This slide encapsulates one way to think about the motility disorders. If it is unfamiliar, I strongly suggest you review the slide-set entitled ‘Motility disorders: Overview’ before proceeding. Now on with the show!
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does isolated mean in this context?

It means 'absent nonocular CNS signs'

Supranuclear

Nuclear

Infranuclear

- Fascicular
- Subarachnoid
- Cavernous sinus
- Orbital
- Neuromuscular junction
- Extraocular muscle
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does isolated mean in this context? It means ‘absent nonocular CNS signs’

Supranuclear

Nuclear

Internuclear

Fascicular
Subarachnoid
Cavernous sinus
Orbital
Neuromuscular junction
Extraocular muscle
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does isolated mean in this context?
It means ‘absent nonocular CNS signs’

Does it also mean ‘absent CNS-related pain’?
It does not. The sorts of CN3 palsies covered in this slide-set can be associated with pain.

Supranuclear

Nuclear

Internuclear

Nuclear

Fascicular
Subarachnoid
Cavernous sinus
Orbital
Neuromuscular junction
Extraocular muscle
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does isolated mean in this context?

It means ‘absent nonocular CNS signs’

Supranuclear

Nuclear

Internuclear

CN3 Nucleus

- Fascicular
- Subarachnoid
- Cavernous sinus
- Orbital
- Neuromuscular junction
- Extraocular muscle

Does it also mean ‘absent CNS-related pain’?

It does not. The sorts of CN3 palsies covered in this slide-set can be associated with pain.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Supranuclear

What does ‘isolated and unilateral’ imply re etiology?

Internuclear

Nuclear

Fascicular
Subarachnoid
Cavernous sinus
Orbital
Neuromuscular junction
Extraocular muscle

Infranuclear

CN3 Nucleus
MLF
CN4 Nucleus
CN6 Nucleus
Motility Disorders: Nontraumatic, **Isolated, Unilateral** CN3 Palsy

Supranuclear

What does ‘isolated and unilateral’ imply re etiology?
It implies the lesion is infranuclear, somewhere along the path from the subarachnoid to the orbital portions.

Infranuclear

Subnuclear

Fascicular

Subarachnoid

Cavernous sinus

Orbital

Neuromuscular junction

Extraocular muscle

CN3 Nucleus

CN6 Nucleus

CN4 Nucleus

MLF
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does ‘isolated and unilateral’ imply re etiology?
It implies the lesion is infranuclear, somewhere along the path from the subarachnoid to the orbital portions.

Note: It should be mentioned (because the BCSC Neuro book mentions it) that, rarely, a brainstem lesion (ie, nuclear; fascicular) can produce an isolated unilateral CN3 palsy.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event?

Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur?

The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event? Microvascular injury; ie, ischemia
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Supranuclear

Nuclear

Infranuclear

- Fascicular
- Subarachnoid
- Cavernous sinus
- Orbital
- Neuromuscular junction
- Extraocular muscle

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event?

Microvascular injury; ie, ischemia

We’ll unpack this concept in detail later in the side-set.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Supranuclear

Nuclear

Internuclear

CN3 Nucleus

MLF

CN6 Nucleus

CN4 Nucleus

Fascicular

Subarachnoid

Cavernous sinus

Orbital

Neuromuscular junction

Extraocular muscle

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event? Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur?

Neuromuscular junction

Extraocular muscle

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Supranuclear

Nuclear

Internuclear

CN3 Nucleus

MLF

CN6 Nucleus

CN4 Nucleus

Fascicular

Subarachnoid

Cavernous sinus

Orbital

Neuromuscular junction

Extraocular muscle

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event? Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur?

Neuromuscular junction

Extraocular muscle
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event?
Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur?
The subarachnoid
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event? Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur? The subarachnoid (although it must be noted that it could occur along the portion as well)

Nontraumatic, Isolated, Unilateral CN3 Palsy

Fascicular?

Subarachnoid

Cavernous sinus?

Orbital?

Neuromuscular junction?

Extraocular muscle?
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

Supranuclear

Internuclear

- CN3 Nucleus
- MLF
- CN6 Nucleus

- CN4 Nucleus

Infranuclear

- Fascicular
- Subarachnoid
- Cavernous sinus
- Orbital
- Neuromuscular junction
- Extraocular muscle

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event? Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur? The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event? Microvascular injury; ie, ischemia.

In which portion of the pathway does this sort of injury occur? The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well).

Note that this refers to a microvascular injury that just happens to occur to the cavernous sinus portion of the nerve. It is not referring to ophthalmoparesis owing to a process intrinsic to the cavernous sinus itself!

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event? Microvascular injury; ie, ischemia.

Extraocular muscle

Infranuclear

Cavernous sinus

Subarachnoid

Fascicular

Internuclear

CN3 Nucleus

MLF

CN6 Nucleus

CN4 Nucleus

Supranuclear

Nuclear

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event? Microvascular injury; ie, ischemia.

In which portion of the pathway does this sort of injury occur? The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well).

Note that this refers to a microvascular injury that just happens to occur to the cavernous sinus portion of the nerve. It is not referring to ophthalmoparesis owing to a process intrinsic to the cavernous sinus itself!
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event? Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur? The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)

Note that this refers to a microvascular injury that just happens to occur to the cavernous sinus portion of the nerve. It is not referring to ophthalmoparesis owing to a process intrinsic to the cavernous sinus itself!

Ophthalmoparesis owing to a cavernous-sinus process is addressed in its own slide-set (N19)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The way you should divvy up CN3 palsies

? ?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The way you should divvy up CN3 palsies

Pupil-involving

Pupil-sparing
What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?

1)

2)
What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?
1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2)
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?
1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have *anisocoria* pupil finding.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?
1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria
What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?
1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.
What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?
1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.
Pupil-involving CN3 palsy of the right eye
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving \textit{versus} Pupil-sparing

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?
1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

How much larger are we talking about here?
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?

1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

How much larger are we talking about here?

Well, in the context of concurrent ophthalmoparesis c/w a CN3 lesion, *any* enlargement is concerning. But in general, the anisocoria will be a couple of millimeters, maybe a little more.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?
1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

How much larger are we talking about here?
Well, in the context of concurrent ophthalmoparesis c/w a CN3 lesion, any enlargement is concerning. But in general, the anisocoria will be a couple of millimeters, maybe a little more.

What if the pupil is ‘blown,’ ie, 8+ mm? Is that even more concerning?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?
1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

How much larger are we talking about here?
Well, in the context of concurrent ophthalmoparesis c/w a CN3 lesion, any enlargement is concerning. But in general, the anisocoria will be a couple of millimeters, maybe a little more.

What if the pupil is ‘blown,’ ie, 8+ mm? Is that even more concerning?
The opposite, actually. A pupil that large has almost always been dilated (ie, is a so-called drug pupil).

Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?
1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis

How much larger are we talking about here?
Well, in the context of concurrent ophthalmoparesis c/w a CN3 lesion, any enlargement is concerning. But in general, the anisocoria will be a couple of millimeters, maybe a little more.

What if the pupil is ‘blown,’ ie, 8+ mm? Is that even more concerning?
The opposite, actually. A pupil that large has almost always been pharmacologically dilated (ie, is a so-called *drug pupil*).
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?
1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis

In addition to being larger, what else will be abnormal about the involved pupil?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?
1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil?
It will react poorly to both light and accommodation.
What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?
1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil?
It will react poorly to both light and accommodation.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt's exam?

1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil? It will react poorly to both light and accommodation.

Which portion of the nervous system controls pupil size?

The autonomic nervous system (ANS) has two components—
- Increased input from the parasympathetic fibers causes the pupil to be smaller.
- Increased input from the sympathetic fibers causes the pupil to be larger.
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?

1. The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3;
2. The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil?

- It will react poorly to both light and accommodation.

Which portion of the nervous system controls pupil size?

The **autonomic nervous system (ANS)**

...
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt's exam?

1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis

In addition to being larger, what else will be abnormal about the involved pupil?
It will react poorly to both light and accommodation

Which portion of the nervous system controls pupil size?
The autonomic nervous system (ANS)

The ANS has two components--what are they, and what role does each play in determining pupil size?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?

1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil?

It will react poorly to both light and accommodation.

Which portion of the nervous system controls pupil size?
The autonomic nervous system (ANS)

The ANS has two components--what are they, and what role does each play in determining pupil size?

--- Increased input from the one component fibers causes the pupil to be smaller.
--- Increased input from the other fibers causes the pupil to be larger.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?

1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis

In addition to being larger, what else will be abnormal about the involved pupil?

It will react poorly to both light and accommodation

Which portion of the nervous system controls pupil size?
The autonomic nervous system (ANS)

The ANS has two components--what are they, and what role does each play in determining pupil size?

--Increased input from the parasympathetic fibers causes the pupil to be smaller
--Increased input from the sympathetic fibers causes the pupil to be larger
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving versus Pupil-sparing

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?

1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and

2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil?

It will react poorly to both light and accommodation.

Which portion of the nervous system controls pupil size?

The autonomic nervous system (ANS)

The ANS has two components—what are they, and what role does each play in determining pupil size?

- Increased input from the parasympathetic fibers causes the pupil to be smaller.
- Decreased input from the sympathetic fibers causes the pupil to be larger.

In addition to being larger, what else will be abnormal about the involved pupil?

Is the opposite the case—that is, does decreased parasympathetic input lead to pupil dilation, and decreased sympathetic input lead to miosis?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?

1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil?

- It will react poorly to both light and accommodation.

Which portion of the nervous system controls pupil size?

The **autonomic nervous system** (ANS)

The ANS has two components—what are they, and what role does each play in determining pupil size?

- Increased input from the **parasympathetic** fibers causes the pupil to be smaller.
- Increased input from the **sympathetic** fibers causes the pupil to be larger.

Is the opposite the case—that is, does **decreased** parasympathetic input lead to pupil dilation, and **decreased** sympathetic input lead to miosis?

These are, in fact, the case. Remember, pupil size is based on the aggregate autonomic input. So if input from one component of the ANS decreases, the net effect of input from the other will be greater.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy 'involves the pupil'? That is, what will be abnormal about the pt's exam?

1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and

2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil?

It will react poorly to both light and accommodation.

Which portion of the nervous system controls pupil size?

The autonomic nervous system (ANS).

The ANS has two components--what are they, and what role does each play in determining pupil size?

- Increased input from the parasympathetic fibers causes the pupil to be smaller.
- Increased input from the sympathetic fibers causes the pupil to be larger.

Is the opposite the case--that is, does decreased parasympathetic input lead to pupil dilation, and decreased sympathetic input lead to miosis?

These are, in fact, the case. Remember, pupil size is based on the aggregate autonomic input. So if input from one component of the ANS decreases, the net effect of input from the other will be greater.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving **versus** Pupil-sparing

What does it mean to say a CN3 palsy 'involves the pupil'? That is, what will be abnormal about the pt's exam?

1. The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3;

2. The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil?

- It will react poorly to both light and accommodation.

Which portion of the nervous system controls pupil size?

The **autonomic nervous system** (ANS)

The ANS has two components—what are they, and what role does each play in determining pupil size?

- Increased input from the **parasympathetic** fibers causes the pupil to be smaller.
- Increased input from the **sympathetic** fibers causes the pupil to be larger.

Is it the case that the larger pupil associated with a CN3 palsy is secondary to decreased parasympathetic input to that pupil?

Indeed it is.

Is the opposite the case—that is, does decreased parasympathetic input lead to pupil dilation, and decreased sympathetic input lead to miosis?

These are, in fact, the case. Remember, pupil size is based on the aggregate autonomic input. So if input from one component of the ANS decreases, the net effect of input from the other will be greater.
Is the opposite the case—that is, does decreased parasympathetic input lead to pupil dilation, and decreased sympathetic input lead to miosis? These are, in fact, the case. Remember, pupil size is based on the aggregate autonomic input. So if input from one component of the ANS decreases, the net effect of input from the other will be greater.

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?

1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil?

It will react poorly to both light and accommodation.

Which portion of the nervous system controls pupil size?

The autonomic nervous system (ANS)

The ANS has two components—what are they, and what role does each play in determining pupil size?

- Increased input from the parasympathetic fibers causes the pupil to be smaller.
- Decreased input from the sympathetic fibers causes the pupil to be larger.

Is decreased sympathetic input leading to ipsilateral pupil miosis a thing?

It is indeed, as well.

What is the name for this condition?

Horner syndrome.

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy
Is the opposite the case—that is, does decreased parasympathetic input lead to pupil dilation, and decreased sympathetic input lead to miosis?

These are, in fact, the case. Remember, pupil size is based on the aggregate autonomic input. So if input from one component of the ANS decreases, the net effect of input from the other will be greater.

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?

1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil?

It will react poorly to both light and accommodation.

Which portion of the nervous system controls pupil size?
The autonomic nervous system (ANS)

The ANS has two components—what are they, and what role does each play in determining pupil size?

Increased input from the parasympathetic fibers causes the pupil to be smaller.

Decreased input from the sympathetic fibers causes the pupil to be larger.

Is decreased sympathetic input leading to ipsilateral pupil miosis a thing? It is indeed, as well.

Decreased

smaller? Yes

Is the opposite the case—decreased sympathetic input leading to ipsilateral pupil miosis? Yes

Decreased
Is the opposite the case—that is, does decreased parasympathetic input lead to pupil dilation, and decreased sympathetic input lead to miosis?

These are, in fact, the case. Remember, pupil size is based on the aggregate autonomic input. So if input from one component of the ANS decreases, the net effect of input from the other will be greater.

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving versus Pupil-sparing

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?

1. The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2. The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil?

It will react poorly to both light and accommodation.

Which portion of the nervous system controls pupil size?

The **autonomic nervous system (ANS)**

The ANS has two components—what are they, and what role does each play in determining pupil size?

- Increased input from the **parasympathetic** fibers causes the pupil to be smaller.
- Increased input from the **sympathetic** fibers causes the pupil to be larger.

Is decreased sympathetic input leading to ipsilateral pupil miosis a thing?

It is indeed, as well.

What is the name for this condition?

