Is retinal vein occlusion (RVO) an embolic condition?
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis

In CRVO, where does thrombosis typically occur?
Thrombosis or
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure.

In CRVO, where does thrombosis typically occur?
At the lamina cribrosa, or just posterior to it.

In BRVO, at what type of location does thrombosis typically occur?
At an A-V crossing point.
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure.

In CRVO, where does thrombosis typically occur?
At the lamina cribrosa, or just posterior to it.

In BRVO, at what type of location does thrombosis typically occur?
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis

In CRVO, where does thrombosis typically occur?
At the lamina cribrosa, or just posterior to it

In BRVO, at what type of location does thrombosis typically occur?
At an A-V crossing point
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis

In CRVO, where does thrombosis typically occur?
At the lamina cribrosa, or just posterior to it

In BRVO, at what type of location does thrombosis typically occur?

At an A-V crossing point

What should you consider if a BRVO occurs at a non-crossing point?
Q/A

Is retinal vein occlusion (RVO) an embolic condition?

No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?

Thrombosis

In CRVO, where does thrombosis typically occur?

At the lamina cribrosa, or just posterior to it

In BRVO, at what type of location does thrombosis typically occur?

At an A-V crossing point

What should you consider if a BRVO occurs at a non-crossing point?

You should consider whether the pt has some form of inflammatory condition
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis

In CRVO, where does thrombosis typically occur?
At the lamina cribrosa, or just posterior to it

In BRVO, at what type of location does thrombosis typically occur?
At an A-V crossing point

What should you consider if a BRVO occurs at a non-crossing point?
You should consider whether the pt has some form of inflammatory condition
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis

In CRVO, where does thrombosis typically occur?
At the lamina cribrosa, or just posterior to it

In BRVO, at what type of location does thrombosis typically occur?
At an A-V crossing point

What should you consider if a BRVO occurs at a non-crossing point?
You should consider whether the pt has some form of inflammatory condition, eg, a [] or a []
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis

In CRVO, where does thrombosis typically occur?
At the lamina cribrosa, or just posterior to it

In BRVO, at what type of location does thrombosis typically occur?
At an A-V crossing point

What should you consider if a BRVO occurs at a non-crossing point?
You should consider whether the pt has some form of inflammatory condition, eg, a retinochoroiditis or a vasculitis
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. HTN is mos def a risk factor for all forms of RVO
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. **HTN is mos def a risk factor for all forms of RVO**

In a sense, HTN is a ‘double risk factor.’ What sense is being referred to here?
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. **HTN is mos def a risk factor for all forms of RVO**

In a sense, HTN is a ‘double risk factor.’ What sense is being referred to here?
In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. **HTN is mos def a risk factor for all forms of RVO**

In a sense, HTN is a ‘double risk factor.’ What sense is being referred to here?
In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event

How might the tx of HTN be causative vis a vis an RVO?
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopathes?
Yes: HTN is mos def a risk factor for all forms of RVO

In a sense, HTN is a ‘double risk factor.’ What sense is being referred to here?
In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event

How might the tx of HTN be causative vis a vis an RVO?
Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation.
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. HTN is mos def a risk factor for all forms of RVO

In a sense, HTN is a ‘double risk factor.’ What sense is being referred to here?
In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event

How might the tx of HTN be causative vis a vis an RVO?
Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation. For this reason, BP management in RVO pts should be adjusted to avoid nocturnal hypotension.
Is retinal vein occlusion (RVO) an embolic condition? No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO? Thrombosis of the venous structure

Do RVO pts tend to be vasculopathic? Yes. HTN is mos def a risk factor for all forms of RVO

What about diabetes—is it a risk factor for RVO?
In a sense, HTN is a ‘double risk factor.’ What sense is being referred to here?
In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event

How might the tx of HTN be causative vis a vis an RVO? Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation. For this reason, BP management in RVO pts should be adjusted to avoid nocturnal hypotension.
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopathic?
Yes. HTN is most definitely a risk factor for all forms of RVO.

In a sense, HTN is a ‘double risk factor.’ What sense is being referred to here?
In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event.

How might the tx of HTN be causative vis a vis an RVO?
Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation. For this reason, BP management in RVO pts should be adjusted to avoid nocturnal hypotension.

What about diabetes—is it a risk factor for RVO?
The data are split on this, suggesting it is a risk factor for central RVO, but not for branch RVO.
Is retinal vein occlusion (RVO) an embolic condition? No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO? Thrombosis of the venous structure.

Do RVO pts tend to be vasculopathic? Yes. HTN is mos def a risk factor for all forms of RVO.

In a sense, HTN is a 'double risk factor.' What sense is being referred to here? In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event.

How might the tx of HTN be causative vis a vis an RVO? Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation. For this reason, BP management in RVO pts should be adjusted to avoid nocturnal hypotension.

What about diabetes—is it a risk factor for RVO? The data are split on this, suggesting it is a risk factor for central RVO, but not for branch RVO.
Is retinal vein occlusion (RVO) an embolic condition? No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO? Thrombosis of the venous structure.

Do RVO pts tend to be vasculopaths? Yes. HTN is mos def a risk factor for all forms of RVO.

In a sense, HTN is a 'double risk factor.' What sense is being referred to here? In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event.

How might the tx of HTN be causative vis a vis an RVO? Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation. For this reason, BP management in RVO pts should be adjusted to avoid nocturnal hypotension.
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes.

HTN is mos def a risk factor for all forms of RVO

In a sense, HTN is a 'double risk factor.' What sense is being referred to here?
In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event

How might the tx of HTN be causative vis a vis an RVO?
Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation. For this reason, BP management in RVO pts should be adjusted to avoid nocturnal hypotension.

Regarding RVO risk factors—may I introduce ‘the H’s.’
You know three already; what are the others?

--Hypertension
--High IOP (ie, OAG)
--Hyperglycemia (in CRVO fer shur; not clear re BRVO)
--Hyperlipidemia
--Hypercoagulability
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. HTN is mos def a risk factor for all forms of RVO

In a sense, HTN is a 'double risk factor.' What sense is being referred to here?
In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event.

How might the tx of HTN be causative vis a vis an RVO?
Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation. For this reason, BP management in RVO pts should be adjusted to avoid nocturnal hypotension.

Regarding RVO risk factors—may I introduce ‘the H’s.’
You know three already; what are the others?

--- Hyperglycemia (in CRVO fer shur; not clear re BRVO)
--- Hyperlipidemia
--- Hypercoagulability

There’s another risk factor for BRVO that isn’t on this list. What is it?

--- Smoking
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. HTN is mos def a risk factor for all forms of RVO

In a sense, HTN is a 'double risk factor.' What sense is being referred to here?
In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event. How might the tx of HTN be causative vis a vis an RVO?
Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation. For this reason, BP management in RVO pts should be adjusted to avoid nocturnal hypotension.

Regarding RVO risk factors—may I introduce ‘the H’s.’ You know three already; what are the others?

--Hyperglycemia (in CRVO fer shur; not clear re BRVO)
--Hyperlipidemia
--Hypercoagulability

There's another risk factor for BRVO that isn't on this list. What is it?
Smoking
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. HTN is mos def a risk factor for all forms of RVO.

In a sense, HTN is a ‘double risk factor.’ What sense is being referred to here?
In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event.

How might the tx of HTN be causative vis a vis an RVO?
Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation. For this reason, BP management in RVO pts should be adjusted to avoid nocturnal hypotension.

