Phakomatoses are known also as what sort of syndrome?
Phakomatoses are known also as what sort of syndrome?
Neuro-oculocutaneous syndromes
Phakomatoses are known also as what sort of syndrome?
Neuro-oculocutaneous syndromes

In general terms, how do phakomatoses present?
Phakomatoses are known also as what sort of syndrome?
Neuro-oculocutaneous syndromes

In general terms, how do phakomatoses present?
With multiple lesions in two or more organ systems, usually including the CNS, eyes, and skin.
Phakomatoses are known also as what sort of syndrome?

Neuro-oculocutaneous syndromes

In general terms, how do phakomatoses present?
With multiple lesions in two or more organ systems, usually including the CNS, and...
Phakomatoses are known also as what sort of syndrome?
Neuro-oculocutaneous syndromes

In general terms, how do phakomatoses present?
With multiple lesions in two or more organ systems, usually including the CNS, eyes and
Phakomatoses are known also as what sort of syndrome?

Neuro-oculocutaneous syndromes

In general terms, how do phakomatoses present?
With multiple lesions in two or more organ systems, usually including the CNS, eyes and skin
Phakomatoses are known also as what sort of syndrome?
Neuro-oculocutaneous syndromes

In general terms, how do phakomatoses present?
With multiple lesions in two or more organ systems, usually including the CNS, eyes, and skin

Are the lesions in phakomatoses predominantly choristomas or hamartomas?
Phakomatoses are known also as what sort of syndrome?
Neuro-oculocutaneous syndromes

In general terms, how do phakomatoses present?
With multiple lesions in two or more organ systems, usually including the CNS, eyes and skin

Are the lesions in phakomatoses predominantly choristomas or hamartomas?
Most (but not all) are hamartomas (some are choristomas)
Phakomatoses are known also as what sort of syndrome? Neuro-oculocutaneous syndromes

In general terms, how do phakomatoses present? With multiple lesions in two or more organ systems, usually including the CNS, eyes and skin

Are the lesions in phakomatoses predominantly choristomas or hamartomas? Most (but not all) are hamartomas (some are choristomas)

What’s the difference between a hamartoma and a choristoma?
Phakomatoses are known also as what sort of syndrome? Neuro-oculocutaneous syndromes

In general terms, how do phakomatoses present? With multiple lesions in two or more organ systems, usually including the CNS, eyes, and skin.

Are the lesions in phakomatoses predominantly choristomas or hamartomas? Most (but not all) are hamartomas (some are choristomas)

What’s the difference between a hamartoma and a choristoma?
- A hamartoma is a nest of abnormal cells in a normal location, whereas a choristoma is a nest of relatively-normal cells in an abnormal location.
Phakomatoses are known also as what sort of syndrome?
Neuro-oculocutaneous syndromes

In general terms, how do phakomatoses present?
With multiple lesions in two or more organ systems, usually including the CNS, eyes, and skin

Are the lesions in phakomatoses predominantly choristomas or hamartomas?
Most (but not all) are hamartomas (some are choristomas)

What’s the difference between a hamartoma and a choristoma?
A hamartoma is a nest of abnormal cells in a normal location, whereas a choristoma is a nest of relatively-normal cells in an abnormal location.
Phakomatoses are known also as what sort of syndrome?
Neuro-oculocutaneous syndromes

In general terms, how do phakomatoses present?
With multiple lesions in two or more organ systems, usually including the CNS, eyes and skin

Are the lesions in phakomatoses predominantly choristomas or hamartomas?
Hamartomas

Is there a single, universally accepted definition of the term phakomatosis?
Phakomatoses are known also as what sort of syndrome?
Neuro-oculocutaneous syndromes

In general terms, how do phakomatoses present?
With multiple lesions in two or more organ systems, usually including the CNS, eyes, and skin

Are the lesions in phakomatoses predominantly choristomas or hamartomas?
Hamartomas

Is there a single, universally accepted definition of the term phakomatosis?
Unfortunately not, and for this reason, the conditions so labelled will vary from source to source
A phakomatosis by any other name... by what other name is each syndrome known?

Abbreviations used henceforth

NF1 • Neurofibromatosis type 1:

•

•

•

•

•

•

•

•

•
A phakomatosis by any other name…by what other name is each syndrome known?

1. Neurofibromatosis type 1: von Rechlinghausen syndrome

Abbreviations used henceforth

NF1
A phakomatosis by any other name... by what other name is each syndrome known?

- **NF1**
 - Neurofibromatosis type 1: von Rechlinghausen syndrome

- **TS**
 - Tuberous sclerosis:
 -
 -
 -
 -
 -
 -
 -
 -
 -

Abbreviations used henceforth

- NF1
- TS
A phakomatosis by any other name... by what other name is each syndrome known?

Abbreviations used henceforth

NF1 • Neurofibromatosis type 1: von Rechlinghausen syndrome

TS • Tuberous sclerosis: Bournville disease

Abbreviations used henceforth
A phakomatosis by any other name...by what other name is each syndrome known?

Abbreviations used henceforth

NF1
- Neurofibromatosis type 1: von Rechlinghausen syndrome

TS
- Tuberous sclerosis: Bournville disease

SWS
- Sturge-Weber syndrome:
Neurofibromatosis type 1: von Rechlinghausen syndrome
Tuberous sclerosis: Bournville disease
Sturge-Weber syndrome: Encephalotrigeminal angiomatosis
von Hippel-Lindau: Retinal angiomatosis
Incontinentia pigmenti: Bloch-Sulzberger syndrome
Neurofibromatosis type 2: None in common use of which I am aware
Racemose angioma: Wyburn-Mason syndrome
Ataxia-telangiectasia: Louis-Bar syndrome

Abbreviations used henceforth:
NF1, Neurofibromatosis type 1
TS, Tuberous sclerosis
SWS, Sturge-Weber syndrome
vH-L, von Hippel-Lindau
IP, Incontinentia pigmenti
NF2, Neurofibromatosis type 2
RAAT, Racemose angioma
AT, Ataxia-telangiectasia

A phakomatosis by any other name...by what other name is each syndrome known?

Other names you might encounter for SWS:
Encephalofacial angiomatosis
Cerebrofacial angiomatosis
A phakomatosis by any other name... by what other name is each syndrome known?

NF1 • Neurofibromatosis type 1: von Rechlinghausen syndrome

TS • Tuberous sclerosis: Bournville disease

SWS • Sturge-Weber syndrome: Encephalotrigeminal angiomatosis

vH-L • von Hippel-Lindau:
 •
 •
 •
 •
 •

Abbreviations used henceforth
A phakomatosis by any other name...by what other name is each syndrome known?

Abbreviations used henceforth

NF1 • Neurofibromatosis type 1: von Rechlinghausen syndrome
TS • Tuberous sclerosis: Bournville disease
SWS • Sturge-Weber syndrome: Encephalotrigeminal angiomatosis
vH-L • von Hippel-Lindau: Retinal angiomatosis
Neurofibromatosis type 1: von Rechlinghausen syndrome

Tuberous sclerosis: Bournville disease

Sturge-Weber syndrome: Encephalotrigeminal angiomatosis

von Hippel-Lindau: Retinal angiomatosis

Incontinentia pigmenti: Bloch-Sulzberger syndrome

Neurofibromatosis type 2: None in common use of which I am aware

Racemose angioma: Wyburn-Mason syndrome

Ataxia-telangiectasia: Louis-Bar syndrome

Abbreviations used henceforth

NF1 • Neurofibromatosis type 1: von Rechlinghausen syndrome

TS • Tuberous sclerosis: Bournville disease

SWS • Sturge-Weber syndrome: Encephalotrigeminal angiomatosis

vH-L • von Hippel-Lindau: Retinal angiomatosis

IP • Incontinentia pigmenti:
A phakomatosis by any other name...by what other name is each syndrome known?

Abbreviations used henceforth:

- NF1: Neurofibromatosis type 1: von Rechlinghausen syndrome
- TS: Tuberous sclerosis: Bournville disease
- SWS: Sturge-Weber syndrome: Encephalotrigeminal angiomatosis
- vH-L: von Hippel-Lindau: Retinal angiomatosis
- IP: Incontinentia pigmenti: Bloch-Sulzberger syndrome
A phakomatosis by any other name...by what other name is each syndrome known?

Abbreviations used henceforth

NF1 ● Neurofibromatosis type 1: von Rechlinghausen syndrome

TS ● Tuberous sclerosis: Bournville disease

SWS ● Sturge-Weber syndrome: Encephalotrigeminal angiomatosis

vH-L ● von Hippel-Lindau: Retinal angiomatosis

IP ● Incontinentia pigmenti: Bloch-Sulzberger syndrome

NF2 ● Neurofibromatosis type 2:
 ●
 ●

Abbreviations used henceforth
A phakomatosis by any other name...by what other name is each syndrome known?

Abbreviations used henceforth

- **NF1** Neurofibromatosis type 1: von Rechlinghausen syndrome
- **TS** Tuberous sclerosis: Bournville disease
- **SWS** Sturge-Weber syndrome: Encephalotrigeminal angiomatosis
- **vH-L** von Hippel-Lindau: Retinal angiomatosis
- **IP** Incontinentia pigmenti: Bloch-Sulzberger syndrome
- **NF2** Neurofibromatosis type 2: MISME syndrome

Abbreviations used henceforth
A phakomatosis by any other name...by what other name is each syndrome known?

Abbreviations used henceforth

NF1: Neurofibromatosis type 1: von Rechlinghausen syndrome
TS: Tuberous sclerosis: Bournville disease
SWS: Sturge-Weber syndrome: Encephalotrigeminal angiomatosis
vH-L: von Hippel-Lindau: Retinal angiomatosis
IP: Incontinentia pigmenti: Bloch-Sulzberger syndrome

NF2: Neurofibromatosis type 2: **MISME syndrome**

MISME is an acronym. What does it stand for?

---M
---I
---S
---M
---E
Abbreviations used henceforth

NF1 ● Neurofibromatosis type 1: von Rechlinghausen syndrome

TS ● Tuberous sclerosis: Bournville disease

SWS ● Sturge-Weber syndrome: Encephalotrigeminal angiomatosis

vH-L ● von Hippel-Lindau: Retinal angiomatosis

IP ● Incontinentia pigmenti: Bloch-Sulzberger syndrome

NF2 ● Neurofibromatosis type 2: **MISME syndrome**

MISME is an acronym. What does it stand for?

-- Multiple
-- Inherited
-- Schwannomas,
-- Meningiomas (and)
-- Ependymomas
A phakomatosis by any other name…by what other name is each syndrome known?

Abbreviations used henceforth

NF1: Neurofibromatosis type 1: von Rechlinghausen syndrome
TS: Tuberous sclerosis: Bournville disease
SWS: Sturge-Weber syndrome: Encephalotrigeminal angiomatosis
vH-L: von Hippel-Lindau: Retinal angiomatosis
IP: Incontinentia pigmenti: Bloch-Sulzberger syndrome
NF2: Neurofibromatosis type 2: MISME syndrome
RA: Racemose angioma:
A phakomatosis by any other name... by what other name is each syndrome known?

Abbreviations used henceforth

NF1 ● Neurofibromatosis type 1: von Rechlinghausen syndrome
TS ● Tuberous sclerosis: Bournville disease
SWS ● Sturge-Weber syndrome: Encephalotrigeminal angiomatosis
vH-L ● von Hippel-Lindau: Retinal angiomatosis
IP ● Incontinentia pigmenti: Bloch-Sulzberger syndrome
NF2 ● Neurofibromatosis type 2: MISME syndrome
RA ● Racemose angioma: Wyburn-Mason syndrome

Abbreviations used henceforth
A phakomatosis by any other name... by what other name is each syndrome known?

- **NF1**: Neurofibromatosis type 1: von Rechlinghausen syndrome
- **TS**: Tuberous sclerosis: Bournville disease
- **SWS**: Sturge-Weber syndrome: Encephalotrigeminal angiomatosis
- **vH-L**: von Hippel-Lindau: Retinal angiomatosis
- **IP**: Incontinentia pigmenti: Bloch-Sulzberger syndrome
- **NF2**: Neurofibromatosis type 2: MISME syndrome
- **RA**: Racemose angioma: Wyburn-Mason syndrome
- **AT**: Ataxia-telangiectasia:
A phakomatosis by any other name... by what other name is each syndrome known?

NF1 ● Neurofibromatosis type 1: von Rechlinghausen syndrome
TS ● Tuberous sclerosis: Bournville disease
SWS ● Sturge-Weber syndrome: Encephalotrigeminal angiomatosis
vH-L ● von Hippel-Lindau: Retinal angiomatosis
IP ● Incontinentia pigmenti: Bloch-Sulzberger syndrome
NF2 ● Neurofibromatosis type 2: MISME syndrome
RA ● Racemose angioma: Wyburn-Mason syndrome
AT ● Ataxia-telangiectasia: Louis-Bar syndrome
Phakomatoses: Inheritance patterns

- These four are AD...

 - NF1
 - NF2
 - von Hippel-Lindau
 - Tuberous sclerosis

- This one is AR...

 - Ataxia-telangiectasia

- These two are sporadic/nonhereditary

 - Sturge-Weber
 - Racemose angioma
Phakomatoses: Inheritance patterns

- These four are AD...
 - NF2
 - NF1
 - von Hippel-Lindau
 - Tuberous sclerosis
Phakomatoses: Inheritance patterns

- These four are *AD*…
 - NF2
 - NF1
 - von Hippel-Lindau
 - Tuberous sclerosis
- This one is *AR*…
● **Phakomatoses: Inheritance patterns**

 ● These four are *AD*…
 - NF2
 - NF1
 - von Hippel-Lindau
 - Tuberous sclerosis

 ● This one is *AR*…
 - Ataxia-telangiectasia
Phakomatoses: Inheritance patterns

- These four are *AD*...
 - NF2
 - NF1
 - von Hippel-Lindau
 - Tuberous sclerosis
- This one is *AR*...
 - Ataxia-telangiectasia
- This one is *X-linked dominant*...
● Phakomatoses: Inheritance patterns
 ● These four are AD…
 ● NF2
 ● NF1
 ● von Hippel-Lindau
 ● Tuberous sclerosis
 ● This one is AR…
 ● Ataxia-telangiectasia
 ● This one is X-linked dominant…
 ● Incontinentia pigmenti
Phakomatoses: Inheritance patterns

- These four are \textit{AD}...
 - NF2
 - NF1
 - von Hippel-Lindau
 - Tuberous sclerosis
- This one is \textit{AR}...
 - Ataxia-telangiectasia
- This one is \textit{X-linked dominant}...
 - Incontinentia pigmenti
- And these two are \textit{sporadic/nonhereditary}
Phakomatoses: Inheritance patterns

- These four are **AD**...
 - NF2
 - NF1
 - von Hippel-Lindau
 - Tuberous sclerosis
- This one is **AR**...
 - Ataxia-telangiectasia
- This one is **X-linked dominant**...
 - Incontinentia pigmenti
- And these two are **sporadic/nonhereditary**
 - Sturge-Weber
 - Racemose angioma
Phakomatoses: Inheritance patterns

- These four are AD...
 - NF2
 - NF1
 - von Hippel-Lindau

What does X-linked dominant transmission mean?

- This one is **X-linked dominant**...
 - Incontinentia pigmenti

- And these two are **sporadic/nonhereditary**
 - Sturge-Weber
 - Racemose angioma
Phakomatoses: Inheritance patterns

- These four are AD...
 - NF2
 - NF1
 - von Hippel-Lindau

What does X-linked dominant transmission mean?
It means the condition manifests in every conception possessing at least one X chromosome (ie, everyone)

- This one is **X-linked dominant**...
 - Incontinentia pigmenti

- And these two are **sporadic/nonhereditary**
 - Sturge-Weber
 - Racemose angioma
Phakomatoses: Inheritance patterns

These four are AD...
- NF2
- NF1
- von Hippel-Lindau

What does X-linked dominant transmission mean?
It means the condition manifests in every conception possessing at least one X chromosome (ie, everyone)

But almost all IP pts are female. If IP is X-linked dominant, why don’t male infants present with it?

This one is **X-linked dominant**...
- Incontinentia pigmenti

And these two are **sporadic/nonhereditary**
- Sturge-Weber
- Racemose angioma
Phakomatoses: Inheritance patterns

These four are **AD**...
- NF2
- NF1
- von Hippel-Lindau

What does X-linked dominant transmission mean?
It means the condition manifests in every conception possessing at least one X chromosome (i.e., everyone)

But almost all IP pts are female. If IP is X-linked dominant, why don't male infants present with it? The mutation causing IP is lethal to males in utero. That's about as 'manifest' as it gets.

This one is X-linked dominant...
- Incontinentia pigmenti

And these two are **sporadic/nonhereditary**
- Sturge-Weber
- Racemose angioma
Phakomatoses: Inheritance patterns

- These four are AD...

Hold the phone! To say that ‘almost’ all pts are female means that some IP pts are male. If IP is X-linked dominant and lethal in hemizygous individuals, how could there be any male pts?

But almost all IP pts are female. If IP is X-linked dominant, why don’t male infants present with it? The mutation causing IP is lethal to males in utero. That’s about as ‘manifest’ as it gets.

- This one is X-linked dominant...
 - Incontinentia pigmenti

- And these two are sporadic/nonhereditary
 - Sturge-Weber
 - Racemose angioma
Phakomatoses: Inheritance patterns

These four are AD...

Hold the phone! To say that ‘almost’ all pts are female means that some IP pts are male. If IP is X-linked dominant and lethal in hemizygous individuals, how could there be any male pts? There are two ways by which a male child could be liveborn with IP:
--If the (phenotypically) male child possesses two X chromosomes (eg, Klinefelter syndrome, XXY) and is therefore heterozygous for IP; or
--it can occur in males via a sporadic post-zygotic mutation that renders the male child an IP ‘mosaic’

It means the condition manifests in every conception possessing at least one X chromosome (ie, everyone)

But almost all IP pts are female. If IP is X-linked dominant, why don’t male infants present with it? The mutation causing IP is lethal to males in utero. That’s about as ‘manifest’ as it gets.

This one is X-linked dominant...

Incontinentia pigmenti

And these two are sporadic/nonhereditary

Sturge-Weber

Racemose angioma
Phakomatoses: Inheritance patterns

- These four are **AD**...
 - **NF2**
 - **NF1**
 - **von Hippel-Lindau**
 - **Tuberous sclerosis**

- This one is **AR**...
 - **Ataxia-telangiectasia**

- This one is **X-linked dominant**...
 - **Incontinentia pigmenti**

- And these two are **sporadic/nonhereditary**
 - **Sturge-Weber**
 - **Racemose angioma**

Of course, even the inherited conditions can occur sporadically. For each, what percent of cases are **sporadic**?

<table>
<thead>
<tr>
<th>Condition</th>
<th>% Sporadic</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF2</td>
<td>?</td>
</tr>
<tr>
<td>NF1</td>
<td>?</td>
</tr>
<tr>
<td>von Hippel-Lindau</td>
<td>?</td>
</tr>
<tr>
<td>Tuberous sclerosis</td>
<td>?</td>
</tr>
<tr>
<td>Ataxia-telangiectasia</td>
<td>?</td>
</tr>
<tr>
<td>Incontinentia pigmenti</td>
<td>?</td>
</tr>
</tbody>
</table>
Phakomatoses:

- These four are **AD**:
 - NF2: 50%
 - NF1: 50%
 - von Hippel-Lindau: 20%
 - Tuberous sclerosis: 80%

- This one is **AR**:
 - Ataxia-telangiectasia: ~0%

- This one is **X-linked dominant**:
 - Incontinentia pigmenti: 60%

- And these two are sporadic/nonhereditary:
 - Sturge-Weber
 - Racemose angioma

Of course, even the inherited conditions can occur sporadically. For each, what percent of cases are sporadic?
Phakomatoses:

These four are AD...

<table>
<thead>
<tr>
<th>Condition</th>
<th>% Sporadic</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF2</td>
<td>50</td>
</tr>
<tr>
<td>NF1</td>
<td>50</td>
</tr>
<tr>
<td>von Hippel-Lindau</td>
<td>20</td>
</tr>
<tr>
<td>Tuberous sclerosis</td>
<td>80</td>
</tr>
</tbody>
</table>

This one is AR...