Horner syndrome
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving versus Pupil-sparing

Is the opposite the case—that is, does decreased parasympathetic input lead to pupil dilation, and decreased sympathetic input lead to miosis?

These are, in fact, the case. Remember, pupil size is based on the aggregate autonomic input. So if input from one component of the ANS decreases, the net effect of input from the other will be greater.

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?

1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil?

It will react poorly to both light and accommodation.

Which portion of the nervous system controls pupil size?

The autonomic nervous system (ANS)

The ANS has two components—what are they, and what role does each play in determining pupil size?

- Increased input from the parasympathetic fibers causes the pupil to be smaller.
- Increased input from the sympathetic fibers causes the pupil to be larger.

Is decreased sympathetic input leading to ipsilateral pupil miosis a thing?

Yes, it is indeed, as well.

What is the name for this condition?

Horner syndrome
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy ‘involves the pupil’? That is, what will be abnormal about the pt’s exam?

1) The pt will have unilateral ophthalmoparesis in a pattern consistent with innervation by CN3; and
2) The pt will have anisocoria, and the larger pupil will be ipsilateral to the paresis.

In addition to being larger, what else will be abnormal about the involved pupil?

It will react poorly to both light and accommodation.

Which portion of the nervous system controls pupil size?
The autonomic nervous system (ANS)

The ANS has two components—what are they, and what role does each play in determining pupil size?
--Increased input from the parasympathetic fibers causes the pupil to be smaller.
--Increased input from the sympathetic fibers causes the pupil to be larger.

Next we will take a side-trip to cover the sympathetic and parasympathetic pupil pathways. These are important topics, so unless you know them cold, you should probably come with…
Sympathetic pathway:
First-order neurons

Second-order neurons

Third-order neurons

(No question—just get your bearings, then proceed)
Sympathetic pathway:

First-order neurons
--Originate in hypothalamus

Second-order neurons
--Originates at Budge center
--Exits spinal cord
--Travels in sympathetic chain
--Synapses in superior cervical ganglion

Third-order neurons
--Originates in superior cervical ganglion
--Travels with internal carotid artery into cavernous sinus
--Hops onto VI, then V1 to enter orbit
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus

Second-order neurons

Third-order neurons
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in

Second-order neurons

Third-order neurons

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy
Sympathetic pathway:

First-order neurons
--Originate in hypothalamus
--Travel in spinal cord

Second-order neurons

Third-order neurons
Sympathetic pathway:

First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons

Third-order neurons

Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons

Third-order neurons
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons

Third-order neurons

At what level of the spinal cord is the center of Budge found?

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons

Third-order neurons

At what level of the spinal cord is the center of Budge found? C8-T2
Sympathetic pathway:

First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons
--Originate at Budge center
--Exit [two words]

Third-order neurons
Sympathetic pathway:

First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons
--Originate at Budge center
--Exit spinal cord

Third-order neurons
Sympathetic pathway:

First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons
--Originate at Budge center
--Exit spinal cord
--Travel in two words

Third-order neurons
Sympathetic pathway:

First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain

Third-order neurons
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain

Third-order neurons

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What major structure do these fibers pass over?

The lung apex
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain

What major structure do these fibers pass over?
The lung apex

Third-order neurons
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in three words

Third-order neurons
Sympathetic pathway:

First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in superior cervical ganglion

Third-order neurons
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in **superior cervical ganglion** aka…?

Third-order neurons

By what other name is the superior cervical ganglion known?
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in superior cervical ganglion *aka...the stellate ganglion*

Third-order neurons
By what other name is the superior cervical ganglion known?
The stellate ganglion
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons *aka*...?
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in superior cervical ganglion *aka*...the stellate ganglion

Third-order neurons
By what other name is the superior cervical ganglion known?
The *stellate ganglion*

Speaking of other names...The second-order neurons are often referred to by another name, one owing to the relationship between these neurons and the ganglion to which they are headed. What is that name?
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons *aka*...pre-ganglionic neurons
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in superior cervical ganglion *aka*...the stellate ganglion

Third-order neurons
By what other name is the superior cervical ganglion known?
The stellate ganglion

Speaking of other names…The second-order neurons are often referred to by another name, one owing to the relationship between these neurons and the ganglion to which they are headed. What is that name?
Pre-ganglionic neurons
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons aka...pre-ganglionic neurons
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in superior cervical ganglion aka...the stellate ganglion

Third-order neurons
--Originate in superior cervical ganglion
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons *aka...pre-ganglionic neurons*
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in superior cervical ganglion *aka...the stellate ganglion*

Third-order neurons *aka...?*
--Originate in superior cervical ganglion

Likewise, the third-order neurons are also referred to by a term owing to their relationship with the stellate ganglion. What is that term?
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons *aka*...pre-ganglionic neurons
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in superior cervical ganglion *aka*...the stellate ganglion

Third-order neurons *aka*...post-ganglionic neurons
--Originate in superior cervical ganglion

Likewise, the third-order neurons are also referred to by a term owing to their relationship with the stellate ganglion. What is that term? *Post-ganglionic* neurons
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons aka...pre-ganglionic neurons
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in superior cervical ganglion aka...the stellate ganglion

Third-order neurons aka...post-ganglionic neurons
--Originate in superior cervical ganglion
--Travel with three words to enter the two words
Sympathetic pathway:

First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons *aka...pre-ganglionic neurons*
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in superior cervical ganglion *aka...the stellate ganglion*

Third-order neurons *aka...post-ganglionic neurons*
--Originate in superior cervical ganglion
--Travel with internal carotid artery to enter the cavernous sinus
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons aka...pre-ganglionic neurons
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in superior cervical ganglion aka...the stellate ganglion

Third-order neurons aka...post-ganglionic neurons
--Originate in superior cervical ganglion
--Travel with internal carotid artery to enter the cavernous sinus
--In the sinus, hop onto cranial nerve # then cranial nerve # to enter orbit
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons aka...pre-ganglionic neurons
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in superior cervical ganglion aka...the stellate ganglion

Third-order neurons aka...post-ganglionic neurons
--Originate in superior cervical ganglion
--Travel with internal carotid artery to enter the cavernous sinus
--In the sinus, hop onto cranial nerve 6, then cranial nerve V₁ to enter orbit
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons *aka...pre-ganglionic neurons*
--Originate at Budge center

Third-order neurons *aka...post-ganglionic neurons*
--Originate in superior cervical ganglion
--Travel with internal carotid artery to enter the cavernous sinus
--In the sinus, hop onto cranial nerve 6, then cranial nerve V₁ to enter orbit

For a more detailed review of the postganglionic sympathetics pathway and Horner syndrome, see slide-set N3
Sympathetic pathway:
First-order neurons
--Originate in hypothalamus
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons *aka*... **pre-ganglionic neurons**
--Originate at Budge center
--Exit spinal cord
--Travel in sympathetic chain
--Synapse in superior cervical ganglion

Third-order neurons *aka*... **post-ganglionic neurons**
--Originate in superior cervical ganglion
--Travel with internal carotid artery to enter the cavernous sinus
--In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

Note that the sympathetic pre-ganglionic neurons are relatively **short** (the Budge center and stellate ganglion are very close to one another), whereas the post-ganglionic neurons are relatively **long** (they have travel the length of the ICA, then the length of the orbit). We shall see that this is not the case with the parasympathetics.
Parasympathetic pathway

And now, the parasympathetic portion of the pathway
Parasympathetic pathway:
First-order neurons?

Second-order neurons?

Third-order neurons?

Speaking of: Is the parasympathetic pathway similarly divided into 1st, 2nd and 3rd order neurons?
Parasympathetic pathway:

First-order neurons: ‘Top’ inputs

Second-order neurons?

Third-order neurons?

Speaking of: Is the parasympathetic pathway similarly divided into 1st, 2nd and 3rd order neurons? No. The ‘top’ inputs that influence parasympathetic innervation of the pupil are widely distributed, and cannot reasonably be conceptualized as a unitary ‘first-order neuron.’ (Note: I made up the term ‘top inputs’ for illustrative purposes; it is not used in practice.)
Parasympathetic pathway:

- First-order neurons: ‘Top’ inputs
- Second-order neurons
- Third-order neurons

Speaking of: Is the parasympathetic pathway similarly divided into 1st, 2nd and 3rd order neurons? No. The ‘top’ inputs that influence parasympathetic innervation of the pupil are widely distributed, and cannot reasonably be conceptualized as a unitary ‘first-order neuron.’ (Note: I made up the term ‘top inputs’ for illustrative purposes; it is not used in practice.) It follows that if there are no 1st-order neurons, the terms second- and third-order neurons are not applicable.
Parasympathetic pathway:
- First-order neurons: ‘Top’ inputs
- Second-order neurons
- Third-order neurons

Speaking of: *Is the parasympathetic pathway similarly divided into 1st, 2nd and 3rd order neurons?* No. The ‘top’ inputs that influence parasympathetic innervation of the pupil are widely distributed, and cannot reasonably be conceptualized as a unitary ‘first-order neuron.’ (Note: I made up the term ‘top inputs’ for illustrative purposes; it is not used in practice.) It follows that if there are no 1st-order neurons, the terms second- and third-order neurons are not applicable. For this reason, are the preferred terms for these neurons.
Parasympathetic pathway:

- **First-order neurons**
 ‘Top’ inputs

Pre-ganglionic neurons

- Second-order neurons

Post-ganglionic neurons

- Third-order neurons

Speaking of: *Is the parasympathetic pathway similarly divided into 1st, 2nd and 3rd order neurons?*

No. The ‘top’ inputs that influence parasympathetic innervation of the pupil are widely distributed, and cannot reasonably be conceptualized as a unitary ‘first-order neuron.’ (Note: I made up the term ‘top inputs’ for illustrative purposes; it is not used in practice.) It follows that if there are no 1st-order neurons, the terms *second- and third-order neurons* are not applicable. **For this reason, pre- and post-ganglionic** are the preferred terms for these neurons.
Parasympathetic pathway:
- First-order neurons: 'Top' inputs
 - Originate (mainly) in the pretectal nuclei
- Second-order neurons
 - Originate at Budge center
 - Exit spinal cord
 - Travel in sympathetic chain
 - Synapse in superior cervical ganglion
- Third-order neurons
 - Originate in superior cervical ganglion
 - Travel with internal carotid artery to enter the cavernous sinus
 - In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy
Parasympathetic pathway:
- First-order neurons: ‘Top’ inputs
 -- Originate (mainly) in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons

Post-ganglionic neurons
- Third-order neurons
Parasympathetic pathway:

First-order neurons --- 'Top' inputs
-- Originate (mainly) in the pretectal nuclei
-- Travel in spinal cord
-- Synapse in ciliospinal center of Budge

Second-order neurons
-- Originate at Budge center
-- Exit spinal cord
-- Travel in sympathetic chain
-- Synapse in superior cervical ganglion

Third-order neurons
-- Originate in superior cervical ganglion
-- Travel with internal carotid artery to enter the cavernous sinus
-- In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

Where are the pretectal nuclei located?

Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*
Parasympathetic pathway:

- **First-order neurons** — ‘Top’ inputs
 - Originate (mainly) in the pretectal nuclei
 - Travel in spinal cord
 - Synapse in ciliospinal center of Budge

- **Second-order neurons**
 - Originate at Budge center
 - Exit spinal cord
 - Travel in sympathetic chain
 - Synapse in superior cervical ganglion

- **Third-order neurons**
 - Originate in superior cervical ganglion
 - Travel with internal carotid artery to enter the cavernous sinus
 - In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Where are the pretectal nuclei located?

The dorsal midbrain

Damage to the pretectal nuclei of the dorsal midbrain produces what eponymous syndrome?

Parinaud syndrome (aka dorsal midbrain syndrome, aka pretectal syndrome)
Parasympathetic pathway:

First-order neurons — ‘Top’ inputs
- Originate (mainly) in the pretectal nuclei
- Travel in spinal cord
- Synapse in ciliospinal center of Budge

Second-order neurons
- Originate at Budge center
- Exit spinal cord
- Travel in sympathetic chain
- Synapse in superior cervical ganglion

Third-order neurons
- Originate in superior cervical ganglion
- Travel with internal carotid artery to enter the cavernous sinus
- In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Where are the pretectal nuclei located?
The dorsal midbrain

Damage to the pretectal nuclei of the dorsal midbrain produces what eponymous syndrome?
Parasympathetic pathway:

First-order neurons — 'Top' inputs
--- Originate (mainly) in the *pretectal nuclei*

Second-order neurons
--- Originate at Budge center
--- Exit spinal cord
--- Travel in sympathetic chain
--- Synapse in superior cervical ganglion

Third-order neurons
--- Originate in superior cervical ganglion
--- Travel with internal carotid artery to enter the cavernous sinus
--- In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Where are the pretectal nuclei located?
The dorsal midbrain

Damage to the pretectal nuclei of the dorsal midbrain produces what eponymous syndrome?
Parinaud syndrome
Parasympathetic pathway:
- **First-order neurons**
 - Originate (mainly) in the pretectal nuclei
 - Travel in spinal cord
 - Synapse in ciliospinal center of Budge
- **Second-order neurons**
 - Originate at Budge center
 - Exit spinal cord
 - Travel in sympathetic chain
 - Synapse in superior cervical ganglion
- **Third-order neurons**
 - Originate in superior cervical ganglion
 - Travel with internal carotid artery to enter the cavernous sinus
 - In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Where are the pretectal nuclei located?
The dorsal midbrain

Damage to the pretectal nuclei of the dorsal midbrain produces what eponymous syndrome?
Parinaud syndrome aka Parinaud syndrome

Two words
Parasympathetic pathway:

First-order neurons -- *(‘Top’ inputs’)*
- Originate (mainly) in the **pretectal nuclei**
- Travel in spinal cord
- Synapse in ciliospinal center of Budge

Second-order neurons
- Originate at Budge center
- Exit spinal cord
- Travel in sympathetic chain
- Synapse in superior cervical ganglion

