LHON stands for Leber's hereditary optic neuropathy. LHON is more likely to affect males, despite the fact that transmission is mitochondrial. Presentation is typically unilateral; the fellow eye will almost always become affected. Onset is typically in the 2nd-4th decades, with patients complaining of:

- Acute/subacute loss of acuity to < 20/200
- Dyschromatopsia (usually red-green)
- Scotoma (usually cecocentral or central)

A

- LHON stands for *Leber’s hereditary optic neuropathy*
LHON stands for Leber’s hereditary optic neuropathy.
LHON is more likely to affect males, despite the fact that transmission is mitochondrial.
LHON stands for *Leber’s hereditary optic neuropathy*

LHON is more likely to affect *males*, despite the fact that transmission is *mitochondrial*.
LHON stands for *Leber’s hereditary optic neuropathy*

LHON is more likely to affect **males**, despite the fact that transmission is **mitochondrial**

Where does LHON rank among inherited mitochondrial diseases in terms of incidence?
LHON stands for **Leber’s hereditary optic neuropathy**.

LHON is more likely to affect **males**, despite the fact that transmission is **mitochondrial**.

Where does LHON rank among inherited mitochondrial diseases in terms of incidence? It is #1—the most common.
Q

- LHON stands for *Leber’s hereditary optic neuropathy*
- LHON is more likely to affect *males*, despite the fact that transmission is *mitochondrial*

What percentage of LHON cases are male, and what percentage are female?
On LHON

- LHON stands for *Leber’s hereditary optic neuropathy*
- LHON is more likely to affect **males**, despite the fact that transmission is **mitochondrial**

What percentage of LHON cases are male, and what percentage are female?

80-90 are male; 10-20 are female
● LHON stands for *Leber’s hereditary optic neuropathy*

● LHON is more likely to affect *males*, despite the fact that transmission is *mitochondrial*.

What percentage of LHON cases are male, and what percentage are female?
80-90 are male; 10-20 are female

How are mitochondrial disorders inherited; ie, what is the pattern?
LHON stands for Leber’s hereditary optic neuropathy.

LHON is more likely to affect males, despite the fact that transmission is mitochondrial.

What percentage of LHON cases are male, and what percentage are female?
80-90 are male; 10-20 are female.

How are mitochondrial disorders inherited; ie, what is the pattern?
Maternal; ie, women pass it along to all their biological offspring.
Q

- LHON stands for *Leber’s hereditary optic neuropathy*
- LHON is more likely to affect **males**, despite the fact that transmission is **mitochondrial**

What percentage of LHON cases are male, and what percentage are female?
80-90 are male; 10-20 are female

How are mitochondrial disorders inherited; ie, what is the pattern?
Maternal; ie, women pass it along to all their biological offspring

Why are mitochondrial diseases inherited maternally?
LHON stands for **Leber’s hereditary optic neuropathy**

LHON is more likely to affect **males**, despite the fact that transmission is **mitochondrial**.

- **What percentage of LHON cases are male, and what percentage are female?**
 - 80-90 are male; 10-20 are female

- **How are mitochondrial disorders inherited; ie, what is the pattern?**
 - Maternal; ie, women pass it along to all their biological offspring

- **Why are mitochondrial diseases inherited maternally?**
 - Because all mitochondria derive from those present in the egg at the moment of conception (ie, none are contributed by the father via the sperm)
LHON stands for *Leber’s hereditary optic neuropathy*

LHON is more likely to affect *males*, despite the fact that transmission is *mitochondrial*.

What percentage of LHON cases are male, and what percentage are female?
80-90 are male; 10-20 are female.

How are mitochondrial disorders inherited; ie, what is the pattern?
Maternal; ie, women pass it along to all their biological offspring.

Why are mitochondrial diseases inherited maternally?
Because all mitochondria derive from those present in the egg at the moment of conception (ie, none are contributed by the father via the sperm).