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ataxia-telangiectasia</td>
</tr>
</tbody>
</table>

This one is X-linked dominant...

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incontinentia pigmenti</td>
</tr>
</tbody>
</table>

And these two are sporadic/nonhereditary

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sturge-Weber</td>
</tr>
<tr>
<td>Racemose angioma</td>
</tr>
</tbody>
</table>

Of course, even the inherited conditions can occur sporadically. For each, what percent of cases are sporadic?

Why is the sporadic-occurrence rate of A-T essentially zero?
Phakomatoses

These four are AD...

- NF2 50%
- NF1 50%
- von Hippel-Lindau 20%
- Tuberous sclerosis 80%

This one is AR...

- Ataxia-telangiectasia ~0%

This one is X-linked dominant...

- Incontinentia pigmenti 60%

And these two are sporadic/nonhereditary

- Sturge-Weber
- Racemose angioma

Of course, even the inherited conditions can occur sporadically. For each, what percent of cases are sporadic?

Why is the sporadic-occurrence rate of A-T essentially zero? Because it is an autosomal-recessive condition, and thus can occur sporadically only if someone heterozygous for it happens to suffer a mutation of the other copy of the responsible gene--a very unlikely event.
Study Guide: Phakomatoses

<table>
<thead>
<tr>
<th>NF1</th>
<th>Central vs Peripheral</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td></td>
</tr>
</tbody>
</table>

NF1

-- Peripheral

Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion

Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion

Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

Rule of thumb for Lisch nodule prevalence: Age in years x 10
NF1
--Peripheral NF
Study Guide: Phakomatoses

NF1
-- *Peripheral* NF
-- Most lesions due to abnormal [one cell type] or [different cell type] cells

Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion

Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion

Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
NF1

--*Peripheral* NF

--Most lesions due to abnormal *melanocytes* or *neuroglial* cells
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells

melanocytes **neuroglial cells**

How are these cell lines related embryologically?
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells

--- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

Rule of thumb for Lisch nodule prevalence: Age in years x 10

How are these cell lines related embryologically?
Both derive from neural-crest cells
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

How are these cell lines related embryologically? Both derive from **neural-crest cells**

Given this, it should come as no surprise that NF is associated with other manifestations of disordered neural-crest embryology, including and especially:

- Oculodermal melanocytosis (aka *nevus of Ota*
- Choroidal melanoma
- Conjunctival melanoma stemming from PAM
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

How are these cell lines related embryologically?
Both derive from neural-crest cells

Given this, it should come as no surprise that NF is associated with other manifestations of disordered neural-crest embryology, including and especially:
--Oculodermal melanocytosis (aka nevus of Ota)
How are these cell lines related embryologically?
Both derive from neural-crest cells

Given this, it should come as no surprise that NF is associated with other manifestations of disordered neural-crest embryology, including and especially:

-- Oculodermal melanocytosis (aka nevus of Ota)
-- Choroidal yikes
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells

- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

- Rule of thumb for Lisch nodule prevalence: Age in years x 10

How are these cell lines related embryologically?
Both derive from **neural-crest cells**

Given this, it should come as no surprise that NF is associated with other manifestations of disordered neural-crest embryology, including and especially:

- Oculodermal melanocytosis (aka **nevus of Ota**)
- Choroidal melanoma
-
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

How are these cell lines related embryologically?
Both derive from neural-crest cells

Given this, it should come as no surprise that NF is associated with other manifestations of disordered neural-crest embryology, including and especially:
--Oculodermal melanocytosis (aka nevus of Ota)
--Choroidal melanoma
--Conjunctival yikes stemming from abb.
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells

- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

How are these cell lines related embryologically?
Both derive from neural-crest cells

Given this, it should come as no surprise that NF is associated with other manifestations of disordered neural-crest embryology, including and especially:

--Oculodermal melanocytosis (aka *nevus of Ota*)
--Choroidal melanoma
--Conjunctival melanoma stemming from PAM
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

How are these cell lines related embryologically?
Both derive from **neural-crest cells**

Given this, it should come as no surprise that NF is associated with other manifestations of disordered neural-crest embryology, including and especially:
--Oculodermal melanocytosis (aka nevus of Ota)
--Choroidal melanoma
--Conjunctival melanoma stemming from **PAM**

What does PAM stand for in this context?
Study Guide: Phakomatoses

NF1
-- *Peripheral NF*
-- Most lesions due to abnormal melanocytes or neuroglial cells

Glaucoma
-- Associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- **Optic nerve glioma**: Always symptomatic by age 10 years. Classic CT appearance: kinked ON

Rule of thumb for Lisch nodule prevalence:
Age in years x 10

How are these cell lines related embryologically?
Both derive from **neural-crest cells**

Given this, it should come as no surprise that NF is associated with other manifestations of disordered neural-crest embryology, including and especially:
-- Oculodermal melanocytosis (aka nevus of Ota)
-- Choroidal melanoma
-- Conjunctival melanoma stemming from PAM

What does PAM stand for in this context?
Primary acquired melanosis
Study Guide: Phakomatoses

NF1
- **Peripheral NF**
 - Most lesions due to abnormal *melanocytes* or *neuroglial* cells

Melanocytic lesions
-
-
-
-

Name four common NF1 lesions that derive from melanocytes
NF1
--Peripheral NF
--Most lesions due to abnormal **melanocytes** or **neuroglial** cells

Melanocytic lesions
--Café au lait spots
--Axillary/inguinal freckles
--Lisch nodules
--Choroidal lesions

Name four common NF1 lesions that derive from melanocytes
Study Guide: Phakomatoses

NF1
--**Peripheral NF**
--Most lesions due to abnormal melanocytes or neuroglial cells

Melanocytic lesions
--Café au lait spots
--Axillary/inguinal freckles
--Lisch nodules
--Choroidal lesions

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

Name four common NF1 lesions that derive from neuroglial cells.
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells

Melanocytic lesions
--Café au lait spots
--Axillary/inguinal freckles
--Lisch nodules
--Choroidal lesions

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

Name four common NF1 lesions that derive from neuroglial cells.
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells

Melanocytic lesions
--Café au lait spots
--Axillary/inguinal freckles
--Lisch nodules
--Choroidal lesions

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

In what fundamental way do these lesions differ (other than the cell type of origin, duh)?
Study Guide: Phakomatoses

NF1
---Peripheral NF
--Most lesions due to abnormal **melanocytes** or **neuroglial** cells

- **Melanocytic lesions**
 --Café au lait spots
 --Axillary/inguinal freckles
 --Lisch nodules
 --Choroidal lesions

- **Neuroglial lesions**
 --Nodular neurofibromas
 --Plexiform neurofibromas
 --Optic glioma
 --Prominent corneal nerves

In what fundamental way do these lesions differ (other than the cell type of origin, duh)?

The melanocytic lesions are of no clinical significance beyond establishing the diagnosis, whereas the neuroglial lesions are associated with significant ocular and/or systemic morbidity.
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal **melanocytes** or **neuroglial** cells

Melanocytic lesions
--Café au lait spots
--Axillary/inguinal freckles
--Lisch nodules
--Choroidal lesions

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

In what fundamental way do these lesions differ (other than the cell type of origin, duh)?

The **melanocytic** lesions are of no clinical significance beyond establishing the diagnosis, whereas the **neuroglial** lesions are associated with significant ocular and/or systemic morbidity.
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells

Melanocytic lesions
--Café au lait spots
--Axillary/inguinal freckles
--Lisch nodules
--Choroidal lesions

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

Do the neuroglial lesions in NF1 carry a risk of malignant transformation?

Yes, especially the plexiform neurofibromas, which can give rise to lesions known as 'malignant peripheral nerve-sheath tumors'.

What is the lifetime risk of such a transformation?

About 10%
NF1

- Peripheral NF
- Most lesions due to abnormal **melanocytes** or **neuroglial** cells

Melanocytic lesions
- Café au lait spots
- Axillary/inguinal freckles
- Lisch nodules
- Choroidal lesions

Neuroglial lesions
- Nodular neurofibromas
- Plexiform neurofibromas
- Optic glioma
- Prominent corneal nerves

Do the neuroglial lesions in NF1 carry a risk of malignant transformation?

Yes, especially the plexiform neurofibromas, which can give rise to lesions known as **malignant peripheral nerve-sheath tumors**.
Study Guide: Phakomatoses

NF1
-- *Peripheral NF*
-- Most lesions due to abnormal melanocytes or neuroglial cells

Melanocytic lesions
-- Café au lait spots
-- Axillary/inguinal freckles
-- Lisch nodules
-- Choroidal lesions

Neuroglial lesions
-- Nodular neurofibromas
-- Plexiform neurofibromas
-- Optic glioma
-- Prominent corneal nerves

Do the neuroglial lesions in NF1 carry a risk of malignant transformation?
Yes, especially the plexiform neurofibromas, which can give rise to lesions known as ‘malignant peripheral nerve-sheath tumors’
Study Guide: Phakomatoses

NF1
- Peripheral NF
- Most lesions due to abnormal melanocytes or neuroglial cells

Melanocytic lesions
- Café au lait spots
- Axillary/inguinal freckles
- Lisch nodules
- Choroidal lesions

Neuroglial lesions
- Nodular neurofibromas
- Plexiform neurofibromas
- Optic glioma
- Prominent corneal nerves

Do the neuroglial lesions in NF1 carry a risk of malignant transformation?
Yes, especially the plexiform neurofibromas, which can give rise to lesions known as 'malignant peripheral nerve-sheath tumors'.

What is the lifetime risk of such a transformation?

About 10%
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells

Melanocytic lesions
--Café au lait spots
--Axillary/inguinal freckles
--Lisch nodules
--Choroidal lesions

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

Do the neuroglial lesions in NF1 carry a risk of malignant transformation?
Yes, especially the plexiform neurofibromas, which can give rise to lesions known as ‘malignant peripheral nerve-sheath tumors’

What is the lifetime risk of such a transformation?
About 10%
NF1 - Peripheral NF

---Most lesions due to abnormal melanocytes or neuroglial cells

What does ‘most’ mean in this context?

It means ‘not all.’ That is, there are lesions associated with NF1 that cannot be attributed to abnormalities of neural-crest derivatives.

Four non-neural-crest-derived malignancies are associated with NF1 (albeit uncommonly). What are they?

--Leukemia--Rhabdomyosarcoma--Pheochromocytoma--Wilms tumor
NF1

- Peripheral NF

--- Most lesions due to abnormal melanocytes or neuroglial cells

What does ‘most’ mean in this context?
It means ‘not all.’ That is, there are lesions associated with NF1 that cannot be attributed to abnormalities of neural-crest derivatives.

Four non-neural-crest-derived malignancies are associated with NF1 (albeit uncommonly). What are they?

-- Leukemia
-- Rhabdomyosarcoma
-- Pheochromocytoma
-- Wilms tumor
NF1
- Peripheral NF

Most lesions due to abnormal melanocytes or neuroglial cells

What does ‘most’ mean in this context?
It means ‘not all.’ That is, there are lesions associated with NF1 that cannot be attributed to abnormalities of neural-crest derivatives.

Four non-neural-crest-derived malignancies are associated with NF1 (albeit uncommonly). What are they?
-
-
-
-
NF1
- **Peripheral NF**

---**Most** lesions due to abnormal **melanocytes** or **neuroglial** cells

What does ‘most’ mean in this context?
It means ‘not all.’ That is, there are lesions associated with NF1 that cannot be attributed to abnormalities of neural-crest derivatives.

Four non-neural-crest-derived malignancies are associated with NF1 (albeit uncommonly). What are they?
--Leukemia
--Rhabdomyosarcoma
--Pheochromocytoma
--Wilms tumor
Study Guide: Phakomatoses

NF1

-- *Peripheral* NF

-- Most lesions due to abnormal melanocytes or neuroglial cells

-- Glaucoma associated with ipsilateral classic lid finding and/or less classic iris finding

-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

-- Rule of thumb for Lisch nodule prevalence: Age in years x 10
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral **upper-lid plexiform fibroma and/or iris ectropion**

How does a plexiform fibroma and/or iris ectropion cause glaucoma?
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion

How does a plexiform fibroma and/or iris ectropion cause glaucoma?
So far as we know, they don’t. That is, while they are strongly associated with glaucoma in NF1, there is no known direct causal connection.
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion

How does a plexiform fibroma and/or iris ectropion cause glaucoma?
So far as we know, they don’t. That is, while they are strongly associated with glaucoma in NF1, there is no known direct causal connection.

How strong is the association with glaucoma; ie, what percent of NF1 cases with an upper-lid plexiform fibroma and/or ectropion will have ipsilateral glaucoma?

About 50
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion

How does a plexiform fibroma and/or iris ectropion cause glaucoma?
So far as we know, they don’t. That is, while they are strongly associated with glaucoma in NF1, there is no known direct causal connection.

How strong is the association with glaucoma; ie, what percent of NF1 cases with an upper-lid plexiform fibroma and/or ectropion will have ipsilateral glaucoma?
About 50
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include classic finding, less classic, and congenital less classic
NF1

--*Peripheral* NF

--Most lesions due to abnormal *melanocytes* or *neuroglial* cells

--Glaucoma associated with ipsilateral *upper-lid plexiform fibroma* and/or *iris ectropion*

--Iris lesions include *Lisch nodules*, *JXG nodules*, and congenital *ectropion*

(Juvenile xanthogranuloma)
NF1
---*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 (years) Classic CT appearance:
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

(Optic nerve)
NF1
--*Peripheral NF*
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

What percent of NF1 pts develop a glioma of the optic pathway (ie, nerve or chiasm)?

About 15
Of those, about how many will be symptomatic?
About 1/3
With what symptoms will they present?
Vision loss and/or proptosis
Are optic-nerve gliomas typically life-threatening?
No
What about NF1 pts with chiasmal gliomas—do they fare better than their non-NF1 counterparts?
Much better
Study Guide: Phakomatoses

NF1
-- *Peripheral NF*
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age **10 years**. Classic CT appearance: **Kinked ON**

What percent of NF1 pts develop a glioma of the optic pathway (ie, nerve or chiasm)?
About 15

What about NF1 pts with chiasmal gliomas--do they fare better than their non-NF1 counterparts?
Much better
NF1
---*Peripheral NF*
---Most lesions due to abnormal melanocytes or neuroglial cells
---Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
---Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
---Optic nerve glioma: Always symptomatic by age **10 years**. Classic CT appearance: **Kinked ON**

---*(Optic nerve)*

What percent of NF1 pts develop a glioma of the optic pathway (ie, nerve or chiasm)?
About 15

Of those, about how many will be symptomatic?
Study Guide: Phakomatoses

NF1
-- *Peripheral NF*
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age **10 years**. Classic CT appearance: Kinked ON

What percent of NF1 pts develop a glioma of the optic pathway (ie, nerve or chiasm)?
About 15

Of those, about how many will be symptomatic?
About 1/3
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON (Optic nerve)

What percent of NF1 pts develop a glioma of the optic pathway (i.e., nerve or chiasm)?
About 15

Of those, about how many will be symptomatic?
About 1/3

With what symptoms will they present?
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

What percent of NF1 pts develop a glioma of the optic pathway (ie, nerve or chiasm)?
About 15

Of those, about how many will be symptomatic?
About 1/3

With what symptoms will they present?
Vision loss and/or proptosis
Study Guide: Phakomatoses

NF1
--*Peripheral NF*
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON (Optic nerve)

What percent of NF1 pts develop a glioma of the optic pathway (ie, nerve or chiasm)?
About 15

Of those, about how many will be symptomatic?
About 1/3

With what symptoms will they present?
Vision loss and/or proptosis

Are optic-nerve gliomas typically life-threatening?
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

What percent of NF1 pts develop a glioma of the optic pathway (ie, nerve or chiasm)?
About 15

Of those, about how many will be symptomatic?
About 1/3

With what symptoms will they present?
Vision loss and/or proptosis

Are optic-nerve gliomas typically life-threatening?
No
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

What percent of NF1 pts develop a glioma of the optic pathway (ie, nerve or chiasm)?
About 15

Of those, about how many will be symptomatic?
About 1/3

With what symptoms will they present?
Vision loss and/or proptosis

Are optic-nerve gliomas typically life-threatening?
No

What about NF1 pts with chiasmal gliomas--do they fare better than their non-NF1 counterparts?
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

What percent of NF1 pts develop a glioma of the optic pathway (ie, nerve or chiasm)?
About 15

Of those, about how many will be symptomatic?
About 1/3

With what symptoms will they present?
Vision loss and/or proptosis

Are optic-nerve gliomas typically life-threatening?
No

What about NF1 pts with chiasmal gliomas--do they fare better than their non-NF1 counterparts?
Much better
Study Guide: Phakomatoses

NF1
--- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: **something x something**
Study Guide: Phakomatoses

NF1
-- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10
NF1
-- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: **Age in years x 10**

In other words, about 10% of 1 year olds will have Lisch nodules, 40% of 4 y.o.s, 60% of 6 y.o., etc. By the age of 10 years, essentially 100% of NF1 pts will manifest Lisch nodules.
Study Guide: Phakomatoses

NF1
-- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is *epiloia*
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*

What does epiloia stand for?
--Epi
--Lo
--A

Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is **epiloia**

What does epiloia stand for?
--Epilepsy
--Low intelligence
--Angiomas
Study Guide: Phakomatoses

NF1
-- *Peripheral NF*
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is *epiloia*

What does epiloia stand for?
-- Epilepsy
-- Low intelligence
-- Angiomas

What is the eponymous name of this triad?
NF1

Peripheral NF

- Most lesions due to abnormal melanocytes or neuroglial cells
- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis

Classic triad is **epiloia**

What does epiloia stand for?

- **Epi**lepsy
- **Low** intelligence
- **Angiomas**

What is the eponymous name of this triad?

Vogt’s triad
Study Guide: Phakomatoses

NF1
- *Peripheral NF*
- Most lesions due to abnormal melanocytes or neuroglial cells
- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
- Classic triad is *epiloia*
- What does *epiloia* stand for?
 - Epilepsy?: What % of TS pts have seizures?
 - Low Intelligence
 - Angiomas

What does the eponymous name of this triad? *Vogt’s triad*
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is **epiloia**

What does epiloia stand for?
---Epilepsy: 80
---Low Intelligence
---Angiomas

What % of TS pts have seizures?

What is the eponymous name of this triad? **Vogt’s triad**
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Epilepsy: 80
--Low intelligence: ?
--Angiomas

aWhat does epiloia stand for?
--Epilepsy: 80
--Low intelligence: ?

What % of TS pts have cognitive impairment?

aWhat is the eponymous name of this triad? Vogt’s triad
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia

What does epiloia stand for?
--Epilepsy: 80
--Low intelligence: 50
--Angiomas

What % of TS pts have cognitive impairment?

What is the eponymous name of this triad?
Vogt’s triad
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is

What does epiloia stand for?
--Epilepsy: 80
--Low intelligence: 50
--Angiomas: ?

What % of TS pts have facial angifibromas; ie, adenoma sebaceum?

What is the eponymous name of this triad?
Vogt’s triad
Study Guide: Phakomatoses

NF1
--*Peripheral NF*
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*

What does epiloia stand for?
--*Epi*lepsy: 80
--*Lo*w *intelligence*: 50
--*An*giomas: 75

What % of TS pts have facial angifibromas; ie, adenoma sebaceum?

What is the eponymous name of this triad? Vogt’s triad
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia

What does epiloia stand for?
--Epilepsy PLUS
--Low intelligence PLUS
--Angiomas

What % of TS pts have all three?

What is the eponymous name of this triad?
Vogt’s triad
Study Guide: Phakomatoses

NF1
-- *Peripheral NF*
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is *epiloia*

--- What does *epiloia* stand for?
- **Epilepsy PLUS**
- **Low intelligence PLUS**
- **Angiomas**

--- What % of TS pts have all three? Only 30

--- What is the eponymous name of this triad? Vogt’s triad
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: classic finding of face; ditto and ditto on torso
Study Guide: Phakomatoses

NF1
-- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is *epiloia*
-- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: *Adenoma sebaceum* of face; *ash-leaf spots* and *shagreen patches* on torso

Skin Lesions: Matching!