Third-order neurons
- Originate in superior cervical ganglion
- Travel with internal carotid artery to enter the cavernous sinus
- In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

Where are the pretectal nuclei located?
The dorsal midbrain

Damage to the pretectal nuclei of the dorsal midbrain produces what eponymous syndrome?
Parinaud syndrome aka dorsal midbrain syndrome
Parasympathetic pathway:

- **First-order neurons**
 - ‘Top’ inputs
 - Originate (mainly) in the pretectal nuclei
 - Travel in spinal cord
 - Synapse in ciliospinal center of Budge

- **Second-order neurons**
 - Originate at Budge center
 - Exit spinal cord
 - Travel in sympathetic chain
 - Synapse in superior cervical ganglion

- **Third-order neurons**
 - Originate in superior cervical ganglion
 - Travel with internal carotid artery to enter the cavernous sinus
 - In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Where are the pretectal nuclei located?
The dorsal midbrain

Damage to the pretectal nuclei of the dorsal midbrain produces what eponymous syndrome?
Parinaud syndrome aka dorsal midbrain syndrome, aka syndrome
Parasympathetic pathway:

First-order neurons — ‘Top’ inputs — **pretectal nuclei**

- Originate (mainly) in the pretectal nuclei
- Travel in spinal cord
- Synapse in ciliospinal center of Budge

Second-order neurons
- Originate at Budge center
- Exit spinal cord
- Travel in sympathetic chain
- Synapse in superior cervical ganglion

Third-order neurons
- Originate in superior cervical ganglion
- Travel with internal carotid artery to enter the cavernous sinus
- In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Where are the pretectal nuclei located?
The dorsal midbrain

Damage to the pretectal nuclei of the dorsal midbrain produces what eponymous syndrome?
Parinaud syndrome aka dorsal midbrain syndrome, aka pretectal syndrome
Parasympathetic pathway:

- **First-order neurons** — *‘Top’ inputs*
 - Originate (mainly) in the pretectal nuclei
 - Travel in spinal cord
 - Synapse in ciliospinal center of Budge

- **Second-order neurons**
 - Originate at Budge center
 - Exit spinal cord
 - Travel in sympathetic chain
 - Synapse in superior cervical ganglion

- **Third-order neurons**
 - Originate in superior cervical ganglion
 - Travel with internal carotid artery to enter the cavernous sinus
 - In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

Where are the pretectal nuclei located?

The dorsal midbrain

Damage to the pretectal nuclei of the dorsal midbrain produces what eponymous syndrome?

Parinaud syndrome aka dorsal midbrain syndrome, aka pretectal syndrome. (We will come back to Parinaud’s later in the slide-set.)
Parasympathetic pathway:

- **First-order neurons**
 - ‘Top’ inputs
 - Originate mainly in the pretectal nuclei

- **Pre-ganglionic neurons**
 - Second-order neurons
 - Originate in the eponym-eponym nucleus

- **Post-ganglionic neurons**
 - Third-order neurons
Parasympathetic pathway:
- First-order neurons: 'Top' inputs
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 -- Originate in the Edinger-Westphal nucleus

Post-ganglionic neurons
- Third-order neurons

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy
Parasympathetic pathway:
- First-order neurons
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 -- Originate in the Edinger-Westphal nucleus

Post-ganglionic neurons
- Third-order neurons

Where in relation to the CN3 nuclear complex is the Edinger-Westphal nucleus located?
Parasympathetic pathway:
- First-order neurons - ‘Top’ inputs
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 -- Originate in the Edinger-Westphal nucleus

Post-ganglionic neurons
- Third-order neurons

Where in relation to the CN3 nuclear complex is the Edinger-Westphal nucleus located?
It is a part of the complex
Parasympathetic pathway:
- First-order neurons: ‘Top’ inputs
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 -- Originate in the Edinger-Westphal nucleus
 -- Travels with CN3 into the cavernous sinus (CS)

Post-ganglionic neurons
- Third-order neurons
 -- Travels with CN3 into the cavernous sinus
Parasympathetic pathway:
- **First-order neurons**
 - ‘Top’ inputs
 - Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- **Second-order neurons**
 - Originate in the Edinger-Westphal nucleus
 - Travels with CN3 into the cavernous sinus (CS)

Post-ganglionic neurons
- **Third-order neurons**
Parasympathetic pathway:
- First-order neurons — *Top* inputs
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 -- Originate in the Edinger-Westphal nucleus
 -- *Travels with CN3* into the cavernous sinus (CS)

With respect to the cross-sectional organization of CN3, in what aspect of the nerve do the pre-ganglionic fibers run?
Parasympathetic pathway:
- First-order neurons: ‘Top’ inputs
 -- Originate mainly in the pretectal nuclei
- Second-order neurons
 -- Originate in the Edinger-Westphal nucleus
 -- Travels with CN3 into the cavernous sinus (CS)
 -- Exit CS with inferior division of CN3
 -- Synapse in ciliary ganglion
- Third-order neurons
 -- Originate in superior cervical ganglion
 -- Travel with internal carotid artery to enter the cavernous sinus
 -- In the sinus, hop onto cranial nerve 6 , then cranial nerve V1 to enter orbit

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

With respect to the cross-sectional organization of CN3, in what aspect of the nerve do the pre-ganglionic fibers run?
They run superficially, ie, on the outermost surface of the nerve
Parasympathetic pathway:
- First-order neurons — ‘Top’ inputs
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 -- Originate in the Edinger-Westphal nucleus
 -- Travels with CN3 into the cavernous sinus (CS)

Post-ganglionic neurons
- Third-order neurons
 -- Originate in the superior cervical ganglion
 -- Travel with internal carotid artery to enter the cavernous sinus
 -- In the sinus, hop onto cranial nerve 6 , then cranial nerve V1 to enter orbit

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

With respect to the cross-sectional organization of CN3, in what aspect of the nerve do the pre-ganglionic fibers run?

They run superficially, ie, on the outermost surface of the nerve

Take note: This is going to be really important in a few slides!
Parasympathetic pathway:
- First-order neurons — ‘Top’ inputs
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 -- Originate in the Edinger-Westphal nucleus
 -- Travels with CN3 into the cavernous sinus (CS)

As ocular-motor nerves go, is CN3 large, or small?
Parasympathetic pathway:
- First-order neurons
 - ‘Top’ inputs
 - Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 - Originate in the Edinger-Westphal nucleus
 - Travels with CN3 into the cavernous sinus (CS)

As ocular-motor nerves go, is CN3 large, or small?
Quite large, with over 15,000 fibers (contrast that with the itty-bitty CN4 and its 2000 fibers)
Parasympathetic pathway:
- First-order neurons — ‘Top’ inputs
 --Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 --Originate in the Edinger-Westphal nucleus
 --Travels with CN3 into the cavernous sinus (CS)

As ocular-motor nerves go, is CN3 large, or small?
Quite large, with over 15,000 fibers (contrast that with the itty-bitty CN4 and its 2000 fibers)
Parasympathetic pathway:
- First-order neurons
 - ‘Top’ inputs
 - Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 - Originate in the Edinger-Westphal nucleus
 - Travels with CN3 into the cavernous sinus (CS)

As ocular-motor nerves go, is CN3 large, or small?
Quite large, with over 15,000 fibers (contrast that with the itty-bitty CN4 and its 2000 fibers)

Take note part deaux: The fact that CN3 is a relatively large nerve will come up again as well!
Parasympathetic pathway:
- First-order neurons—‘Top’ inputs
 --Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 --Originate in the Edinger-Westphal nucleus
 --Travels with CN3 into the cavernous sinus (CS)

CN3 undergoes an important conformational change while inside the CS. What is this change?

Post-ganglionic neurons
- Third-order neurons
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Parasympathetic pathway:
- First-order neurons: ‘Top’ inputs
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 -- Originate in the Edinger-Westphal nucleus
 -- Travels with CN3 into the cavernous sinus (CS)

Post-ganglionic neurons
- Third-order neurons
 -- Originate in the superior cervical ganglion
 -- Travel with internal carotid artery to enter the cavernous sinus
 -- In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

CN3 undergoes an important conformational change while inside the CS. What is this change?

It divides into two divisions: The Superior, and the Inferior
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Parasympathetic pathway:
- First-order neurons – ‘Top’ inputs
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 -- Originate in the Edinger-Westphal nucleus
 -- Travels with CN3 into the cavernous sinus (CS)

Post-ganglionic neurons
- Third-order neurons
 -- Originate in superior cervical ganglion
 -- Travel with internal carotid artery to enter the cavernous sinus
 -- In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

CN3 undergoes an important conformational change while inside the CS. What is this change?
It divides into two divisions: The Superior, and the Inferior
Parasympathetic pathway:
- First-order neurons — ‘Top’ inputs
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 -- Originate in the Edinger-Westphal nucleus
 -- Travels with CN3 into **the cavernous sinus (CS)**

CN3 undergoes an important conformational change while inside the CS. What is this change?
It divides into two divisions: **The Superior**, and the **Inferior**

Post-ganglionic neurons
- Third-order neurons

Which muscles are innervated by fibers in the:
Superior division?
Inferior division?
Parasympathetic pathway:
- First-order neurons – ‘Top’ inputs
 --Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 --Originate in the Edinger-Westphal nucleus
 --Travels with CN3 into the cavernous sinus (CS)

CN3 undergoes an important conformational change while inside the CS. What is this change?
It divides into two divisions: The Superior, and the Inferior

Post-ganglionic neurons
- Third-order neurons
 Which muscles are innervated by fibers in the:
 Superior division? Superior rectus, and the levator
 Inferior division?

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy
Parasympathetic pathway:
First-order neurons — ‘Top’ inputs
-- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
Second-order neurons
-- Originate in the Edinger-Westphal nucleus
-- Travels with CN3 into the cavernous sinus (CS)

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Post-ganglionic neurons
Third-order neurons

Which muscles are innervated by fibers in the:
Superior division? Superior rectus, and the levator
Inferior division?

CN3 undergoes an important conformational change while inside the CS. What is this change?
It divides into two divisions: The Superior, and the Inferior
Parasympathetic pathway:
First-order neurons
--Originate mainly in the pretectal nuclei
--Travel in spinal cord
--Synapse in ciliospinal center of Budge

Second-order neurons
--Originate in the Edinger-Westphal nucleus
--Travels with CN3 into the cavernous sinus (CS)
--Exit CS with inferior division of CN3
--Synapse in ciliary ganglion

Third-order neurons
--Originate in superior cervical ganglion
--Travel with internal carotid artery to enter the cavernous sinus
--In the sinus, hop onto cranial nerve 6 , then cranial nerve V1 to enter orbit

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pre-ganglionic neurons
Second-order neurons
--Originate in the Edinger-Westphal nucleus
--Travels with CN3 into the cavernous sinus (CS)

Post-ganglionic neurons
Third-order neurons
Which muscles are innervated by fibers in the:
Superior division? Superior rectus, and the levator
Inferior division? The medial rectus, inferior rectus and inferior oblique

CN3 undergoes an important conformational change while inside the CS. What is this change?
It divides into two divisions: The Superior, and the Inferior
Parasympathetic pathway:
- **First-order neurons**
 - Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- **Second-order neurons**
 - Originate in the Edinger-Westphal nucleus
 - Travels with CN3 into the cavernous sinus (CS)
 - Exit CS with inferior division of CN3

Post-ganglionic neurons
- **Third-order neurons**
Parasympathetic pathway:

- **First-order neurons**
 - Originate mainly in the pretectal nuclei

- **Second-order neurons**
 - Originate in the Edinger-Westphal nucleus
 - Travels with CN3 into the cavernous sinus (CS)
 - Exit CS with inferior division of CN3

- **Third-order neurons**
 - Originate in superior cervical ganglion
 - Travel with internal carotid artery to enter the cavernous sinus
 - In the sinus, hop onto cranial nerve 6, then cranial nerve V1 to enter orbit

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

- **Pre-ganglionic neurons**
- **Second-order neurons**
 - Originate in the Edinger-Westphal nucleus
 - Travels with CN3 into the cavernous sinus (CS)
 - Exit CS with inferior division of CN3

- **Post-ganglionic neurons**
Parasympathetic pathway:
- **First-order neurons**
 - Originate mainly in the pretectal nuclei
- **Second-order neurons**
 - Originate in the Edinger-Westphal nucleus
 - Travels with CN3 into the cavernous sinus (CS)
 - Exit CS with inferior division of CN3
 - Synapse in **ciliary ganglion**
- **Third-order neurons**

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pre-ganglionic neurons
- **Second-order neurons**
- Originate in the Edinger-Westphal nucleus
- Travels with CN3 into the cavernous sinus (CS)
- Exit CS with inferior division of CN3
- Synapse in **ciliary ganglion**

Post-ganglionic neurons
- **Third-order neurons**

'Top' inputs
Parasympathetic pathway:

- First order neurons
 - Originate mainly in the pretectal nuclei

Pre-ganglionic neurons

- Second order neurons
 - Originate in the Edinger-Westphal nucleus
 - Travels with CN3 into the cavernous sinus (CS)
 - Exit CS with inferior division of CN3
 - Synapse in ciliary ganglion

Post-ganglionic neurons

- Third order neurons
 - 'Top' inputs
Parasympathetic pathway:
- First-order neurons -- 'Top' inputs
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 -- Originate in the Edinger-Westphal nucleus
 -- Travels with CN3 into the cavernous sinus (CS)
 -- Exit CS with inferior division of CN3
 -- Synapse in the ciliary ganglion

Post-ganglionic neurons
- Third-order neurons

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Where is the ciliary ganglion located?
Parasympathetic pathway:
- First-order neurons — ‘Top’ inputs
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- Second-order neurons
 -- Originate in the Edinger-Westphal nucleus
 -- Travels with CN3 into the cavernous sinus (CS)
 -- Exit CS with inferior division of CN3
 -- Synapse in **ciliary ganglion**

Post-ganglionic neurons
- Third-order neurons

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Where is the ciliary ganglion located?
At the orbital apex
Parasympathetic pathway:
- *First-order neurons*
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
- *Second-order neurons*
 -- Originate in the Edinger-Westphal nucleus
 -- Travels with CN3 until the cavernous sinus (CS)
 -- Exit CS with inferior division of CN3
 -- Synapse in ciliary ganglion