What about diabetes—is it a risk factor for RVO?
The data are split on this, suggesting it is a risk factor for central RVO, but not for branch RVO.

Regarding RVO risk factors—may I introduce ‘the H’s.’ You know three already; what are the others?

--Hypertension
--High IOP (ie, OAG)
--Hyperglycemia (in CRVO fer shur; not clear re BRVO)
--Hyperlipidemia
--Hypercoagulability

All that being said, the Retina book emphasizes two risk factors for RVO. Which two? (Note: One of them is not on the list above.)

HTN and advancing age.
Is retinal vein occlusion (RVO) an embolic condition? No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO? Thrombosis of the venous structure.

Do RVO pts tend to be vasculopaths? Yes. HTN is mos def a risk factor for all forms of RVO.

In a sense, HTN is a 'double risk factor.' What sense is being referred to here? In the sense that not only is HTN itself a risk factor, but the \textit{treatment} of HTN can also increase the risk of a RVO event.

How might the tx of HTN be causative vis a vis an RVO? Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation. For this reason, BP management in RVO pts should be adjusted to avoid nocturnal hypotension.

What about diabetes—is it a risk factor for RVO? The data are split on this, suggesting it is a risk factor for central RVO, but not for branch RVO.

Regarding RVO risk factors—may I introduce \textit{the H’s.} You know three already; what are the others?
- Hypertension
- High IOP (ie, OAG)
- Hyperglycemia (in CRVO fer shur; not clear re BRVO)
- Hyperlipidemia
- Hypercoagulability

All that being said, the Retina book emphasizes two risk factors for RVO. \textbf{Which two?} (Note: One of them is not on the list above.) HTN and advancing age.
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. HTN

In a sense, HTN is a ‘double risk factor.’ What sense is being referred to here?
In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of an RVO event.

How might the tx of HTN be causative vis a vis an RVO?
Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation. For this reason, BP management in RVO pts should be adjusted to avoid nocturnal hypotension.

What about diabetes—is it a risk factor for RVO?
The data are split on this, suggesting it is a risk factor for central RVO, but not for branch RVO.

Regarding RVO risk factors—may I introduce ‘the H’s.’
You know three already; what are the others?
---Hypertension
---High IOP (ie, OAG)
---Hyperglycemia (in CRVO fer shur; not clear re BRVO)
---Hyperlipidemia
---Hypercoagulability

All that being said, the Retina book emphasizes two risk factors for RVO. Which two? (Note: One of them is not on the list above.) HTN and advancing age

Which one factor is the strongest for CRVO?
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. HTN is mos def a risk factor for all forms of RVO

In a sense, HTN is a ‘double risk factor.’ What sense is being referred to here?
In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event.

How might the tx of HTN be causative vis a vis an RVO?
Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation. For this reason, broad nocturnal hypotension.

What about diabetes—is it a risk factor for RVO?
The data are split on this, suggesting it is a risk factor for central RVO, but not for branch RVO

Regarding RVO risk factors—may I introduce ‘the H’s.’ You know three already; what are the others?
--Hypertension
--High IOP (ie, OAG)
--Hyperglycemia (in CRVO fer shur; not clear re BRVO)
--Hyperlipidemia
--Hypercoagulability

All that being said, the Retina book emphasizes two risk factors for RVO. Which two? (Note: One of them is not on the list above.)
HTN and advancing age

Which one factor is the strongest for CRVO?
Age. Over % of CRVO pts are older than #
Is retinal vein occlusion (RVO) an embolic condition? No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO? Thrombosis of the venous structure.

Do RVO pts tend to be vasculopaths? Yes. HTN is mos def a risk factor for all forms of RVO.

In a sense, HTN is a 'double risk factor.' What sense is being referred to here? In the sense that not only is HTN itself a risk factor, but the treatment of HTN can also increase the risk of a RVO event.

How might the tx of HTN be causative vis a vis an RVO? Recumbent positioning during sleep increases retinal venous pressure. If this increased pressure is accompanied by a decrease in perfusion pressure, the resulting venous stasis can lead to thrombus formation. For this reason, BP management in RVO pts should be adjusted to avoid nocturnal hypotension.

What about diabetes—is it a risk factor for RVO? The data are split on this, suggesting it is a risk factor for central RVO, but not for branch RVO.

Regarding RVO risk factors—may I introduce *the H’s.*

---Hypertension
---High IOP (ie, OAG)
---Hyperglycemia (in CRVO fer shur; not clear re BRVO)
---Hyperlipidemia
---Hypercoagulability

All that being said, the Retina book emphasizes two risk factors for RVO. Which two? (Note: One of them is not on the list above.) HTN and **advancing age.**

Which one factor is the strongest for CRVO? Age. Over 90% of CRVO pts are older than 50!
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. HTN is mos def a risk factor for all forms of RVO

What role does vasculopathy play in the genesis of a RVO?
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopathics?
Yes. HTN is mos def a risk factor for all forms of RVO

What role does vasculopathy play in the genesis of a RVO?
Vasculopathy contributes to the development of atherosclerotic dz. And it’s atherosclerotic changes to retinal arterial vessels that cause them to impinge upon and compress adjacent venous vessels.
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopathes?
Yes. HTN is mos def a risk factor for all forms of RVO

What role does vasculopathy play in the genesis of a RVO?
Vasculopathy contributes to the development of atherosclerotic dz. And it’s atherosclerotic changes to retinal arterial vessels that cause them to impinge upon and compress adjacent venous vessels. Impingement impedes blood flow through the venous vessel, as well as damages its endothelial cells. The combination of endothelial damage and impeded blood flow initiates the clotting cascade, the result being formation of a thrombus.
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopathies?
Yes. HTN is mos def a risk factor for all forms of RVO

What role does vasculopathy play in the genesis of a RVO?
Vasculopathy contributes to the development of atherosclerotic dz. And it’s
atherosclerotic changes to retinal arterial vessels that cause them to impinge upon and
compress adjacent venous vessels. Impingement impedes blood flow through the
venous vessel, as well as damages its endothelial cells. The combination of endothelial
damage and impeded blood flow initiates the clotting cascade, the result being formation
of a thrombus.

What two DFE findings are the hallmark of an RVO event?
--
--
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. HTN is mos def a risk factor for all forms of RVO

What role does vasculopathy play in the genesis of a RVO?
Vasculopathy contributes to the development of atherosclerotic dz. And it’s atherosclerotic changes to retinal arterial vessels that cause them to impinge upon and compress adjacent venous vessels. Impingement impedes blood flow through the venous vessel, as well as damages its endothelial cells. The combination of endothelial damage and impeded blood flow initiates the clotting cascade, the result being formation of a thrombus.

What two DFE findings are the hallmark of an RVO event?
--Intraretinal hemorrhages
--Tortuosity of the involved retinal vasculature
CRVO: Tortuous veins; retinal hemorrhages
Is retinal vein occlusion (RVO) an embolic condition? No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO? Thrombosis of the venous structure

Do RVO pts tend to be vasculopathies? Yes. HTN is mos def a risk factor for all forms of RVO

What role does vasculopathy play in the genesis of a RVO? Vasculopathy contributes to the development of atherosclerotic dz. And it’s atherosclerotic changes to retinal arterial vessels that cause them to impinge upon and compress adjacent venous vessels. Impingement impedes blood flow through the venous vessel, as well as damages its endothelial cells. The combination of endothelial damage and impeded blood flow initiates the clotting cascade, the result being formation of a thrombus.