- **Adenoma sebaceum**
 ?
 Appear in infancy

- **Shagreen patches**
 ?
 Usually in lumbosacral region

- **Ash-leaf spots**
 ?
 Appear in childhood
Study Guide: Phakomatoses

NF1
-- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is *epiloia*
-- Skin: **Adenoma sebaceum** of face; **ash-leaf spots** and **shagreen patches** on torso

Skin Lesions: Matching!

- **Adenoma sebaceum**: Appear in infancy
- **Shagreen patches**: Usually in lumbosacral region
- **Ash-leaf spots**: Appear in childhood
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso

Skin Lesions: Not Matching!

Adenoma sebaceum ?

Shagreen patches ? Which lesion(s) is/are raised, and which is/are flat?

Ash-leaf spots ?
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: *Adenoma sebaceum* of face; *ash-leaf spots* and *shagreen patches* on torso

Skin Lesions: Not Matching!

- **Adenoma sebaceum**
 - Raised

- **Shagreen patches**

- **Ash-leaf spots**
 - Flat

Which lesion(s) is/are raised, and which is/are flat?
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: *Adenoma sebaceum* of face; *ash-leaf spots* and *shagreen patches* on torso

Skin Lesions: Not Matching!

- Adenoma sebaceum
- Shagreen patches
- Ash-leaf spots

*Which lesion(s) is/are hyperpigmented, and which is/are hypopigmented?
NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: *Adenoma sebaceum* of face; *ash-leaf spots* and *shagreen patches* on torso

Skin Lesions: Not Matching!

- *Adenoma sebaceum*
 - Hyperpigmented
- *Shagreen patches*
- *Ash-leaf spots*
 - Hypopigmented
Study Guide: Phakomatoses

NF1
-- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is *epiloia*
-- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso

Skin Lesions: Not Matching!

- Adenoma sebaceum ?
- Shagreen patches ?
- Ash-leaf spots ?

Which lesion(s) fluoresce under a Woods lamp, and which do/does not?
Study Guide: Phakomatoses

NF1
-- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is *epiloia*
-- Skin: *Adenoma sebaceum* of face; *ash-leaf spots* and *shagreen patches* on torso

Skin Lesions: Not Matching!

- *Adenoma sebaceum*: Don’t fluoresce
- *Shagreen patches*: Don’t fluoresce
- *Ash-leaf spots*: Fluoresce

Which lesion(s) fluoresce under a Woods lamp, and which do/does not?
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso

Skin Lesions: Not Matching!

Adenoma sebaceum
Shagreen patches
Ash-leaf spots

Which lesion(s) is/are considered pathognomonic for TS, and which is/are not?
NF1
-- *Peripheral NF*
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is *epiloia*
-- Skin: *Adenoma sebaceum* of face; *ash-leaf spots* and *shagreen patches* on torso

Skin Lesions: Not Matching!

- *Adenoma sebaceum*: Not
- *Shagreen patches*: Not
- *Ash-leaf spots*: Pathognomonic

Which lesion(s) is/are considered pathognomonic for TS, and which is/are not?
NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: [classic finding] other benign tumors
NF1
--- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--- Classic triad is *epiloia*
--- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--- CNS: Cortical tubers, other benign tumors
Study Guide: Phakomatoses

NF1
-- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is *epiloia*
-- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
-- CNS: *Cortical tubers*, other benign tumors

What is a cortical tuber?
NF1
--- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral *upper-lid plexiform fibroma* and/or *iris ectropion*
-- Iris lesions include *Lisch nodules, JXG nodules,* and congenital *ectropion*
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: *Kinked ON*
-- Rule of thumb for Lisch nodule prevalence: *Age in years x 10*

Tuberous sclerosis
--- Classic triad is *epiloia*
--- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--- CNS: *Cortical tubers,* other benign tumors

What is a cortical tuber?
A benign tumor of the brain
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors

What is a cortical tuber?
A benign tumor of the brain

Why is it called a ‘tuber’?
Study Guide: Phakomatoses

NF1
- *Peripheral* NF
- Most lesions due to abnormal melanocytes or neuroglial cells
- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
- Classic triad is epiloia
- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
- CNS: **Cortical tubers**, other benign tumors

What is a cortical tuber?
A benign tumor of the brain

Why is it called a ‘tuber’?
Because it’s shaped like a potato (sort of)
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: *Cortical tubers*, other benign tumors

What is a cortical tuber?
A benign tumor of the brain

Why is it called a ‘tuber’?
Because it’s shaped like a potato (sort of)

What basic geometric shape do tubers often take?
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors

What is a cortical tuber?
A benign tumor of the brain

Why is it called a ‘tuber’?
Because it’s shaped like a potato (sort of)

What basic geometric shape do tubers often take?
A triangle
NF1
--**Peripheral** NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucome associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: **Cortical tubers**, other benign tumors

What is a cortical tuber?
A benign tumor of the brain

Why is it called a ‘tuber’?
Because it’s shaped like a potato (sort of)

What basic geometric shape do tubers often take?
A triangle

Which way does the apex of the triangle point?
Study Guide: Phakomatoses

NF1
-- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is *epiloia*
-- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
-- CNS: **Cortical tubers**, other benign tumors

What is a cortical tuber?
A benign tumor of the brain

Why is it called a ‘tuber’?
Because it’s shaped like a potato (sort of)

What basic geometric shape do tubers often take?
A triangle

Which way does the apex of the triangle point?
Toward a ventricle
NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of not eye and not eye as well
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: *Kinked ON*
--Rule of thumb for Lisch nodule prevalence: *Age in years x 10*

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
Study Guide: Phakomatoses

NF1
--*Peripheral NF*
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well

Other than their location, in what key way do the heart and kidney tumors differ?
Study Guide: Phakomatoses

NF1
-- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is *epiloia*
-- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
-- CNS: Cortical tubers, other benign tumors
-- Benign tumors of heart and kidney as well

Other than their location, in what key way do the heart and kidney tumors differ?

The ♥/not ♥ tumors are not associated with an increased risk of morbidity/mortality, whereas the ♥/not ♥ tumors are
NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well

Other than their location, in what key way do the heart and kidney tumors differ? The kidney tumors are not associated with an increased risk of morbidity/mortality, whereas the heart tumors are
NF1

--*Peripheral* NF

--Most lesions due to abnormal melanocytes or neuroglial cells

--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion

--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion

--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis

--Classic triad is *epiloia*

--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso

--CNS: Cortical tubers, other benign tumors

--Benign tumors of heart and kidney as well

--Retinal tumor is something something
NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is astrocytic hamartoma
NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is *astrocytic hamartoma*

By what other name is the astrocytic hamartoma of the retina known?
NF1
--**Peripheral NF**
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is *astrocytic hamartoma*

By what other name is the astrocytic hamartoma of the retina known?
Retinal phakoma
Study Guide: Phakomatoses

NF1
-- *Peripheral NF*
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is *epiloia*
-- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
-- CNS: Cortical tubers, other benign tumors
-- Benign tumors of heart and kidney as well
-- Retinal tumor is **astrocytic hamartoma**

By what other name is the astrocytic hamartoma of the retina known?
Retinal phakoma

What proportion of TS pts develop a phakoma?
1/3 to 1/2

Can they present bilaterally?
Yes

Can multiple phakomas be found in one eye?
Yes

Are the pathognomonic for TS?
No
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is **astrocytic hamartoma**

By what other name is the astrocytic hamartoma of the retina known?
Retinal phakoma

What proportion of TS pts develop a phakoma?
1/3 to 1/2
Study Guide: Phakomatoses

NF1

---Peripheral NF

--Most lesions due to abnormal melanocytes or neuroglial cells

--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion

--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion

--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis

---Classic triad is epiloia

---Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso

---CNS: Cortical tubers, other benign tumors

---Benign tumors of heart and kidney as well

---Retinal tumor is astrocytic hamartoma

---Retinal phakoma

By what other name is the astrocytic hamartoma of the retina known?

Retinal phakoma

What proportion of TS pts develop a phakoma?

1/3 to 1/2

Can they present bilaterally?
NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is *astrocytic hamartoma*

By what other name is the astrocytic hamartoma of the retina known?
Retinal phakoma

What proportion of TS pts develop a phakoma?
1/3 to 1/2

Can they present bilaterally?
Yes
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is **astrocytic hamartoma**

By what other name is the astrocytic hamartoma of the retina known?
Retinal phakoma

What proportion of TS pts develop a phakoma?
1/3 to 1/2

Can they present bilaterally?
Yes

Can multiple phakomas be found in one eye?
Study Guide: Phakomatoses

NF1
--- *Peripheral* NF
--- Most lesions due to abnormal melanocytes or neuroglial cells
--- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--- Classic triad is *epiloia*
--- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--- CNS: Cortical tubers, other benign tumors
--- Benign tumors of heart and kidney as well
--- Retinal tumor is *astrocytic hamartoma*

By what other name is the astrocytic hamartoma of the retina known?
Retinal phakoma

What proportion of TS pts develop a phakoma?
1/3 to 1/2

Can they present bilaterally?
Yes

Can multiple phakomas be found in one eye?
Yes
Study Guide: Phakomatoses

NF1

--- *Peripheral NF*

-- Most lesions due to abnormal melanocytes or neuroglial cells

-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion

-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion

-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON

-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis

--- Classic triad is *epiloia*

--- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso

--- CNS: Cortical tubers, other benign tumors

--- Benign tumors of heart and kidney as well

--- Retinal tumor is astrocytic hamartoma

By what other name is the astrocytic hamartoma of the retina known?
Retinal phakoma

What proportion of TS pts develop a phakoma?
1/3 to 1/2

Can they present bilaterally?
Yes

Can multiple phakomas be found in one eye?
Yes

Are they pathognomonic for TS?
NF1
--- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--- Classic triad is *epiloia*
--- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--- CNS: Cortical tubers, other benign tumors
--- Benign tumors of heart and kidney as well
--- Retinal tumor is **astrocytic hamartoma**

By what other name is the astrocytic hamartoma of the retina known?
Retinal phakoma

What proportion of TS pts develop a phakoma?
1/3 to 1/2

Can they present bilaterally?
Yes

Can multiple phakomas be found in one eye?
Yes

Are they pathognomonic for TS?
No
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is **astrocytic hamartoma**

By what other name is the astrocytic hamartoma of the retina known?
Retinal phakoma

What proportion of TS pts develop a phakoma?
1/3 to 1/2

Can they present bilaterally?
Yes

Are they pathognomonic for TS?
No

Phakomas typically present with one of two appearances--what are they?
-- Smooth, nearly flat, with poorly-defined margins
-- Irregular, elevated, and sharply demarcated
NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is *astrocytic hamartoma*

Phakomas typically present with one of two appearances--what are they?
--Smooth, nearly flat, with poorly-defined margins
--Irregular, elevated, and sharply demarcated

By what other name is the astrocytic hamartoma of the retina known?
Retinal phakoma

What proportion of TS pts develop a phakoma?
1/3 to 1/2

Can they present bilaterally?
Yes

Are they pathognomonic for TS?
No
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is **astrocytic hamartoma**

By what other name is the astrocytic hamartoma of the retina known?
Retinal phakoma

What proportion of TS pts develop a phakoma?
1/3 to 1/2

Can they present bilaterally?
Yes

Can multiple phakomas be found in one eye?
Yes

Phakomas typically present with one of two appearances--what are they?
--Smooth, nearly flat, with poorly-defined margins
--Irregular, elevated, and sharply demarcated

The appearance of this lesion-type has been likened to that of a fruit, and a foodstuff. What are they?
--Fruit:
--Foodstuff:
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include *Lisch nodules*, *JXG nodules*, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: *Kinked ON*
--Rule of thumb for *Lisch nodule* prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: *Adenoma sebaceum* of face; ash-leaf spots and *shagreen patches* on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is *astrocytic hamartoma*

Phakomas typically present with one of two appearances—what are they?
--Smooth, nearly flat, with poorly-defined margins
--Irregular, elevated, and sharply demarcated

The appearance of this lesion-type has been likened to that of a fruit, and a foodstuff. What are they?
--Fruit: *‘Mulberry’*
--Foodstuff: *‘Tapioca’*

By what other name is the astrocytic hamartoma of the retina known?
Retinal phakoma

What proportion of TS pts develop a phakoma?
1/3 to 1/2

Can they present bilaterally?
Yes

Can multiple phakomas be found in one eye?
Yes
Study Guide: Phakomatoses

NF1
--- *Peripheral* NF
- Most lesions due to abnormal melanocytes or neuroglial cells
- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous Sclerosis
--- Classic triad is *epiloia*
- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
- CNS: Cortical tubers, other benign tumors
- Benign tumors of heart and kidney as well
- Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
--- Skin: trick question
NF1
---*Peripheral NF*
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
---Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
--Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
--Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--CNS: (tumor type) (tumor location) (if absent, is called not von Hippel-Lindau syndrome)
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
--Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--CNS: Hemangioblastomas, classically of cerebellum (if absent, is called *von Hippel disease*)
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
--Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--CNS: Hemangioblastomas, classically of cerebellum (if absent, is called *von Hippel disease*)
--Finding and finding in multiple organs, including malignancies; 2 different malignancies
Study Guide: Phakomatoses

NF1
-- *Peripheral NF*
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is *epiloia*
-- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
-- CNS: Cortical tubers, other benign tumors
-- Benign tumors of heart and kidney as well
-- Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
-- Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
-- CNS: Hemangioblastomas, classically of cerebellum (if absent, is called *von Hippel disease*)
-- Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca

 (short for Pheochromocytoma)
NF1
--**Peripheral NF**
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age **10 years**. Classic CT appearance: **Kinked ON**
--Rule of thumb for Lisch nodule prevalence: **Age in years x 10**

Tuberous sclerosis
--Classic triad is **epioloia**
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is **astrocytic hamartoma**; can appear smooth or lumpy (**mulberry**)

von Hippel-Lindau
--Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--CNS: Hemangioblastomas, classically of cerebellum (if absent, is called **von Hippel disease**)
--Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
--Retinal tumor is **something something**; has large **vessels**
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
--Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--CNS: Hemangioblastomas, classically of cerebellum (if absent, is called *von Hippel disease*)
--Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
--Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
Study Guide: Phakomatoses

NF1
- **Peripheral NF**
 - Most lesions due to abnormal melanocytes or neuroglial cells
 - Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
 - Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
 - Optic nerve glioma: Always symptomatic by age 10 years.
 - Classic CT appearance: Kinked ON
 - Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
- Classic triad is epiloia (but all 3 present in only ~30%)
- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
- CNS: Cortical tubers, other benign tumors
- Benign tumors of heart and kidney as well
- Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
- Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
- CNS: Hemangioblastomas, classically of cerebellum (if absent, is called *von Hippel disease*)
- Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
- Retinal tumor is *capillary hemangioblastoma*; has large feeder/drainage vessels

By what other name is this lesion known (it’s a subtle change)?

Capillary hemangioma (ie, no ‘-blasto-’)

Can the retinal lesions be present bilaterally?
- Yes, in about 1/2 of cases

Can there be multiple lesions in the same eye?
- Yes, these occur in about 1/3 of cases

Are all retinal hemangioblastomas associated with vHL?
- No, they can be sporadic
Study Guide: Phakomatoses

NF1
- By what other name is this lesion known (it’s a subtle change)?
 Capillary hemangioma (ie, no ‘-blasto-’)
- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
- Classic triad is epiloia (but all 3 present in only ~30%)
- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
- CNS: Cortical tubers, other benign tumors
- Benign tumors of heart and kidney as well
- Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)

von Hippel-Lindau
- Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
- CNS: Hemangioblastomas, classically of cerebellum (if absent, is called von Hippel disease)
- Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
- Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
- Management
 - Ocular: DFE q1 year
 - Systemic: Complete PE q1 year with renal u/s, 24o urine for VMA; MRI brain q3 years until age 40; after that, MRI brain q5 years

By what other name is this lesion known (it’s a subtle change)?
Capillary hemangioma (ie, no ‘-blasto-’)

Can the retinal lesions be present bilaterally?
Yes, in about 1/2 of cases

Can there be multiple lesions in the same eye?
Yes, these occur in about 1/3 of cases

Are all retinal hemangio(blasto)mas associated with vHL?
No, they can be sporadic
Study Guide: Phakomatoses

NF1
- By what other name is this lesion known (it's a subtle change)?
 - Capillary hemangioma (ie, no ‘-blasto-’)
- Can the retinal lesions be present bilaterally?

Tuberous sclerosis
- Classic triad is epiloia (but all 3 present in only ~30%)
- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
- CNS: Cortical tubers, other benign tumors
- Benign tumors of heart and kidney as well
- Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)

von Hippel-Lindau
- Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
- CNS: Hemangioblastomas, classically of cerebellum (if absent, is called von Hippel disease)
- Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
- Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels

By what other name is this lesion known (it’s a subtle change)?
Capillary hemangioma (ie, no ‘-blasto-’)

Can the retinal lesions be present bilaterally?

Yes, in about 1/2 of cases

Yes, these occur in about 1/3 of cases

No, they can be sporadic
Study Guide: Phakomatoses

NF1
--A neurocutaneous disorder
--NF --Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia (but all 3 present in only ~30%)
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)

von Hippel-Lindau
--Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--CNS: Hemangioblastomas, classically of cerebellum (if absent, is called von Hippel disease)
--Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
--Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels

By what other name is this lesion known (it’s a subtle change)?
Capillary hemangioma (ie, no ‘-blasto-’)

Can the retinal lesions be present bilaterally?
Yes, in about #/# of cases

von Hippel-Lindau
--Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)
Study Guide: Phakomatoses

NF1
- By what other name is this lesion known (it’s a subtle change)?
 - Capillary hemangioma (ie, no ‘-blasto-’)
- Can the retinal lesions be present bilaterally?
 - Yes, in about 1/2 of cases

Tuberous sclerosis
- Classic triad is epiloia (but all 3 present in only ~30%) Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
- CNS: Cortical tubers, other benign tumors
 - Benign tumors of heart and kidney as well
- Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)

von Hippel-Lindau
- Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
- CNS: Hemangioblastomas, classically of cerebellum (if absent, is called von Hippel disease)
- Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
- Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels

By what other name is this lesion known (it’s a subtle change)?
- Capillary hemangioma (ie, no ‘-blasto-’)

Can the retinal lesions be present bilaterally?
- Yes, in about 1/2 of cases
Study Guide: Phakomatoses

NF1
---NF1, also known as neurofibromatosis type 1, is a genetic disorder that affects multiple systems in the body. The hallmark of NF1 is the presence of café-au-lait spots, neurofibromas, and Lisch nodules.
---NF1 is inherited in an autosomal dominant pattern, meaning that if a parent has NF1, there is a 50% chance that each child will inherit the condition.
---Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion.
---Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON.
---Rule of thumb for Lisch nodule prevalence: Age in years x 10.

Tuberous Sclerosis
---Classic triad is epiloia (but all 3 present in only ~30%)
---Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
---CNS: Cortical tubers, other benign tumors—Benign tumors of heart and kidney as well—Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry).

von Hippel-Lindau
---Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
---CNS: Hemangioblastomas, classically of cerebellum (if absent, is called von Hippel disease)
---Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
---Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels.
---Management:
 - Ocular: DFE q1 year
 - Systemic: Complete PE q1 year with renal u/s, 24 o urine for VMA; MRI brain q3 years until age 40; after that, MRI brain q5 years.

By what other name is this lesion known (it’s a subtle change)?
Capillary hemangioma (ie, no ‘-blasto’)

Can the retinal lesions be present bilaterally?
Yes, in about 1/2 of cases

Can there be multiple lesions in the same eye?
Yes, these occur in about 1/3 of cases

Are all retinal hemangio(blasto)mas associated with vHL?
No, they can be sporadic.
Study Guide: Phakomatoses

NF1
- By what other name is this lesion known (it's a subtle change)?
 - Capillary hemangioma (ie, no ‘-blasto-’)

Can the retinal lesions be present bilaterally?
- Yes, in about 1/2 of cases

Can there be multiple lesions in the same eye?
- Yes, these occur in about # of cases

Tuberous Sclerosis
- Classic triad is epiloia (but all 3 present in only ~30%)
 - Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
 - CNS: Cortical tubers, other benign tumors
 - Benign tumors of heart and kidney as well
 - Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)

von Hippel-Lindau
- Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
 - CNS: Hemangioblastomas, classically of cerebellum (if absent, is called von Hippel disease)
 - Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
 - Retinal tumor is capillary hemangio(blastoma); has large feeder/drainage vessels

By what other name is this lesion known (it's a subtle change)?
- Capillary hemangioma (ie, no ‘-blasto-’)

Can the retinal lesions be present bilaterally?
- Yes, in about 1/2 of cases

Can there be multiple lesions in the same eye?
- Yes, these occur in about # of cases

von Hippel-Lindau
- Retinal tumor is capillary hemangio(blastoma); has large feeder/drainage vessels
Study Guide: Phakomatoses

NF1

By what other name is this lesion known (it's a subtle change)?
Capillary hemangioma (ie, no ‘-blasto-’)

Can the retinal lesions be present bilaterally?
Yes, in about 1/2 of cases

Can there be multiple lesions in the same eye?
Yes, these occur in about 1/3 of cases

Tuberous sclerosis

--Classic triad is epiloia (but all 3 present in only ~30%)
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors--Benign tumors of heart and kidney as well--Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)

von Hippel-Lindau

--Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--CNS: Hemangioblastomas, classically of cerebellum (if absent, is called von Hippel disease)
--Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
--Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
Study Guide: Phakomatoses

NF1

By what other name is this lesion known (it's a subtle change)?