Post-ganglionic neurons
- *Third-order neurons*
 -- Originate in ciliary ganglion
Parasympathetic pathway:

First-order neurons: ‘Top’ inputs
-- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
-- Originate in the Edinger-Westphal nucleus
-- Travels with CN3 until the cavernous sinus (CS)
-- Exit CS with inferior division of CN3
-- Synapse in ciliary ganglion

Post-ganglionic neurons
-- Originate in ciliary ganglion
-- Travel with nerve to the muscle
Parasympathetic pathway:

- **First-order neurons**
 - ‘Top’ inputs
 - Originate mainly in the pretectal nuclei

- **Pre-ganglionic neurons**
 - Originate in the Edinger-Westphal nucleus
 - Travels with CN3 until the cavernous sinus (CS)
 - Exit CS with inferior division of CN3
 - Synapse in ciliary ganglion

- **Post-ganglionic neurons**
 - Originate in ciliary ganglion
 - Travel with nerve to the inferior oblique muscle
Parasympathetic pathway:

First-order neurons
-- Originate mainly in the pretectal nuclei

Second-order neurons
-- Originate in the Edinger-Westphal nucleus
-- Travels with CN3 until the cavernous sinus (CS)
-- Exit CS with inferior division of CN3
-- Synapse in ciliary ganglion

Third-order neurons
-- Originate in ciliary ganglion
-- Travel with nerve to the inferior oblique muscle
-- At eye, jumps to nerves to reach the sphincter muscle

Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*
Parasympathetic pathway:
First-order neurons
--Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
--Originate in the Edinger-Westphal nucleus
--Travels with CN3 until the cavernous sinus (CS)
--Exit CS with inferior division of CN3
--Synapse in ciliary ganglion

Post-ganglionic neurons
--Originate in ciliary ganglion
--Travel with nerve to the inferior oblique muscle
--At eye, jumps to posterior ciliary nerves to reach the sphincter muscle

Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy
Parasympathetic pathway:
- First-order neurons — ‘Top’ inputs
 -- Originate mainly in the pretectal nuclei

Pre-ganglionic neurons
Note that the relative lengths of the pre- and post-ganglionic parasympathetic neurons are opposite of what they were for the sympathetics. Their pre-ganglionic fibers are relatively long, wending their way out to ganglia located near the end-organs they innervate. (Recall that sympathetic ganglia are all axial-CNS-adjacent.) From these far-flung ganglia, it is just a hop, skip and jump for the post-ganglionics to reach their targets.

Post-ganglionic neurons
- Third-order neurons
 -- Originate in ciliary ganglion
 -- Travel with nerve to the inferior oblique muscle
 -- At eye, jumps to posterior ciliary nerves to reach the sphincter muscle
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving versus Pupil-sparing

OK, side-trip over. Now let’s use what we’ve learned to better understand the pathophysiology of CN3 palsies
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving \textit{versus} Pupil-sparing

Why is pupil involvement the key issue regarding CN3 palsies?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Why is pupil involvement the key issue regarding CN3 palsy?
Because of its implications regarding the underlying cause of the palsy
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving versus Pupil-sparing

Why is pupil involvement the key issue regarding CN3 palsies?
Because of its implications regarding the underlying cause of the palsy

Which potential cause of CN3 palsy in particular are we concerned about?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving versus Pupil-sparing

Why is pupil involvement the key issue regarding CN3 palsy?
Because of its implications regarding the underlying cause of the palsy

Which potential cause of CN3 palsy in particular are we concerned about?
Compression of the nerve by an aneurysm of the posterior communicating artery
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

Why is pupil involvement the key issue regarding CN3 palsies? Because of its implications regarding the underlying cause of the palsy.

Which potential cause of CN3 palsy in particular are we concerned about? Compression of the nerve by an aneurysm of the posterior communicating artery.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Why is pupil involvement the key issue regarding CN3 palsies?
Because of its implications regarding the underlying cause of the palsy

Which potential cause of CN3 palsy in particular are we concerned about?
Compression of the nerve by an **aneurysm of the posterior communicating artery**

(More specifically, the aneurysm usually is located at the junction of the PComm and internal-carotid arteries)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

- Posterior communicating artery
- Optic chiasm
- Internal carotid artery
- Posterior cerebral artery
- III nerve
- PComm aneurysm
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving \textit{versus} Pupil-sparing

\textit{Why is pupil involvement the key issue regarding CN3 palsies?}
Because of its implications regarding the underlying cause of the palsy.

\textit{Which potential cause of CN3 palsy in particular are we concerned about?}
Compression of the nerve by an aneurysm of the posterior communicating artery.

\textit{Why should we be concerned about a PComm aneurysm?}
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Why is pupil involvement the key issue regarding CN3 palsies?
Because of its implications regarding the underlying cause of the palsy

Which potential cause of CN3 palsy in particular are we concerned about?
Compression of the nerve by an aneurysm of the posterior communicating artery

Why should we be concerned about a PComm aneurysm?
Because it is a potentially lethal condition, and its proper and timely dx may well save the pt's life
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Why is *pupil involvement* the key issue regarding CN3 palsies?
Because of its **implications regarding the underlying cause of the palsy**

How is it that the status of the pupil implicates a compressive lesion as causing a CN3 palsy?

Pupil-involving
versus
Pupil-sparing
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Why is pupil involvement the key issue regarding CN3 palsies?
Because of its implications regarding the underlying cause of the palsy.

How is it that the status of the pupil implicates a compressive lesion as causing a CN3 palsy?
It has everything to do with the topography of the third nerve. Recall that the pre-ganglionic parasympathetics run in the superficial, outermost portion of the nerve.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving versus Pupil-sparing

Why is pupil involvement the key issue regarding CN3 palsies? Because of its implications regarding the underlying cause of the palsy.

How is it that the status of the pupil implicates a compressive lesion as causing a CN3 palsy? It has everything to do with the topography of the third nerve. Recall that the pre-ganglionic parasympathetics run in the superficial, outermost portion of the nerve. Given this, it stands to reason that a lesion compressing the nerve will bag these fibers, leaving the sympathetics unopposed to dilate the pupil on that side.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation?
Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation? Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation? Thusly: **With two exceptions**, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

What are the two exceptions?
--?
--?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation? Thusly: **With two exceptions**, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

What are the two exceptions?
--If there is an appropriate trauma hx
--If the pupil finding is isolated, ie, if EOM function is intact (because the probability of an aneurysm in this scenario is essentially zero)
What are the two exceptions?
--If there is an appropriate trauma hx
--If the pupil finding is isolated, ie, if EOM function is intact (because the probability of an aneurysm in this scenario is essentially zero)

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation? Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

What does appropriate mean in this context?
- If there is an appropriate trauma hx
- If the pupil finding is isolated, ie, if EOM function is intact (because the probability of an aneurysm in this scenario is essentially zero)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation? Thusly: **With two exceptions**, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

What are the two exceptions?
--If there is an *appropriate* trauma hx
--If the pupil finding is isolated, ie, if EOM function is intact (because the probability of an aneurysm in this scenario is essentially zero)

What does appropriate mean in this context?
It means 1) the temporal relationship between the trauma and the onset of the palsy make sense, and 2) the trauma must have been severe enough to plausibly produce a CN3 palsy.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation?

Thusly: **With two exceptions**, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

What are the two exceptions?

--If there is an appropriate trauma hx

--**If the pupil finding is isolated**, ie, if EOM function is intact (because the probability of an aneurysm in this scenario is essentially zero)

A patient presents with an enlarged pupil. Her motility is full to finger-following. Is it OK to send this patient home?

No! In the setting of a possible CN3 palsy, finger-following is an inadequate test for ruling out EOM involvement. To truly rule out a partial/subtle external CN3 palsy, **cover testing must be performed**!

OK, OK, calm down. I did standard cover-testing, and everything seemed fine. Can I please let the pt go now?

No! Like finger-following, primary-gaze cover testing is inadequate for ruling out a CN3 palsy, which can be very subtle.

Sigh. OK then, how should cover testing be performed?

Cover testing should be performed while the pt is ‘face turned’ so as to place the eye in the fields of gaze in which a CN3 palsy would manifest; ie, in down-, up- and medial gaze. If a subtle palsy is present, putting the eye into the fields of action of the CN3-controlled EOMs will bring it out.

Only testing performed in this manner is considered adequate to rule out EOM involvement in a pupil-involving CN3 palsy!
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

-- If there is an appropriate trauma hx

-- If the pupil finding is isolated, ie, if the EOM function is intact (because the probability of an aneurysm in this scenario is essentially zero)

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation?

Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

A patient presents with an enlarged pupil. Her motility is full to finger-following. Is it OK to send this patient home?

No! In the setting of a possible CN3 palsy, finger-following is an inadequate test for ruling out EOM involvement. To truly rule out a partial/subtle external CN3 palsy, cover testing must be performed!

What are the two exceptions?
-- If there is an appropriate trauma hx
-- If the pupil finding is isolated, ie, if the probability of an aneurysm in this setting is essentially zero

cover testing must be performed!
Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation?

Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

What are the two exceptions?
- If there is an appropriate trauma hx
- If the pupil finding is isolated, ie, if EOM function is intact (because the probability of an aneurysm in this scenario is essentially zero)

A patient presents with an enlarged pupil. Her motility is full to finger-following. Is it OK to send this patient home?

No! In the setting of a possible CN3 palsy, finger-following is an inadequate test for ruling out EOM involvement. To truly rule out a partial/subtle external CN3 palsy, cover testing must be performed!

OK, OK, calm down. I did standard cover-testing, and everything seemed fine. Can I please let the pt go now?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation?

Thusly: **With two exceptions**, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

Pupil-sparing

A patient presents with an enlarged pupil. Her motility is full to finger-following. Is it OK to send this patient home?

No! In the setting of a possible CN3 palsy, finger-following is an inadequate test for ruling out EOM involvement. To truly rule out a partial/subtle external CN3 palsy, **cover testing must be performed**!

OK, OK, calm down. I did standard cover-testing, and everything seemed fine. Can I please let the pt go now?

No! Like finger-following, primary-gaze cover testing is inadequate for ruling out a CN3 palsy, which can be very subtle.

What are the two exceptions?

--If there is an appropriate trauma hx

--**If the pupil finding is isolated**, ie, if the probability of an aneurysm in this scenario is essentially zero
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation?

Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

A patient presents with an enlarged pupil. Her motility is full to finger-following. Is it OK to send this patient home?

No! In the setting of a possible CN3 palsy, finger-following is an inadequate test for ruling out EOM involvement. To truly rule out a partial/subtle external CN3 palsy, cover testing must be performed!

OK, OK, calm down. I did standard cover-testing, and everything seemed fine. Can I please let the pt go now?

No! Like finger-following, primary-gaze cover testing is inadequate for ruling out a CN3 palsy, which can be very subtle.

Sigh. OK then, how should cover testing be performed?

What are the two exceptions?
--If there is an appropriate trauma hx
--If the pupil finding is isolated, ie, if EOM function is intact (because the probability of an aneurysm in this scenario is essentially zero)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation?

Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

What are the two exceptions?
--If there is an appropriate trauma hx
--If the pupil finding is isolated, ie, if EOM function is intact (because the probability of an aneurysm in this scenario is essentially zero)

A patient presents with an enlarged pupil. Her motility is full to finger-following. Is it OK to send this patient home?
No! In the setting of a possible CN3 palsy, finger-following is an inadequate test for ruling out EOM involvement. To truly rule out a partial/subtle external CN3 palsy, cover testing must be performed!

OK, OK, calm down. I did standard cover-testing, and everything seemed fine. Can I please let the pt go now?
No! Like finger-following, primary-gaze cover testing is inadequate for ruling out a CN3 palsy, which can be very subtle.

Sigh. OK then, how should cover testing be performed?
Cover testing should be performed while the pt is ‘face turned’ so as to place the eye in the fields of gaze in which a CN3 palsy would manifest; ie, in down-, up- and medial gaze. If a subtle palsy is present, putting the eye into the fields of action of the CN3-controlled EOMs will bring it out.
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

Pupil-involving

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation? Thusly: **With two exceptions**, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

What are the two exceptions?
 -- If there is an appropriate trauma hx
 -- **If the pupil finding is isolated**, ie, if the probability of an aneurysm in this setting is essentially zero

*A patient presents with an enlarged pupil. Her motility is full to finger-following. Is it OK to send this patient home?***

No! In the setting of a possible CN3 palsy, finger-following is an inadequate test for ruling out EOM involvement. To truly rule out a partial/subtle external CN3 palsy, *cover testing must be performed!*

*OK, OK, calm down. I did standard cover-testing, and everything seemed fine. Can I please let the pt go now?***

No! Like finger-following, primary-gaze cover testing is inadequate for ruling out a CN3 palsy, which can be very subtle.

*Sigh. OK then, how should cover testing be performed?***

Cover testing should be performed while the pt is ‘face turned’ so as to place the eye in the fields of gaze in which a CN3 palsy would manifest; ie, in down-, up- and medial gaze. If a subtle palsy is present, putting the eye into the fields of action of the CN3-controlled EOMs will bring it out. **Only testing performed in this manner is considered adequate to rule out EOM involvement in a pupil-involving CN3 palsy!**

Pupil-sparing
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation?
Thusly: **With two exceptions**, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

What are the two exceptions?
--- If there is an appropriate trauma hx
--- If the pupil finding is isolated, ie, if EOM function is intact (because the probability of an aneurysm in this scenario is essentially zero)

What are the three likely causes of an isolated dilated pupil?
--- ?
--- ?
--- ?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation? Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

What are the two exceptions?
--If there is an appropriate trauma hx
--If the pupil finding is isolated, ie, if EOM function is intact (because the probability of an aneurysm in this scenario is essentially zero)

What are the three likely causes of an isolated dilated pupil?
--Pharmacologic dilation
--Adie’s tonic pupil
--Local iris damage (eg, posterior synechiae; post-surgical)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Getting down to clinical brass tacks: A pt presents with an apparent pupil-involving CN3 palsy. How should you approach this situation?

Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

What are the two exceptions?
--If there is an appropriate trauma hx
--If the pupil finding is isolated, ie, if EOM function is intact (because the probability of an aneurysm in this scenario is essentially zero)

What are the three likely causes of an isolated dilated pupil?
--Pharmacologic dilation
--Adie’s tonic pupil
--Local iris damage (eg, posterior synechiae; post-surgical)

(Adie’s tonic pupil is addressed at length in slide-set N4)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Getting down to clinical brass tacks: A pt presents with a pupil-involving CN3 palsy. How should you approach this situation? Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise

Further brass tacks: How should a pupil-involving CN3 palsy be handled?

Pupil-sparing
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Getting down to clinical brass tacks: A pt presents with a pupil-involving CN3 palsy. How should you approach this situation?

Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

Further brass tacks: How should a pupil-involving CN3 palsy be handled? Emergent imaging of the CNS vasculature must be performed to rule out a Pcomm aneurysm.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Getting down to clinical brass tacks: A pt presents with a pupil-involving CN3 palsy. How should you approach this situation?
Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

Further brass tacks: How should a pupil-involving CN3 palsy be handled?
Emergent imaging of the CNS vasculature must be performed to rule out a Pcomm aneurysm.

What three imaging modalities are appropriate/available for detecting a Pcomm aneurysm?
--?
--?
--?
Getting down to clinical brass tacks: A pt presents with a pupil-involving CN3 palsy. How should you approach this situation?
Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise

Further brass tacks: How should a pupil-involving CN3 palsy be handled?
Emergent **imaging of the CNS vasculature** must be performed to rule out a Pcomm aneurysm.

What three imaging modalities are appropriate/available for detecting a Pcomm aneurysm?
--CT angiography (CTA)
--MR angiography (MRA)
--Catheter angiography
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Getting down to clinical brass tacks: A pt presents with a pupil-involving CN3 palsy. How should you approach this situation?
Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

Further brass tacks: How should a pupil-involving CN3 palsy be handled?
Emergent imaging of the CNS vasculature must be performed to rule out a Pcomm aneurysm.

What three imaging modalities are appropriate/available for detecting a Pcomm aneurysm?
--CT angiography (CTA)
--MR angiography (MRA)
--Catheter angiography

Which is best?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Getting down to clinical brass tacks: A pt presents with a pupil-involving CN3 palsy. How should you approach this situation? Thusly: With two exceptions, a pupil-involving CN3 palsy is assumed to represent a Pcomm aneurysm until proven otherwise.

Further brass tacks: How should a pupil-involving CN3 palsy be handled? Emergent imaging of the CNS vasculature must be performed to rule out a Pcomm aneurysm.

What three imaging modalities are appropriate/available for detecting a Pcomm aneurysm?
--CT angiography (CTA)
--MR angiography (MRA)
--Catheter angiography

Which is best? Each has advantages and disadvantages; selection should be done in consultation with one’s local neuro-radiologist (although it should be said that the convenience and safety of CTA and MRA have rendered catheter angiography a distant third choice for diagnostic imaging).

Pupil-sparing
Right posterior communicating artery aneurysm on CTA
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

- Pupil-involving
- Pupil-sparing

What does it mean to say a CN3 palsy is pupil-sparing?
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

Pupil-involving

Pupil-sparing

What does it mean to say a CN3 palsy is pupil-sparing?
Pretty much what it sounds like--EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-sparing CN3 palsy
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

What does it mean to say a CN3 palsy is pupil-sparing?
Pretty much what it sounds like—EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

It was noted at the outset of the slide-set that most CN3 palsies are ischemic. What is the pathophysiology of this?

(Recall this box from early in the slide-set)

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event?
Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur?
The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

What does it mean to say a CN3 palsy is pupil-sparing?
Pretty much what it sounds like—EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

It was noted at the outset of the slide-set that most CN3 palsies are ischemic. What is the pathophysiology of this?
As with compressive lesions, it’s all about CN3 anatomy. Recall that CN3 is a large-diameter nerve. Because of its size, its inner fibers are too far from its surface to receive oxygen via passive diffusion. Thus, its inner fibers are nourished via vessels that perforate the nerve’s sheath and dive into its substance.

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event?
Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur?
The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

What does it mean to say a CN3 palsy is pupil-sparing?
Pretty much what it sounds like—EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

It was noted at the outset of the slide-set that most CN3 palsies are ischemic. What is the pathophysiology of this?
As with compressive lesions, it’s all about CN3 anatomy. Recall that CN3 is a large-diameter nerve. Because of its size, its inner fibers are too far from its surface to receive oxygen via passive diffusion. Thus, its inner fibers are nourished via vessels that perforate the nerve’s sheath and dive into its substance.

What is the name for blood vessels that service the inner aspect of a nerve?

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event?
Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur?
The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy is pupil-sparing?
Pretty much what it sounds like—EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

It was noted at the outset of the slide-set that most CN3 palsies are ischemic. What is the pathophysiology of this?
As with compressive lesions, it’s all about CN3 anatomy. Recall that CN3 is a large-diameter nerve. Because of its size, its inner fibers are too far from its surface to receive oxygen via passive diffusion. Thus, its inner fibers are nourished via vessels that perforate the nerve’s sheath and dive into its substance.

What is the name for blood vessels that service the inner aspect of a nerve?
Vasa nervora

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event?
Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur?
The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

What does it mean to say a CN3 palsy is pupil-sparing?
Pretty much what it sounds like—EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

It was noted at the outset of the slide-set that most CN3 palsies are ischemic. What is the pathophysiology of this?
As with compressive lesions, it’s all about CN3 anatomy. Recall that CN3 is a large-diameter nerve. Because of its size, its inner fibers are too far from its surface to receive oxygen via passive diffusion. Thus, its inner fibers are nourished via vessels that perforate the nerve’s sheath and dive into its substance. If one of these vasa nervora vessels becomes occluded, the portion of CN3 supplied by it will suffer an ischemic injury, resulting in a palsy.

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event?
Microvascular injury; ie, ischemia.

In which portion of the pathway does this sort of injury occur?
The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well).
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

What does it mean to say a CN3 palsy is pupil-sparing?

Pretty much what it sounds like—EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

How can the status of the pupil implicate ischemia as causing a CN3 palsy?

In which portion of the pathway does this sort of injury occur?

The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well).
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event?

Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur?
The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)

What does it mean to say a CN3 palsy is pupil-sparing?

Pretty much what it sounds like—EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

How can the status of the pupil implicate ischemia as causing a CN3 palsy?

Yet again, look to the nerve’s topography for the explanation. Recall that the pre-ganglionic parasympathetics run in the superficial, outermost portion of the nerve. In this location, they are oxygenated not by perforating vasa nervora vessels, but rather via the vast web of pial vessels that surround the nerve.

As with compressive lesions, it’s all about CN3 anatomy. Recall that CN3 is a large-diameter nerve. Because of its size, its inner fibers are too far from its surface to receive oxygen via passive diffusion. Thus, its inner fibers are nourished via vessels that perforate the nerve’s sheath and dive into its substance. If one of these vasa nervora vessels becomes occluded, the portion of CN3 supplied by it will suffer an ischemic injury, resulting in a palsy.

In which portion of the pathway does this sort of injury occur?
The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event?

Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur?
The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)

What does it mean to say a CN3 palsy is pupil-sparing?

Pretty much what it sounds like—EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

What does it mean to say a CN3 palsy is pupil-involving?

The pre-ganglionic parasympathetics run in the superficial, outermost portion of the nerve. In this location, they are oxygenated not by perforating vasa nervora vessels, but rather via the vast web of pial vessels that surround the nerve. Given this, it stands to reason that an ischemic insult to the inner portion of the nerve will not bag the parasympathetic fibers, thereby leaving intact the parasympathetic input to the pupil. Thus, the pupil will be of normal size and reactivity—no anisocoria, no ‘motor pupil.’

How can the status of the pupil implicate ischemia as causing a CN3 palsy?

Yet again, look to the nerve’s topography for the explanation. Recall that the pre-ganglionic parasympathetics run in the superficial, outermost portion of the nerve. In this location, they are oxygenated not by perforating vasa nervora vessels, but rather via the vast web of pial vessels that surround the nerve. Given this, it stands to reason that an ischemic insult to the inner portion of the nerve will not bag the parasympathetic fibers, thereby leaving intact the parasympathetic input to the pupil. Thus, the pupil will be of normal size and reactivity—no anisocoria, no ‘motor pupil.’

If one of these vasa nervora vessels becomes occluded, the portion of CN3 supplied by it will suffer an ischemic injury, resulting in a palsy.

In which portion of the pathway does this sort of injury occur?
The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Does this mean a vascular CN3 palsy can’t involve the pupil?

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event?

Microvascular injury; ie, ischemia

In which portion of the pathway does this sort of injury occur?

The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)

What does it mean to say a CN3 palsy is pupil-sparing?

Pretty much what it sounds like—EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

It was noted at the outset of the slide-set that most CN3 palsies are ischemic. What is the pathophysiology of this?

As with compressive lesions, it’s all about CN3 anatomy. Recall that CN3 is a large-diameter nerve. Because of its size, its inner fibers are too far from its surface to receive oxygen via passive diffusion. Thus, its inner fibers are nourished via vessels that perforate the nerve’s sheath and dive into its substance. If one of these vasa nervora vessels becomes occluded, the portion of CN3 supplied by it will suffer an ischemic injury, resulting in a palsy.

How can the status of the pupil implicate ischemia as causing a CN3 palsy?

Yet again, look to the nerve’s topography for the explanation. Recall that the pre-ganglionic parasympathetics run in the superficial, outermost portion of the nerve. In this location, they are oxygenated not by perforating vasa nervora vessels, but rather via the vast web of pial vessels that surround the nerve. Given this, it stands to reason that an ischemic insult to the inner portion of the nerve will not bag the parasympathetic fibers, thereby leaving intact the parasympathetic input to the pupil. Thus, the pupil will be of normal size and reactivity—no anisocoria, no ‘motor pupil.’

Does this mean a vascular CN3 palsy can’t involve the pupil?

No. Per the BCSC Neuro book, 20% of vascular thirds are pupil-involving.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Does this mean a vascular CN3 palsy can’t involve the pupil?
No. Per the BCSC Neuro book, of vascular thirds are pupil-involving.

What does it mean to say a CN3 palsy is pupil-sparing?
Pretty much what it sounds like--EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

How can the status of the pupil implicate ischemia as causing a CN3 palsy?
Yet again, look to the nerve’s topography for the explanation. Recall that the pre-ganglionic parasympathetics run in the superficial, outermost portion of the nerve. In this location, they are oxygenated not by perforating vasa nervora vessels, but rather via the vast web of pial vessels that surround the nerve. Given this, it stands to reason that an ischemic insult to the inner portion of the nerve will not bag the parasympathetic fibers, thereby leaving intact the parasympathetic input to the pupil. Thus, the pupil will be of normal size and reactivity--no anisocoria, no ‘motor pupil.’

Does this mean a vascular CN3 palsy can’t involve the pupil?
No. Per the BCSC Neuro book, 20% of vascular thirds are pupil-involving.

In which portion of the pathway does this sort of injury occur?
The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Does this mean a vascular CN3 palsy can’t involve the pupil?
No. Per the BCSC Neuro book, 20% of vascular thirds are pupil-involving.

What does it mean to say a CN3 palsy is pupil-sparing?
Pretty much what it sounds like—EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

How can the status of the pupil implicate ischemia as causing a CN3 palsy?
Yet again, look to the nerve’s topography for the explanation. Recall that the pre-ganglionic parasympathetics run in the superficial, outermost portion of the nerve. In this location, they are oxygenated not by perforating vasa nervora vessels, but rather via the vast web of pial vessels that surround the nerve. Given this, it stands to reason that an ischemic insult to the inner portion of the nerve will not bag the parasympathetic fibers, thereby leaving intact the parasympathetic input to the pupil. Thus, the pupil will be of normal size and reactivity—no anisocoria, no ‘motor pupil.’

In which portion of the pathway does this sort of injury occur?
The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What does it mean to say a CN3 palsy is pupil-sparing?

Pretty much what it sounds like—EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

It was noted at the outset of the slide-set that most CN3 palsies are ischemic. What is the pathophysiology of this?

As with compressive lesions, it’s all about CN3 anatomy. Recall that CN3 is a large-diameter nerve. Because of its size, its inner fibers are too far from its surface to receive oxygen via passive diffusion. Thus, its inner fibers are nourished via vessels that perforate the nerve’s sheath and dive into its substance. If one of these vasa nervora vessels becomes occluded, the portion of CN3 supplied by it will suffer an ischemic injury, resulting in a palsy.

How can the status of the pupil implicate ischemia as causing a CN3 palsy?

Yet again, look to the nerve’s topography for the explanation. Recall that the pre-ganglionic parasympathetics run in the superficial, outermost portion of the nerve. In this location, they are oxygenated not by perforating vasa nervora vessels, but rather via the vast web of pial vessels that surround the nerve. Given this, it stands to reason that an ischemic insult to the inner portion of the nerve will not bag the parasympathetic fibers, thereby leaving intact the parasympathetic input to the pupil. Thus, the pupil will be of normal size and reactivity—no anisocoria, no ‘motor pupil.’

Does this mean a vascular CN3 palsy can’t involve the pupil?

No. Per the BCSC Neuro book, 20% of vascular thirds are pupil-involving.

In a vascular, pupil-involving CN3 palsy, does the amount of anisocoria tend to be small, or large?

It is almost always small (usually less than 1mm).
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The majority of nontraumatic isolated third nerve palsies are secondary to what pathologic event? Microvascular injury; ie, ischemia.

In which portion of the pathway does this sort of injury occur? The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well).

What does it mean to say a CN3 palsy is pupil-sparing? Pretty much what it sounds like—EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

In a vascular, pupil-involving CN3 palsy, does the amount of anisocoria tend to be small, or large? It is almost always small (usually less than 1 mm).