Given that LHON is a mitochondrial disorder, why is its strong male preponderance unusual?
On LHON

- LHON stands for **Leber’s hereditary optic neuropathy**
- LHON is more likely to affect **males**, despite the fact that transmission is **mitochondrial**

What percentage of LHON cases are male, and what percentage are female?
80-90 are male; 10-20 are female

How are mitochondrial disorders inherited; ie, what is the pattern?
Maternal; ie, women pass it along to all their biological offspring

Why are mitochondrial diseases inherited maternally?
Because all mitochondria derive from those present in the egg at the moment of conception (ie, none are contributed by the father via the sperm)

Given that LHON is a mitochondrial disorder, why is its strong male preponderance unusual?
As female offspring inherit the same genotype, they would be expected to display the phenotype at rates equal to those of males
LHON stands for Leber’s hereditary optic neuropathy.

LHON is more likely to affect males, despite the fact that transmission is mitochondrial.

What percentage of LHON cases are male, and what percentage are female?
80-90 are male; 10-20 are female.

How are mitochondrial disorders inherited; ie, what is the pattern?
Maternal; ie, women pass it along to all their biological offspring.

Why are mitochondrial diseases inherited maternally?
Because all mitochondria derive from those present in the egg at the moment of conception (ie, none are contributed by the father via the sperm).

Given that LHON is a mitochondrial disorder, why is its strong male preponderance unusual?
As female offspring inherit the same genotype, they would be expected to display the phenotype at rates equal to those of males.

OK then, so why don’t females develop LHON at the same rate as males?
Q/A

LHON stands for Leber’s hereditary optic neuropathy
LHON is more likely to affect males, despite the fact that transmission is mitochondrial

What percentage of LHON cases are male, and what percentage are female?
80-90 are male; 10-20 are female

How are mitochondrial disorders inherited; ie, what is the pattern?
Maternal; ie, women pass it along to all their biological offspring

Why are mitochondrial diseases inherited maternally?
Because all mitochondria derive from those present in the egg at the moment of conception (ie, none are contributed by the father via the sperm)

Given that LHON is a mitochondrial disorder, why is its strong male preponderance unusual?
As female offspring inherit the same genotype, they would be expected to display the phenotype at rates equal to those of males

OK then, so why don’t females develop LHON at the same rate as males?
This is not yet known, but estrogen seems to play a protective role
LHON stands for *Leber’s hereditary optic neuropathy*

LHON is more likely to affect **males**, despite the fact that transmission is **mitochondrial**

What percentage of LHON cases are male, and what percentage are female?
80-90 are male; 10-20 are female

How are mitochondrial disorders inherited; i.e., what is the pattern?
Maternal; i.e., women pass it along to all their biological offspring

Why are mitochondrial diseases inherited maternally?
Because all mitochondria derive from those present in the egg at the moment of conception (i.e., none are contributed by the father via the sperm)

Given that LHON is a mitochondrial disorder, why is its strong male preponderance unusual?
As female offspring inherit the same genotype, they would be expected to display the phenotype at rates equal to those of males

OK then, so why don’t females develop LHON at the same rate as males?
This is not yet known, but estrogen seems to play a protective role
LHON stands for *Leber’s hereditary optic neuropathy*. LHON is more likely to affect *males*, despite the fact that transmission is *mitochondrial*. Presentation is typically unilateral; the fellow eye will almost always become affected.
LHON stands for *Leber’s hereditary optic neuropathy*

LHON is more likely to affect **males**, despite the fact that transmission is **mitochondrial**

Presentation is typically unilateral; the fellow eye will almost **always** become affected
Q

- LHON stands for *Leber’s hereditary optic neuropathy*.
- LHON is more likely to affect males, despite the fact that transmission is *mitochondrial*.
- Presentation is typically unilateral; the fellow eye will almost *always* become affected.

What is the typical time interval between initial and fellow-eye presentation?
Q/A

- LHON stands for Leber’s hereditary optic neuropathy
- LHON is more likely to affect males, despite the fact that transmission is mitochondrial
- Presentation is typically unilateral; the fellow eye will almost always become affected

What is the typical time interval between initial and fellow-eye presentation? Week to months

Are there cases in which the interval has been much longer—say, years? Yes, intervals as long as 8 years have been reported
LHON stands for Leber’s hereditary optic neuropathy.

LHON is more likely to affect males, despite the fact that transmission is mitochondrial.

