## Optics Quiz 3

## This quiz is intended to be taken after completion of Chapters 10-15

Note: Some questions herein may have appeared first in a copyrighted source. If you own the copyright to a question and would like an acknowledgement or to have the question removed, please contact me EyeDentistAAO@gmail.com

No, you can't use a calculator (and you don't need one anyway)

Note that some questions are callbacks from previous quizzes

Draw the appropriate error lens (if any) within each eye

The Hyperopic Eye

The Emmetropic Eye

The Myopic Eye


Draw the appropriate error lens (if any) within each eye

The Hyperopic Eye

The Emmetropic Eye

The Myopic Eye


A pt is a +2 hyperope. He is capable of a total of 6D of accommodation. Absent corrective lenses or surgery: a) Where is his near point relative to the corneal plane?
b) His range of clear vision is from where to where?

## A pt is a +2 hyperope. He is capable of a total of 6D of

 accommodation. Absent corrective lenses or surgery: a) Where is his near point relative to the corneal plane? b) His range of clear vision is from where to where?a) To see clearly at distance, this +2 hyperope must first employ 2D of accommodation. To focus at his near point, he will crank in the remaining 4D of accommodation. Thus he will be focused at $1 / 4=.25 \mathrm{~m}(25 \mathrm{~cm})$ anterior to the corneal plane.

A pt is a +2 hyperope. He is capable of a total of $6 D$ of accommodation. Absent corrective lenses or surgery: a) Where is his near point relative to the corneal plane?
b) His range of clear vision is from where to where?
a) To see clearly at distance, this +2 hyperope must first employ 2D of accommodation.

To focus at his near point, he will crank in the remaining 4D of accommodation. Thus he
will be focused at $1 / 4=.25 \mathrm{~m}(25 \mathrm{~cm})$ anterior to the corneal plane.
b) His range of clear vision is from infinity to 25 cm anterior to the corneal plane.

A pt is a -2 myope. She is capable of a total of 3D of accommodation. Absent corrective lenses or surgery: a) Where is her near point relative to the corneal plane?
b) Her range of clear vision is from where to where?

A pt is a -2 myope. She is capable of a total of 3D of accommodation. Absent corrective lenses or surgery: a) Where is her near point relative to the corneal plane?
b) Her range of clear vision is from where to where?
a) This pt has a +2 error lens. When she cranks in her 3D of accommodative ability, she has a total of +5 D in play. This puts her near point at $1 / 5=0.20 \mathrm{~m}(20 \mathrm{~cm})$ anterior to the corneal plane.

> A pt is a -2 myope. She is capable of a total of 3D of accommodation. Absent corrective lenses or surgery: a) Where is her near point relative to the corneal plane?
> b) Her range of clear vision is from where to where?
a) This pt has a +2 error lens. When she cranks in her 3D of accommodative ability, she has a total of +5 D in play. This puts her near point at $1 / 5=0.20 \mathrm{~m}(20 \mathrm{~cm})$ anterior to the corneal plane.
b) Because of her error lens, this pt cannot see clearly at distance. The farthest point at which she can see clearly is her far point, which is located at $1 / 2=0.50 \mathrm{~m}(50 \mathrm{~cm})$ anterior to the corneal plane. As noted above, her near point is at 20 cm . Therefore, her range of clear vision is from 50 to 20 cm anterior to the corneal plane.

Complete the drawing to indicate how the point-atinfinity would be imaged by the cylinder


Complete the drawing to indicate how the point-atinfinity would be imaged by the cylinder
the point-source is focused as a line parallel to the axis of the cylinder.

One of these cylinders has a dioptric power of +2 ; the other, +1 .
a) Which is which?
b) How can you tell?
c) For each, label the axis of power and the meridian of power


One of these cylinders has a dioptric power of +2 ; the other, +1 . a) Which is which?
b) How can you tell?
c) For each, label the axis of power and the meridian of power


One of these cylinders has a dioptric power of +2 ; the other, +1 .

## a) Which is which?

b) How can you tell?
c) For each, label the axis of power and the meridian of power
b) The more steeply curved cylinder must be the higher-power one.


One of these cylinders has a dioptric power of +2 ; the other, +1 .