Does this mean a vascular CN3 palsy can’t involve the pupil? No. Per the BCSC Neuro book, 20% of vascular thirds are pupil-involving.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Does this mean a vascular CN3 palsy can’t involve the pupil?
No. Per the BCSC Neuro book, 20% of vascular thirds are pupil-involving.

In a vascular, pupil-involving CN3 palsy, does the amount of anisocoria tend to be small, or large?
It is almost always small (usually less than 1mm).

What does it mean to say a CN3 palsy is pupil-sparing?
Pretty much what it sounds like—EOM deficiencies consistent with a CN3 distribution are present, but there is no anisocoria, and pupil motor function is intact.

In which portion of the pathway does this sort of injury occur?
The subarachnoid (although it must be noted that it could occur along the cavernous sinus portion as well).
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

With regard to management, pupil-sparing nontraumatic isolated CN3 palsy are divided into two categories. What are they?
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

With regard to management, pupil-sparing nontraumatic isolated CN3 palsies are divided into two categories. What are they?
What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.
What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?
Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:
--?
--?
--?
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

Pupil-involving

Pupil-sparing

- Complete
- Partial

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?

It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?

Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

-- The pt is a bad status
-- ?
-- ?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

Complete versus Partial

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?
Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:
--The pt is a vasculopath
--?
--?
What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?
Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:
--The pt is a vasculopath;
--the pt is over #
--?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?
Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:
--The pt is a vasculopath;
--the pt is over 50
--?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

Complete vs Partial

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?
Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:
--The pt is a vasculopath;
--the pt is over 50; and
--the pt has no hx of
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’? It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important? Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:
--The pt is a vasculopath;
--the pt is over 50; and
--the pt has no hx of cancer
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

Pupil-involving

Pupil-sparing

Complete

Partial

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?

It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?

Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

- The pt is a vasculopath;
- the pt is over 50; and
- the pt has no hx of cancer

OK, so a vasculopathic, cancer-free, 50+ pt has a complete pupil-sparing CN3 palsy. Does this carry significant implications for management?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?

It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?

Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

- The pt is a vasculopath;
- the pt is over 50;
- the pt has no hx of cancer.

OK, so a vasculopathic, cancer-free, 50+ pt has a complete pupil-sparing CN3 palsy. Does this carry significant implications for management?

It does, in that it means the pt need not undergo emergent imaging to r/o an aneurysm.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’? It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important? Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:
-- The pt is a vasculopath;
-- the pt is over 50; and
-- the pt has no hx of cancer

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery?

Emergent imaging to rule out an aneurysm
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?
Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

--The pt is a vasculopath;
--the pt is over 50;
--the pt has no hx of cancer

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery?
No, such pts must be followed closely, and a general medical eval should be considered.
Emergent imaging to r/o an aneurysm.
Motility Disorders: **Nontraumatic, Isolated, Unilateral CN3 Palsy**

Pupil-involving

Pupil-sparing

Complete

versus

Partial

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?

It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?

Because of its clinical implications.

An afferent pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

-- The pt is a vasculopath;
-- the pt is over 50; and
-- the pt has no hx of cancer

What should this ‘general medical eval’ consist of?

--?
--?
--?
--?

- checking inflammatory markers (eg, ESR)

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery?

No! Such pts must be followed closely, and a general medical eval should be considered.

Emergent imaging to rule out aneurysm.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?

It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?

Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

-- The pt is a vasculopath;
-- the pt is over 50; and
-- the pt has no hx of cancer.

What should this ‘general medical eval’ consist of?

-- BP assessment
-- Check blood glucose status (A1c, etc)
-- Fasting lipid panel
-- Consider checking inflammatory markers (eg, ESR)

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery?

No! such pts must be followed closely, and a general medical eval should be considered instead of emergent imaging to rule out an aneurysm.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?
Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

-- The pt is a vasculopath;
-- the pt is over 50; and
-- the pt has no hx of cancer

While following the pt, what are you on the lookout for?
--?
--?
--?
Motility Disorders: **Nontraumatic, Isolated, Unilateral CN3 Palsy**

Pupil-involving

Pupil-sparing

- **Complete**
- **Partial**

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?

It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?

Because of its clinical implications. A **complete pupil-sparing CN3 palsy** is virtually a lock to be vascular if the following pt-related conditions are met:

-- **The pt is a vasculopath**;
-- **the pt is over 50**; and
-- **the pt has no hx of cancer**

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery?

No! **such pts must be followed** closely, and a general medical eval should be considered.

While following the pt, what are you on the lookout for?

-- The onset of pupil involvement
-- The development of signs/symptoms involving other cranial nerves
-- Failure of the palsy to resolve by **amount of time**
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

Complete

Partial

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?
Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

--The pt is a vasculopath;
--the pt is over 50; and
--the pt has no hx of cancer

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery? No! Such pts must be followed closely, and a general medical eval should be considered.

While following the pt, what are you on the lookout for?
--The onset of pupil involvement
--The development of signs/symptoms involving other cranial nerves
--Failure of the palsy to resolve by 3 months
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’? It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important? Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

--- The pt is a vasculopath;
--- the pt is over 50; and
--- the pt has no hx of cancer

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery? No! Such pts must be followed closely, and a general medical eval should be considered.

While following the pt, what are you on the lookout for?

--- The onset of pupil involvement
--- The development of signs/symptoms involving other cranial nerves
--- Failure of the palsy to resolve by 3 months

What should be done if any of these things come to pass?

Imaging should be pursued.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’? It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important? Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

--The pt is a vasculopath;
--The pt is over 50;
--The pt has no hx of cancer.

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery? No! Such pts must be followed closely, and a general medical eval should be considered.

While following the pt, what are you on the lookout for?

--The onset of pupil involvement
--The development of signs/symptoms involving other cranial nerves
--Failure of the palsy to resolve by 3 months

What should be done if any of these things come to pass? Imaging should be pursued.
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

Pupil-involving

Pupil-sparing

Complete

Partial

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?

It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?

Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

--The pt is a vasculopath;
--the pt is over 50; and
--the pt has no hx of cancer.

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery?

No! Such pts must be followed closely, and a general medical eval should be considered.

While following the pt, what are you on the lookout for?

--The onset of pupil involvement
--The development of signs/symptoms involving other cranial nerves
--Failure of the palsy to resolve by 3 months

What should be done if any of these things come to pass?

Imaging should be pursued

What are you looking for on imaging if…

(No question yet—keep going)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving vs Pupil-sparing

What is meant by referring to a pupil-sparing CN3 palsy as 'complete' vs 'partial'?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?
Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:
-- The pt is a vasculopath;
-- The pt is over 50; and
-- The pt has no hx of cancer.

OK, so a vasculopathic, cancer-free, 50+ pt has a complete pupil-sparing CN3 palsy. Does this carry significant implications for management?
It does, in that it means the pt need not undergo emergent imaging to rule out an aneurysm.

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery?
No! such pts must be followed closely, and a general medical eval should be considered.

While following the pt, what are you on the lookout for?
-- The onset of pupil involvement
-- The development of signs/symptoms involving other cranial nerves
-- Failure of the palsy to resolve by 3 months

What should be done if any of these things come to pass?
Imaging should be pursued

What are you looking for on imaging if...
...anisocoria develops?
Dat Pcomm aneurysm

...other S/S develop?
A malignancy

...the palsy fails to resolve by month 3?
Malignancy
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?

It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?

Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

--The pt is a vasculopath;
--The pt is over 50;
--The pt has no hx of cancer.

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery?

No! such pts must be followed closely, and a general medical eval should be considered.

While following the pt, what are you on the lookout for?

--The onset of pupil involvement
--The development of signs/symptoms involving other cranial nerves
--Failure of the palsy to resolve by 3 months

What should be done if any of these things come to pass?

Imaging should be pursued.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

What is meant by referring to a pupil-sparing CN3 palsy as 'complete' vs 'partial'?

It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?

Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

--The pt is a vasculopath;
--the pt is over 50; and
--the pt has no hx of cancer.

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery?

No! such pts must be followed closely, and a general medical eval should be considered.

While following the pt, what are you on the lookout for?

--The onset of pupil involvement
--The development of signs/symptoms involving other cranial nerves
--Failure of the palsy to resolve by 3 months

What should be done if any of these things come to pass?

Imaging should be pursued

What are you looking for on imaging if...

...anisocoria develops? Dat Pcomm aneurysm
...other S/S develop?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?

It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?

Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

--The pt is a vasculopathy;
--the pt is over 50; and
--the pt has no hx of cancer.

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery?

No! such pts must be followed closely, and a general medical eval should be considered.

While following the pt, what are you on the lookout for?

--The onset of pupil involvement;
--The development of signs/symptoms involving other cranial nerves;
--Failure of the palsy to resolve by 3 months

What should be done if any of these things come to pass?

Imaging should be pursued

What are you looking for on imaging if...

...anisocoria develops? Dat Pcomm aneurysm...
...other S/S develop? A malignancy
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

What is meant by referring to a pupil-sparing CN3 palsy as 'complete' vs 'partial'? It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important? Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:
--The pt is a vasculopath;
--the pt is over 50; and
--the pt has no hx of cancer.

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery? No! such pts must be followed closely, and a general medical eval should be considered.

While following the pt, what are you on the lookout for?
--The onset of pupil involvement
--The development of signs/symptoms involving other cranial nerves
--Failure of the palsy to resolve by 3 months

What should be done if any of these things come to pass? Imaging should be pursued.

What are you looking for on imaging if...
...anisocoria develops? Dat Pcomm aneurysm
...other S/S develop? A malignancy
...the palsy fails to resolve by month 3?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

What is meant by referring to a pupil-sparing CN3 palsy as 'complete' vs 'partial'? It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important? Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:
--The pt is a vasculopath;
--the pt is over 50; and
--the pt has no hx of cancer.

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery? No! Such pts must be followed closely, and a general medical eval should be considered.

While following the pt, what are you on the lookout for?
--The onset of pupil involvement
--The development of signs/symptoms involving other cranial nerves
--Failure of the palsy to resolve by 3 months

What should be done if any of these things come to pass? Imaging should be pursued.

What are you looking for on imaging if...
...anisocoria develops? Dat Pcomm aneurysm
...other S/S develop? A malignancy
...the palsy fails to resolve by month 3? Malignancy
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

Complete

Partial

What is meant by referring to a pupil-sparing CN3 palsy as 'complete' vs 'partial'?

It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?

Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

--The pt is a vasculopath;
--the pt is over 50; and
--the pt has no hx of cancer.

Does this mean you can cut the pt loose, telling her to come back when she needs cataract surgery?

No! such pts must be followed closely, and a general medical eval should be considered.

While following the pt, what are you on the lookout for?

--The onset of pupil involvement
--The development of signs/symptoms involving other cranial nerves
--Failure of the palsy to resolve by 3 months

What should be done if any of these things come to pass?

Imaging should be pursued.

At what location might one expect a malignancy to be found?

--?

What are you looking for on imaging if...

--Anisocoria develops?

Dat Pcomm aneurysm

--Other S/S develop?

A malignancy

--The palsy fails to resolve by month 3?

Malignancy

At what location might one expect a malignancy to be found?

--?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

Complete versus Partial

What is meant by referring to a pupil-sparing CN3 palsy as 'complete' vs 'partial'?

It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?

Because of its clinical implications. **A complete pupil-sparing CN3 palsy** is virtually a lock to be vascular if the following pt-related conditions are met:

--The pt is a vasculopath;
--the pt is over 50; and
--the pt has no hx of cancer.

Does this mean you can cut the patient, telling her to come back when she needs cataract surgery?

No! Such pts must be followed closely, and a general medical eval should be considered.

While following the pt, what are you on the lookout for?

--The onset of pupil involvement
--The development of signs/symptoms involving other cranial nerves
--Failure of the palsy to resolve by 3 months

At what location might one expect a malignancy to be found?

--The skull base
--The cavernous sinus

What should be done if any of these things come to pass?

Imaging should be pursued

malignancy

At what location might one expect a malignancy to be found?

--The skull base
--The cavernous sinus

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?
Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:
--The pt is a vasculopath;
--the pt is over 50; and
--the pt has no hx of cancer

So a pt has a partial pupil-sparing CN3 palsy. What implications does this carry for etiology?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

Complete

Partial

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?

It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?

Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:

--The pt is a vasculopath;
--the pt is over 50; and
--the pt has no hx of cancer.

So a pt has a partial pupil-sparing CN3 palsy.

What implications does this carry for etiology?

It is much more concerning for a compressive lesion than is a complete pupil-sparing third
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

Pupil-involving

Pupil-sparing

Complete

versus

Partial

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?
Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:
--The pt is a vasculopath;
--the pt is over 50; and
--the pt has no hx of cancer

So a pt has a partial pupil-sparing CN3 palsy. What implications does this carry for etiology?
It is much more concerning for a compressive lesion than is a complete pupil-sparing third

How should such pts be managed?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

What is meant by referring to a pupil-sparing CN3 palsy as ‘complete’ vs ‘partial’?
It refers to the status of the external muscles controlled by CN3. If they are all involved, the palsy is complete; if they are not, it is partial.

Why is the degree of involvement important?
Because of its clinical implications. A complete pupil-sparing CN3 palsy is virtually a lock to be vascular if the following pt-related conditions are met:
--The pt is a vasculopath;
--the pt is over 50; and
--the pt has no hx of cancer.

So a pt has a partial pupil-sparing CN3 palsy. What implications does this carry for etiology?
It is much more concerning for a compressive lesion than is a complete pupil-sparing third cranial nerve.

How should such pts be managed?
They should be imaged immediately.
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

And finally, three related topics:

- **Topic 1:** CN3 palsies in kids. How should they be managed?
 - If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

- **Topic 2:** Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?
 - No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

- **Topic 3:** Aberrant regeneration. What the heck is it?
 - A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.
And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?*
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?*
If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.
And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?*
If pupil-sparing, they can be followed; **if pupil-involving, they must be imaged**

Are Pcomm aneurysms common in kids?
And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?*
If pupil-sparing, they can be followed; **if pupil-involving, they must be imaged**

Are Pcomm aneurysms common in kids?
No, they are very rare
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged

Are Pcomm aneurysms common in kids? No, they are very rare

What are common causes on CN3 palsy in kids?