What two DFE findings are the hallmark of an RVO event? --Intraretinal hemorrhages --Tortuosity of the involved retinal vasculature

In BRVO, the retinal findings are limited to a single quadrant. Which quadrant is most likely to be involved?
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. HTN is mos def a risk factor for all forms of RVO

What role does vasculopathy play in the genesis of a RVO?
Vasculopathy contributes to the development of atherosclerotic dz. And it’s atherosclerotic changes to retinal arterial vessels that cause them to impinge upon and compress adjacent venous vessels. Impingement impedes blood flow through the venous vessel, as well as damages its endothelial cells. The combination of endothelial damage and impeded blood flow initiates the clotting cascade, the result being formation of a thrombus.

What two DFE findings are the hallmark of an RVO event?
--Intraretinal hemorrhages
--Tortuosity of the involved retinal vasculature

In BRVO, the retinal findings are limited to a single quadrant. Which quadrant is most likely to be involved?
The superotemporal
BRVO in the S-T quad
Is retinal vein occlusion (RVO) an embolic condition? No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO? Thrombosis of the venous structure

Do RVO pts tend to be vasculopathes? Yes. HTN is mos def a risk factor for all forms of RVO

What role does vasculopathy play in the genesis of a RVO? Vasculopathy contributes to the development of atherosclerotic dz. And it’s atherosclerotic changes to retinal arterial vessels that cause them to impinge upon and compress adjacent venous vessels. Impingement impedes blood flow through the venous vessel, as well as damages its endothelial cells. The combination of endothelial damage and impeded blood flow initiates the clotting cascade, the result being formation of a thrombus.

What two DFE findings are the hallmark of an RVO event? --Intraretinal hemorrhages --Tortuosity of the involved retinal vasculature

What modality is the ‘mainstay treatment’ for RVO, per the Retina book?
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopath?
Yes. HTN is mos def a risk factor for all forms of RVO

What role does vasculopathy play in the genesis of a RVO?
Vasculopathy contributes to the development of atherosclerotic dz. And it’s atherosclerotic changes to retinal arterial vessels that cause them to impinge upon and compress adjacent venous vessels. Impingement impedes blood flow through the venous vessel, as well as damages its endothelial cells. The combination of endothelial damage and impeded blood flow initiates the clotting cascade, the result being formation of a thrombus.

What two DFE findings are the hallmark of an RVO event?
--Intraretinal hemorrhages
--Tortuosity of the involved retinal vasculature

What modality is the ‘mainstay treatment’ for RVO, per the Retina book?
Intravitreal injection of anti-VEGF meds
Is retinal vein occlusion (RVO) an embolic condition?
No! (How would an embolism get to the venous side of the retinal vascular bed?)

OK then, what is the mechanism underlying RVO?
Thrombosis of the venous structure

Do RVO pts tend to be vasculopaths?
Yes. HTN is mos def a risk factor for all forms of RVO

What role does vasculopathy play in the genesis of RVO?
Vasculopathy contributes to the development of atherosclerotic dz. And it’s atherosclerotic changes to retinal arterial vessels that cause them to impinge upon and compress adjacent venous vessels. Impingement impedes blood flow through the venous vessel, as well as damages its endothelial cells. The combination of endothelial damage and impeded blood flow initiates the clotting cascade, the result being formation of a thrombus.

What two DFE findings are the hallmark of an RVO event?
--Intraretinal hemorrhages
--Tortuosity of the involved retinal vasculature

What modality is the ‘mainstay treatment’ for RVO, per the Retina book?
Intravitreal injection of anti-VEGF meds

Next we will look more closely at BRVO
In the present context, what does BVOS stand for?
In the present context, what does BVOS stand for?
Branch Vein Occlusion Study, a major clinical trial regarding BRVO mgmt
In the present context, what does BVOS stand for? Branch Vein Occlusion Study, a major clinical trial regarding BRVO mgmt

What three questions did the BVOS seek to answer?
1)
2)
3)
In the present context, what does BVOS stand for? Branch Vein Occlusion Study, a major clinical trial regarding BRVO mgmt

What three questions did the BVOS seek to answer?
1) If a BRVO eye has neovascularization, will scatter photocoagulation prevent vitreous hemorrhage?
2) If a BRVO does not have neo, will scatter photocoagulation prevent it?
3) If macular edema is present, will macular laser improve it?
In the present context, what does BVOS stand for? Branch Vein Occlusion Study, a major clinical trial regarding BRVO mgmt

What three questions did the BVOS seek to answer?
1) If a BRVO eye has neovascularization, will scatter photocoagulation prevent vitreous hemorrhage?
2) If a BRVO does not have neo, will scatter photocoagulation prevent it?
3) If macular edema is present, will macular laser improve it?

There’s an obvious question that the BVOS did not ask—what is it?
In the present context, what does BVOS stand for?
Branch Vein Occlusion Study, a major clinical trial regarding BRVO mgmt

What three questions did the BVOS seek to answer?
1) If a BRVO eye has neovascularization, will scatter photocoagulation prevent vitreous hemorrhage?
2) If a BRVO does not have neo, will scatter photocoagulation prevent it?
3) If macular edema is present, will macular laser improve it?

There’s an obvious question that the BVOS did not ask—what is it?
‘Are intravitreal anti-VEGF agents safe and effective in managing BRVO?’
Q

in the present context, what does BVOS stand for?
Branch Vein Occlusion Study, a major clinical trial regarding BRVO mgmt

What three questions did the BVOS seek to answer?
1) If a BRVO eye has neovascularization, will scatter photocoagulation prevent vitreous hemorrhage?
2) If a BRVO does not have neo, will scatter photocoagulation prevent it?
3) If macular edema is present, will macular laser improve it?

There’s an obvious question that the BVOS did not ask—what is it?
‘Are intravitreal anti-VEGF agents safe and effective in managing BRVO?’

Why didn’t the BVOS address the use of these agents?
In the present context, what does BVOS stand for?
Branch Vein Occlusion Study, a major clinical trial regarding BRVO mgmt

What three questions did the BVOS seek to answer?
1) If a BRVO eye has neovascularization, will scatter photocoagulation prevent vitreous hemorrhage?
2) If a BRVO does not have neo, will scatter photocoagulation prevent it?
3) If macular edema is present, will macular laser improve it?

There’s an obvious question that the BVOS did not ask—what is it?
‘Are intravitreal anti-VEGF agents safe and effective in managing BRVO?’

Why didn’t the BVOS address the use of these agents?
Because their use wasn’t even a gleam in Dr Flynn’s eye when the BVOS was performed. (To be clear, I’m referring here to Harry Flynn, not myself. And no relation, if you’re wondering.)
In the present context, what does BVOS stand for? Branch Vein Occlusion Study, a major clinical trial regarding BRVO mgmt

What three questions did the BVOS seek to answer?
1) If a BRVO eye has neovascularization, will scatter photocoagulation prevent vitreous hemorrhage?
2) If a BRVO does not have neo, will scatter photocoagulation prevent it?
3) If macular edema is present, will macular laser improve it?

There’s an obvious question that the BVOS did not ask—what is it? ‘Are intravitreal anti-VEGF agents safe and effective in managing BRVO?’

Why didn’t the BVOS address the use of these agents? Because their use wasn’t even a gleam in Dr Flynn’s eye when the BVOS was performed. (To be clear, I’m referring here to Harry Flynn, not myself. And no relation, if you’re wondering.)