## a) Which is which?

b) How can you tell?
c) For each, label the axis of power and the meridian of power
b) The more steeply curved cylinder must be the higher-power one. Another way to know: The one with the shorter radius-of-curvature is more plus.
+1D


One of these cylinders has a dioptric power of +2 ; the other, +1 .
a) Which is which?
b) How can you tell?
c) For each, label the axis of power and the meridian of power
b) The more steeply curved cylinder must be the higher-power one. Another way to know: The one with the shorter radius-of-curvature is more plus.


Meridian of power


Complete the drawing by sketching the Conoid of Sturm. Indicate:
a) The locations of the focal lines (make sure you're clear re the orientation of each)
b) The lens<->line distance for each focal line
c) The location of the Circle of Least Confusion (CoLC)
d) The lens<->CoLC distance
e) What is the spherical equivalent for this lens?
(Note: The arrows are pointing to the meridia of power, not the axes)


Complete the drawing by sketching the Conoid of Sturm. Indicate:
a) The locations of the focal lines (make sure you're clear re the orientation of each)
b) The lens<->line distance for each focal line
c) The location of the Circle of Least Confusion (CoLC)
d) The lens<->CoLC distance
e) What is the spherical equivalent for this lens?
(Note: The arrows are pointing to the meridia of power, not the axes)


Complete the drawing by sketching the Conoid of Sturm. Indicate:
a) The locations of the focal lines (make sure you're clear re the orientation of each)
b) The lens<->line distance for each focal line
c) The location of the Circle of Least Confusion (CoLC)
d) The lens<->CoLC distance
e) What is the spherical equivalent for this lens?
(Note: The arrows are pointing to the meridia of power, not the axes)


Complete the drawing by sketching the Conoid of Sturm. Indicate:
a) The locations of the focal lines (make sure you're clear re the orientation of each)
b) The lens<->line distance for each focal line
c) The location of the Circle of Least Confusion (CoLC)
d) The lens<->CoLC distance
e) What is the spherical equivalent for this lens?
(Note: The arrows are pointing to the meridia of power, not the axes)


Complete the drawing by sketching the Conoid of Sturm. Indicate:
a) The locations of the focal lines (make sure you're clear re the orientation of each)
b) The lens<->line distance for each focal line
c) The location of the Circle of Least Confusion (CoLC)
d) The lens<->CoLC distance
e) What is the spherical equivalent for this lens?
(Note: The arrows are pointing to the meridia of power, not the axes)


Complete the drawing by sketching the Conoid of Sturm. Indicate:
a) The locations of the focal lines (make sure you're clear re the orientation of each)
b) The lens<->line distance for each focal line
c) The location of the Circle of Least Confusion (CoLC)
d) The lens<->CoLC distance
e) What is the spherical equivalent for this lens?
(Note: The arrows are pointing to the meridia of power, not the axes)


Complete the drawing by sketching the Conoid of Sturm. Indicate:
a) The locations of the focal lines (make sure you're clear re the orientation of each)
b) The lens<->line distance for each focal line
c) The location of the Circle of Least Confusion (CoLC)
d) The lens<->CoLC distance
e) What is the spherical equivalent for this lens?
(Note: The arrows are pointing to the meridia of power, not the axes)


Identify the types of astigmatism


Types of Astigmatism


## Identify the types of astigmatism



Compound Myopic


Simple Myopic


Mixed

Types of Astigmatism


Simple Hyperopic


Compound Hyperopic

Fill in the blanks
--A Jackson cross lens is a spherocylindrical lens containing ___ cylinders of powers oriented

Fill in the blanks
--A Jackson cross lens is a spherocylindrical lens containing plus and minus cylinders of equal-but-opposite powers oriented $90^{\circ}$ apart

Fill in the blanks
--A Jackson cross lens is a spherocylindrical lens containing plus and minus cylinders of equal-but-opposite powers oriented $90^{\circ}$ apart
--A Jackson cross lens has a spherical equivalent power of

Fill in the blanks
--A Jackson cross lens is a spherocylindrical lens containing plus and minus cylinders of equal-but-opposite powers oriented $90^{\circ}$ apart
--A Jackson cross lens has a spherical equivalent power of zero

Fill in the blanks, and short answer
--A Jackson cross lens is a spherocylindrical lens containing plus and minus cylinders of equal-but-opposite powers oriented $90^{\circ}$ apart
--A Jackson cross lens has a spherical equivalent power of zero
--When placed before an astigmatic eye, what effect does a Jackson cross lens have on the location of the Circle of Least Confusion?