Post-viral or -vaccinal syndromes
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?*
If pupil-sparing, they can be followed; **if pupil-involving, they must be imaged**

Are Pcomm aneurysms common in kids?
No, they are very rare

What are common causes on CN3 palsy in kids?
Post-viral or -vaccinal syndromes
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?
And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?*
If pupil-sparing, they can be followed; if pupil-involving, they must be imaged

Topic 2: Pain. *Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?*
No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.
And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?* If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. *Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?* No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. *What the heck is it?*
And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?*
If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. *Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?*
No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. *What the heck is it?*
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.
And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present? No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?
--?
--?
And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?*
If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. *Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?*
No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. *What the heck is it?*
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?
--Attempted adduction→ eyelid retraction
--?
And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present? No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?
--Attempted adduction → eyelid retraction
--?
And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?* If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. *Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?* No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. *What the heck is it?* A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?
- Attempted adduction → eyelid retraction ← Attempted depression can do it as well —?
And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?* If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. *Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?* No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. *What the heck is it?* A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one

What are the classic aberrant regeneration mis-connections?
--Attempted adduction \rightarrow eyelid retraction \leftarrow Attempted depression can do it as well --?
Aberrant regeneration of the right third nerve. A, In primary gaze, there is mild ptosis, pupillary mydriasis, and exotropia, all on the right.
Aberrant regeneration of the right third nerve. A, In primary gaze, there is mild ptosis, pupillary mydriasis, and exotropia, all on the right. B, With attempted downward gaze, the right eyelid retracts as fibers of the right third nerve supplying the inferior rectus now also innervate the levator muscle.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed?
If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?
No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?
--Attempted adduction → eyelid retraction
--Attempted globe adduction, elevation or depression → of the pupil
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?*
If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. *Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?*
No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. *What the heck is it?*
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?
--Attempted adduction → eyelid retraction
--Attempted globe adduction, elevation or depression → miosis of the pupil
This patient has a long-standing right 3rd nerve palsy causing anisocoria, partial ptosis OD, mild adduction deficit OD, and moderate elevation and depression deficits OD.
This patient has a long-standing right 3rd nerve palsy causing anisocoria, partial ptosis OD, mild adduction deficit OD, and moderate elevation and depression deficits OD. In addition, there are signs of aberrant regeneration (miosis of the pupil and mild lid elevation on adduction OD).
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions…

First, what is the most common cause of lid retraction?

No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?

--Attempted adduction→*eyelid retraction*

--Attempted globe adduction, elevation or depression→*miosis* of the pupil
The phrase *eyelid retraction* should bring to mind several conditions…

First, *what is the most common cause of lid retraction?*
Thyroid eye dz (TED)

No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?
-- Attempted adduction → eyelid retraction
-- Attempted globe adduction; elevation or depression → miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions…

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear lid retraction, think TED first.

No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. *What the heck is it?* A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?

--- Attempted adduction \rightarrow *eyelid retraction*

--- Attempted globe adduction, elevation or depression \rightarrow miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

TED: Lid retraction
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions...

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear lid retraction, think TED first.

When TED pts move their eyes into downgaze, the upper lid will fail to follow the globe down. What is the name for this phenomenon? Lid lag

No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?

--Attempted adduction→*eyelid retraction*
--Attempted globe adduction/abduction/elevation/depression→*miosis* of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions…

First, *what is the most common cause of lid retraction?* Thyroid eye dz (TED). *When you hear lid retraction, think TED first.*

When TED pts move their eyes into downgaze, the upper lid will fail to follow the globe down. *What is the name for this phenomenon?* Lid lag

No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. *What the heck is it?* A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?

-- Attempted adduction → *eyelid retraction*
-- Attempted globe adduction, elevation or depression → miosis of the pupil
Unilateral. Note how the normal right upper lid has ‘followed’ the globe into downgaze

Bilateral

TED: Lid lag
The phrase *eyelid retraction* should bring to mind several conditions…

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear lid retraction, think TED first.

When TED pts move their eyes into downgaze, the upper lid will fail to follow the globe down. What is the name for this phenomenon? Lid lag

What is the eponymous name for lid lag 2ndry to TED?

No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?
- Attempted adduction→*eyelid retraction*
- Attempted globe adduction/elevation/depression→miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions...

First, *what is the most common cause of lid retraction*? Thyroid eye dz (TED). When you hear lid retraction, think TED first.

When TED pts move their eyes into downgaze, the upper lid will fail to follow the globe down. *What is the name for this phenomenon?* Lid lag

What is the eponymous name for lid lag 2ndry to TED? von Graefe’s sign

No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. *What the heck is it?* A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?

-- Attempted adduction \rightarrow **eyelid retraction**
-- Attempted globe adduction, elevation or depression \rightarrow miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

First, what is the most common cause of lid retraction?
Thyroid eye dz (TED). When you hear lid retraction, think TED first.

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid lag secondary to TED?
von Graefe's sign

What is the name for this phenomenon?
Lid lag

What is the eponymous name for lid retraction in Parinaud syndrome?
Collier's sign

Parinaud's has four cardinal findings. What are the other three?
--Lid retraction
--Light-near dissociation
--Impaired upgaze
--Convergence-retraction nystagmus

What are the classic aberrant regeneration mis-connections?
--Attempted adduction → eyelid retraction
--Attempted globe adduction/abduction or depression → miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear **lid retraction**, think TED first.

When TED occurs, **lid lag** results. This means that when you move your eyes downward, the upper eyelid fails to follow the globe down.

What well-known brainstem syndrome is associated with lid retraction?

Parinaud syndrome

(Recall we mentioned Parinaud’s earlier in the set and said we’d get back to it)

Topic 3: Aberrant regeneration. What the heck is it?

A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?

--Attempted adduction \(\rightarrow\) **eyelid retraction**
--Attempted globe adduction, elevation or depression \(\rightarrow\) miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions...

First, what is the most common cause of lid retraction?
Thyroid eye dz (TED). When you hear *lid retraction*, think TED first.

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome?
von Graefe's sign

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What are the classic aberrant regeneration mis-connections?
--Attempted adduction → *eyelid retraction*
--Attempted globe adduction, elevation, or depression → miosis of the pupil

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

The phrase *eyelid retraction* should bring to mind several conditions...

First, what is the most common cause of lid retraction?
Thyroid eye dz (TED). When you hear *lid retraction*, think TED first.

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome?
Collier’s sign

What is von Graefe’s sign?
Lid lag

What is the most common cause of lid retraction?
Thyroid eye dz (TED). When you hear *lid retraction*, think TED first.

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome?
Collier’s sign

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one...

What are the classic aberrant regeneration mis-connections?

--- Attempted adduction → *eyelid retraction*

--- Attempted globe adduction, elevation or depression → miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase eyelid retraction should bring to mind several conditions…

First, what is the most common cause of lid retraction?
Thyroid eye dz (TED). When you hear lid retraction, think TED first.

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome?
Collier’s sign

Parinaud’s has four cardinal findings. What are the other three?
--Lid retraction
--?
--?
--?

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one

What are the classic aberrant regeneration mis-connections?
--Attempted adduction→ eyelid retraction
--Attempted globe adduction, elevation or depression→ miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions…

First, what is the most common cause of lid retraction?
Thyroid eye dz (TED). When you hear *lid retraction*, think TED first.

What well-known brainstem syndrome is associated with *lid retraction*?
Parinaud syndrome

What is the eponymous name for *lid retraction* in Parinaud syndrome?
Collier’s sign

Parinaud’s has four cardinal findings. What are the other three?
- Lid retraction
- Light-near *
- ?
- ?

Topic 3: Aberrant regeneration. *What the heck is it?*
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one

What are the classic aberrant regeneration mis-connections?
- Attempted adduction→ *eyelid retraction*
- Attempted globe adduction, elevation or depression→ miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

First, what is the most common cause of lid retraction?
Thyroid eye dz (TED). When you hear lid retraction, think TED first.

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome?
Collier’s sign

Parinaud’s has four cardinal findings. What are the other three?
--Lid retraction
--Light-near dissociation
--?
--?

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one

What are the classic aberrant regeneration mis-connections?
--Attempted adduction \rightarrow eyelid retraction
--Attempted globe adduction, elevation or depression \rightarrow miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions...

First, what is the most common cause of lid retraction?
Thyroid eye dz (TED). When you hear *lid retraction*, think TED first.

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome?
von Graefe's sign

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome?
von Graefe's sign

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome?
von Graefe's sign

What are the classic aberrant regeneration mis-connections?
--Attempted adduction→ eyelid retraction
--Attempted globe adduction, elevation or depression→ miosis of the pupil

What is *light-near dissociation*?
A phenomena in which pupils miose less robustly in response to light than they do as part of the near response

What are the classic aberrant regeneration mis-connections?
--Attempted adduction→ eyelid retraction
--Attempted globe adduction, elevation or depression→ miosis of the pupil

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions...

First, what is the most common cause of lid retraction?
Thyroid eye dz (TED). When you hear *lid retraction*, think TED first.

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome?
Collier's sign

What is light-near dissociation?
A phenomena in which pupils miosis less robustly in response to light than they do as part of the near response

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one

What are the classic aberrant regeneration mis-connections?
--Attempted adduction→ eyelid retraction
--Attempted globe adduction, elevation or depression→ miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions...

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear *lid retraction*, think TED first.

What well-known brainstem syndrome is associated with lid retraction? Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome? *von Graefe’s sign*

What well-known brainstem syndrome is associated with lid retraction? Parinaud syndrome

What is light-near dissociation?
A phenomena in which pupils miose less robustly in response to light than they do as part of the near response

What are the classic aberrant regeneration mis-connections?

--Attempted adduction → eyelid retraction
--Attempted globe adduction, elevation or depression → miosis of the pupil

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase eyelid retraction should bring to mind several conditions...

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear lid retraction, think TED first.

What well-known brainstem syndrome is associated with lid retraction? Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome? Collier’s sign

Parinaud’s has four cardinal findings. What are the other three? --Lid retraction --Light-near dissociation --Impaired gaze direction --?

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one…

What are the classic aberrant regeneration mis-connections? --Attempted adduction→ eyelid retraction --Attempted globe adduction, elevation or depression→ miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase eyelid retraction should bring to mind several conditions...

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear lid retraction, think TED first.

What well-known brainstem syndrome is associated with lid retraction? Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome? Collier’s sign

Parinaud’s has four cardinal findings. What are the other three?
--Lid retraction
--Light-near dissociation
--Impaired upgaze
--?

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one

What are the classic aberrant regeneration mis-connections?
--Attempted adduction→ eyelid retraction
--Attempted globe adduction, elevation or depression→ miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions...

First, what is the most common cause of lid retraction?
Thyroid eye dz (TED). When you hear *lid retraction*, think TED first.

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome?
Collier’s sign

Parinaud’s has four cardinal findings. What are the other three?
- Lid retraction
- Light-near dissociation
- Impaired upgaze
- Convergence-retraction nystagmus

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one

What are the classic aberrant regeneration mis-connections?
- Attempted adduction → eyelid retraction
- Attempted globe adduction, elevation or depression → miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions...

First, what is the most common cause of lid retraction?
Thyroid eye dz (TED). When you hear *lid retraction*, think TED first.

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome?
Collier’s sign

Parinaud’s has four cardinal findings. What are the other three?
--Lid retraction
--Light-near dissociation
--Impaired upgaze
--Convergence-retraction nystagmus

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one

What are the classic aberrant regeneration mis-connections?
--Attempted adduction → *eyelid retraction*
--Attempted globe adduction/demotion or depression → miosis of the pupil
Parinaud syndrome. The combination of lid retraction + impaired upgaze gives rise to a characteristic appearance known as **setting sun sign**.
Parinaud syndrome. The combination of lid retraction + impaired upgaze gives rise to a characteristic appearance known as setting sun sign.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions…

First, what is the most common cause of lid retraction?
Thyroid eye dz (TED). When you hear lid retraction, think TED first.

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid lag secondary to TED?
von Graefe's sign

What are the classic aberrant regeneration mis-connections?
--Attempted adduction→ *eyelid retraction*
--Attempted globe adduction, elevation or depression→ miosis of the pupil

There is a form of ptosis that is associated with lid lag—which one?

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one

What well-known brainstem syndrome is associated with lid retraction?
Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome?
Collier's sign

Parinaud's has four cardinal findings. What are the other three?
--Lid retraction
--Light-near dissociation
--Impaired upgaze
--Convergence-retraction nystagmus

There is a form of ptosis that is associated with lid lag—which one?
Congenital myogenic ptosis. In downgaze, their appearance will suggest lid retraction.

In a nutshell, what is the pathogenesis of congenital myogenic ptosis?
The levator fails to develop properly, with some or all of its muscle fibers replaced by fibrofatty tissue

OK, I can see how a lack of functioning levator leads to ptosis, but why do these pts have lid lag?
Because the fibrofatty tissue can neither contract (causing ptosis) nor relax (causing lid lag)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions…

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear lid retraction, think TED first.