Presentation is typically unilateral; the fellow eye will almost always become affected.

What is the typical time interval between initial and fellow-eye presentation? Weeks to months.
LHON stands for *Leber’s hereditary optic neuropathy*. LHON is more likely to affect males, despite the fact that transmission is mitochondrial. Presentation is typically unilateral; the fellow eye will almost always become affected.

On LHON

What is the typical time interval between initial and fellow-eye presentation?
Weeks to months

Are there cases in which the interval has been much longer—say, years?
Q/A

On LHON

- LHON stands for *Leber’s hereditary optic neuropathy*
- LHON is more likely to affect males, despite the fact that transmission is *mitochondrial*
- Presentation is typically unilateral; the fellow eye will almost always become affected

What is the typical time interval between initial and fellow-eye presentation? Weeks to months

Are there cases in which the interval has been much longer—say, years? Yes, intervals as long as # years have been reported
A

On LHON

- LHON stands for *Leber’s hereditary optic neuropathy*
- LHON is more likely to affect males, despite the fact that transmission is mitochondrial
- Presentation is typically unilateral; the fellow eye will almost **always** become affected

What is the typical time interval between initial and fellow-eye presentation?
Weeks to months

Are there cases in which the interval has been much longer—say, years?
Yes, intervals as long as 8 years have been reported
LHON stands for *Leber’s hereditary optic neuropathy*

LHON is more likely to affect **males**, despite the fact that transmission is **mitochondrial**

Presentation is typically unilateral; the fellow eye will almost **always** become affected

Onset is typically in the **2nd - 4th** decades
On LHON

- LHON stands for *Leber’s hereditary optic neuropathy*
- LHON is more likely to affect *males*, despite the fact that transmission is *mitochondrial*.
- Presentation is typically unilateral; the fellow eye will almost *always* become affected.
- Onset is typically in the 2nd-4th decades.
LHON stands for Leber’s hereditary optic neuropathy.

LHON is more likely to affect males, despite the fact that transmission is mitochondrial.

Presentation is typically unilateral; the fellow eye will almost always become affected.

Onset is typically in the 2nd-4th decades.

What is the typically-cited age range of onset?
LHON stands for *Leber’s hereditary optic neuropathy*. LHON is more likely to affect males, despite the fact that transmission is mitochondrial. Presentation is typically unilateral; the fellow eye will almost always become affected. Onset is typically in the 2nd-4th decades.

What is the typically-cited age range of onset?
10-30
LHON stands for *Leber’s hereditary optic neuropathy*

LHON is more likely to affect males, despite the fact that transmission is mitochondrial.

Presentation is typically unilateral; the fellow eye will almost always become affected.

Onset is typically in the 2nd-4th decades

What is the typically-cited age range of onset?
10-30

How old at onset were the youngest and oldest confirmed cases?
Youngest:
Oldest:
LHON stands for *Leber’s hereditary optic neuropathy*

LHON is more likely to affect males, despite the fact that transmission is *mitochondrial.*

Presentation is typically unilateral; the fellow eye will almost *always* become affected.

Onset is typically in the 2nd-4th decades

What is the typically-cited age range of onset?
10-30

How old at onset were the youngest and oldest confirmed cases?
Youngest: 1 year old
Oldest: 80
LHON stands for Leber’s hereditary optic neuropathy.

LHON is more likely to affect males, despite the fact that transmission is mitochondrial.

Presentation is typically unilateral; the fellow eye will almost always become affected.

Onset is typically in the 2nd-4th decades, with patients complaining of:
- Acute/subacute loss of acuity to < Snellen VA
LHON stands for *Leber’s hereditary optic neuropathy*

LHON is more likely to affect *males*, despite the fact that transmission is *mitochondrial*

Presentation is typically unilateral; the fellow eye will almost *always* become affected

Onset is typically in the *2nd*-*4th* decades, with patients complaining of:

- Acute/subacute loss of acuity to < *20/200*
Q

- LHON stands for *Leber’s hereditary optic neuropathy*
- LHON is more likely to affect males, despite the fact that transmission is mitochondrial
- Presentation is typically unilateral; the fellow eye will almost always become affected
- Onset is typically in the 2nd-4th decades, with patients complaining of:
 - Acute/subacute loss of acuity to < **20/200**
 - *Is the vision loss irreversible?*
LHON stands for **Leber’s hereditary optic neuropathy**.