Fill in the blanks, and short answer
--A Jackson cross lens is a spherocylindrical lens containing plus and minus cylinders of equal-but-opposite powers oriented $90^{\circ}$ apart
--A Jackson cross lens has a spherical equivalent power of zero
--When placed before an astigmatic eye, what effect does a Jackson cross lens have on the location of the Circle of Least Confusion?
None (ie, the CoLC will not move)

## Fill in the blanks

|  | Retinoscopic | Jackson Cross |
| :---: | :---: | :---: |
| Step 1 | Use sphere to place <br> on the retina | Use sphere to place the <br> Step 2 <br> ResultUse cylinder to place the retina <br> on the retina |

## Fill in the blanks

\(\left.$$
\begin{array}{|c|c|c|}\hline & \text { Retinoscopic } & \text { Jackson Cross } \\
\hline \text { Step 1 } & \begin{array}{c}\text { Use sphere to place } \\
\text { one focal line } \\
\text { on the retina }\end{array} & \begin{array}{c}\text { Use sphere to place the } \\
\text { Circle of Least Confusion }\end{array}
$$ <br>

\hline Step the retina\end{array}\right] \left.\)| Use cylinder to place the |
| :---: |
| other focal line |
| on the retina |$\quad$| Use cross to simultaneously |
| :---: |
| collapse both focal lines | \right\rvert\,

Determine the type of astigmatism present for each of the following refractions:
$+3.0-2.0 \times 080$
$+1.0-4.0 \times 080$
$-5.0+9.0 \times 090$
$-2.5+1.5 \times 120$

## Determine the type of astigmatism present for each of the following refractions:

+3.0-2.0 x 080
$+1.0-4.0 \times 080$
$-5.0+9.0 \times 090$
$-2.5+1.5 \times 120$

In plus cylinder: $+1.0+2.0 \times 170$. The spherical component is plus in both plus- and minus-cylinder formats; therefore, it is compound hyperopia

In plus cylinder: $-3.0+4.0 \times 170$. The spherical component is minus in pluscyl but plus in minus-cyl formats; therefore, it is mixed astigmatism

In minus cyl: $+4.0-9.0 \times 180$. The spherical component is minus in pluscyl but plus in minus-cyl formats; therefore, it is mixed astigmatism

In minus cyl: -1.0-1.5 x 030. The spherical component is minus in both plus- and minus-cyl formats; therefore, it is compound myopia

## Fill in the blanks

--With-the-rule astigmatism: Cornea is shaped like a football
--Against-the-rule astigmatism: Cornea is shaped like a football

## Fill in the blanks

--With-the-rule astigmatism: Cornea is shaped like a football lying on the ground
--Against-the-rule astigmatism: Cornea is shaped like a football standing on a tee

## Fill in the blanks, and short answer

--With-the-rule astigmatism: Cornea is shaped like a football lying on the ground
--Against-the-rule astigmatism: Cornea is shaped like a football standing on a tee
--Which is more common in...
a) Young people?
b) The elderly?

## Fill in the blanks, and short answer

--With-the-rule astigmatism: Cornea is shaped like a football lying on the ground
--Against-the-rule astigmatism: Cornea is shaped like a football standing on a tee
--Which is more common in...
a) Young people? With-the-rule
b) The elderly? Against-the-rule

## Fill in the blanks

What's the difference between a power cross and a prescription?
A prescription is written in
form, whereas a power cross is written in
$\square$ form.

Fill in the blanks

What's the difference between a power cross and a prescription?
A prescription is written in spherocylindrical form, whereas a power cross is written in cylinder form.

## Fill in the blank

When performing retinoscopy in plus cyl, most will first get to a state of before introducing the correcting cylinder.
(fill in the blank with a type of astigmatism)

## Fill in the blank

When performing retinoscopy in plus cyl, most will first get to a state of simple hyperopic astigmatism before introducing the correcting cylinder.
(fill in the blank with a type of astigmatism)