Note: Because the Retina book runs through the BVOS findings/recs re laser tx for macular edema after BRVO, we will do the same
In the present context, what does BVOS stand for? Branch Vein Occlusion Study, a major clinical trial regarding BRVO mgmt.

What three questions did the BVOS seek to answer?
1) If a BRVO eye has neovascularization, will scatter photocoagulation prevent vitreous hemorrhage?
2) If a BRVO does not have neo, will scatter photocoagulation prevent it?
3) If macular edema is present, will macular laser improve it?

There’s an obvious question that the BVOS did not ask—what is it? ‘Are intravitreal anti-VEGF agents safe and effective in managing BRVO?’

Why didn’t the BVOS address the use of these agents? Because their use wasn’t even a gleam in Dr Flynn’s eye when the BVOS was performed. (To be clear, I’m referring here to Harry Flynn, not myself. And no relation, if you’re wondering.)

Note: Because the Retina book runs through the BVOS findings/recs re laser tx for macular edema after BRVO, we will do the same. However, bear in mind that, as just stated, pharmacologic tx is currently considered first-line!
BVOS recs re *macular edema* after BRVO:
- Wait for spontaneous resolution

Q
• BVOS recs re *macular edema* after BRVO:
 • Wait **3 months** for spontaneous resolution
Macular edema after BRVO
- BVOS recs re macular edema after BRVO:
 - Wait **3 months** for spontaneous resolution

Apropos of what we just noted: We don’t wait 3 months hoping for spontaneous resolution any more. Rather, treat (pharmacologically) ME after BRVO immediately!
• BVOS recs re *macular edema* after BRVO:
 • Wait **3 months** for spontaneous resolution
 • Perform grid macular laser (GML) if:
 • VA is **Snellen to Snellen**, and…
BVOS recs re macular edema after BRVO:

- Wait **3 months** for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is **20/40** to **20/200**, and...
• BVOS recs re *macular edema* after BRVO:
 • Wait 3 months for spontaneous resolution
 • Perform grid macular laser (GML) if:
 • VA is 20/40 to 20/200, and…
 • FA reveals no two words
BVOS recs re *macular edema* after BRVO:

- Wait **3 months** for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is **20/40** to **20/200**, *and*...
 - FA reveals no *foveal ischemia*
• BVOS recs re *macular edema* after BRVO:
 • Wait **3 months** for spontaneous resolution
 • Perform grid macular laser (GML) if:
 • VA is **20/40** to **20/200**, *and*...
 • FA reveals no *foveal ischemia*
 • Per the BVOS, patients treated with GML are:
 • twice as likely to ?Gain VA? Not lose VA? *and*
BVOS recs re *macular edema* after BRVO:

- Wait **3 months** for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is **20/40** to **20/200**, **and**...
 - FA reveals no **foveal ischemia**
- Per the BVOS, patients treated with GML are:
 - twice as likely to **gain 2 lines of VA**, and
BVOS recs re *macular edema* after BRVO:

- Wait **3 months** for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is **20/40** to **20/200**, and…
 - FA reveals no *foveal ischemia*
- Per the BVOS, patients treated with GML are:
 - twice as likely to **gain 2 lines of VA**, and
 - twice as likely to have a final VA ≥ **Snellen**
BVOS recs re *macular edema* after BRVO:

- Wait **3 months** for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is **20/40** to **20/200**, and…
 - FA reveals no **foveal ischemia**
- Per the BVOS, patients treated with GML are:
 - twice as likely to **gain 2 lines of VA**, and
 - twice as likely to have a final VA \geq **20/40**
• BVOS recs re *macular edema* after BRVO:
 • Wait 3 months for spontaneous resolution
 • Perform grid macular laser (GML) if:
 • VA is 20/40 to 20/200, and...
 • FA reveals no foveal ischemia
 • Per the BVOS, patients treated with GML are:
 • twice as likely to gain 2 lines of VA, and
 • twice as likely to have a final VA \(\geq 20/40 \)
• Re *eyes with neovascularization* after BRVO...
 • Scatter photocoagulation reduces the risk of vitreous hemorrhage by \(\% \)
BVOS recs re *macular edema* after BRVO:

- Wait **3 months** for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is **20/40 to 20/200**, and…
 - FA reveals no *foveal ischemia*
- Per the BVOS, patients treated with GML are:
 - twice as likely to **gain 2 lines of VA**, and
 - twice as likely to have a final VA ≥ **20/40**

Re *eyes with neovascularization* after BRVO…

- Scatter photocoagulation reduces the risk of vitreous hemorrhage by **50%**
Re eyes with neovascularization after BRVO...

- Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%
To what area/aspect of the retina should scatter laser be applied?
To areas of capillary nonperfusion

Re eyes with neovascularization after BRVO...
- Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%
BRVO: Scatter laser scars
To what area/aspect of the retina should scatter laser be applied?
To areas of capillary nonperfusion

Speaking of capillary nonperfusion…Per the BVOS, what finding put a BRVO eye at risk for developing neo?

Re eyes with neovascularization after BRVO…

Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%
To what area/aspect of the retina should scatter laser be applied?
To areas of capillary nonperfusion

Speaking of capillary nonperfusion…Per the BVOS, what finding put a BRVO eye at risk for developing neo?
The presence of “extensive retinal ischemia”

Re *eyes with neovascularization* after BRVO…

Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%
To what area/aspect of the retina should scatter laser be applied?
To areas of capillary nonperfusion

Speaking of capillary nonperfusion…Per the BVOS, what finding put a BRVO eye at risk for developing neo?
The presence of “extensive retinal ischemia”

How did the BVOS define ‘extensive’ in this regard?

Re eyes with neovascularization after BRVO…

Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%
BVO recs re macular edema after BRVO:
- Wait 3 months for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is 20/40 to 20/200,
 - FA reveals no foveal ischemia
- Per the BVOS, patients treated with GML are:
 - twice as likely to gain 2 lines of VA,
 - twice as likely to have a final VA ≥ 20/40
Re eyes with neovascularization after BRVO...:
- Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%
To what area/aspect of the retina should scatter laser be applied? To areas of capillary nonperfusion.

Speaking of capillary nonperfusion... Per the BVOS, what finding put a BRVO eye at risk for developing neo? The presence of "extensive retinal ischemia".

How did the BVOS define 'extensive' in this regard? It was defined as an area of nonperfusion 5 or more DDs in size.

Re eyes with neovascularization after BRVO...

Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%.
To what area/aspect of the retina should scatter laser be applied?
To areas of capillary nonperfusion

Speaking of capillary nonperfusion…Per the BVOS, what finding put a BRVO eye at risk for developing neo?
The presence of “extensive retinal ischemia”

How did the BVOS define ‘extensive’ in this regard?
It was defined as an area of nonperfusion 5 or more DDs in size

Again per the BVOS: What proportion of eyes with extensive retinal ischemia went on the develop neo?