LHON is more likely to affect males, despite the fact that transmission is *mitochondrial*.

Presentation is typically unilateral; the fellow eye will *always* become affected.

Onset is typically in the 2nd-4th decades, with patients complaining of:

- Acute/subacute loss of acuity to < 20/200

Is the vision loss irreversible?

In most cases, yes. But a subset of pts demonstrate spontaneous improvement.
LHON stands for Leber’s hereditary optic neuropathy.

LHON is more likely to affect males, despite the fact that transmission is mitochondrial.

Presentation is typically unilateral; the fellow eye will almost always become affected.

Onset is typically in the 2nd-4th decades, with patients complaining of:
- Acute/subacute loss of acuity to < 20/200
- Dyschromatopsia (usually red-green)
- Scotoma (usually cecocentral or central)

Is the vision loss irreversible? In most cases, yes. But a subset of pts demonstrate spontaneous improvement.

What percent of cases comprise this fortunate subset?
- LHON stands for *Leber’s hereditary optic neuropathy*
- LHON is more likely to affect males, despite the fact that transmission is mitochondrial.
- Presentation is typically unilateral; the fellow eye will almost always become affected.
- Onset is typically in the 2nd-4th decades, with patients complaining of:
 - Acute/subacute loss of acuity to < 20/200
 - Dyschromatopsia (usually red-green)
 - Scotoma (usually cecocentral or central)
- *On LHON*
 - Is the vision loss irreversible? In most cases, yes. But a subset of pts demonstrate spontaneous improvement.
 - What percent of cases comprise this fortunate subset? 10-20
LHON stands for **Leber’s hereditary optic neuropathy**

LHON is more likely to affect **males**, despite the fact that transmission is **mitochondrial**

Presentation is typically unilateral; the fellow eye will almost **always** become affected

Onset is typically in the **2nd-4th** decades, with patients complaining of:

- Acute/subacute loss of acuity to < **20/200**
- Scotoma (usually **location in VF**)

Q
LHON stands for Leber’s hereditary optic neuropathy.

LHON is more likely to affect males, despite the fact that transmission is mitochondrial.

Presentation is typically unilateral; the fellow eye will almost always become affected.

Onset is typically in the 2nd-4th decades, with patients complaining of:

- Acute/subacute loss of acuity to < 20/200
- Scotoma (usually cecocentral or central)
Q

- LHON stands for *Leber’s hereditary optic neuropathy*
- LHON is more likely to affect males, despite the fact that transmission is mitochondrial
- Presentation is typically unilateral; the fellow eye will almost always become affected
- Onset is typically in the 2nd-4th decades, with patients complaining of:
 - Acute/subacute loss of acuity to < 20/200
 - Scotoma (usually cecocentral or central)
 - Dyschromatopsia (usually red-green vs blue-yellow)
LHON stands for *Leber’s hereditary optic neuropathy*

LHON is more likely to affect **males**, despite the fact that transmission is **mitochondrial**

Presentation is typically unilateral; the fellow eye will almost **always** become affected

Onset is typically in the **2nd-4th** decades, with patients complaining of:

- Acute/subacute loss of acuity to < **20/200**
- Scotoma (usually **ceccocentral or central**)
- Dyschromatopsia (usually **red-green**)

A

On LHON
LHON stands for Leber’s hereditary optic neuropathy.
LHON is more likely to affect males, despite the fact that transmission is mitochondrial.
Presentation is typically unilateral; the fellow eye will almost always become affected.
Onset is typically in the 2nd-4th decades, with patients complaining of:
- Acute/subacute loss of acuity to < 20/200
- Scotoma (usually cecocentral or central)
- Dyschromatopsia (usually red-green)

Red-green!!?? I thought red-green was the inherited defect and blue-yellow the acquired defect. What gives?
LHON stands for Leber’s hereditary optic neuropathy.