Capillary hemangioma (ie, no ‘-blasto-’)

Can the retinal lesions be present bilaterally?
Yes, in about \(\frac{1}{2} \) of cases

Can there be multiple lesions in the same eye?
Yes, these occur in about \(\frac{1}{3} \) of cases

Are all retinal hemangio(blasto)mas associated with vHL?

No, they can be sporadic

Tuberous sclerosis

Classic triad is epiloia (but all 3 present in only ~30%)

Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso

CNS: Cortical tubers, other benign tumors

Benign tumors of heart and kidney as well

Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)

von Hippel-Lindau

Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)

CNS: Hemangioblastomas, classically of cerebellum (if absent, is called von Hippel disease)

Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca

Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
Study Guide: Phakomatoses

NF1
- **By what other name is this lesion known (it’s a subtle change)?**
 Capillary hemangioma (ie, no ‘-blasto-’)

- **Can the retinal lesions be present bilaterally?**
 Yes, in about 1/2 of cases

- **Can there be multiple lesions in the same eye?**
 Yes, these occur in about 1/3 of cases

Tuberous Sclerosis
- Classic triad is epiloia (but all 3 present in only ~30%)
- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
- CNS: Cortical tubers, other benign tumors
- Benign tumors of heart and kidney as well
- Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)

von Hippel-Lindau
- Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
- CNS: Hemangioblastomas, classically of cerebellum (if absent, is called von Hippel disease)
- Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
- Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels

--Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)
Study Guide: Phakomatoses

NF1
--*Peripheral NF*
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
--Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--CNS: Hemangioblastomas, classically of cerebellum (if absent, is called *von Hippel disease*)
--Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
--Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
--Tumor leaks \rightarrow [abb.] \rightarrow [abb.] \rightarrow decreased VA; treat with [______] or [______]
Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
--Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--CNS: Hemangioblastomas, classically of cerebellum (if absent, is called *von Hippel disease*)
--Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
--Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
--Tumor leaks → SRF → ERD → decreased VA; treat with laser or cryo

(*) subretinal fluid *) exudative retinal detachment*)
Study Guide: Phakomatoses

NF1
--- *Peripheral* NF
- Most lesions due to abnormal melanocytes or neuroglial cells
- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
- Optic nerve glioma: Always symptomatic by age **10 years**. Classic CT appearance: *Kinked ON*
- Rule of thumb for Lisch nodule prevalence: *Age in years x 10*

Tuberous sclerosis
--- Classic triad is *epiloia*
- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
- CNS: Cortical tubers, other benign tumors
- Benign tumors of heart and kidney as well
- Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
--- Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--- CNS: Hemangioblastomas, classically of cerebellum (if absent, is called *von Hippel disease*)
--- Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
--- Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
--- Tumor leaks → SRF → ERD → decreased VA; treat with laser or cryo
--- Management
- *Ocular*: DFE

Study Guide: Phakomatoses

NF1
--*Peripheral* NF
--Most lesions due to abnormal *melanocytes* or *neuroglial* cells
--Glucoma associated with ipsilateral *upper-lid plexiform fibroma* and/or *iris ectropion*
--Iris lesions include *Lisch nodules*, *JXG nodules*, and congenital *ectropion*
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: *Kinked ON*
--Rule of thumb for Lisch nodule prevalence: *Age in years x 10*

Tuberous sclerosis
--Classic triad is *epiloia*
--Skin: *Adenoma sebaceum* of face; *ash-leaf spots* and *shagreen patches* on torso
--CNS: *Cortical tubers*, other benign tumors
--Benign tumors of *heart* and *kidney* as well
--Retinal tumor is *astrocytic hamartoma*; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
--Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--CNS: *Hemangioblastomas*, classically of *cerebellum* (if absent, is called *von Hippel disease*)
--Cysts and tumors in multiple organs, including malignancies: *Pheo*, *renal-cell Ca*
--Retinal tumor is *capillary hemangioblastoma*; has large feeder/drainage vessels
--Tumor leaks \rightarrow *SRF* \rightarrow *ERD* \rightarrow decreased VA; treat with *laser* or *cryo*
--Management
 --*Ocular*: DFE q1 year
NF1

--- *Peripheral* NF
--- Most lesions due to abnormal melanocytes or neuroglial cells
--- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--- Optic nerve glioma: Always symptomatic by age **10 years**. Classic CT appearance: **Kinked ON**
--- Rule of thumb for Lisch nodule prevalence: **Age in years x 10**

Tuberous sclerosis

--- Classic triad is *epiloia*
--- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--- CNS: Cortical tubers, other benign tumors
--- Benign tumors of heart and kidney as well
--- Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (**mulberry**)

von Hippel-Lindau

--- Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--- CNS: Hemangioblastomas, classically of cerebellum (if absent, is called **von Hippel disease**)
--- Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
--- Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
--- Tumor leaks \(\rightarrow \) SRF \(\rightarrow \) ERD \(\rightarrow \) decreased VA; treat with laser or cryo
--- Management
 --- *Ocular*: DFE q1 year
 --- *Systemic*: Complete PE q1 year with test 1, test 2; MRI brain until age yrs; after that, MRI brain frequency until age
Study Guide: Phakomatoses

NF1
-- *Peripheral* NF
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
-- Classic triad is epiloia
-- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
-- CNS: Cortical tubers, other benign tumors
-- Benign tumors of heart and kidney as well
-- Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
-- Skin: None! Despite this, is still considered a phakomatosi (and a classic one to boot)
-- CNS: Hemangioblastomas, classically of cerebellum (if absent, is called *von Hippel disease*)
-- Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
-- Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
-- Tumor leaks → SRF → ERD → decreased VA; treat with laser or cryo
-- Management
 -- Ocular: DFE q1 year
 -- Systemic: Complete PE q1 year with renal u/s, 24° urine for VMA; MRI brain q3 years until age 40; after that, MRI brain q5 years

(Vanillylmandelic acid)
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors
--Benign tumors of heart and kidney as well
--Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)

von Hippel-Lindau
--Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--CNS: Hemangioblastomas, classically of cerebellum (if absent, is called von Hippel disease)
--Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
--Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
--Tumor leaks → SRF → ERD → decreased VA; treat with laser or cryo
--Management
 --Ocular: DFE q1 year
 --Systemic: Complete PE q1 year with renal u/s, 24⁰ urine for VMA; MRI brain q3 years until age 40; after that, MRI brain q5 years

Is vH-L a potentially fatal condition?
Yes
Two components are most likely to result in death. What are they?
The cerebellar hemangioma and the renal carcinoma
Study Guide: Phakomatoses

NF1

Peripheral NF
- Most lesions due to abnormal melanocytes or neuroglial cells
- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis

Classic triad is epiloia
- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
- CNS: Cortical tubers, other benign tumors
- Benign tumors of heart and kidney as well
- Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)

von Hippel-Lindau

Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
- CNS: Hemangioblastomas, classically of cerebellum (if absent, is called *von Hippel disease*)
- Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
- Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
- Tumor leaks \(\rightarrow\) SRF \(\rightarrow\) ERD \(\rightarrow\) decreased VA; treat with laser or cryo
- Management
 - *Ocular:* DFE q1 year
 - *Systemic:* Complete PE q1year with renal u/s, 24\(^o\) urine for VMA; MRI brain q3 years until age 40; after that, MRI brain q5 years

Is vH-L a potentially fatal condition?

Yes
Study Guide: Phakomatoses

NF1
--- *Peripheral NF*
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--- Classic triad is *epiloia*
--- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--- CNS: Cortical tubers, other benign tumors
--- Benign tumors of heart and kidney as well
--- Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)

von Hippel-Lindau
--- Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--- CNS: Hemangioblastomas, classically of cerebellum (if absent, is called *von Hippel disease*)
--- Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
--- Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
--- Tumor leaks → SRF → ERD → decreased VA; treat with laser or cryo
--- Management
 -- Ocular: DFE q1 year
 -- Systemic: Complete PE q1 year with renal u/s, 24° urine for VMA; MRI brain q3 years until age 40; after that, MRI brain q5 years

Is vH-L a potentially fatal condition?
Yes

Two components are most likely to result in death. What are they?

The cerebellar hemangioma and the renal carcinoma
Study Guide: Phakomatoses

NF1
--Peripheral NF
--Most lesions due to abnormal melanocytes or neuroglial cells
--Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
--Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
--Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
--Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
--Classic triad is epiloia
--Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
--CNS: Cortical tubers, other benign tumors--Benign tumors of heart and kidney as well
--Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (mulberry)

von Hippel-Lindau
--Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
--CNS: Hemangioblastomas, classically of the cerebellum (if absent, is called von Hippel disease)
--Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
--Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
--Tumor leaks → SRF → ERD → decreased VA; treat with laser or cryo
--Management
 --Ocular: DFE q1 year
 --Systemic: Complete PE q1 year with renal u/s, 24° urine for VMA; MRI brain q3 years until age 40; after that, MRI brain q5 years

Is vH-L a potentially fatal condition?
Yes

Two components are most likely to result in death. What are they?
The cerebellar hemangioma and the renal carcinoma
Study Guide: Phakomatoses

NF1
- *Peripheral NF*
 - Most lesions due to abnormal melanocytes or neuroglial cells
 - Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
 - Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
 - Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
 - Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis
- Classic triad is *epiloia*
 - Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
 - CNS: Cortical tubers, other benign tumors
 - Benign tumors of heart and kidney as well
 - Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau
- Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
- CNS: Hemangioblastomas, classically of *cerebellum* (if absent, is called von Hippel disease)
- Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
- Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
- Tumor leaks \rightarrow SRF \rightarrow ERD \rightarrow decreased VA; treat with laser or cryo
- Management
 - Ocular: DFE q1 year
 - Systemic: Complete PE q1 year with renal u/s, 24° urine for VMA; MRI brain q3 years until age 40; after that, MRI brain q5 years

Is vH-L a potentially fatal condition?

Yes

Two components are most likely to result in death. What are they?

The *cerebellar hemangioma* and the renal carcinoma.

The *cerebellar hemangioma*??!! I thought that was a benign lesion. How could it be fatal?

It is a benign lesion. However, it is notoriously 'leaky,' and the accumulating exudate can lead to compression of vital intracranial structures.
NF1

-- *Peripheral NF*
-- Most lesions due to abnormal melanocytes or neuroglial cells
-- Glaucoma associated with ipsilateral upper-lid plexiform fibroma and/or iris ectropion
-- Iris lesions include Lisch nodules, JXG nodules, and congenital ectropion
-- Optic nerve glioma: Always symptomatic by age 10 years. Classic CT appearance: Kinked ON
-- Rule of thumb for Lisch nodule prevalence: Age in years x 10

Tuberous sclerosis

-- Classic triad is *epiloia*
-- Skin: Adenoma sebaceum of face; ash-leaf spots and shagreen patches on torso
-- CNS: Cortical tubers, other benign tumors
-- Benign tumors of heart and kidney as well
-- Retinal tumor is astrocytic hamartoma; can appear smooth or lumpy (*mulberry*)

von Hippel-Lindau

-- Skin: None! Despite this, is still considered a phakomatosis (and a classic one to boot)
-- CNS: Hemangioblastomas, classically of cerebellum (if absent, is called *von Hippel disease*)
-- Cysts and tumors in multiple organs, including malignancies: Pheo, renal-cell Ca
-- Retinal tumor is capillary hemangioblastoma; has large feeder/drainage vessels
-- Tumor leaks → SRF → ERD → decreased VA; treat with laser or cryo
-- Management
 -- *Ocular*: DFE q1 year
 -- *Systemic*: Complete PE q1 year with renal u/s, 24° urine for VMA; MRI brain q3 years until age 40; after that, MRI brain q5 years

Is vH-L a potentially fatal condition?

-- Yes

-- Two components are most likely to result in death. What are they?

The cerebellar hemangioma and the renal carcinoma

The cerebellar hemangioma??!! I thought that was a benign lesion. How could it be fatal?

-- It is a benign lesion. However, it is notoriously ‘leaky,’ and the accumulating exudate can lead to compression of vital intracranial structures.

How could the renal carcinoma be fatal?

-- The tumor leaks → SRF → ERD → decreased VA; treat with laser or cryo.
Study Guide: Phakomatoses

NF2

Which is more common, NF1 or NF2?

Study Guide: Phakomatoses

NF2

Which is more common, NF1 or NF2?

NF1 is about 10x more common
Study Guide: Phakomatoses

NF2

NF

- **Peripheral vs Central**

Central NF

- Classic finding: bilateral acoustic neuromas

- **Eye findings:**
 - **Common:** PSC/cortical cataracts
 - **Rare:** combined hamartoma of retina and RPE
 - **Rarer:** Lisch nodules

192
NF2
--Central NF

---Central NF

Common:
PSC/cortical cataracts;

Rare:
combined hamartoma of retina and RPE;

Rarer:
Lisch nodules
NF2

--*Central* NF

--Classic finding: bilateral not eye
Study Guide: Phakomatoses

NF2

--- *Central* NF

--- Classic finding: bilateral *acoustic neuromas*
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral **acoustic neuromas**

What sort of tumor is the acoustic neuroma of NF2; ie, what specific cell type is involved?
NF2
--Central NF
--Classic finding: bilateral **acoustic neuromas**

What sort of tumor is the acoustic neuroma of NF2; ie, what specific cell type is involved?
A schwannoma
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas

What are the three most common symptoms of acoustic neuroma?

#1: Reduced hearing
#2: Tinnitus
#3: Balance issues
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral **acoustic neuromas**

What are the three most common symptoms of acoustic neuroma?
1. Reduced hearing
2. Tinnitus
3. Balance issues
Study Guide: Phakomatoses

NF2

--- Central NF

-- Classic finding: bilateral **acoustic neuromas**

-- Eye findings: *Common*: anterior segment
Study Guide: Phakomatoses

NF2

-- *Central* NF
-- Classic finding: bilateral *acoustic neuromas*
-- Eye findings: *Common:* PSC/cortical cataracts
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts

Are the cataracts visually significant?

Yes
Do they manifest prior to or after the acoustic neuromas?
Usually prior
At what age do they become clinically significant?
Usually in the 30s
Are they unilateral, or bilateral?
Both presentations are common
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: **PSC/cortical cataracts**

Are the cataracts visually significant?
Yes
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts

Are the cataracts visually significant?
Yes

Do they manifest prior to or after the acoustic neuromas?
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts

Are the cataracts visually significant?
Yes

Do they manifest prior to or after the acoustic neuromas?
Usually prior
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts

Are the cataracts visually significant?
Yes

Do they manifest prior to or after the acoustic neuromas?
Usually prior

At what age do they become clinically significant?
NF2

--Central NF

--Classic finding: bilateral acoustic neuromas

--Eye findings: Common: **PSC/cortical cataracts**

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are the cataracts visually significant?</td>
<td>Yes</td>
</tr>
<tr>
<td>Do they manifest prior to or after the acoustic neuromas?</td>
<td>Usually prior</td>
</tr>
<tr>
<td>At what age do they become clinically significant?</td>
<td>Usually in the 30s</td>
</tr>
</tbody>
</table>
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: **PSC/cortical cataracts**

Are the cataracts visually significant?
Yes

Do they manifest prior to or after the acoustic neuromas?
Usually prior

At what age do they become clinically significant?
Usually in the 30s

Pro tip: If you see a pt <30 years old with significant PSCs and/or cortical cataracts, consider whether s/he might have NF2!
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: **PSC/cortical cataracts**

Are the cataracts visually significant?
Yes

Do they manifest prior to or after the acoustic neuromas?
Usually prior

At what age do they become clinically significant?
Usually in the 30s

Are they unilateral, or bilateral?
NF2

--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: **PSC/cortical cataracts**

Are the cataracts visually significant?
Yes

Do they manifest prior to or after the acoustic neuromas?
Usually prior

At what age do they become clinically significant?
Usually in the 30s

Are they unilateral, or bilateral?
Both presentations are common
NF2

--- *Central* NF

-- Classic finding: bilateral *acoustic neuromas*

-- Eye findings:
 - *Common*: PSC/cortical cataracts;
 - *Rare*: posterior segment
Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral acoustic neuromas
-- Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE
NF2

--Central NF

--Classic finding: bilateral acoustic neuromas

--Eye findings: Common: PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; Rarer:
NF2

---*Central* NF
---Classic finding: bilateral acoustic neuromas
---Eye findings: *Common:* PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules
NF2

-- *Central* NF

-- Classic finding: bilateral *acoustic neuromas*

-- Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

One key difference between NF1 and NF2 is this:

In NF1, both melanocytic and neuroglial lesions are common, whereas…
Study Guide: Phakomatoses

NF2
--*Central* NF
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: *Common:* PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

Melanocytic lesions
--Café au lait spots
--Axillary/inguinal freckles
--Lisch nodules
--Choroidal lesions

One key difference between NF1 and NF2 is this:
In NF1, both melanocytic and neuroglial lesions are common, whereas…
In NF2, neuroglial lesions predominate.
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Melanocytic lesions
--Café au lait spots
--Axillary/inguinal freckles
--Lisch nodules
--Choroidal lesions

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

One key difference between NF1 and NF2 is this:
In NF1, both melanocytic and neuroglial lesions are common, whereas…
In NF2, neuroglial lesions predominate.

Do melanocytic lesions occur in NF2 at all?
Study Guide: Phakomatoses

NF2

--Central NF

--Classic finding: bilateral acoustic neuromas

--Eye findings:

Common: PSC/cortical cataracts;

Rare: Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Neuroglial lesions

--Nodular neurofibromas

--Plexiform neurofibromas

--Optic glioma

--Prominent corneal nerves

Melanocytic lesions

--Café au lait spots

--Axillary/inguinal freckles

--Lisch nodules

--Choroidal lesions

One key difference between NF1 and NF2 is this:

In NF1, both melanocytic and neuroglial lesions are common, whereas...

In NF2, neuroglial lesions **predominate.**

Do melanocytic lesions occur in NF2 at all?

Yes. The occasional café au lait spot and/or Lisch nodule shows up now and then
Study Guide: Phakomatoses

NF2

-- Central NF
-- Classic finding: bilateral **acoustic neuromas**
-- Eye findings: Common: **PSC/cortical cataracts**; Rare: **Combined hamartoma of retina and RPE**; Rarer: **Lisch nodules**

Neuroglial lesions

-- Nodular neurofibromas?
-- Plexiform neurofibromas?
-- Optic glioma?
-- Prominent corneal nerves?

Do NF2 pts get peripheral-nerve tumors like NF1 pts?
Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral acoustic neuromas
-- Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Do NF2 pts get peripheral-nerve tumors like NF1 pts? Yes, but at much lower rates

Neuroglial lesions
-- Nodular neurofibromas
-- Plexiform neurofibromas
-- Optic glioma
-- Prominent corneal nerves
Study Guide: Phakomatoses

NF2

--- *Central* NF
--- Classic finding: bilateral **acoustic neuromas**
--- Eye findings: *Common:* PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

--- Do NF2 pts get peripheral-nerve tumors like NF1 pts?
 Yes, but at much lower rates.

--- OK then, other than acoustic neuromas, what sorts of neuroglial lesions occur in NF2?