What well-known brainstem syndrome is associated with lid retraction? Parinaud syndrome

Lid lag

There is a form of ptosis that is associated with lid lag—which one? Congenital myogenic ptosis

Topic 3: Aberrant regeneration. *What the heck is it?*
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one

What are the classic aberrant regeneration mis-connections?
--Attempted adduction ➔ *eyelid retraction*
--Attempted globe adduction, elevation or depression ➔ miosis of the pupil

When TED pts move their eyes into downgaze, the upper lid will fail to follow the globe down. What is the name for this phenomenon? Lid lag

What is the eponymous name for lid lag secondary to TED? von Graefe's sign

What are the classic aberrant regeneration mis-connections?
--Attempted adduction ➔ *eyelid retraction*
--Attempted globe adduction, elevation or depression ➔ miosis of the pupil

What well-known brainstem syndrome is associated with lid retraction? Parinaud syndrome

What is the eponymous name for lid retraction in Parinaud syndrome? Collier's sign

Parinaud's has four cardinal findings. What are the other three?
--Lid retraction
--Light-near dissociation
--Impaired upgaze
--Convergence-retraction nystagmus

There is a form of ptosis that is associated with lid lag—which one? Congenital myogenic ptosis

In a nutshell, what is the pathogenesis of congenital myogenic ptosis? The levator fails to develop properly, with some or all of its muscle fibers replaced by fibrofatty tissue

OK, I can see how a lack of functioning levator leads to ptosis, but why do these pts have lid lag? Because the fibrofatty tissue can neither contract (causing ptosis) nor relax (causing lid lag)
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase eyelid retraction should bring to mind several conditions...

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear lid retraction, think TED first.

What well-known brainstem syndrome is associated with lid retraction? Parinaud syndrome

There is a form of ptosis that is associated with lid lag—which one? Congenital myogenic ptosis. In downgaze, their appearance will suggest lid retraction.

What are the classic aberrant regeneration mis-connections?--Attempted adduction → eyelid retraction--Attempted globe adduction → miosis of the pupil

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one

What is lid lag? A phenomenon in which the upper lid fails to move with the globe down.

What is von Graefe's sign? Lid lag secondary to TED.

Parinaud's has four cardinal findings. What are the other three?--Lid retraction--Light-near dissociation--Impaired upgaze--Convergence-retraction nystagmus

There is a form of ptosis that is associated with lid lag—which one? Congenital myogenic ptosis. In downgaze, their appearance will suggest lid retraction.

In a nutshell, what is the pathogenesis of congenital myogenic ptosis? The levator fails to develop properly, with some or all of its muscle fibers replaced by fibrofatty tissue.

OK, I can see how a lack of functioning levator leads to ptosis, but why do these pts have lid lag? Because the fibrofatty tissue can neither contract (causing ptosis) nor relax (causing lid lag).
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase *eyelid retraction* should bring to mind several conditions...

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear lid retraction, think TED first.

What well-known brainstem syndrome is associated with lid retraction? Parinaud syndrome

There is a form of ptosis that is associated with lid lag—which one? Congenital myogenic ptosis. In downgaze, their appearance will suggest lid retraction.

In a nutshell, what is the pathogenesis of congenital myogenic ptosis?

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?
--Attempted adduction→*eyelid retraction*
--Attempted globe adduction, elevation or depression→ miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase eyelid retraction should bring to mind several conditions…

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear lid retraction, think TED first.

What well-known brainstem syndrome is associated with lid retraction? Parinaud syndrome

There is a form of ptosis that is associated with lid lag—which one? Congenital myogenic ptosis. In downgaze, their appearance will suggest lid retraction.

In a nutshell, what is the pathogenesis of congenital myogenic ptosis? The levator fails to develop properly, with some or all of its muscle fibers replaced by fibrofatty tissue.

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections? --Attempted adduction→ eyelid retraction --Attempted globe adduction, elevation or depression→ miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase eyelid retraction should bring to mind several conditions…

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear lid retraction, think TED first.

What well-known brainstem syndrome is associated with lid retraction? Parinaud syndrome

There is a form of ptosis that is associated with lid lag—which one? Congenital myogenic ptosis. In downgaze, their appearance will suggest lid retraction.

In a nutshell, what is the pathogenesis of congenital myogenic ptosis? The levator fails to develop properly, with some or all of its muscle fibers replaced by fibrofatty tissue

OK, I can see how a lack of functioning levator leads to ptosis, but why do these pts have lid lag?

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one

What are the classic aberrant regeneration mis-connections?
- Attempted adduction → eyelid retraction
- Attempted globe adduction (elevation or depression) → miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

The phrase eyelid retraction should bring to mind several conditions...

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear lid retraction, think TED first.

What well-known brainstem syndrome is associated with lid retraction? Parinaud syndrome

There is a form of ptosis that is associated with lid lag—which one? Congenital myogenic ptosis. In downgaze, their appearance will suggest lid retraction.

In a nutshell, what is the pathogenesis of congenital myogenic ptosis? The levator fails to develop properly, with some or all of its muscle fibers replaced by fibrofatty tissue.

OK, I can see how a lack of functioning levator leads to ptosis, but why do these pts have lid lag? Because the fibrofatty tissue can neither contract (causing ptosis) nor relax (causing lid lag).

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?
--Attempted adduction → eyelid retraction
--Attempted globe adduction/elevation/depression → miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

First, what is the most common cause of lid retraction? Thyroid eye dz (TED). When you hear lid retraction, think TED first.

What well-known brainstem syndrome is associated with lid retraction? Parinaud syndrome

There is a form of ptosis that is associated with lid lag—which one? Congenital myogenic ptosis

In a nutshell, what is the pathogenesis of congenital myogenic ptosis? The levator fails to develop properly, with some or all of its fibers replaced by fibrofatty tissue.

OK, I can see how a lack of functioning levator leads to ptosis, but why do these pts have lid lag? Because the fibrofatty tissue can neither contract (causing ptosis) nor relax (causing lid lag).

These are some of the conditions that must be considered when faced with a case of lid retraction:

- Thyroid eye dz
- Parinaud syndrome
- Congenital myogenic ptosis

More info: Slide-set O5
More info: Slide-set N16
More info: Slide-set O2

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic aberrant regeneration mis-connections?
- Attempted adduction → eyelid retraction
- Attempted globe adduction, elevation or depression → miosis of the pupil
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?*
If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. *Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?*
No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. *What the heck is it?*
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

Of the three main causes of isolated unilateral CN3 palsy (ie, traumatic, compressive and ischemic), which is/are capable of resulting in aberrant regeneration?
And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed?
If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?
No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

Of the three main causes of isolated unilateral CN3 palsy (ie, traumatic, compressive and ischemic), which is/are capable of resulting in aberrant regeneration?
Both **traumatic** and **compressive** can; on the other hand, **ischemic**; never does.
And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present? No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

Of the three main causes of isolated unilateral CN3 palsy (ie, traumatic, compressive and ischemic), which is/are capable of resulting in aberrant regeneration? Both traumatic and compressive can; on the other hand, ischemic never does.
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present? No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

So if you encounter aberrant regeneration, what should you inquire about?

Both traumatic and compressive can, ischemic *never* does.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present? No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

So if you encounter aberrant regeneration, what should you inquire about? Whether the pt has a hx of head trauma significant enough to produce a traumatic CN3 palsy.

Both traumatic and compressive can result in aberrant regeneration, but ischemic never does.
And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present? No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

So if you encounter aberrant regeneration, what should you inquire about? Whether the pt has a hx of head trauma significant enough to produce a traumatic CN3 palsy.

And what should you do if the pt denies such a history?

Both traumatic and compressive can, ischemic never does.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present? No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

So if you encounter aberrant regeneration, what should you inquire about? Whether the pt has a hx of head trauma significant enough to produce a traumatic CN3 palsy.

And what should you do if the pt denies such a history? Assume there’s a compressive etiology, and pursue imaging.

Both traumatic and compressive can aberrantly regenerate; ischemic never does.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

In this context, to what does the term primary aberrant regeneration refer?

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present? No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

In this context, *to what does the term primary aberrant regeneration refer?*

Primary

Topic 3: Aberrant regeneration. *What the heck is it?*

A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

1. **CN3 palsies in kids.** How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

2. **Pain.** Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present? No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

3. **Aberrant regeneration.** What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

In this context, to what does the term primary aberrant regeneration refer? It refers to the presence of aberrant-regeneration-type EOM movements absent a clear history of a precipitating CN3 palsy.

Primary aberrant regeneration. What the heck is it? A slowly-expanding compressive lesion in the parasellar region.

How should one manage a pt with primary aberrant regeneration? Via imaging with special attention to the parasellar region (looking for a meningioma) and cavernous sinus (looking for an aneurysm of the internal carotid).
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

In this context, to what does the term primary aberrant regeneration refer? It refers to the presence of aberrant-regeneration-type EOM movements absent a clear history of a precipitating CN3 palsy.

What etiology is suggested by this presentation?

Primary

Topic 3: Aberrant regeneration. What the heck is it? A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

In this context, to what does the term primary aberrant regeneration refer?
It refers to the presence of aberrant-regeneration-type EOM movements absent a clear history of a precipitating CN3 palsy.

What etiology is suggested by this presentation?
A slowly-expanding compressive lesion in the parasellar region.

Primary

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

In this context, to what does the term primary aberrant regeneration refer?
It refers to the presence of aberrant-regeneration-type EOM movements absent a clear history of a precipitating CN3 palsy

What etiology is suggested by this presentation?
A slowly-expanding compressive lesion in the parasellar region

Primary Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

And finally, three related topics:

In this context, to what does the term primary aberrant regeneration refer?
It refers to the presence of aberrant-regeneration-type EOM movements absent a clear history of a precipitating CN3 palsy.

What etiology is suggested by this presentation?
A slowly-expanding compressive lesion in the parasellar region.

How should one manage a pt with primary aberrant regeneration?
Via imaging with special attention to the parasellar region (looking for a meningioma) and cavernous sinus (looking for an aneurysm of the internal carotid)

Topic 3: Aberrant regeneration. What the heck is it?
A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

In this context, to what does the term primary aberrant regeneration refer? It refers to the presence of aberrant-regeneration-type EOM movements absent a clear history of a precipitating CN3 palsy.

What etiology is suggested by this presentation? A slowly-expanding compressive lesion in the parasellar region.

How should one manage a pt with primary aberrant regeneration? Via imaging with special attention to the parasellar region (looking for a primary mass) and cavernous sinus (looking for an aneurysm of the internal carotid).
And finally, three related topics:

In this context, to what does the term primary aberrant regeneration refer? It refers to the presence of aberrant-regeneration-type EOM movements absent a clear history of a precipitating CN3 palsy.

What etiology is suggested by this presentation? A slowly-expanding compressive lesion in the parasellar region.

How should one manage a pt with primary aberrant regeneration? Via imaging with special attention to the parasellar region (looking for a meningioma) and cavernous sinus (looking for an aneurysm of the internal carotid).

Topic 3: Aberrant regeneration. What the heck is it?

A phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.
And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?* If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. *Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?* No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration of the...? *Finally—the Neuro book addresses in some depth the aberrant regeneration of another cranial nerve—which one?*
And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?* If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. *Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?* No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration of the... *facial nerve*

Finally—the Neuro book addresses in some depth the aberrant regeneration of another cranial nerve—Which one? CN7
And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present? No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration of the...facial nerve

Finally—the Neuro book addresses in some depth the aberrant regeneration of another cranial nerve—which one? CN7

What is the classic prior event that results in aberrant regeneration of CN7?
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

Topic 1: CN3 palsy in kids. *How should they be managed?* If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. *Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?* No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration of the...facial nerve

Finally—the Neuro book addresses in some depth the aberrant regeneration of another cranial nerve—which one? CN7

What is the classic prior event that results in aberrant regeneration of CN7? Bell’s palsy
And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (i.e., compressive vs ischemic) be differentiated on the basis of whether pain is present? No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration of the... facial nerve

Finally—the Neuro book addresses in some depth the aberrant regeneration of CN7, a topic of considerable interest to neurologists and neurosurgeons.

What are the classic ophthalmic manifestations of aberrant regeneration of CN7?

What is the classic prior event that results in aberrant regeneration of CN7? Bell’s palsy
Motility Disorders: *Nontraumatic, Isolated, Unilateral CN3 Palsy*

And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?* If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. *Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?* No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration of the...facial nerve

Finally—the Neuro book addresses in some depth the aberrant regeneration of CN7, a phenomenon in which healing nerve fibers form incorrect connections, resulting in impulses intended for one muscle stimulating a different one.

What are the classic ophthalmic manifestations of aberrant regeneration of CN7?
--Blinking causes... *[one of two things, or both]*

--?

What is the classic prior event that results in aberrant regeneration of CN7?
Bell’s palsy
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present? No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration of the...facial nerve.

Finally—the Neuro book addresses in some depth the aberrant regeneration of another cranial nerve—which one? CN7

What are the classic ophthalmic manifestations of aberrant regeneration of CN7? --Blinking causes...twitching at the corner of the mouth, or chin dimpling --?

What is the classic prior event that results in aberrant regeneration of CN7? Bell’s palsy
Aberrant regeneration of CN7 after Bell’s palsy: narrowing of the palpebral aperture on the affected side during cheek puffing
Motility Disorders: Nontraumatic, Isolated, Unilateral CN3 Palsy

And finally, three related topics:

Topic 1: CN3 palsies in kids. How should they be managed? If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present? No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration of the...facial nerve

Finally—the Neuro book addresses in some depth the aberrant regeneration of CN7. What are the classic ophthalmic manifestations of aberrant regeneration of CN7? --Blinking causes...twitching at the corner of the mouth, or chin dimpling --Movements of the lower face cause...? What is the classic prior event that results in aberrant regeneration of CN7? Bell’s palsy
Motility Disorders: **Nontraumatic, Isolated, Unilateral CN3 Palsy**

And finally, three related topics:

Topic 1: CN3 palsies in kids. *How should they be managed?*
If pupil-sparing, they can be followed; if pupil-involving, they must be imaged.

Topic 2: Pain. *Can etiology (ie, compressive vs ischemic) be differentiated on the basis of whether pain is present?*
No. While it is the case that most aneurysmal thirds are painful and most vascular are painless, exceptions are frequent enough that pain-status cannot reliably differentiate between them.

Topic 3: Aberrant regeneration of the...facial nerve

Finally—the Neuro book addresses in some depth the aberrant regeneration of another cranial nerve—which one?
CN7

What are the classic ophthalmic manifestations of aberrant regeneration of CN7?
--Blinking causes...**twitching at the corner of the mouth, or chin dimpling**
--Movements of the lower face cause...**involuntary lid closure**

What is the classic prior event that results in aberrant regeneration of CN7? *Bell’s palsy*