Re eyes with neovascularization after BRVO…

Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%
To what area/aspect of the retina should scatter laser be applied?
To areas of capillary nonperfusion

Speaking of capillary nonperfusion…Per the BVOS, what finding put a BRVO eye at risk for developing neo?
The presence of “extensive retinal ischemia”

How did the BVOS define ‘extensive’ in this regard?
It was defined as an area of nonperfusion 5 or more DDs in size

Again per the BVOS: What proportion of eyes with extensive retinal ischemia went on to develop neo?
A little over a third

Re eyes with neovascularization after BRVO…

Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%
BRVO: Neovascularization
To what area/aspect of the retina should scatter laser be applied?
To areas of capillary nonperfusion

Speaking of capillary nonperfusion…Per the BVOS, what finding put a BRVO eye at risk for developing neo?
The presence of “extensive retinal ischemia”

How did the BVOS define ‘extensive’ in this regard?
It was defined as an area of nonperfusion ≥ 5 DDs in size

Again per the BVOS: What proportion of eyes with extensive retinal ischemia went on to develop neo?
A little over a third

Finally, and yet again per the BVOS: What proportion of eyes that developed neo went on to have a vitreous hemorrhage?
Most—at least 60%, and perhaps as many as 90%

Re eyes with neovascularization after BRVO…

Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%
BVOS recs re macular edema

- Wait 3 months for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is 20/40 to 20/200, and
 - FA reveals no foveal ischemia

Per the BVOS, patients treated with GML are:
- Twice as likely to gain 2 lines of VA, and
- Twice as likely to have a final VA ≥ 20/40

eyes with neovascularization after BRVO...

- Scatter photocoagulation reduces the risk of vitreous hemorrhage by **50%**

Q/A

To what area/aspect of the retina should scatter laser be applied?
To areas of capillary nonperfusion

Speaking of capillary nonperfusion…Per the BVOS, what finding put a BRVO eye at risk for developing neo?
The presence of “extensive retinal ischemia”

How did the BVOS define ‘extensive’ in this regard?
It was defined as an area of nonperfusion 5 or more DDs in size

Again per the BVOS: What proportion of eyes with extensive retinal ischemia went on the develop neo?
A little over a third

Finally, and yet again per the BVOS: What proportion of eyes that developed neo went on to have a vitreous hemorrhage?
Most—at least %, and perhaps as many as %
To what area/aspect of the retina should scatter laser be applied?

To areas of capillary nonperfusion

Speaking of capillary nonperfusion...Per the BVOS, what finding put a BRVO eye at risk for developing neo?

The presence of “extensive retinal ischemia”

How did the BVOS define ‘extensive’ in this regard?

It was defined as an area of nonperfusion 5 or more DDs in size

Again per the BVOS: What proportion of eyes with extensive retinal ischemia went on the develop neo?

A little over a third

Finally, and yet again per the BVOS: What proportion of eyes that developed neo went on to have a vitreous hemorrhage?

Most—at least 60%, and perhaps as many as 90%

Re eyes with neovascularization after BRVO...

Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%
BRVO: Neovascularization with vitreous hemorrhage
BVOS recs re macular edema after BRVO:
- Wait 3 months for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is 20/40 to 20/200, and
 - FA reveals no foveal ischemia
- Per the BVOS, patients treated with GML are:
 - twice as likely to gain 2 lines of VA,
 - twice as likely to have a final VA ≥ 20/40
Re eyes with neovascularization after BRVO...
- Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%

Q

To what area/aspect of the retina should scatter laser be applied?
- To areas of capillary nonperfusion

Speaking of capillary nonperfusion... Per the BVOS, what finding put a BRVO eye at risk for developing neo?
- The presence of "extensive retinal ischemia"

How did the BVOS define "extensive" in this regard?
- It was defined as an area of nonperfusion 5 or more DDs in size

Again per the BVOS, how did they perform their assessments? What proportion of eyes with extensive retinal ischemia went on to develop neo?
- A little over a third

Finally, and yet again per the BVOS, what proportion of eyes that developed neo went on to have a vitreous hemorrhage?
- Most—approximately 60%, and perhaps as many as 90%

By what means did the BVOS determine that extensive nonperfusion was present?
- By fluorescein angiography (FA)
BVOS recs re macular edema after BRVO:

- Wait 3 months for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is 20/40 to 20/200,
 - FA reveals no foveal ischemia
- Per the BVOS, patients treated with GML are:
 - Twice as likely to gain 2 lines of VA,
 - Twice as likely to have a final VA ≥ 20/40

Re eyes with neovascularization after BRVO:

- Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%

To what area/aspect of the retina should scatter laser be applied?
To areas of capillary nonperfusion

Speaking of capillary nonperfusion... Per the BVOS, what finding put a BRVO eye at risk for developing neo?
The presence of "extensive retinal ischemia"

How did the BVOS define 'extensive' in this regard?
It was defined as an area of nonperfusion 5 or more DDs in size

Again per the BVOS, what proportion of eyes with extensive retinal ischemia went on to develop neo?
A little over a third

Finally, per the BVOS, what proportion of eyes that developed neo went on to have a vitreous hemorrhage?
Most—at least 60%, and perhaps as many as 90%

By what means did the BVOS determine that extensive nonperfusion was present?
By FA
BRVO: Waaaaay more than 5DD nonperfusion
BVOS recs re macular edema after BRVO:
- Wait 3 months for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is 20/40 to 20/200,
 - FA reveals no foveal ischemia

Per the BVOS, patients treated with GML are:
- Twice as likely to gain 2 lines of VA,
- Twice as likely to have a final VA ≥ 20/40

RVOs
- Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%

Q

To what area/aspect of the retina should scatter laser be applied?
To areas of capillary nonperfusion

Speaking of capillary nonperfusion... Per the BVOS, what finding put a BRVO eye at risk for developing neo?
The presence of "extensive retinal ischemia"

How did the BVOS define 'extensive' in this regard?
It was defined as an area of nonperfusion 5 or more DDs in size

By what means did the BVOS determine that extensive nonperfusion was present?
By FA

OK, so if a BRVO pt is found to have 5+ DD of nonperfusion on FA, should you go ahead and perform scatter?

Re eyes with neovascularization after BRVO...
- Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%
To what area/aspect of the retina should scatter laser be applied?
To areas of capillary nonperfusion

Speaking of capillary nonperfusion... Per the BVOS, what finding put a BRVO eye at risk for developing neo?
The presence of “extensive retinal ischemia”

How did the BVOS define “extensive” in this regard?
It was defined as an area of nonperfusion 5 or more DDs in size

By what means did the BVOS determine that extensive nonperfusion was present?
By FA

OK, so if a BRVO pt is found to have 5+ DD of nonperfusion on FA, should you go ahead and perform scatter?
No; what you should do is follow them closely, and be ready to scatter them if neo should occur

Re eyes with neovascularization after BRVO...

Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%
To what area/aspect of the retina should scatter laser be applied?
To areas of capillary nonperfusion

Speaking of capillary nonperfusion... Per the BVOS, what finding put a BRVO eye at risk for developing neo?
The presence of "extensive retinal ischemia"

How did the BVOS define "extensive" in this regard?
It was defined as an area of nonperfusion \(\geq 5 \) or more DDs in size

Again per the BVOS, what proportion of eyes with extensive nonperfusion went on to develop neo?
A little over a third

By what means did the BVOS determine that extensive nonperfusion was present?
By FA

Finally, approximately what proportion of eyes with extensive nonperfusion went on to develop neo?
Most—around 50%

OK, so if a BRVO pt is found to have 5+ DD of nonperfusion on FA, should you go ahead and perform scatter?
No; what you should do is follow them closely, and be ready to scatter them if neo should occur

Re eyes with neovascularization after BRVO...

Speaking of neo... Is neovascularization of the iris (NVI) a common occurrence in BRVO?