LHON is more likely to affect males, despite the fact that transmission is mitochondrial.

Presentation is typically unilateral; the fellow eye will almost always become affected.

Onset is typically in the 2nd-4th decades, with patients complaining of:

- Acute/subacute loss of acuity to < 20/200
- Scotoma (usually cecocentral or central)
- Dyschromatopsia (usually red-green)

Red-green!!?? I thought red-green was the inherited defect and blue-yellow the acquired defect. What gives?

Color deficiency issues are a real pain. It is true that the majority of inherited defects are red-green, and the vast majority of blue-yellow defects are acquired. However, a significant proportion of acquired defects are red-green, not blue-yellow. Thus, if a patient has a blue-yellow defect, it is most assuredly acquired. On the other hand, a red-green defect can be either acquired or congenital.
LHON stands for *Leber’s hereditary optic neuropathy*. LHON is more likely to affect males, despite the fact that transmission is mitochondrial. Presentation is typically unilateral; the fellow eye will almost always become affected. Onset is typically in the 2nd-4th decades, with patients complaining of:
- Acute/subacute loss of acuity to < 20/200
- Scotoma (usually cecocentral or central)
- Dyschromatopsia (usually *red-green*)

Red-green!!?? I thought *red-green* was the inherited defect and *blue-yellow* the acquired defect. What gives? Color deficiency issues are a real pain. It is true that the majority of inherited defects are *red-green*, and the vast majority of *blue-yellow* defects are acquired. However, a significant proportion of acquired defects are *red-green*, not *blue-yellow*. Thus, if a patient has a *blue-yellow* defect, it is most assuredly acquired. On the other hand, a *red-green* defect can be either acquired or congenital.

How can you tell if a red-green deficiency is acquired?
1)
2)
3)
4)
On LHON

- LHON stands for *Leber’s hereditary optic neuropathy*
- LHON is more likely to affect males, despite the fact that transmission is mitochondrial
- Presentation is typically unilateral; the fellow eye will almost always become affected
- Onset is typically in the 2nd-4th decades, with patients complaining of:
 - Acute/subacute loss of acuity to < 20/200
 - Scotoma (usually cecocentral or central)
 - Dyschromatopsia (usually red-green)

\textbf{Red-green!!??} I thought red-green was the inherited defect and blue-yellow the acquired defect. What gives? Color deficiency issues are a real pain. It is true that the majority of inherited defects are red-green, and the vast majority of blue-yellow defects are acquired. However, a significant proportion of acquired defects are red-green, not blue-yellow. Thus, if a patient has a blue-yellow defect, it is most assuredly acquired. On the other hand, a red-green defect can be either acquired or congenital.

\textit{How can you tell if a red-green deficiency is acquired?}
1) If it is in one eye only
2) If the patient is female (females can have inherited red-green defects, but it is highly unusual)
3) If it is sectoral (i.e., one portion of the visual field is desaturated compared to others)
4) The clinical setting; i.e., if the patient is complaining of decreased acuity, field loss, pain with movement, etc
Q

- Classic DFE findings:
 - ONH...
 - ONH...
 -
A

- Classic DFE findings:
 - ONH...telangiectasias
 - ONH...pseudoedema
Classic DFE findings:
- ONH…telangiectasias
- ONH…pseudoedema
- Retinal arteriolar…
Classic DFE findings:
- ONH…telangiectasias
- ONH…pseudoedema
- Retinal arteriolar…tortuosity
Classic DFE findings:
- ONH...telangiectasias
- ONH...pseudoedema
- Retinal arteriolar...tortuosity

Cardiac co-morbidity: eponym-eponym-eponym
● Classic DFE findings:
 ● ONH...telangiectasias
 ● ONH...pseudoedema
 ● Retinal arteriolar...tortuosity

● Cardiac co-morbidity: Wolf-Parkinson-White
Classic DFE findings:
- ONH...telangiectasias
- ONH...pseudoedema
- Retinal arteriolar...tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

What is WPW?
Classic DFE findings:
- ONH...telangiectasias
- ONH...pseudoedema
- Retinal arteriolar...tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