--- Neuroglial lesions
 -- Nodular neurofibromas
 -- Plexiform neurofibromas
 -- Optic glioma
 -- Prominent corneal nerves
 -- ?
 -- ?
 -- ?
Study Guide: Phakomatoses

NF2
--*Central* NF
--Classic finding: bilateral *acoustic neuromas*
--Eye findings: *Common*: PSC/cortical cataracts; *Rare*: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

Do NF2 pts get *peripheral-nerve tumors* like NF1 pts?
Yes, but at much lower rates

OK then, other than acoustic neuromas,
what sorts of *neuroglial lesions* occur in NF2?
CNS neuroglial lesions; eg, spinal-cord schwannomas, intracranial meningiomas, and ependymomas

Schwannomas of the SC
--Meningiomas (intracranial)
--Ependymomas
Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

Do NF2 pts get peripheral-nerve tumors like NF1 pts?
Yes, but at much lower rates.

OK then, other than acoustic neuromas, what sorts of neuroglial lesions occur in NF2?
-CNS neuroglial lesions
--Schwannomas of the SC
--Meningiomas (intracranial)
--Ependymomas

This propensity for manifesting mainly as CNS tumors is why NF2 is referred to as ‘central’ NF like NF1 pts?
Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

NEUROGLIAL LESIONS
--Schwannomas of the SC
--Meningiomas (intracranial)
--Ependymomas

Do NF2 pts get peripheral-nerve tumors like NF1 pts?
Yes, but at much lower rates.

OK then, other than acoustic neuromas, what sorts of neuroglial lesions occur in NF2?
CNS neuroglial lesions; eg, spinal-cord schwannomas, intracranial meningiomas, and ependymomas

NF2 is also known as MISME syndrome. MISME is an acronym. What does it stand for?
--M
--I
--S
--M
--E
Study Guide: Phakomatoses

NF2
--*Central* NF
--Classic finding: bilateral *acoustic neuromas*
--Eye findings: *Common*: PSC/cortical cataracts; *Rare*: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Do NF2 pts get peripheral-nerve tumors like NF1 pts?
Yes, but at much lower rates

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

O.K. then, other than acoustic neuromas, what sorts of neuroglial lesions occur in NF2?
CNS neuroglial lesions; eg, spinal-cord schwannomas, intracranial meningiomas, and ependymomas

--Schwannomas of the SC
--Meningiomas (intracranial)
--Ependymomas

NF2 is also known as MISME syndrome. *MISME is an acronym.*

What does it stand for?
--Multiple
--Inherited
--S
--M
--E
Study Guide: Phakomatoses

NF2

- **Central NF**
- Classic finding: bilateral acoustic neuromas
- Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Do NF2 pts get peripheral-nerve tumors like NF1 pts?

Yes, but at much lower rates

OK then, other than acoustic neuromas, what sorts of neuroglial lesions occur in NF2?

CNS neuroglial lesions; eg, spinal-cord schwannomas, intracranial meningiomas, and ependymomas

Neuroglial lesions

- Nodular neurofibromas
- Plexiform neurofibromas
- Optic glioma
- Prominent corneal nerves

- Schwannomas of the SC
- Meningiomas (intracranial)
- Ependymomas

NF2 is also known as MISME syndrome. MISME is an acronym. What does it stand for?

- Multiple
- Inherited
- Schwannomas
- M
- E
Study Guide: Phakomatoses

NF2
--- Central NF
-- Classic finding: bilateral *acoustic neuromas*
-- Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

--- Do NF2 pts get peripheral-nerve tumors like NF1 pts?
Yes, but at much lower rates.

--- OK then, other than acoustic neuromas, what sorts of neuroglial lesions occur in NF2?
CNS neuroglial lesions; eg, spinal-cord schwannomas, intracranial meningiomas, and ependymomas

Neuroglial lesions
-- Nodular neurofibromas
-- Plexiform neurofibromas
-- Optic glioma
-- Prominent corneal nerves

--- Schwannomas of the SC
--- Meningiomas (intracranial)
--- Ependymomas

--- NF2 is also known as MISME syndrome. MISME is an acronym. *What does it stand for?*
-- Multiple
-- Inherited
-- Schwannomas
-- Meningiomas, and
-- E
Study Guide: Phakomatoses

NF2
--*Central* NF
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: *Common*: PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

OK then, other than acoustic neuromas, what sorts of neuroglial lesions occur in NF2?
CNS neuroglial lesions; eg, spinal-cord schwannomas, intracranial meningiomas, and ependymomas

Do NF2 pts get peripheral-nerve tumors like NF1 pts?
Yes, but at much lower rates.

NF2 is also known as MISME syndrome. MISME is an acronym.
What does it stand for?
--*Multiple*
--*Inherited*
--*Schwannomas*
--*Meningiomas*, and
--*Ependymomas*
Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral acoustic neuromas
-- Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Do NF2 pts get peripheral-nerve tumors like NF1 pts?
Yes, but at much lower rates.

OK then, other than acoustic neuromas, what sorts of neuroglial lesions occur in NF2?
CNS neuroglial lesions; eg, spinal-cord schwannomas, intracranial meningiomas, and ependymomas

Neuroglial lesions
-- Nodular neurofibromas
-- Plexiform neurofibromas
-- Optic glioma
-- Prominent corneal nerves

-- **Schwannomas** of the SC
-- **Meningiomas** (intracranial)
-- **Ependymomas**

What is an ependymoma?

NF2 is also known as MISME syndrome. MISME is an acronym.

-- *M*ultiple
-- *I*nherited
-- *S*chwannomas
-- *M*eningiomas, and
-- *E*pendymomas
Study Guide: Phakomatoses

NF2
--*Central* NF
--Classic finding: bilateral *acoustic neuromas*
--Eye findings: *Common*: PSC/cortical cataracts; *Rare*: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Do NF2 pts get *peripheral-nerve tumors* like NF1 pts? Yes, but at much lower rates.

OK then, other than acoustic neuromas, what sorts of *neuroglial lesions* occur in NF2?
CNS neuroglial lesions; eg, spinal-cord schwannomas, intracranial meningiomas, and ependymomas

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

--Schwannomas of the SC
--Meningiomas (intracranial)
--Ependymomas

What is an ependymoma?
A glioma consisting of ependymal cells
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Do NF2 pts get peripheral-nerve tumors like NF1 pts?
Yes, but at much lower rates.

OK then, other than acoustic neuromas, what sorts of neuroglial lesions occur in NF2?
CNS neuroglial lesions; eg, spinal-cord schwannomas, intracranial meningiomas, and ependymomas

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves
--Schwannomas of the SC
--Meningiomas (intracranial)
--Ependymomas

What is an ependymoma?
A glioma consisting of ependymal cells

OK smart guy, what are ependymal cells?
Study Guide: Phakomatoses

NF2
- **Central** NF
- Classic finding: bilateral *acoustic neuromas*
- Eye findings: *Common*: PSC/cortical cataracts; *Rare*: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Neuroglial lesions
- Nodular neurofibromas
- Plexiform neurofibromas
- Optic glioma
- Prominent corneal nerves

Do NF2 pts get peripheral-nerve tumors like NF1 pts?
Yes, but at much lower rates.

OK then, other than acoustic neuromas, what sorts of neuroglial lesions occur in NF2?
CNS neuroglial lesions; eg, spinal-cord schwannomas, intracranial meningiomas, and ependymomas

What is an ependymoma?
A glioma consisting of ependymal cells

OK smart guy, what are ependymal cells?
The epithelial-like glial cells that form the inner lining of the cerebral ventricles and the central canal of the spinal cord

Neuroglial lesions
- Schwannomas of the SC
- Meningiomas (intracranial)
- Ependymomas

NF2 is also known as **MISME syndrome**. MISME is an acronym.

- **M**ultiple
- **I**nherited
- **S**chwannomas
- **M**eningiomas, and
- **E**pendymomas
Study Guide: Phakomatoses

NF2
--*Central* NF
--Classic finding: bilateral *acoustic neuromas*
--Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

--Schwannomas of the SC
--Meningiomas (intracranial)
--Ependymomas

Do NF2 pts get peripheral-nerve tumors like NF1 pts?
Yes, but at much lower rates.

OK then, other than acoustic neuromas, what sorts of neuroglial lesions occur in NF2?
CNS neuroglial lesions; eg, spinal-cord schwannomas, intracranial meningiomas, and ependymomas

Do the neuroglial lesions in NF2 carry a risk of malignant transformation?
No. Unlike in NF1, malignant transformation of benign lesions in NF2 is almost unheard of.

The epithelial-like glial cells that form the inner lining of the cerebral ventricles and the central canal of the spinal cord
--Ependymomas

PSC = posterior subcapsular cataract
RPE = retinal pigmented epithelium
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: **Common**: PSC/cortical cataracts; **Rare**: Combined hamartoma of retina and RPE; **Rarer**: Lisch nodules

Neuroglial lesions
--Nodular neurofibromas
--Plexiform neurofibromas
--Optic glioma
--Prominent corneal nerves

Do NF2 pts get peripheral-nerve tumors like NF1 pts?
Yes, but at much lower rates.

OK then, other than acoustic neuromas, what sorts of neuroglial lesions occur in NF2?
CNS neuroglial lesions; eg, spinal-cord schwannomas, intracranial meningiomas, and ependymomas

Do the neuroglial lesions in NF2 carry a risk of malignant transformation?
No. Unlike in NF1, malignant transformation of benign lesions in NF2 is almost unheard of.

Schwannomas of the SC
--Meningiomas (intracranial)
--Ependymomas

MISME syndrome
--M (Multiple)
--I (Inherited)
--S (Schwannomas)
--M (Meningiomas)
--E (Ependymomas)

Ependymoma
A glioma consisting of ependymal cells

Ependymal cells
The epithelial-like glial cells that form the inner lining of the cerebral ventricles and the central canal of the spinal cord.

234
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

What is a hamartoma?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

What is a hamartoma?
A tumor composed of histologically normal cells found in their clinical state
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

What is a hamartoma?
A tumor composed of histologically abnormal cells found in their normal location
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas

What is the name of the reverse clinical entity, i.e., one with normal cells found in an abnormal location?

What is a hamartoma?
A tumor composed of histologically normal cells found in their normal location

Rarer:
Combined hamartoma of retina and RPE
Lisch nodules
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas

What is the name of the reverse clinical entity, ie, one with normal cells found in an abnormal location?
A choristoma

What is a hamartoma?
A tumor composed of histologically normal cells found in their normal location

What is a choristoma?
A tumor composed of histologically abnormal cells found in an abnormal location
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

That a lesion is a hamartoma (or choristoma) indicates what about its onset?

A tumor composed of histologically abnormal cells found in their normal location

That a lesion is a hamartoma (or choristoma) indicates what about its status vis a vis malignancy?

That it is benign
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

That a lesion is a hamartoma (or choristoma) indicates what about its onset?
That it is congenital
NF2
-- Central NF
-- Classic finding: bilateral acoustic neuromas
-- Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

That a lesion is a hamartoma (or choristoma) indicates what about its onset?
That it is congenital

That a lesion is a hamartoma (or choristoma) indicates what about its status vis a vis malignancy?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

That a lesion is a hamartoma (or choristoma) indicates what about its onset?
That it is congenital

That a lesion is a hamartoma (or choristoma) indicates what about its status vis a vis malignancy?
That it is benign
What is a hamartoma?
A tumor composed of histologically abnormal cells found in their normal location

So, what combination of hamartomatous cells of the retina and RPE are involved in a combined hamartoma of the retina and RPE?
What is a hamartoma?
A tumor composed of histologically abnormal cells found in their normal location

So, what combination of hamartomatous cells of the retina and RPE are involved in a combined hamartoma of the retina and RPE?
RPE cells (duh) and retinal glial cells
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
Rare: **Combined hamartoma of retina and RPE**; Rarer: Lisch nodules

What is a hamartoma?
A tumor composed of histologically abnormal cells found in their normal location

So, what combination of hamartomatous cells of the retina and RPE are involved in a combined hamartoma of the retina and RPE?
RPE cells (duh) and retinal glial cells

How does it present clinically?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

What is a hamartoma?
A tumor composed of histologically abnormal cells found in their normal location

So, what combination of hamartomatous cells of the retina and RPE are involved in a combined hamartoma of the retina and RPE?
RPE cells (duh) and retinal glial cells

How does it present clinically?
As a variably pigmented, slightly elevated retinal mass of the retina...
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

What is a hamartoma?
A tumor composed of histologically abnormal cells found in their normal location

So, what combination of hamartomatous cells of the retina and RPE are involved in a combined hamartoma of the retina and RPE?
RPE cells (duh) and retinal glial cells

How does it present clinically?
As a variably pigmented, slightly elevated retinal mass of the peripapillary retina
What is a hamartoma?
A tumor composed of histologically abnormal cells found in their normal location

So, what combination of hamartomatous cells of the retina and RPE are involved in a combined hamartoma of the retina and RPE?
RPE cells (duh) and retinal glial cells

How does it present clinically?
As a variably pigmented, slightly elevated retinal mass of the peripapillary retina

With what more sinister dz entity is it often confused?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
 Rare: **Combined hamartoma of retina and RPE**; Rarer: Lisch nodules

What is a hamartoma?
A tumor composed of histologically abnormal cells found in their normal location

So, what combination of hamartomatous cells of the retina and RPE are involved in a combined hamartoma of the retina and RPE?
RPE cells (duh) and retinal glial cells

How does it present clinically?
As a variably pigmented, slightly elevated retinal mass of the peripapillary retina

With what more sinister dz entity is it often confused?
Choroidal melanoma--eyes have been enucleated because of this misdiagnosis
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

What is a hamartoma?
A tumor composed of histologically abnormal cells found in their normal location

So, what combination of hamartomatous cells of the retina and RPE are involved in a combined hamartoma of the retina and RPE?
RPE cells (duh) and retinal glial cells

How does it present clinically?
As a variably pigmented, slightly elevated retinal mass of the peripapillary retina

With what more sinister dz entity is it often confused?
Choroidal melanoma

How can one avoid making such a disastrous mistake?
By taking pains to carefully determine the anatomic location of the tumor in question—choroidal melanomas originate behind Bruch's membrane, whereas combined hamartomas of the retina and RPE are located wholly in front of it.
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

What is a hamartoma?
A tumor composed of histologically abnormal cells found in their normal location

So, *what combination of hamartomatous cells of the retina and RPE are involved in a combined hamartoma of the retina and RPE?*
RPE cells (duh) and retinal glial cells

How does it present clinically?
As a variably pigmented, slightly elevated retinal mass of the peripapillary retina

With what more sinister dz entity is it often confused?
Choroidal melanoma

How can one avoid making such a disastrous mistake?
By taking pains to carefully determine the anatomic location of the tumor in question--choroidal melanomas originate behind Bruch’s membrane, whereas combined hamartomas of the retina and RPE are located wholly in front of it
NF2
--Central NF
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Acoustic neuroma

Another eye finding associated with acoustic neuroma is corneal decompensation. By what two mechanisms might this occur?

Corneal decompensation
NF2
--Central NF
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: Common: PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Acoustic neuroma

Bag CN V1

Another eye finding associated with acoustic neuroma is corneal decompensation. By what two mechanisms might this occur?

Bag CN VII

Corneal decompensation
NF2
--Central NF
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Acoustic neuroma

- Bag CN V1
 - Decreased corneal sensation
- Bag CN VII
 - Lagophthalmos

Another eye finding associated with acoustic neuroma is corneal decompensation. By what two mechanisms might this occur?
Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral *acoustic neuromas*
-- Eye findings: *Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules*

Sturge-Weber
-- Classic stigmata is the *port-wine stain*
-- Ipsilateral meningeal AVM \rightarrow seizures
-- Classic *tomato catsup fundus appearance* is due to a diffuse choroidal hemangioma
-- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
-- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature
NF2

--- *Central* NF

--- Classic finding: bilateral **acoustic neuromas**

--- Eye findings: *Common:* PSC/cortical cataracts;

 Rare: Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber

--- Classic stigmata is the **port-wine stain**
NF2
-- *Central* NF
-- Classic finding: bilateral acoustic neuromas
-- Eye findings: *Common*: PSC/cortical cataracts; *Occasional*: Lisch nodules; *Rare*: Combined hamartoma of retina and RPE

Sturge-Weber
-- Classic stigmata is the *port-wine stain*

In one word, what sort of lesion is the port-wine stain?

An angioma

By what ‘official’ name is it known?

Nevus flammeus

When does it present?

At birth

What is the typical pattern of distribution?

It comports to the distribution of one or more divisions of CN5

Does it always present in this manner?

No. Some cases will cross the midline of the face

All infants with SWS have a port-wine stain. Do all infants with a port-wine stain have SWS?

No

If the port-wine stain involves the eyelid, what adjacent structure is commonly affected as well?

The conjunctiva. It will have increased vascularity and hyperemia, producing a false impression of ‘pink eye’
In one word, what sort of lesion is the port-wine stain? An angioma

In one word, what sort of lesion is the port-wine stain? An angioma
Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral acoustic neuromas
-- Eye findings: *Common:* PSC/cortical cataracts
 Occasional: Lisch nodules
 Rare: Combined hamartoma of retina and RPE

Sturge-Weber
-- Classic stigmata is the *port-wine stain*

In one word, what sort of lesion is the port-wine stain?
An angioma

By what ‘official’ name is it known?
Nevus flammeus
NF2

-- *Central* NF

-- Classic finding: bilateral acoustic neuromas

-- Eye findings: *Common*: PSC/cortical cataracts; *Occasional*: Lisch nodules; *Rare*: Combined hamartoma of retina and RPE

Sturge-Weber

-- Classic stigmata is the *port-wine stain*

In one word, what sort of lesion is the port-wine stain?
An angioma

By what ‘official’ name is it known?
Nevus flammeus
Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral acoustic neuromas
-- Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE

Sturge-Weber
-- Classic stigmata is the **port-wine stain**

--- In one word, what sort of lesion is the port-wine stain? An angioma
--- By what ‘official’ name is it known? Nevus flammeus
--- When does it present? At birth
--- What is the typical pattern of distribution? It comports to the distribution of one or more divisions of CN5
--- Does it always present in this manner? No. Some cases will cross the midline of the face
--- All infants with SWS have a port-wine stain. Do all infants with a port-wine stain have SWS? No
--- If the port-wine stain involves the eyelid, what adjacent structure is commonly affected as well? The conjunctiva. It will have increased vascularity and hyperemia, producing a false impression of ‘pink eye’
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE

Sturge-Weber
--Classic stigmata is the port-wine stain
--Classic seugenome is the port-wine stain is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

In one word, what sort of lesion is the port-wine stain?
An angioma

By what ‘official’ name is it known?
Nevus flammeus

When does it present?
At birth

Does it always present in this manner?
No. Some cases will cross the midline of the face

All infants with SWS have a port-wine stain. Do all infants with a port-wine stain have SWS?
No

If the port-wine stain involves the eyelid, what adjacent structure is commonly affected as well?
The conjunctiva. It will have increased vascularity and hyperemia, producing a false impression of ‘pink eye’
NF2
- **Central NF**
- Classic finding: bilateral acoustic neuromas
- Eye findings: Common: PSC/cortical cataracts; Occasional: Lisch nodules; Rare: Combined hamartoma of retina and RPE

Sturge-Weber
- Classic stigmata is the port-wine stain

In one word, what sort of lesion is the port-wine stain?
An angioma

By what ‘official’ name is it known?
Nevus flammeus

When does it present?
At birth

What is the typical pattern of distribution?
It comports to the distribution of one or more divisions of CN5

Does it always present in this manner?
No. Some cases will cross the midline of the face

All infants with SWS have a port-wine stain. Do all infants with a port-wine stain have SWS?
No

If the port-wine stain involves the eyelid, what adjacent structure is commonly affected as well?
The conjunctiva. It will have increased vascularity and hyperemia, producing a false impression of ‘pink eye’
In one word, what sort of lesion is the port-wine stain?
An angioma

By what ‘official’ name is it known?
Nevus flammeus

When does it present?
At birth

What is the typical pattern of distribution?
It comports to the distribution of one or more divisions of...
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Occasional: Lisch nodules; Rare: Combined hamartoma of retina and RPE

Sturge-Weber
--Classic stigmata is the **port-wine stain**

In one word, what sort of lesion is the port-wine stain?
An angioma

By what ‘official’ name is it known?
Nevus flammeus

When does it present?
At birth

What is the typical pattern of distribution?
It comports to the distribution of one or more divisions of CN5
In one word, what sort of lesion is the port-wine stain?
An angioma

By what ‘official’ name is it known?
Nevus flammeus

When does it present?
At birth

What is the typical pattern of distribution?
It comports to the distribution of one or more divisions of CN5

Does it always present in this manner?
No. Some cases will cross the midline of the face

All infants with SWS have a port-wine stain. Do all infants with a port-wine stain have SWS?
No
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Occasional: Lisch nodules; Rare: Combined hamartoma of retina and RPE

Sturge-Weber
--Classic stigmata is the port-wine stain

In one word, what sort of lesion is the port-wine stain?
An angioma

By what ‘official’ name is it known?
Nevus flammeus

When does it present?
At birth

What is the typical pattern of distribution?
It comports to the distribution of one or more divisions of CN5

Does it always present in this manner?
No. Some cases will cross the midline of the face
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Occasional: Lisch nodules; Rare: Combined hamartoma of retina and RPE

Sturge-Weber
--Classic stigmata is the port-wine stain

In one word, what sort of lesion is the port-wine stain?
An angioma

By what ‘official’ name is it known?
Nevus flammeus

When does it present?
At birth

What is the typical pattern of distribution?
It comports to the distribution of one or more divisions of CN5

Does it always present in this manner?
No. Some cases will cross the midline of the face

All infants with SWS have a port-wine stain. Do all infants with a port-wine stain have SWS?