Scatter reduces the risk of vitreous hemorrhage by 50%
To what area/aspect of the retina should scatter laser be applied?
- To areas of capillary nonperfusion

Speaking of capillary nonperfusion... Per the BVOS, what finding put a BRVO eye at risk for developing neo?
- The presence of "extensive retinal ischemia"

How did the BVOS define "extensive" in this regard?
- It was defined as an area of nonperfusion 5 or more DDs in size

Again per the BVOS, what proportion of eyes with extensive retinal ischemia went on to develop neo?
- A little over a third

By what means did the BVOS determine that extensive nonperfusion was present?
- By FA

Finally, among people with extensive nonperfusion, what proportion developed neo?
- Most—a little over a third

OK, so if a BRVO pt is found to have 5+ DD of nonperfusion on FA, should you go ahead and perform scatter?
- No; what you should do is follow them closely, and be ready to scatter them if neo should occur

Speaking of neo... Is neovascularization of the iris (NVI) a common occurrence in BRVO?
- Not really—it only occurs in about 2% of cases

Re eyes with neovascularization after BRVO...
BVOS recs re macular edema after BRVO:

- Wait 3 months for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is 20/40 to 20/200,
 - FA reveals no foveal ischemia
- Per the BVOS, patients treated with GML are:
 - twice as likely to gain 2 lines of VA,
 - twice as likely to have a final VA ≥ 20/40

Re eyes with neovascularization after BRVO:

- Scatter photocoagulation reduces the risk of vitreous hemorrhage by 50%.

To what area/aspect of the retina should scatter laser be applied?
- To areas of capillary nonperfusion

Speaking of capillary nonperfusion... Per the BVOS, what finding put a BRVO eye at risk for developing neo?
- The presence of "extensive retinal ischemia"

How did the BVOS define "extensive" in this regard?
- It was defined as an area of nonperfusion 5 or more DDs in size

Again per the BVOS, what proportion of BRVO eyes with extensive nonperfusion went on to develop neovascularization?
- A little over a third

By what means did the BVOS determine that extensive nonperfusion was present?
- By FA

Finally, a BRVO pt has extensive nonperfusion on FA; should you go ahead and perform scatter?
- No; what you should do is follow them closely, and be ready to scatter them if neo should occur

Speaking of neo... Is neovascularization of the iris (NVI) a common occurrence in BRVO?
- Not really—it only occurs in about 2% of cases
To what area/aspect of the retina should scatter laser be applied?
To areas of capillary nonperfusion

Speaking of capillary nonperfusion ... Per the BVOS, what finding put a BRVO eye at risk for developing neo?
The presence of "extensive retinal ischemia"

How did the BVOS define "extensive" in this regard?
In 5 DDs or more

Again per the BVOS, what proportion of eyes with extensive retinal ischemia went on to develop neo?
A little over a third

Finally, a small proportion of patients already with neo went on to develop another.
Most—around 60%

If a BRVO pt is found to have 5+ DD of nonperfusion on FA, should you go ahead and perform scatter?
No; what you should do is follow them closely, and be ready to scatter them if neo should occur.

Speaking of neo... Is neovascularization of the iris (NVI) a common occurrence in BRVO?
Not really—it only occurs in about 2% of cases.
Q

DDx for a CRVO-like fundus

? CRVO (duh) ?

93
DDx for a CRVO-like fundus

- Hyperviscosity syndrome
- CRVO
- OIS
DDx for a CRVO-like fundus

Hyperviscosity syndrome

CRVO

OIS

What does OIS stand for in this context?
DDx for a CRVO-like fundus

- Hyperviscosity syndrome
- CRVO
- OIS

What does OIS stand for in this context?
Ocular ischemic syndrome
DDx for a CRVO-like fundus

Hyperviscosity syndrome

CRVO

OIS

What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
CRVO-like fundus DDx for a CRVO-like fundus

Hyperviscosity syndrome

CRVO

OIS

What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
A constellation of signs and symptoms owing to chronic ocular hypoperfusion
DDx for a CRVO-like fundus

Hyperviscosity syndrome

CRVO

OIS

What does OIS stand for in this context? Ocular ischemic syndrome

In a nutshell, what is OIS? A constellation of signs and symptoms owing to chronic ocular hypoperfusion

What are the signs/symptoms of OIS?

<table>
<thead>
<tr>
<th>Signs</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>--?</td>
<td>--?</td>
</tr>
<tr>
<td>--?</td>
<td>--</td>
</tr>
<tr>
<td>--?</td>
<td>--</td>
</tr>
</tbody>
</table>
CRVO

DDx for a CRVO-like fundus

Hyperviscosity syndrome

CRVO

OIS

What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
A constellation of signs and symptoms owing to chronic ocular hypoperfusion

What are the signs/symptoms of OIS?

Signs:
- Retinal hemorrhages
- NVI/NVA
- AC cell/flare

Symptoms:
-
-
-
DDx for a CRVO-like fundus

Hyperviscosity syndrome CRVO OIS

What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
A constellation of signs and symptoms owing to chronic ocular hypoperfusion

What are the signs/symptoms of OIS?

Signs:
- Retinal hemorrhages
- NVI/NVA
- AC cell/flare

Symptoms:
- ?
- ?
- ?
What does OIS stand for in this context? Ocular ischemic syndrome.

In a nutshell, what is OIS? A constellation of signs and symptoms owing to chronic ocular hypoperfusion.

What are the signs/symptoms of OIS?

Signs:
- Retinal hemorrhages
- NVI/NVA
- AC cell/flare

Symptoms:
- Decreased vision
- Pain
- Prolonged photostress recovery time
DDx for a CRVO-like fundus

Hyperviscosity syndrome ➔ CRVO ➔ OIS

What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
A constellation of signs and symptoms owing to chronic ocular hypoperfusion

What are the signs/symptoms of OIS?

Signs:
- Retinal hemorrhages
- NVI/NVA
- AC cell/flare
- Decreased vision
- Pain
- Prolonged photostress recovery time

What is 'photostress recovery time'?
It refers to the amount of time it takes for vision to recover after the retina has been subjected to a very bright light.
DDx for a CRVO-like fundus

Hyperviscosity syndrome

CRVO

OIS

What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
A constellation of signs and symptoms following to chronic ocular hypoperfusion

What are the signs/symptoms of OIS?

Signs:
--Retinal hemorrhages
--NVI/NVA
--AC cell/flare
--Decreased vision
--Pain
--Prolonged photostress recovery time

What is ‘photostress recovery time’?
It refers to the amount of time it takes for vision to recover after the retina has been subjected to a very bright light.
What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
A constellation of signs and symptoms owing to chronic ocular hypoperfusion

In what way does the DFE appearance of OIS resemble that of CRVO?
What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
A constellation of signs and symptoms owing to chronic ocular hypoperfusion

In what way does the DFE appearance of OIS resemble that of CRVO?
The presence of extensive intraretinal hemorrhages
CRVO

DDx for a CRVO-like fundus

Hyperviscosity syndrome

CRVO

OIS

What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
A constellation of signs and symptoms owing to chronic ocular hypoperfusion

In what way does the DFE appearance of OIS resemble that of CRVO?
The presence of extensive intraretinal hemorrhages

In what way does the DFE appearance of OIS differ from that of CRVO?
DDx for a CRVO-like fundus

Hyperviscosity syndrome

CRVO

OIS

What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
A constellation of signs and symptoms owing to chronic ocular hypoperfusion

In what way does the DFE appearance of OIS resemble that of CRVO?
The presence of extensive intraretinal hemorrhages

In what way does the DFE appearance of OIS differ from that of CRVO?
The retinal vasculature in OIS lacks the tortuosity which characterizes that of CRVO
CRVO

DDx for a CRVO-like fundus

- **Hyperviscosity syndrome**
- **CRVO**
- **OIS**

What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
A constellation of signs and symptoms owing to chronic ocular hypoperfusion

In what way does the DFE appearance of OIS resemble that of CRVO?
The presence of extensive intraretinal hemorrhages

In what way does the DFE appearance of OIS differ from that of CRVO?
The retinal vasculature in OIS lacks the tortuosity which characterizes that of CRVO
DDx for a CRVO-like fundus

Hyperviscosity syndrome

CRVO

OIS

What simple, noninvasive test can be performed that reliably differentiates between OIS and CRVO?