What is WPW?
An abnormality of cardiac conduction
Classic DFE findings:
- ONH...telangiectasias
- ONH...pseudoedema
- Retinal arteriolar...tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

What is WPW?
An abnormality of cardiac conduction

What are the classic EKG findings in WPW?
-- The PR interval is abnormally... [long vs short]
--
--
Classic DFE findings:
- ONH...telangiectasias
- ONH...pseudoedema
- Retinal arteriolar...tortuosity

Cardiac co-morbidity: **Wolf-Parkinson-White**

What is WPW?
An abnormality of cardiac conduction

What are the classic EKG findings in WPW?
--The PR interval is abnormally...short
On LHON

- Classic DFE findings:
 - ONH...telangiectasias
 - ONH...pseudoedema
 - Retinal arteriolar...tortuosity

- Cardiac co-morbidity: **Wolf-Parkinson-White**

What is WPW?
An abnormality of cardiac **conduction**

What are the classic EKG findings in WPW?
-- The PR interval is abnormally...**short**
-- The QRS complex is abnormally...[**wide vs narrow**]
On LHON

- Classic DFE findings:
 - ONH...telangiectasias
 - ONH...pseudoedema
 - Retinal arteriolar...tortuosity
- Cardiac co-morbidity: Wolf-Parkinson-White

What is WPW?
An abnormality of cardiac **conduction**

What are the classic EKG findings in WPW?
--The PR interval is abnormally...**short**
--The QRS complex is abnormally...**wide**
- Classic DFE findings:
 - ONH...telangiectasias
 - ONH...pseudoedema
 - Retinal arteriolar...tortuosity
- Cardiac co-morbidity: Wolf-Parkinson-White

What is WPW?
An abnormality of cardiac conduction

What are the classic EKG findings in WPW?
--The PR interval is abnormally...short
--The QRS complex is abnormally...wide
--The QRS complex onset is...[classic descriptor]
Classic DFE findings:
- ONH...telangiectasias
- ONH...pseudoedema
- Retinal arteriolar...tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

What is WPW?
An abnormality of cardiac conduction

What are the classic EKG findings in WPW?
-- The PR interval is abnormally...short
-- The QRS complex is abnormally...wide
-- The QRS complex onset is...‘slurred’
Classic DFE findings:
- ONH...telangiectasias
- ONH...pseudoedema
- Retinal arteriolar...tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

What is WPW?
An abnormality of cardiac **conduction**

What are the classic EKG findings in WPW?
- The PR interval is abnormally...**short**
- The QRS complex is abnormally...**wide**
- The QRS complex onset is...‘**slurred’**

WPW renders pts prone to what abnormal rhythm?
Classic DFE findings:
- ONH…telangiectasias
- ONH…pseudoedema
- Retinal arteriolar…tortuosity

Cardiac co-morbidity: **Wolf-Parkinson-White**

What is WPW?
An abnormality of cardiac **conduction**

What are the classic EKG findings in WPW?
-- *The PR interval is abnormally…short*
-- *The QRS complex is abnormally…wide*
-- *The QRS complex onset is…‘slurred’*

WPW renders pts prone to what abnormal rhythm?
Supraventricular tachycardia (SVT)
Q

- Classic DFE findings:
 - ONH…telangiectasias
 - ONH…pseudoedema
 - Retinal arteriolar…tortuosity

- Cardiac co-morbidity: Wolf-Parkinson-White

- Diagnosis: Blood assay for...
Classic DFE findings:
- ONH...telangiectasias
- ONH...pseudoedema
- Retinal arteriolar...tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

Diagnosis: Blood assay for mDNA mutation
Classic DFE findings:
- ONH…telangiectasias
- ONH…pseudoedema
- Retinal arteriolar…tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

Diagnosis: Blood assay for mDNA mutation

What are the genetic positions for the three most common mutations?

- 11778
- 3460
- 14484

11778 is most common.

11778 is associated with the poorest ultimate vision.