NF2
--**Central NF**
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE

Sturge-Weber
--Classic stigmata is the port-wine stain

In one word, what sort of lesion is the port-wine stain?
An angioma

By what ‘official’ name is it known?
Nevus flammeus

When does it present?
At birth

What is the typical pattern of distribution?
It comports to the distribution of one or more divisions of CN5

Does it always present in this manner?
No. Some cases will cross the midline of the face

All infants with SWS have a port-wine stain. Do all infants with a port-wine stain have SWS?
No
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Occasional: Lisch nodules; Rare: Combined hamartoma of retina and RPE

Sturge-Weber
--Classic stigmata is the port-wine stain

In one word, what sort of lesion is the port-wine stain?
An angioma

By what ‘official’ name is it known?
Nevus flammeus

When does it present?
At birth

What is the typical pattern of distribution?
It comports to the distribution of one or more divisions of CN5

Does it always present in this manner?
No. Some cases will cross the midline of the face

All infants with SWS have a port-wine stain. Do all infants with a port-wine stain have SWS?
No

If the port-wine stain involves the eyelid, what adjacent structure is commonly affected as well?
Study Guide: Phakomatoses

NF2
- **Central NF**
- Classic finding: bilateral acoustic neuromas
- Eye findings: Common: PSC/cortical cataracts; Occasional: Lisch nodules; Rare: Combined hamartoma of retina and RPE

Sturge-Weber
- Classic stigmata is the *port-wine stain*

In one word, what sort of lesion is the port-wine stain?
An angioma

By what ‘official’ name is it known?
Nevus flammeus

When does it present?
At birth

What is the typical pattern of distribution?
It comports to the distribution of one or more divisions of CN5

Does it always present in this manner?
No. Some cases will cross the midline of the face

All infants with SWS have a port-wine stain. Do all infants with a port-wine stain have SWS?
No

If the port-wine stain involves the eyelid, what adjacent structure is commonly affected as well?
The conjunctiva. It will have increased vascularity and hyperemia, producing a false impression of ‘pink eye’
Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral *acoustic neuromas*
-- Eye findings: *Common*: PSC/cortical cataracts; *Rare*: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
-- Classic stigmata is the *port-wine stain*
-- Ipsilateral meningeal AVM → symptom/sign
NF2

- **Central NF**
- Classic finding: bilateral *acoustic neuromas*
- Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; **Rarer**: Lisch nodules

Sturge-Weber

- Classic stigmata is the *port-wine stain*
- Ipsilateral meningeal AVM → **seizures**
Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral *acoustic neuromas*
-- Eye findings: *Common:* PSC/cortical cataracts; *Rare:* Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
-- Classic stigmata is the *port-wine stain*
-- *Ipsilateral meningeal AVM → seizures*

Is the meningeal AVM prone to bleeding?
NF2
--*Central* NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
--Classic stigmata is the *port-wine stain*
--Ipsilateral meningeal AVM → seizures

Is the meningeal AVM prone to bleeding?
No
Study Guide: Phakomatoses

NF2
--*Central* NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → *seizures*

How prevalent is seizure activity in SWS?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures

How prevalent is seizure activity in SWS?
Very--estimates run as high as 90% of cases
NF2
--*Central* NF
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: *Common:* PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM \rightarrow **seizures**
--Classic **mmmm...** fundus appearance is due to a

lesion (something something something)
Study Guide: Phakomatoses

NF2
--**Central** NF
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: **Common**: PSC/cortical cataracts; **Rare**: Combined hamartoma of retina and RPE; **Rarer**: Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → **seizures**
--Classic **tomato catsup** fundus appearance is due to a **diffuse choroidal hemangioma**
Phakomatoses

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → seizures
--Classic **tomato catsup** fundus appearance is due to a **diffuse choroidal hemangioma**

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Diffuse choroidal hemangioma is present in what percent of SWS?

About 50%

Can the choroidal hemangioma be present bilaterally?
Yes, but it's uncommon

Does the choroidal hemangioma have malignant potential?
No
Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma

Diffuse choroidal hemangioma is present in what percent of SWS?
About 50%

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → seizures
--Classic **tomato catsup** fundus appearance is due to a **diffuse choroidal hemangioma**

Diffuse choroidal hemangioma is present in what percent of SWS?
About 50%

Can the choroidal hemangioma be present bilaterally?
Study Guide: Phakomatoses

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a **diffuse choroidal hemangioma**

Diffuse choroidal hemangioma is present in what percent of SWS?
About 50%

Can the choroidal hemangioma be present bilaterally?
Yes, but it’s uncommon

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma

Diffuse choroidal hemangioma is present in what percent of SWS?
About 50%

Can the choroidal hemangioma be present bilaterally?
Yes, but it's uncommon

Does the choroidal hemangioma have malignant potential?
NF2
-- Central NF
-- Classic finding: bilateral acoustic neuromas
-- Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
-- Classic stigmata is the **port-wine stain**
-- Ipsilateral meningeal AVM → seizures
-- Classic *tomato catsup* fundus appearance is due to a **diffuse choroidal hemangioma**

Diffuse choroidal hemangioma is present in what percent of SWS?
About 50%

Can the choroidal hemangioma be present bilaterally?
Yes, but it's uncommon

Does the choroidal hemangioma have malignant potential?
No
Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → **seizures**
--Classic **tomato catsup** fundus appearance is due to a **diffuse choroidal hemangioma**
--Another classic finding on DFE: **non-retinal pathology**

NF2
--**Central** NF
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: **Common**: PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; **Rarer**: Lisch nodules
Study Guide: Phakomatoses

NF2
--**Central** NF
--Classic finding: bilateral *acoustic neuromas*
--Eye findings: *Common:* PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
--Classic stigmata is the *port-wine stain*
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a *diffuse choroidal hemangioma*
--Another classic finding on DFE: *Glaucomatous cupping in the ipsilateral ONH only*
NF2
--- *Central* NF
--- Classic finding: bilateral *acoustic neuromas*
--- Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
--- Classic stigmata is the *port-wine stain*
--- Ipsilateral meningeal AVM → seizures
--- Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--- Another classic finding on DFE: *Glucomatous cupping in the ipsilateral ONH only*

What percent of SWS pts develop glaucoma?
Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral *acoustic neuromas*
-- Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
-- Classic stigmata is the *port-wine stain*
-- Ipsilateral meningeal AVM → seizures
-- Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
-- Another classic finding on DFE: *Glaucomatous cupping in the ipsilateral ONH only*

What percent of SWS pts develop glaucoma?
Estimates run as high as 70
Study Guide: Phakomatoses

NF2
--**Central** NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: **Glaucomatous cupping in the ipsilateral ONH only**

What percent of SWS pts develop glaucoma?
Estimates run as high as 70

Is there a relationship between the port-wine stain and risk of glaucoma?
Study Guide: Phakomatoses

NF2
--*Central* NF
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: *Common:* PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: **Glaucmatous cupping in the ipsilateral ONH only**

What percent of SWS pts develop glaucoma?
Estimates run as high as 70

Is there a relationship between the port-wine stain and risk of glaucoma?
Yes. If the port-wine stain involves the **eyelid** the risk is **increased**; if it involves any other structure the risk is **decreased**
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: *Common*: PSC/cortical cataracts; *Rare*: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
--Classic stigmata is the *port-wine stain*
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: **Glaucomaticous cupping in the ipsilateral ONH only**

What percent of SWS pts develop glaucoma?
Estimates run as high as 70

Is there a relationship between the port-wine stain and risk of glaucoma?
Yes. If the port-wine stain involves the *eyelid*, the risk is *increased*
Study Guide: Phakomatoses

NF2
--*Central* NF
--Classic finding: bilateral *acoustic neuromas*
--Eye findings: *Common:* PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
--Classic stigmata is the *port-wine stain*
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: *Glaucomatous cupping in the ipsilateral ONH only*

What percent of SWS pts develop glaucoma?
Estimates run as high as 70

Is there a relationship between the *port-wine stain* and risk of glaucoma?
Yes. If the port-wine stain involves the *eyelid*, the risk is *increased*

Elevated IOP in SWS stems from three different mechanisms. What are they?
--
--
--

Hint forthcoming…
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: **Glaucomatous cupping in the ipsilateral ONH only**

What percent of SWS pts develop glaucoma?
Estimates run as high as 70

Is there a relationship between the port-wine stain and risk of glaucoma?
Yes. If the port-wine stain involves the eyelid, the risk is increased

Elevated IOP in SWS stems from three different mechanisms. What are they?
--
--
--
2° to ocular circulatory anomalies
A noncirculatory anomaly
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only

What percent of SWS pts develop glaucoma?
Estimates run as high as 70

Is there a relationship between the port-wine stain and risk of glaucoma?
Yes. If the port-wine stain involves the eyelid, the risk is increased

Elevated IOP in SWS stems from three different mechanisms. What are they?
--Increased episcleral venous pressure (EVP)
--Increased ciliary-body perfusion → aqueous hypersecretion
--Developmental abnormality of the drainage angle

2° to ocular circulatory anomalies
A noncirculatory anomaly
Study Guide: Phakomatoses

\[
IOP = \frac{\text{Aqueous Formation Rate (µL/min)}}{\text{Outflow Facility (µL/min/mmHg)}} + \text{Episceral Venous Pressure (mmHg)}
\]

Recalling the Goldmann equation for IOP…

What percent of SWS pts develop glaucoma?
Estimates run as high as 70%

Is there a relationship between the port-wine stain and risk of glaucoma?
Yes. If the port-wine stain involves the eyelid, the risk is increased.

Elevated IOP in SWS stems from three different mechanisms. What are they?
--Increased episcleral venous pressure (EVP)
--Increased ciliary-body perfusion → aqueous hypersecretion
--Developmental abnormality of the drainage angle
Study Guide: Phakomatoses

\[IOP = \frac{\text{Aqueous Formation Rate (µL/min)}}{\text{Outflow Facility (µL/min/mmHg)}} + \text{Episcleral Venous Pressure (mmHg)} \]

Recalling the Goldmann equation for IOP…

- \[\uparrow IOP \text{ in SWS} \] is secondary to
 - **Aqueous hypersecretion**
 - **Abnormal drainage angle** + \[\uparrow \text{Episcleral Venous Pressure} \]

What percent of SWS pts develop glaucoma?
Estimates run as high as 70

Is there a relationship between the port-wine stain and risk of glaucoma?
Yes. If the port-wine stain involves the eyelid, the risk is increased

Elevated IOP in SWS stems from three different mechanisms. What are they?
- Increased episcleral venous pressure (EVP)
- Increased ciliary-body perfusion → aqueous hypersecretion
- Developmental abnormality of the drainage angle
Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral *acoustic neuromas*
-- Eye findings: *Common:* PSC/cortical cataracts; *Rare:* Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
-- Classic stigmata is the *port-wine stain*
-- Ipsilateral meningeal AVM → *seizures*
-- Classic *tomato catsup* fundus appearance is due to a *diffuse choroidal hemangioma*
-- Another classic finding on DFE: *Glaucotamous cupping in the ipsilateral ONH only*
-- Glaucoma surgery: ↑ risk of massive *bad surgical complication due to abnormal* two words
NF2

-- *Central* NF

-- Classic finding: bilateral *acoustic neuromas*

-- Eye findings: *Common*: PSC/cortical cataracts;

Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber

-- Classic stigmata is the *port-wine stain*

-- Ipsilateral meningeal AVM → *seizures*

-- Classic *tomato catsup* fundus appearance is due to a *diffuse choroidal hemangioma*

-- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only

-- Glaucoma surgery: ↑ risk of massive *choroidal effusion* due to abnormal *choroidal vasculature*
Sturge-Weber syndrome
--Classic stigmata is the *port-wine stain*
--Ipsilateral meningeal AVM → *seizures*
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: *Glaucomatous cupping in the ipsilateral ONH only*
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

There is another phakomatosis--less well-known than SWS--that also presents with a *port-wine stain*. What is it?

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: *Common*: PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Klippel-Trénaunay syndrome
There is another phakomatosis--less well-known than SWS--that also presents with a *port-wine stain*. What is it?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → **seizures**
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. **What is it?**
Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-**Weber** syndrome). KTS is the **essential rule-out on the DDx for SWS.**
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM ➔ seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. What is it? Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-*Weber* syndrome). **KTS is the essential rule-out on the DDx for SWS.**

How is Klippel-Trénaunay pronounced?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → seizures
--Classic **tomato catsup** fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. **What is it?**
Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-**Weber** syndrome). **KTS is the essential rule-out on the DDx for SWS.**

How is Klippel-Trénaunay pronounced?
CLIP-el tri-NO-nay
Klippel-Trénaunay(-Weber) syndrome

- Classic stigmata is the **port-wine stain**
- Ipsilateral meningeal AVM → **seizures**
- Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
- Another classic finding on DFE: **Glaucomatous cupping in the ipsilateral ONH only**
- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. What is it? Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-Weber syndrome). KTS is the essential rule-out on the DDx for SWS.

*Like SWS, is KTS…--associated with glaucoma?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. **What is it?**
Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-Weber syndrome). **KTS is the essential rule-out on the DDx for SWS.**

Like SWS, is KTS…
--associated with glaucoma? **Yes**
Phakomatoses

NFI
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → seizures
--Classic **tomato catsup** fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: **Glaucmatous cupping** in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Klippel-Trénaunay(-Weber) syndrome
There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. **What is it?**
Klippel-Trénaunay syndrome (sometimes you'll see Klippel-Trénaunay-Weber syndrome). **KTS is the essential rule-out on the DDx for SWS.**

Like SWS, is KTS…
--associated with glaucoma? **Yes**
--nonhereditary?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Klippel-Trénaunay(-Weber) syndrome
There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. What is it?
Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-Weber syndrome). KTS is the essential rule-out on the DDx for SWS.

Like SWS, is KTS…
--associated with glaucoma? Yes
--nonhereditary? Yes
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the *port-wine stain*
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: *Glaucamatous cupping* in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. What is it? Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-Weber syndrome). KTS is the essential rule-out on the DDx for SWS.

Like SWS, is KTS…
--associated with glaucoma? Yes
--nonhereditary? Yes
--associated with meningeal AVMs/seizures?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
---Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: *Glaucomatous cupping* in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. What is it? Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-Weber syndrome). KTS is the essential rule-out on the DDx for SWS.

Like SWS, is KTS…
--associated with glaucoma? **Yes**
--nonhereditary? **Yes**
--associated with meningeal AVMs/seizures? **No**
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: **Glaucomatous cupping** in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. What is it? Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-Weber syndrome). **KTS is the essential rule-out on the DDx for SWS.**

Like SWS, is KTS…
--associated with glaucoma? **Yes**
--nonhereditary? **Yes**
--associated with meningeal AVMs/seizures? **No**
--associated with diffuse choroidal hemangioma?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

--- **Sturge-Weber**
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

--- **Klippel-Trénaunay(-Weber) syndrome**
There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. What is it?
Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-Weber syndrome). KTS is the essential rule-out on the DDx for SWS.

Like SWS, is KTS...
--associated with glaucoma? Yes
--nonhereditary? Yes
--associated with meningeal AVMs/seizures? No
--associated with diffuse choroidal hemangioma? No
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Klippel-Trénaunay syndrome
There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. What is it?
Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-Weber syndrome). KTS is the essential rule-out on the DDx for SWS.

Like SWS, is KTS…
--associated with glaucoma? Yes
--nonhereditary? Yes
--associated with meningeal AVMs/seizures? No
--associated with diffuse choroidal hemangioma? No

Are there other associations of note?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the *port-wine stain*
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: **Glaucomaticous cupping** in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. What is it?
Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-Weber syndrome). **KTS is the essential rule-out on the DDx for SWS.**

Like SWS, is KTS…
--associated with glaucoma? **Yes**
--nonhereditary? **Yes**
--associated with meningeal AVMs/seizures? **No**
--associated with diffuse choroidal hemangioma? **No**

Are there other associations of note?
Yes--vascular lesions of the trunk and a single limb, along with marked hypertrophy of that limb
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

--- **Sturge-Weber**
--Classic stigmata is the *port-wine stain*
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: **Glaucomatous cupping** in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. What is it? Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-Weber syndrome). KTS is the essential rule-out on the DDx for SWS.

Like SWS, is KTS...
--associated with glaucoma? **Yes**
--nonhereditary? **Yes**
--associated with meningeal AVMs/seizures? **No**
--associated with diffuse choroidal hemangioma? **No**

Are there other associations of note? Yes--vascular lesions of the trunk and a **single limb**, along with marked hypertrophy of that limb
Study Guide: Phakomatoses

Sturge-Weber
- Classic stigmata is the **port-wine stain**
- Ipsilateral meningeal AVM → seizures
- Classic **tomato catsup** fundus appearance is due to a diffuse choroidal hemangioma
- Another classic finding on DFE: **Glaucomatous cupping** in the ipsilateral ONH only
- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Klippel-Trénaunay-Weber
- There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. What is it? Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-Weber syndrome). KTS is the essential rule-out on the DDx for SWS.

Like SWS, is KTS...
- associated with glaucoma? **Yes**
- nonhereditary? **Yes**
- associated with meningeal AVMs/seizures? **No**
- associated with diffuse choroidal hemangioma? **No**

Which limb is involved?
In the vast majority (~90%) of cases, a leg

Are there other associations of note?
Yes--vascular lesions of the trunk and a **single limb**, along with marked hypertrophy of that limb.
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

--- **Sturge-Weber**
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain. What is it? Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-Weber syndrome). KTS is the essential rule-out on the DDx for SWS.

Like SWS, is KTS...
--associated with glaucoma? Yes
--nonhereditary? Yes
--associated with meningeal AVMs/seizures? No
--associated with diffuse choroidal hemangioma? No

Are there other associations of note? Yes--vascular lesions of the trunk and a single limb, along with marked hypertrophy of that limb

Which limb is involved? In the vast majority (~90%) of cases, a leg

Is the limb hypertrophy present at birth? Usually
Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → seizures
--Classic **tomato catsup** fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: **Glaucomatous cupping** in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Klippel-Trénaunay(-Weber) syndrome

There is another phakomatosis--less well-known than SWS--that also presents with a port-wine stain.

What is it? Klippel-Trénaunay syndrome (sometimes you’ll see Klippel-Trénaunay-Weber syndrome). KTS is the **essential rule-out** on the DDx for SWS.