Ophthalmodynamometry

What does ophthalmodynamometry measure?

Perfusion pressure of the retinal arterial tree

How does ophthalmodynamometry differentiate between OIS and CRVO?

Retinal arterial pressure will be low in OIS, but normal in CRVO
DDx for a CRVO-like fundus

Hyperviscosity syndrome

CRVO

OIS

What does OIS stand for in this context? Ocular ischemic syndrome

In a nutshell, what is OIS? A constellation of signs and symptoms owing to chronic ocular hypoperfusion

In what way does the DFE appearance of OIS resemble that of CRVO? The presence of extensive intraretinal hemorrhages

In what way does the DFE appearance of OIS differ from that of CRVO? The retinal vasculature in OIS lacks the tortuosity which characterizes that of CRVO

What simple, noninvasive test can be performed that reliably differentiates between OIS and CRVO? Ophthalmodynamometry

What does ophthalmodynamometry measure? Perfusion pressure of the retinal arterial tree

How does ophthalmodynamometry differentiate between OIS and CRVO? Retinal arterial pressure will be low in OIS, but normal in CRVO

My ophthalmodynamometer is in the shop. Is there a way to check perfusion pressure without it? Push gently on the globe while observing the central retinal artery. If it collapses with minimal applied pressure, perfusion pressure is low, and OIS rises to the top of the DDx
CRVO-like fundus DDx for a CRVO-like fundus

Hyperviscosity syndrome

CRVO

OIS

What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
A constellation of signs and symptoms owing to chronic ocular hypoperfusion

In what way does the DFE appearance of OIS resemble that of CRVO?
The presence of extensive intraretinal hemorrhages

In what way does the DFE appearance of OIS differ from that of CRVO?
The retinal vasculature in OIS lacks the tortuosity which characterizes that of CRVO

What simple, noninvasive test can be performed that reliably differentiates between OIS and CRVO?
Ophthalmodynamometry

What does ophthalmodynamometry measure?
Perfusion pressure of the retinal arterial tree

How does ophthalmodynamometry differentiate between OIS and CRVO?
Retinal arterial pressure will be low in OIS, but normal in CRVO

My ophthalmodynamometer is in the shop. Is there a way to check perfusion pressure without it?
Push gently on the globe while observing the central retinal artery. If it collapses with minimal applied pressure, perfusion pressure is low, and OIS rises to the top of the DDx
DDx for a CRVO-like fundus

- Hyperviscosity syndrome
- CRVO
- OIS

What simple, noninvasive test can be performed that reliably differentiates between OIS and CRVO?
Ophthalmodynamometry

What does ophthalmodynamometry measure?
Perfusion pressure of the retinal arterial tree
What simple, noninvasive test can be performed that reliably differentiates between OIS and CRVO?
Ophthalmodynamometry

What does ophthalmodynamometry measure?
Perfusion pressure of the retinal arterial tree

How does ophthalmodynamometry differentiate between OIS and CRVO?
Retinal arterial pressure will be low in OIS, but normal in CRVO.

Push gently on the globe while observing the central retinal artery. If it collapses with minimal applied pressure, perfusion pressure is low, and OIS rises to the top of the DDx.
DDx for a CRVO-like fundus

CRVO

Hyperviscosity syndrome

OIS

Q/A

What simple, noninvasive test can be performed that reliably differentiates between OIS and CRVO? Ophthalmodynamometry

What does ophthalmodynamometry measure? Perfusion pressure of the retinal arterial tree

How does ophthalmodynamometry differentiate between OIS and CRVO? Perfusion pressure will be low in one but normal in the other.
DDx for a CRVO-like fundus

Hyperviscosity syndrome

CRVO

OIS

What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
A constellation of signs and symptoms owing to chronic ocular hypoperfusion

In what way does the DFE appearance of OIS resemble that of CRVO?
The presence of extensive intraretinal hemorrhages

In what way does the DFE appearance of OIS differ from that of CRVO?
The retinal vasculature in OIS lacks the tortuosity which characterizes that of CRVO

What simple, noninvasive test can be performed that reliably differentiates between OIS and CRVO?
Ophthalmodynamometry

What does ophthalmodynamometry measure?
Perfusion pressure of the retinal arterial tree

How does ophthalmodynamometry differentiate between OIS and CRVO?
Perfusion pressure will be low in OIS but normal in CRVO

My ophthalmodynamometer is in the shop. Is there a way to check perfusion pressure without it?
Push gently on the globe while observing the central retinal artery. If it collapses with minimal applied pressure, perfusion pressure is low, and OIS rises to the top of the DDx.
CRVO-like fundus DDx for a CRVO-like fundus

Hyperviscosity syndrome

CRVO

OIS

What does OIS stand for in this context?
Ocular ischemic syndrome

In a nutshell, what is OIS?
A constellation of signs and symptoms owing to chronic ocular hypoperfusion

In what way does the DFE appearance of OIS resemble that of CRVO?
The presence of extensive intraretinal hemorrhages

In what way does the DFE appearance of OIS differ from that of CRVO?
The retinal vasculature in OIS lacks the tortuosity which characterizes that of CRVO

What simple, noninvasive test can be performed that reliably differentiates between OIS and CRVO?
Ophthalmodynamometry

What does ophthalmodynamometry measure?
Perfusion pressure of the retinal arterial tree

How does ophthalmodynamometry differentiate between OIS and CRVO?
Perfusion pressure will be low in OIS but normal in CRVO

My ophthalmodynamometer is in the shop. Is there a way to check perfusion pressure without it?
What simple, noninvasive test can be performed that reliably differentiates between OIS and CRVO?
Ophthalmodynamometry

What does ophthalmodynamometry measure?
Perfusion pressure of the retinal arterial tree

How does ophthalmodynamometry differentiate between OIS and CRVO?
Perfusion pressure will be low in OIS but normal in CRVO

My ophthalmodynamometer is in the shop. Is there a way to check perfusion pressure without it?
Push gently on the globe while observing the central retinal artery. If it collapses with minimal applied pressure, perfusion pressure is low, and OIS rises to the top of the DDx.
The Retina book mentions three causes of hyperviscosity syndrome—what are they?
The Retina book mentions three causes of hyperviscosity syndrome—what are they?
DDx for a CRVO-like fundus

Hyperviscosity syndrome

- Waldenström macroglobulinemia
- Multiple myeloma
- Polycythemia vera

The Retina book mentions three causes of hyperviscosity syndrome—what are they?

What key finding strongly suggests a CRVO-like presentation is in fact a manifestation of a hyperviscosity syndrome?
DDx for a CRVO-like fundus

Hyperviscosity syndrome

- Waldenström macroglobulinemia
- Multiple myeloma
- Polycythemia vera

The Retina book mentions three causes of hyperviscosity syndrome—what are they?