11778 carries the lowest likelihood of spontaneous visual recovery.
Classic DFE findings:
- ONH...telangiectasias
- ONH...pseudoedema
- Retinal arteriolar...tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

Diagnosis: Blood assay for mDNA mutation

What are the genetic positions for the three most common mutations? 11778, 3460 and 14484
Classic DFE findings:
- ONH…telangiectasias
- ONH…pseudoedema
- Retinal arteriolar…tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

Diagnosis: Blood assay for mDNA mutation

Q

- What are the genetic positions for the three most common mutations?
 11778, 3460 and 14484

- Which is most common?
 11778

- Which is associated with the poorest ultimate vision?
 11778

- Which carries the lowest likelihood of spontaneous visual recovery?
 11778
A

- Classic DFE findings:
 - ONH...telangiectasias
 - ONH...pseudoedema
 - Retinal arteriolar...tortuosity
- Cardiac co-morbidity: Wolf-Parkinson-White
- Diagnosis: Blood assay for mDNA mutation

On LHON

What are the genetic positions for the three most common mutations?
11778, 3460 and 14484

Which is most common?
11778

Which is associated with the poorest ultimate vision?
11778

Which carries the lowest likelihood of spontaneous visual recovery?
11778
Classic DFE findings:
- ONH...telangiectasias
- ONH...pseudoedema
- Retinal arteriolar...tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

Diagnosis: Blood assay for mDNA mutation

What are the genetic positions for the three most common mutations? 11778, 3460 and 14484

Which is most common? 11778

Which is associated with the poorest ultimate vision?
Classic DFE findings:
- ONH...telangiectasias
- ONH...pseudoedema
- Retinal arteriolar...tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

Diagnosis: Blood assay for mDNA mutation

On LHON

What are the genetic positions for the three most common mutations?
11778, 3460 and 14484

Which is most common?
11778

Which is associated with the poorest ultimate vision?
11778
Classic DFE findings:
- ONH…telangiectasias
- ONH…pseudoedema
- Retinal arteriolar…tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

Diagnosis: Blood assay for mDNA mutation

What are the genetic positions for the three most common mutations?
11778, 3460 and 14484

Which is most common?
11778

Which is associated with the poorest ultimate vision?
11778

Which carries the lowest likelihood of spontaneous visual recovery?
A

On LHON

- Classic DFE findings:
 - ONH…telangiectasias
 - ONH…pseudoedema
 - Retinal arteriolar…tortuosity
- Cardiac co-morbidity: Wolf-Parkinson-White
- Diagnosis: Blood assay for mDNA mutation

What are the genetic positions for the three most common mutations?
11778, 3460 and 14484

Which is most common?
11778

Which is associated with the poorest ultimate vision?
11778

Which carries the lowest likelihood of spontaneous visual recovery?
11778
Classic DFE findings:
- ONH...telangiectasias
- ONH...pseudoedema
- Retinal arteriolar...tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

Diagnosis: Blood assay for mDNA mutation

On LHON

What are the genetic positions for the three most common mutations?
11778, 3460 and 14484

Which is most common?
11778

Which is associated with the poorest ultimate vision?
11778

Which carries the lowest likelihood of spontaneous visual recovery?
11778
Classic DFE findings:
- ONH...telangiectasias
- ONH...pseudoedema
- Retinal arteriolar...tortuosity

Cardiac co-morbidity: Wolf-Parkinson-White

Diagnosis: Blood assay for **mDNA mutation**

On LHON

What are the genetic positions for the three most common mutations?
11778, 3460 and 14484

Which is most common?
11778

Which is associated with the poorest ultimate vision?
11778

Which carries the lowest likelihood of spontaneous visual recovery?
14484

highest

Which carries the lowest likelihood of spontaneous visual recovery?
14484
- Classic DFE findings:
 - ONH...telangiectasias
 - ONH...pseudoedema
 - Retinal arteriolar...tortuosity
- Cardiac co-morbidity: Wolf-Parkinson-White
- Diagnosis: Blood assay for mDNA mutation
- Treatment:
On LHON

- Classic DFE findings:
 - ONH...telangiectasias
 - ONH...pseudoedema
 - Retinal arteriolar...tortuosity
- Cardiac co-morbidity: Wolf-Parkinson-White
- Diagnosis: Blood assay for mDNA mutation
- Treatment: None, unfortunately