Like SWS, is KTS…?
--associated with glaucoma? **Yes**
--nonhereditary? **Yes**
--associated with meningeal AVMs/seizures? **No**
--associated with diffuse choroidal hemangioma? **No**

Are there other associations of note?
Yes--vascular lesions of the trunk and **a single limb, along with marked hypertrophy of that limb**
Study Guide: Phakomatoses

NF2
-- **Central** NF
-- Classic finding: bilateral **acoustic neuromas**
-- Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
-- Classic stigmata is the **port-wine stain**
-- Ipsilateral meningeal AVM → **seizures**
-- Classic **tomato catsup** fundus appearance is due to a **diffuse choroidal hemangioma**
-- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
-- Glaucoma surgery: ↑ risk of massive **choroidal effusion** due to abnormal choroidal vasculature

Ataxia-telangiectasia
-- Most common cause of **main symptom** in childhood
Study Guide: Phakomatoses

NF2
-- **Central NF**
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: **Common:** PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; **Rarer:** Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → **seizures**
--Classic **tomato catsup** fundus appearance is due to a **diffuse choroidal hemangioma**
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive **choroidal effusion** due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of **progressive ataxia** in childhood
Study Guide: Phakomatoses

NF2
-- *Central* NF
--Classic finding: bilateral *acoustic neuromas*
--Eye findings: *Common*: PSC/cortical cataracts; *Rare*: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
--Classic stigmata is the *port-wine stain*
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a *diffuse choroidal hemangioma*
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of *progressive ataxia* in childhood
--Only phakomatosis with no abnormalities of the *eye part*
Study Guide: Phakomatoses

NF2
- **Central NF**
- Classic finding: bilateral *acoustic neuromas*
- Eye findings: *Common*: PSC/cortical cataracts; *Rare*: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
- Classic stigmata is the *port-wine stain*
- Ipsilateral meningeal AVM → seizures
- Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
- Most common cause of *progressive ataxia* in childhood
- Only phakomatosis with no abnormalities of the *fundus*
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: **Common**: PSC/cortical cataracts; **Rare**: Combined hamartoma of retina and RPE; **Rarer**: Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → **seizures**
--Classic **tomato catsup** fundus appearance is due to a **diffuse choroidal hemangioma**
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive **choroidal effusion** due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of **progressive ataxia** in childhood
--Only phakomatosis with no abnormalities of the **fundus**
--Classic finding of conjunctival telangiectasia typically appear between ages of # to # years
Study Guide: Phakomatoses

NF2
- **Central NF**
- Classic finding: bilateral **acoustic neuromas**
- Eye findings: *Common:* PSC/cortical cataracts; *Rare:* Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
- Classic stigmata is the **port-wine stain**
- Ipsilateral meningeal AVM → seizures
- Classic **tomato catsup** fundus appearance is due to a diffuse choroidal hemangioma
- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
- Most common cause of progressive ataxia in childhood
- Only phakomatosis with no abnormalities of the **fundus**
- Classic finding of conjunctival telangiectasia typically appear between ages of **3-5 years**
Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral *acoustic neuromas*
-- Eye findings: *Common*: PSC/cortical cataracts; *Rare*: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
-- Classic stigmata is the *port-wine stain*
-- Ipsilateral meningeal AVM → *seizures*
-- Classic *tomato catsup* fundus appearance is due to a *diffuse choroidal hemangioma*
-- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
-- Glaucoma surgery: ↑ risk of massive *choroidal effusion* due to abnormal choroidal vasculature

Ataxia-telangiectasia
-- Most common cause of *progressive ataxia* in childhood
-- Only phakomatosis with no abnormalities of the *fundus*
-- Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
-- Other eye findings include:

 - EOM problem 1
 - EOM test
 - EOM prob 2
 - EOM prob 3

 with intact
NF2

--- **Central NF**

--- Classic finding: bilateral *acoustic neuromas*

--- Eye findings: *Common*: PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber

--- Classic stigmata is the *port-wine stain*

--- Ipsilateral meningeal AVM → *seizures*

--- Classic *tomato catsup* fundus appearance is due to a *diffuse choroidal hemangioma*

--- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only

--- Glaucoma surgery: ↑ risk of massive *choroidal effusion* due to abnormal choroidal vasculature

Ataxia-telangiectasia

--- Most common cause of *progressive ataxia* in childhood

--- Only phakomatosis with no abnormalities of the *fundus*

--- Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years

--- Other eye findings include *abnormal saccades* with intact *doll’s eyes; strabismus; nystagmus*
Study Guide: Phakomatoses

NF2
- *Central* NF
- Classic finding: bilateral *acoustic neuromas*
- Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
- Classic stigmata is the *port-wine stain*
- Ipsilateral meningeal AVM → *seizures*
- Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
- Most common cause of progressive ataxia in childhood
- Only phakomatosis with no abnormalities of the fundus
- Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
- Other eye findings include: *abnormal saccades* with intact doll’s eyes; strabismus; nystagmus

Ataxia-telangiectasia toddlers have difficulty initiating saccades, and sometimes use a head turn/thrust to do so.

What more-common, less-devastating oculomotor disorder presents similarly?
Study Guide: Phakomatoses

NF2
- **Central NF**
- Classic finding: bilateral *acoustic neuromas*
- Eye findings: *Common*: PSC/cortical cataracts; *Rare*: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
- Classic stigmata is the **port-wine stain**
- Ipsilateral meningeal AVM → *seizures*
- Classic *tomato catsup* fundus appearance is due to a *diffuse choroidal hemangioma*
- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
- Glaucoma surgery: ↑ risk of massive *choroidal effusion* due to abnormal choroidal vasculature

Ataxia-telangiectasia
- Most common cause of progressive ataxia in childhood
- Only phakomatosis with no abnormalities of the fundus
- Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
- Other eye findings include: *abnormal saccades* with intact doll’s eyes; strabismus; nystagmus

A-T toddlers have difficulty initiating saccades, and sometimes use a head turn/thrust to do so.

What more-common, less-devastating oculomotor disorder presents similarly?

Congenital ocular motor apraxia (COMA)
NF2
-- *Central NF*
-- Classic finding: bilateral *acoustic neuromas*
-- Eye findings: *Common:* PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
-- Classic stigmata is the *port-wine stain*
-- Ipsilateral meningeal AVM → *seizures*
-- Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
-- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
-- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
-- Most common cause of *progressive ataxia* in childhood
-- Only phakomatosis with no abnormalities of the *fundus*
-- Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
-- Other eye findings include *abnormal saccades* with intact *doll’s eyes; strabismus; nystagmus*
-- Abnormal immune function → ↑ susceptibility to nonocular system infections → risk of death in teens
Study Guide: Phakomatoses

NF2
-- **Central NF**
-- Classic finding: bilateral *acoustic neuromas*
-- Eye findings: *Common:* PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
-- Classic stigmata is the *port-wine stain*
-- Ipsilateral meningeal AVM → seizures
-- Classic *tomato catsup* fundus appearance is due to a *diffuse choroidal hemangioma*
-- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
-- Glaucoma surgery: ↑ risk of massive *choroidal effusion* due to abnormal choroidal vasculature

Ataxia-telangiectasia
-- Most common cause of *progressive ataxia* in childhood
-- Only phakomatosis with no abnormalities of the *fundus*
-- Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
-- Other eye findings include *abnormal saccades* with intact doll’s eyes; strabismus; nystagmus
-- Abnormal immune function → ↑ susceptibility to *respiratory tract* infections → risk of death in teens
Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral **acoustic neuromas**
-- Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
-- Classic stigmata is the **port-wine stain**
-- Ipsilateral meningeal AVM → **seizures**
-- Classic **tomato catsup** fundus appearance is due to a diffuse choroidal hemangioma
-- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
-- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
-- Most common cause of progressive ataxia in childhood
-- Only phakomatosis with no abnormalities of the fundus
-- Classic finding of conjunctival telangiectasia
-- Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
-- Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
-- Also have significantly increased risk of leukemia and lymphoma (cause of death in up to ½)
-- Heterozygotes (~2% of population) have increased risk of malignancy as well

What aspects of the immune system are abnormal?

-- T-cells are abnormal in both function and number
-- Immunoglobulin levels are abnormal

These immunodeficiencies are due in large part to hypoplasia of what immune organ?

The thymus
Study Guide: Phakomatoses

NF2
-- **Central** NF
-- Classic finding: bilateral acoustic neuromas
-- Eye findings: Common: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
-- Classic stigmata is the **port-wine stain**
-- Ipsilateral meningeal AVM → seizures
-- Classic **tomato catsup** fundus appearance is due to a diffuse choroidal hemangioma
-- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
-- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
-- Most common cause of progressive ataxia in childhood
-- Only phakomatosis with no abnormalities of the fundus
-- Classic finding of conjunctival telangiectasia
-- Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
-- Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
-- Also have significantly increased risk of leukemia and lymphoma (cause of death in up to ½)
-- Heterozygotes (~2% of population) have increased risk of malignancy as well

What aspects of the immune system are abnormal?
-- T-cells are abnormal in both function and number
-- Immunoglobulin levels are abnormal

Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral *acoustic neuromas*
-- Eye findings: *Common*: PSC/cortical cataracts; *Rare*: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
-- Classic stigmata is the *port-wine stain*
-- Ipsilateral meningeal AVM \rightarrow seizures
-- Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
-- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
-- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
-- Most common cause of progressive ataxia in childhood
-- Only phakomatosis with no abnormalities of the fundus
-- Classic finding of conjunctival telangiectasias typically appear between ages of 3-5 years
-- Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
-- Abnormal immune function \rightarrow ↑ susceptibility to respiratory tract infections \rightarrow risk of death in teens
-- Also have significantly increased risk of leukemia and lymphoma (cause of death in up to ½)
-- Heterozygotes (~2% of population) have increased risk of malignancy as well

What aspects of the immune system are abnormal?
-- T-cells are abnormal in both function and *number*
-- Immunoglobulin levels are *abnormal*

-- Abnormal immune function \rightarrow
Study Guide: Phakomatoses

NF2
---Central NF
---Classic finding: bilateral acoustic neuromas
---Eye findings: *Common:* PSC/cortical cataracts; *Rare:* Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
---Classic stigmata is the *port-wine stain*
---Ipsilateral meningeal AVM → seizures
---Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
---Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
---Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
---Most common cause of progressive ataxia in childhood
---Only phakomatosis with no abnormalities of the fundus
---Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
---Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
---Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
---Also have significantly increased risk of leukemia and lymphoma (cause of death in up to ½)
---Heterozygotes (~2% of population) have increased risk of malignancy as well

---Abnormal immune function → T-cells are abnormal in both function and number
---Immunoglobulin levels are abnormal
---*What aspects of the immune system are abnormal?*
---Abnormally high, or low? **Low**
Study Guide: Phakomatoses

NF2
- *Central* NF
- Classic finding: bilateral **acoustic neuromas**
- Eye findings: *Common*: PSC/cortical cataracts; *Rare*: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
- Classic stigmata is the **port-wine stain**
- Ipsilateral meningeal AVM → **seizures**
- Classic **tomato catsup** fundus appearance is due to a diffuse choroidal hemangioma
- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
- Most common cause of progressive ataxia in childhood
- Only phakomatosis with no abnormalities of the fundus
- Classic finding of conjunctival telangiectasia usually appears between ages of 3-5 years
- Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
- Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
- Also have significantly increased risk of leukemia and lymphoma (cause of death in up to ½)
- Heterozygotes (~2% of population) have increased risk of malignancy as well

What aspects of the immune system are abnormal?
- T-cells are abnormal in both function and number
- Immunoglobulin levels are abnormal

These immunodeficiencies are due in large part to hypoplasia of what immune organ?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the fundus
--Classic finding of conjunctival telangiectasias
--Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
--Abnormal immune function → abnormal T-cells are abnormal in both function and number
--Immunoglobulin levels are abnormal

What aspects of the immune system are abnormal?
--T-cells are abnormal in both function and number
--Immunoglobulin levels are abnormal

These immunodeficiencies are due in large part to hypoplasia of what immune organ?
The thymus
Study Guide: Phakomatoses

NF2
---*Central* NF
---Classic finding: bilateral *acoustic neuromas*
---Eye findings: *Common:* PSC/cortical cataracts; *Rare:* Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
---Classic stigmata is the *port-wine stain*
---Ipsilateral meningeal AVM → *seizures*
---Classic *tomato catsup* fundus appearance is due to a *diffuse choroidal hemangioma*
---Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
---Glaucoma surgery: ↑ risk of massive *choroidal effusion* due to abnormal *choroidal vasculature*

Ataxia-telangiectasia
---Most common cause of progressive ataxia in childhood
---Only phakomatosis with no abnormalities of the fundus
---Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
---What buzzword is used to define the specific sort of *RT infection A-T pts are vulnerable to?***Sinopulmonary*** infections
---Also have significantly increased risk of leukemia and lymphoma (cause of death in up to ½)
---Heterozygotes (~2% of population) have increased risk of malignancy as well

NF2
---*Central* NF
---Classic finding: bilateral *acoustic neuromas*
---Eye findings: *Common:* PSC/cortical cataracts; *Rare:* Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
---Classic stigmata is the *port-wine stain*
---Ipsilateral meningeal AVM → *seizures*
---Classic *tomato catsup* fundus appearance is due to a *diffuse choroidal hemangioma*
---Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
---Glaucoma surgery: ↑ risk of massive *choroidal effusion* due to abnormal *choroidal vasculature*

Ataxia-telangiectasia
---Most common cause of progressive ataxia in childhood
---Only phakomatosis with no abnormalities of the fundus
---Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
---What buzzword is used to define the specific sort of *RT infection A-T pts are vulnerable to?***Sinopulmonary*** infections
---Also have significantly increased risk of leukemia and lymphoma (cause of death in up to ½)
---Heterozygotes (~2% of population) have increased risk of malignancy as well
Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → **seizures**
--Classic **tomato catsup** fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive **choroidal effusion** due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the fundus
--Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
--Other eye findings: abnormal saccades with intact doll's eyes; strabismus; nystagmus
--Abnormal immune function → ↑ susceptibility to respiratory tract infections
--Risk of death in teens: increased risk of leukemia and lymphoma (cause of death in up to ½)
--Heterozygotes (~2% of population) have increased risk of malignancy as well

NF2
--**Central** NF
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: **Common:** PSC/cortical cataracts; **Rare:** Combined hamartoma of retina and RPE; **Rarer:** Lisch nodules

What buzzword is used to define the specific sort of RT infection A-T pts are vulnerable to?
‘Sinopulmonary’ infections
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the *fundus*
--Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
--Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
--Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
--Also have significantly increased risk of cancer 1 and cancer 2
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the fundus
--Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
--Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
--Abnormal immune function→↑ susceptibility to respiratory tract infections→risk of death in teens
--Also have significantly increased risk of leukemia and lymphoma
Study Guide: Phakomatoses

NF2
- *Central* NF
- Classic finding: bilateral *acoustic neuromas*
- Eye findings: *Common:* PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
- Classic stigmata is the *port-wine stain*
- Ipsilateral meningeal AVM → seizures
- Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
- Most common cause of progressive ataxia in childhood
- *Only* phakomatosis with no abnormalities of the fundus
- Classic finding: conjunctival telangiectasia typically appear between ages of 3-5 years
- Other eye findings include abnormal saccades with intact doll's eyes, strabismus, nystagmus
- Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
- Also have significantly increased risk of leukemia and lymphoma

Your A-T pt may have a sinus infection. Should you get a CT to confirm? NO!
A-T pt’s DNA is extremely vulnerable to damage from ionizing radiation. X-rays should be performed only if no other imaging modality will suffice
Study Guide: Phakomatoses

NF2
--**Central** NF
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: **Common:** PSC/cortical cataracts; **Rare:** Combined hamartoma of retina and RPE; **Rarer:** Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → **seizures**
--Classic **tomato catsup** fundus appearance is due to a **diffuse choroidal hemangioma**
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive **choroidal effusion** due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the fundus
--Classic finding: conjunctival telangiectasia typically appear between ages of 3-5 years
--Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
--Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
--Also have significantly increased risk of **leukemia** and **lymphoma**

Your A-T pt may have a sinus infection. Should you get a CT to confirm? NO! A-T pt’s DNA is extremely vulnerable to damage from ionizing radiation. X-rays should be performed only if no other imaging modality will suffice
Study Guide: Phakomatoses

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → seizures
--Classic **tomato catsup** fundus appearance is due to a **diffuse choroidal hemangioma**
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

NF2
--**Central NF**
--Classic finding: bilateral **acoustic neuromas**
--Eye findings: **Common:** PSC/cortical cataracts; **Rare:** Combined hamartoma of retina and RPE; **Rarer:** Lisch nodules

The unfortunate truth of the matter is this:

--Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
--Also have significantly increased risk of leukemia and lymphoma
Study Guide: Phakomatoses

NF2
- *Central* NF
- Classic finding: bilateral acoustic neuromas
- Eye findings: *Common:* PSC/cortical cataracts; *Rare:* Combined hamartoma of retina and RPE; *Rarer:* Lisch nodules

Sturge-Weber
- Classic stigmata is the *port-wine stain*
- Ipsilateral meningeal AVM → seizures
- Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

The unfortunate truth of the matter is this:
- In countries with less-robust healthcare systems (ie, without readily-available antibiotics), A-T pts die of sinopulmonary infections in their teens; whereas
- Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
- Also have significantly increased risk of leukemia and lymphoma
Study Guide: Phakomatoses

NF2
-- *Central NF*
-- Classic finding: bilateral *acoustic neuromas*
-- Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
-- Classic stigmata is the *[port-wine stain]*
-- Ipsilateral meningeal AVM → seizures
-- Classic *tomato catsup* fundus appearance is due to a *diffuse choroidal hemangioma*
-- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
-- Glaucoma surgery: ↑ risk of massive *choroidal effusion* due to abnormal choroidal vasculature

The unfortunate truth of the matter is this:
-- In countries with less-robust healthcare systems (ie, without readily-available antibiotics), A-T pts die of sinopulmonary infections in their teens; whereas
-- In countries *with* robust healthcare systems, sinopulmonary infections can be kept at bay long enough for A-T pts to die of cancer (usually leukemia or lymphoma).

-- Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
-- Also have significantly increased risk of *leukemia* and *lymphoma*
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM \rightarrow seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the fundus
--Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
--Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
--Abnormal immune function \rightarrow ↑ susceptibility to respiratory tract infections \rightarrow risk of death in teens
--Also have significantly increased risk of leukemia and lymphoma
--Heterozygotes (~2% of population) have increased risk of non-ocular prob as well
Study Guide: Phakomatoses

NF2
-- *Central* NF
-- Classic finding: bilateral *acoustic neuromas*
-- Eye findings: *Common*: PSC/cortical cataracts;
 Rare: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
-- Classic stigmata is the *port-wine stain*
-- Ipsilateral meningeal AVM → *seizures*
-- Classic *tomato catsup* fundus appearance is due to a *diffuse choroidal hemangioma*
-- Another classic finding on DFE: *Glaucomatosous cupping in the ipsilateral ONH only*
-- *Glaucoma surgery:* ↑ risk of massive *choroidal effusion due to abnormal choroidal vasculature*

Ataxia-telangiectasia
-- Most common cause of *progressive ataxia* in childhood
-- Only phakomatosis with no abnormalities of the *fundus*
-- Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
-- Other eye findings include *abnormal saccades* with intact *doll’s eyes; strabismus; nystagmus*
-- Abnormal immune function → ↑ susceptibility to *respiratory tract infections* → risk of death in teens
-- Also have significantly increased risk of *leukemia* and *lymphoma*
-- Heterozygotes (~2% of population) have increased risk of *malignancy* as well
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the fundus
--Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
--Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
--Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
--Also have significantly increased risk of leukemia and lymphoma
--Heterozygotes (~2% of population) have increased risk of malignancy as well

For what cancer are A-T heterozygotes at particular risk?
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the fundus
--Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
--Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
--Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
--Also have significantly increased risk of leukemia and lymphoma
--Heterozygotes (~2 % of population) have increased risk of malignancy as well

For what cancer are A-T heterozygotes at particular risk? Breast
Study Guide: Phakomatoses

NF2
-- **Central** NF
-- Classic finding: bilateral acoustic neuromas
-- Eye findings: *Common*: PSC/cortical cataracts; *Rare*: Combined hamartoma of retina and RPE; *Rarer*: Lisch nodules

Sturge-Weber
-- Classic stigmata is the **port-wine stain**
-- Ipsilateral meningeal AVM → seizures
-- Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
-- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
-- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
-- Most common cause of **progressive ataxia** in childhood
-- Only phakomatosis with no abnormalities of the **fundus**
-- Classic finding of conjunctival telangiectasia typically appear between ages of **3-5 years**
-- Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
-- Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
-- Also have significantly increased risk of leukemia and lymphoma
-- Heterozygotes (~2% of population) have increased risk of malignancy as well
-- Skin manifestation: not surprisingly...
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the *port-wine stain*
--Ipsilateral meningeal AVM → seizures
--Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the fundus
--Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
--Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
--Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
--Also have significantly increased risk of leukemia and lymphoma
--Heterozygotes (~2 % of population) have increased risk of malignancy as well
--Skin manifestation: Telangiectasias
Study Guide: Phakomatoses

