ICE. What are they?
‘Broad’ and ‘high’

What does high mean in this context?
That the PAS extend beyond Schwalbe’s line (SL)

Why is this considered ‘high’?
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Two words are used to describe the appearance of the PAS in ICE. What are they? ‘Broad’ and ‘high’

What does high mean in this context?
That the PAS extend beyond Schwalbe’s line (SL)

Why is this considered ‘high’?
Because neovascular PAS end at SL
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Two words are used to describe the appearance of the PAS in ICE. What are they? ‘Broad’ and ‘high’

What does high mean in this context?
That the PAS extend beyond Schwalbe’s line (SL)

Why is this considered ‘high’?
Because neovascular PAS end at SL

Why do neo-related PAS end at SL?
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
 Elevated IOP

Two words are used to describe the appearance of the PAS in ICE. What are they?
‘Broad’ and ‘high’

What does high mean in this context?
That the PAS extend beyond Schwalbe’s line (SL)

Why is this considered ‘high’?
Because neovascular PAS end at SL

Why do neo-related PAS end at SL?
Because neo can’t grow over ‘normal’ endothelium
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

How common is elevated IOP in ICE?
Very; it is present in 80-100% of cases
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet's) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
-- Iris changes
-- Corneal changes
-- Peripheral anterior synechiae (PAS)
-- Elevated IOP

How common is elevated IOP in ICE?
Very; it is present in 80-100% of cases
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet's) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Who is the typical patient?
A young-to-middle-aged adult female

3 sorts of complaints:
--Changes in the eye's appearance
--Ocular pain
--Decreased VA

Who is the typical patient?
A young-to-middle-aged adult female

What 'pertinent negative' will be elicited when taking a history?
She will deny any family history of similar eye findings

Angle-Closure Glaucoma

Who is the typical patient?
A young-to-middle-aged adult female
In this context, what does ICE stand for? Iridocorneal endothelial syndrome

In a nutshell, what is ICE? A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Who is the typical patient? A young-to-middle-aged adult female
Angle Closure Glaucoma

Angle-Closure Glaucoma

In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet's) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
-- Iris changes
-- Corneal changes
-- Peripheral anterior synechiae (PAS)
-- Elevated IOP

Who is the typical patient?
A young-to-middle-aged adult female

What three sorts of complaints will she have?
--
--
--

Neovascular

ICE

Inflammatory

Nanophthalmos

ROP/PHPV

Aqueous misdirection

Epithelial downgrowth

2° to retinal issues
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Who is the typical patient?
A young-to-middle-aged adult female

What three sorts of complaints will she have?
--Changes in the eye’s appearance
--Ocular pain
--Decreased VA
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Who is the typical patient?
A young-to-middle-aged adult female

What three sorts of complaints will she have?
--Changes in the eye’s appearance
--Ocular pain
--Decreased VA

What ‘pertinent negative’ will be elicited when taking a history?

In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Who is the typical patient?
A young-to-middle-aged adult female

What three sorts of complaints will she have?
--Changes in the eye’s appearance
--Ocular pain
--Decreased VA

What ‘pertinent negative’ will be elicited when taking a history?
In this context, what does ICE stand for?
Iridocorneal endothelial syndrome

In a nutshell, what is ICE?
A nonhereditary condition in which corneal endothelial cells maldifferentiates. The resulting cohort of abnormal cells migrate across the angle and onto the iris, laying down a membrane (histologically similar to Descemet’s) as it goes. These abnormal, migrating endothelial cells and their associated membrane account for all of the signs/symptoms found in ICE.

What are the classic signs of ICE syndrome?
--Iris changes
--Corneal changes
--Peripheral anterior synechiae (PAS)
--Elevated IOP

Who is the typical patient?
A young-to-middle-aged adult female

What three sorts of complaints will she have?
--Changes in the eye’s appearance
--Ocular pain
--Decreased VA

What ‘pertinent negative’ will be elicited when taking a history?
She will deny any family history of similar eye findings