Sturge-Weber
- Classic stigmata is the *port-wine stain*
- Ipsilateral meningeal AVM → seizures
- Classic *tomato catsup* fundus appearance is due to a diffuse choroidal hemangioma
- Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
- Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
- Most common cause of progressive ataxia in childhood
- Only phakomatosis with no abnormalities of the fundus
- Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
- Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
- Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
- Also have significantly increased risk of leukemia and lymphoma
- Heterozygotes (~2 % of population) have increased risk of malignancy as well
- **Skin manifestation:** Telangiectasias
NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → seizures
--Classic **tomato catsup** fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the fundus
--Classic finding of conjunctival telangiectasia typically **appear between ages of 3-5 years**
--Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
--Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
--Also have significantly increased risk of leukemia and lymphoma
--Heterozygotes (~2% of population) have increased risk of malignancy as well
--Skin manifestation: **Telangiectasias**
Study Guide: Phakomatoses

NF2
--Central NF
--Classic finding: bilateral acoustic neuromas
--Eye findings: Common: PSC/cortical cataracts; Rare: Combined hamartoma of retina and RPE; Rarer: Lisch nodules

Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the fundus
--Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
--Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
--Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
--Also have significantly increased risk of leukemia and lymphoma
--Heterozygotes (~2% of population) have increased risk of malignancy as well
--Skin manifestation: Telangiectasias
Sturge-Weber
--Classic stigmata is the port-wine stain
--Ipsilateral meningeal AVM → seizures
--Classic tomato catsup fundus appearance is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia
--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the fundus
--Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
--Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
--Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
--Also have significantly increased risk of leukemia and lymphoma
--Heterozygotes (~2% of population) have increased risk of malignancy as well

Skin manifestation: Telangiectasias
Sturge-Weber
--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM → seizures
--Classic **tomato catsup fundus appearance** is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: Glaucomatous cupping in the ipsilateral ONH only
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

At what age do cutaneous telangiectasias begin to appear?
3-5 years (ie, at about the same time the conj ones do)

At what location do they typically appear first?
The malar region of the face

Do they remain localized to the malar region throughout life?
No, they typically spread across the face and neck, and new ‘crops’ will appear on the limbs

Ataxia-telangiectasia
--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the fundus
--Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
--Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
--Abnormal immune function → ↑ susceptibility to respiratory tract infections → risk of death in teens
--Also have significantly increased risk of leukemia and lymphoma
--Heterozygotes (~2 % of population) have increased risk of malignancy as well
--Skin manifestation: **Telangiectasias**
Sturge-Weber

--Classic stigmata is the **port-wine stain**
--Ipsilateral meningeal AVM \(\rightarrow\) seizures
--Classic **tomato catsup fundus appearance** is due to a diffuse choroidal hemangioma
--Another classic finding on DFE: **Glaucomatous cupping in the ipsilateral ONH only**
--Glaucoma surgery: ↑ risk of massive choroidal effusion due to abnormal choroidal vasculature

Ataxia-telangiectasia

--Most common cause of progressive ataxia in childhood
--Only phakomatosis with no abnormalities of the fundus
--Classic finding of conjunctival telangiectasia typically appear between ages of 3-5 years
--Other eye findings include abnormal saccades with intact doll’s eyes; strabismus; nystagmus
--Abnormal immune function \(\rightarrow\) ↑ susceptibility to respiratory tract infections \(\rightarrow\) risk of death in teens
--Also have significantly increased risk of leukemia and lymphoma
--Heterozygotes (~2 % of population) have increased risk of malignancy as well

--Skin manifestation: **Telangiectasias**

NF2

--**Central NF**
--Classic finding: bilateral acoustic neuromas
--Eye findings: **Common:** PSC/cortical cataracts;
Rare: Combined hamartoma of retina and RPE; **Rarer:** Lisch nodules
Incontinentia pigmenti

--Skin normal at birth, but abnormality 1 and abnormality 2 develop by age X; only later develops the classic appearance
Incontinentia pigmenti

-- Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
Incontinentia pigmenti

--Skin normal at birth, but **erythema** and **bullae** develop by 1 week; only later develops the classic ‘splashed paint’ appearance

--Eye finding: \(x/x \) will have peripheral retina problem that looks just like a more common dz
Incontinentia pigmenti

--Skin normal at birth, but *erythema* and *bullae* develop by 1 week; only later develops the classic ‘splashed paint’ appearance
--Eye finding: 1/3 will have peripheral *proliferative retinopathy* that looks just like ROP
Incontinentia pigmenti

--Skin normal at birth, but *erythema* and *bullae* develop by 1 *week*; only later develops the classic ‘splashed paint’ appearance

--Eye finding: 1/3 will have peripheral *proliferative retinopathy* that looks just like ROP
Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually uni- vs bilateral
Incontinentia pigmenti
--Skin normal at birth, but **erythema** and **bullae** develop by **1 week**; only later develops the classic ‘**splashed paint**’ appearance
--Eye finding: **1/3** will have peripheral **proliferative retinopathy** that looks just like **ROP**
-----Eye findings are usually **unilateral**
Incontinentia pigmenti

-- Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance

-- Eye finding: 1/3 will have **peripheral proliferative retinopathy** that looks just like ROP

--- Eye findings are usually unilateral

How is the peripheral proliferative retinopathy managed?
Incontinentia pigmenti
-- Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
-- Eye finding: 1/3 will have \textit{peripheral proliferative retinopathy} that looks \textit{just like} ROP
---- Eye findings are usually unilateral

\textbf{How is the peripheral proliferative retinopathy managed?}
\textbf{basically, in the same manner as ROP}
Incontinentia pigmenti

--Skin normal at birth, but *erythema* and *bullae* develop by 1 week; only later develops the classic ‘splashed paint’ appearance

--Eye finding: 1/3 will have peripheral *proliferative retinopathy* that looks just like ROP

----Eye findings are usually *unilateral*

--2/3 will also have abnormal *mouth issue*
Incontinentia pigmenti
-- Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic ‘splashed paint’ appearance
-- Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
---- Eye findings are usually unilateral
-- 2/3 will also have abnormal dentition
Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Name two other congenital eye syndromes associated with abnormal dentition:

--
--
Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Name two other congenital eye syndromes associated with abnormal dentition:
--Axenfeld-Rieger syndrome
--Congenital syphilis
Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Name two other congenital eye syndromes associated with abnormal dentition:
--Axenfeld-Rieger syndrome
--Congenital syphilis

In three words, what sort of condition is Axenfeld-Reiger?
It is an...
Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Name two other congenital eye syndromes associated with abnormal dentition:
--Axenfeld-Rieger syndrome
--Congenital syphilis

In three words, what sort of condition is Axenfeld-Reiger?
It is an...anterior-segment dysgenesis
Study Guide: Phakomatoses

Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Name two other congenital eye syndromes associated with abnormal dentition:
--Axenfeld-Rieger syndrome
--Congenital syphilis

In three words, what sort of condition is Axenfeld-Reiger? It is an...anterior-segment dysgenesis

If limited to one word, what sort of condition is Axenfeld-Reiger? It is a...
Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Name two other congenital eye syndromes associated with abnormal dentition:
--Axenfeld-Rieger syndrome
--Congenital syphilis

In three words, what sort of condition is Axenfeld-Reiger?
It is an...anterior-segment dysgenesis

If limited to one word, what sort of condition is Axenfeld-Reiger?
It is a...neurocristopathy
Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Name two other congenital eye syndromes associated with abnormal dentition:
--Axenfeld-Rieger syndrome
--Congenital syphilis

In three words, what sort of condition is Axenfeld-Reiger?
It is an...anterior-segment dysgenesis

If limited to one word, what sort of condition is Axenfeld-Reiger?
It is a...neurocristopathy

What is the eponymous name for abnormal dentition in congenital syphilis?
Study Guide: Phakomatoses

Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Name two other congenital eye syndromes associated with abnormal dentition:
--Axenfeld-Rieger syndrome
--Congenital syphilis

In three words, what sort of condition is Axenfeld-Reiger?
It is an...anterior-segment dysgenesis

If limited to one word, what sort of condition is Axenfeld-Reiger?
It is a...neurocristopathy

What is the eponymous name for abnormal dentition in congenital syphilis?
Hutchinson’s teeth

Study Guide: Phakomatoses

Incontinentia pigmenti
-- Skin normal at birth, but **erythema** and **bullae** develop by **1 week**; only later develops the classic ‘**splashed paint**’ appearance
-- Eye finding: **1/3** will have peripheral **proliferative retinopathy** that looks just like **ROP**
---- Eye findings are usually **unilateral**
-- **2/3** will also have abnormal **dentition**

Racemose angioma
-- Characterized by AVM of **eye** and **brain**
Incontinentia pigmenti
--Skin normal at birth, but **erythema** and **bullae** develop by **1 week**; only later develops the classic ‘**splashed paint**’ appearance
--Eye finding: **1/3** will have peripheral **proliferative retinopathy** that looks just like **ROP**
-----Eye findings are usually **unilateral**
--2/3 will also have abnormal **dentition**

Racemose angioma
--Characterized by AVM of **eye** and **brain**
Study Guide: Phakomatoses

Incontinentia pigmenti
- Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
- Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
 - Eye findings are usually unilateral
- 2/3 will also have abnormal dentition

Racemose angioma
- Characterized by AVM of eye and brain

In basic terms, what is an AVM?

- A direct communication between the arterial and venous sides of the circulation; ie, without benefit of an intervening capillary bed

In RA, are the AVM of the eye unilateral or bilateral?
- Unilateral

How about the AVM of the brain?
- Also unilateral

Are the eye and brain AVM ipsilateral or contralateral with respect to one another?
- Ipsilateral

Where specifically are the AVM located in RA?
- The eye AVM are usually found in the temporal retina
- The brain AVM are usually in the midbrain
Study Guide: Phakomatoses

Racemose angioma
--Characterized by AVM of eye and brain

Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

In basic terms, what is an AVM?
A direct communication between the arterial and venous sides of the circulation; ie, without benefit of an intervening capillary bed
Racemose angioma
--Characterized by AVM of eye and brain

Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

In basic terms, what is an AVM?
A direct communication between the arterial and venous sides of the circulation; ie, without benefit of an intervening capillary bed

In RA, are the AVM of the eye unilateral or bilateral?
Racemose angioma
--Characterized by AVM of eye and brain

---Eye findings are usually unilateral

---2/3 will also have abnormal dentition

---Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP

---Eye findings are usually unilateral

---2/3 will also have abnormal dentition

---In basic terms, what is an AVM?
A direct communication between the arterial and venous sides of the circulation; ie, without benefit of an intervening capillary bed

---In RA, are the AVM of the eye unilateral or bilateral?
Unilateral

---In continentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance

--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP

---Eye findings are usually unilateral

---2/3 will also have abnormal dentition
Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Racemose angioma
--Characterized by AVM of eye and brain

In basic terms, what is an AVM?
A direct communication between the arterial and venous sides of the circulation; ie, without benefit of an intervening capillary bed

In RA, are the AVM of the eye unilateral or bilateral?
Unilateral

How about the AVM of the brain?
Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Racemose angioma
--Characterized by AVM of eye and brain

In basic terms, what is an AVM?
A direct communication between the arterial and venous sides of the circulation; ie, without benefit of an intervening capillary bed

In RA, are the AVM of the eye unilateral or bilateral? Unilateral

How about the AVM of the brain? Also unilateral
Study Guide: Phakomatoses

Racemose angioma
--Characterized by AVM of eye and brain

Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

In basic terms, what is an AVM?
A direct communication between the arterial and venous sides of the circulation; ie, without benefit of an intervening capillary bed

In RA, are the AVM of the eye unilateral or bilateral?
Unilateral

How about the AVM of the brain?
Also unilateral

Are the eye and brain AVM ipsilateral or contralateral with respect to one another?
Racemose angioma
--Characterized by AVM of **eye** and **brain**

---Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
---Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
---2/3 will also have abnormal dentition

---Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
---2/3 will also have abnormal dentition

In basic terms, what is an AVM?
A direct communication between the arterial and venous sides of the circulation; ie, without benefit of an intervening capillary bed

In RA, are the AVM of the eye unilateral or bilateral?
Unilateral

How about the AVM of the brain?
Also **unilateral**

Are the eye and brain AVM **ipsilateral** or **contralateral** with respect to one another?
Ipsilateral
Study Guide: Phakomatoses

Incontinentia pigmenti
-- Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
-- Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
---- Eye findings are usually unilateral
-- 2/3 will also have abnormal dentition

Racemose angioma
-- Characterized by AVM of eye and brain

In basic terms, what is an AVM?
A direct communication between the arterial and venous sides of the circulation; i.e., without benefit of an intervening capillary bed

In RA, are the AVM of the eye unilateral or bilateral?
Unilateral

How about the AVM of the brain?
Also unilateral

Are the eye and brain AVM ipsilateral or contralateral with respect to one another?
Ipsilateral

Where specifically are the AVM located in RA?
Racemose angioma
--Characterized by AVM of eye and brain

Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

In basic terms, what is an AVM?
A direct communication between the arterial and venous sides of the circulation; ie, without benefit of an intervening capillary bed

In RA, are the AVM of the eye unilateral or bilateral?
Unilateral

How about the AVM of the brain?
Also unilateral

Are the eye and brain AVM ipsilateral or contralateral with respect to one another?
Ipsilateral

Where specifically are the AVM located in RA?
--The eye AVM are usually found in the temporal retina
--The brain AVM are usually in the midbrain
Study Guide: Phakomatoses

Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
---Eye findings are usually unilateral
--2/3 will also have abnormal dentition

---**Racemose angioma**
--Characterized by AVM of eye and brain

---**In basic terms, what is an AVM?**
A direct communication between the arterial and venous sides of the circulation; ie, without benefit of an intervening capillary bed

---**In RA, are the AVM of the eye unilateral or bilateral?**
Unilateral

---**How about the AVM of the brain?**
Also unilateral

---**Are the eye and brain AVM ipsilateral or contralateral with respect to one another?**
Ipsilateral

---**Where specifically are the AVM located in RA?**
--The eye AVM are usually found in the temporal retina
--The brain AVM are usually in the midbrain
Racemose angioma
--Characterized by AVM of eye and brain

Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Is there some sort of fundamental relationship between the AVM of the eye and brain in RA, or is their co-existence simply a matter of happenstance?
Racemose angioma
--Characterized by AVM of eye and brain

Is there some sort of fundamental relationship between the AVM of the eye and brain in RA, or is their co-existence simply a matter of happenstance?
There is definitely a fundamental relationship between the two. This relationship stems from an abnormality of the cerebral vascular plexus of the embryo. We know this because pathologic exam has in some cases revealed the presence of a direct connection between the AVM in the eye and the AVM in the brain!

Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition
Study Guide: Phakomatoses

Incontinentia pigmenti
--Skin normal at birth, but **erythema** and **bullae** develop by **1 week**; only later develops the classic ‘splashed paint’ appearance
--Eye finding: **1/3** will have peripheral **proliferative retinopathy** that looks just like ROP
----Eye findings are usually **unilateral**
--2/3 will also have abnormal **dentition**

Racemose angioma
--Characterized by AVM of **eye** and **brain**
--Brain AVM frequently bleed, leading to **bad** and **worse**
Study Guide: Phakomatoses

Incontinentia pigmenti
--Skin normal at birth, but *erythema* and *bullae* develop by 1 week; only later develops the classic ‘splashed paint’ appearance
--Eye finding: 1/3 will have peripheral *proliferative retinopathy* that looks just like ROP
----Eye findings are usually *unilateral*
--2/3 will also have abnormal *dentition*

Racemose angioma
--Characterized by AVM of *eye* and *brain*
--Brain AVM frequently bleed, leading to *hemiparesis* and *death*
Study Guide: Phakomatoses

Incontinentia pigmenti
-- Skin normal at birth, but *erythema* and *bullae* develop by 1 week; only later develops the classic ‘*splashed paint*’ appearance
-- Eye finding: 1/3 will have peripheral *proliferative retinopathy* that looks just like *ROP*
---- Eye findings are usually *unilateral*
-- 2/3 will also have abnormal *dentition*

Racemose angioma
-- Characterized by AVM of *eye* and *brain*
-- Brain AVM frequently bleed, leading to *hemiparesis* and *death*

At what age do RA pts begin to suffer these brain bleeds?
Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic ‘splashed paint’ appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Racemose angioma
--Characterized by AVM of eye and brain
--Brain AVM frequently bleed, leading to hemiparesis and death

At what age do RA pts begin to suffer these brain bleeds?
Usually at some point from the teen years into their 20s
Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic ‘splashed paint’ appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Racemose angioma
--Characterized by AVM of eye and brain
--Brain AVM frequently bleed, leading to hemiparesis and death

What about seizures? How prevalent is seizure activity in RA?
Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic ‘splashed paint’ appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Racemose angioma
--Characterized by AVM of eye and brain
--Brain AVM frequently bleed, leading to hemiparesis and death

What about seizures? How prevalent is seizure activity in RA?
Not very--estimates run as low as 5% of cases
Study Guide: Phakomatoses

Incontinentia pigmenti
--Skin normal at birth, but *erythema* and *bullae* develop by 1 week; only later develops the classic ‘splashed paint’ appearance
--Eye finding: 1/3 will have peripheral *proliferative retinopathy* that looks just like ROP
----Eye findings are usually *unilateral*
--2/3 will also have abnormal *dentition*

Racemose angioma
--Characterized by AVM of *eye* and *brain*
--Brain AVM frequently bleed, leading to *hemiparesis* and *death*
--Retinal AVM *do/don't* leak on FA
Study Guide: Phakomatoses

Incontinentia pigmenti
-- Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic ‘splashed paint’ appearance
-- Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
---- Eye findings are usually unilateral
-- 2/3 will also have abnormal dentition

Racemose angioma
-- Characterized by AVM of eye and brain
-- Brain AVM frequently bleed, leading to hemiparesis and death
-- Retinal AVM don’t leak on FA
Racemose angioma
--Characterized by AVM of eye and brain
--Brain AVM frequently bleed, leading to hemiparesis and death
--Retinal AVM don’t leak on FA

Incontinentia pigmenti
--Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic ‘splashed paint’ appearance
--Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
----Eye findings are usually unilateral
--2/3 will also have abnormal dentition

Does this mean RA pts don’t have eye/vision trouble related to their condition?
Incontinentia pigmenti
--Skin normal at birth, but **erythema** and **bullae** develop by **1 week**; only later develops the classic ‘**splashed paint**’ appearance
--Eye finding: **1/3** will have peripheral **proliferative retinopathy** that looks just like **ROP**
----Eye findings are usually **unilateral**
--**2/3** will also have abnormal **dentition**

Racemose angioma
--Characterized by AVM of **eye** and **brain**
--Brain AVM frequently bleed, leading to hemiparesis and death
--Retinal AVM **don’t** leak on FA

Does this mean RA pts don’t have eye/vision trouble related to their condition?
Far from it. Like the AVM found in the brain, the AVM in the eye tend to bleed, thus predisposing these pts to retinal and/or vitreous hemorrhages. Some pts develop retinal ischemia, resulting in neovascularization and ultimately NVG.*
Study Guide: Phakomatoses

Incontinentia pigmenti
--Skin normal at birth, but **erythema** and **bullae** develop by 1 week; only later develops the classic 'splashed paint' appearance
--Eye finding: 1/3 will have peripheral **proliferative retinopathy** that looks just like **ROP**
----Eye findings are usually **unilateral**
--2/3 will also have abnormal **dentition**

Racemose angioma
--Characterized by AVM of eye and brain
--Brain AVM frequently bleed, leading to hemiparesis and death
--Retinal AVM don’t leak on FA

---Skin finding = ?

What about skin findings? If this condition is a phakomatosis (aka a neurocutaneous syndrome), shouldn’t the skin be affected as well?

Study Guide: Phakomatoses

Incontinentia pigmenti
-- Skin normal at birth, but erythema and bullae develop by 1 week; only later develops the classic 'splashed paint' appearance
-- Eye finding: 1/3 will have peripheral proliferative retinopathy that looks just like ROP
---- Eye findings are usually unilateral
-- 2/3 will also have abnormal dentition

Racemose angioma
-- Characterized by AVM of eye and brain
-- Brain AVM frequently bleed, leading to hemorrhages
-- Retinal AVM don't leak on FA
-- Skin finding = ?

What about skin findings? If this condition is a phakomatosis (aka a neurocutaneous syndrome), shouldn't the skin be affected as well?
It should be, and in fact it is--at least 50% of RA pts manifest angiomas, vascular nevi, etc (usually on the face). However, the skin findings are not a prominent feature of the condition.