What key finding strongly suggests a CRVO-like presentation is in fact a manifestation of a hyperviscosity syndrome?

If the CRVO is bilateral
DDx for a CRVO-like fundus

Hyperviscosity syndrome
- Waldenström macroglobulinemia
- Multiple myeloma
- Polycythemia vera

The Retina book mentions three causes of hyperviscosity syndrome—what are they?

What key finding strongly suggests a CRVO-like presentation is in fact a manifestation of a hyperviscosity syndrome?
If the CRVO is bilateral

If hyperviscosity syndrome is suspected, what tests should be ordered?
--?
--?
--?
DDx for a CRVO-like fundus

Hyperviscosity syndrome
- Waldenström macroglobulinemia
- Multiple myeloma
- Polycythemia vera

The Retina book mentions three causes of hyperviscosity syndrome—what are they?

What key finding strongly suggests a CRVO-like presentation is in fact a manifestation of a hyperviscosity syndrome?
If the CRVO is **bilateral**

If hyperviscosity syndrome is suspected, what tests should be ordered?
-- CBC
-- Serum electrophoresis
-- Measurement of whole-blood viscosity
DDx for a CRVO-like fundus

Hyperviscosity syndrome

- Waldenström macroglobulinemia
- Multiple myeloma
- Polycythemia vera

In addition to the H’s, the Retina book mentions two more risk factors specifically with regards to CRVO. What are they?

- Hypertension
- High IOP (ie, OAG)
- Hyperglycemia
- Hyperlipidemia
- Hypercoagulability
- ?
- ?

(Unfortunately, neither starts with a ‘H.’)
DDx for a CRVO-like fundus

In addition to the H’s, the Retina book mentions two more risk factors specifically with regards to CRVO. What are they?

--Hypertension
--High IOP (ie, OAG)
--Hyperglycemia
--Hyperlipidemia
--Hypercoagulability
--Oral contraceptive use
--Diuretics

(Unfortunately, neither starts with a ‘H.’)
DDx for a CRVO-like fundus

What systemic medical conditions may contribute to or result in a hypercoagulable state?

- Hyperhomocystinemia (Note: yet another 'H')
- Protein S deficiency
- Protein C deficiency
- Sarcoid
- SLE
- Hypertension
- High IOP (i.e., OAG)
- Hyperglycemia
- Hyperlipidemia
- Oral contraceptive use
- Diuretics

Hyperviscosity syndrome

Waldenström macroglobulinemia

Multiple myeloma

Polycythemia vera
DDx for a CRVO-like fundus

What systemic medical conditions may contribute to or result in a hypercoagulable state?

Conditions that directly affect coagulation:
- Hyperhomocystinemia (Note: yet another 'H')
- Protein S deficiency
- Protein C deficiency

Conditions that can incite vasculitis:
- Sarcoid
- SLE

Relevant systemic conditions:
- Hypertension
- High IOP (ie, OAG)
- Hyperglycemia
- Hyperlipidemia
- Hypercoagulability
- Oral contraceptive use
- Diuretics

- Waldenström macroglobulinemia
- Multiple myeloma
- Polycythemia vera
DDx for a CRVO-like fundus

What systemic medical conditions may contribute to or result in a hypercoagulable state?

Conditions that directly affect coagulation, including:
- Hypercoagulability
- Hyperlipidemia
- Oral contraceptive use
- Diuretics

Conditions that can incite vasculitis
- Sarcoid
- SLE

Hyperviscosity syndrome
- Waldenström macroglobulinemia
- Multiple myeloma
- Polycythemia vera
DDx for a CRVO-like fundus

What systemic medical conditions may contribute to or result in a hypercoagulable state?

Conditions that directly affect coagulation, including:
- Hyperhomocystinemia (Note: yet another ‘H’)
- Protein S deficiency
- Protein C deficiency

Conditions that can incite vasculitis
- Hypothyroidism
- Hyperlipidemia
- Hypercoagulability
- Oral contraceptive use
- Diuretics
DDx for a CRVO-like fundus

What systemic medical conditions may contribute to or result in a hypercoagulable state?

Conditions that directly affect coagulation, including:
-- Hyperhomocystinemia (Note: yet another ‘H’)
-- Protein S deficiency
-- Protein C deficiency

Conditions that can incite vasculitis, including:
-- ?
-- ?

CRVO-like fundusDDx for a Hyperviscosity syndrome

CRVO
Waldenström’s macroglobulinemia
Multiple myeloma
Polycythemia vera

In addition to the H’s, the Retina book mentions two more risk factors specifically with regards to CRVO. What are they?

-- Hypertension
-- High IOP (ie, OAG)
-- Hyperglycemia
-- Hyperlipidemia
-- Oral contraceptive use
-- Diuretics

Conditions that directly affect coagulation, including:
-- Hyperhomocystinemia (Note: yet another ‘H’)
-- Protein S deficiency
-- Protein C deficiency

Conditions that can incite vasculitis, including:
-- ?
-- ?

Hypercoagulability
DDx for a CRVO-like fundus

What systemic medical conditions may contribute to or result in a hypercoagulable state?

Conditions that directly affect coagulation, including:
--Hyperhomocystinemia (Note: yet another ‘H’)
--Protein S deficiency
--Protein C deficiency

Conditions that can incite vasculitis, including:
--Sarcoid
--SLE

Hypercoagulability
--Hypertension
--High IOP (ie, OAG)
--Hyperglycemia
--Hyperlipidemia
--Oral contraceptive use
--Diuretics

Hyperviscosity syndrome
Waldenström macroglobulinemia
Multiple myeloma
Polycythemia vera

In addition to the H’s, the Retina book mentions two more risk factors specifically with regards to CRVO.
DDx for a CRVO-like fundus

What systemic medical conditions may contribute to or result in a hypercoagulable state?
- Conditions that directly affect coagulation, including:
 - Hyperhomocystinemia (Note: yet another ‘H’)
 - Protein S deficiency
 - Protein C deficiency
- Conditions that can incite vasculitis, including:
 - Sarcoid
 - SLE

So does every CRVO pt need a hypercoagulability workup?

No, only those who:
- are younger than 50, and/or
- have none of the common risk factors

- Hypertension
- High IOP (ie, OAG)
- Hyperglycemia
- Hyperlipidemia
- Oral contraceptive use
- Diuretics
- Hypercoagulability
- Waldenström macroglobulinemia
DDx for a CRVO-like fundus

What systemic medical conditions may contribute to or result in a hypercoagulable state?
Conditions that directly affect coagulation, including:
-- Hyperhomocystinemia (Note: yet another ‘H’)
-- Protein S deficiency
-- Protein C deficiency

Conditions that can incite vasculitis, including:
-- Sarcoid
-- SLE
-- Hyperlipidemia
-- Oral contraceptive use
-- Diuretics

Hypercoagulability

So does every CRVO pt need a hypercoagulability workup?
No, only those who:
-- are younger than 50, and/or
-- have none of the common risk factors

Q/A
DDx for a CRVO-like fundus

What systemic medical conditions may contribute to or result in a hypercoagulable state?

Conditions that directly affect coagulation, including:
--Hyperhomocystinemia (Note: yet another ‘H’)
--Protein S deficiency
--Protein C deficiency

Conditions that can incite vasculitis, including:
--Sarcoid
--SLE

So does every CRVO pt need a hypercoagulability workup?
No, only those who:
--are younger than 50, and/or
--have none of the common risk factors
The traditional way to divvy them up

CRVO

Q
The traditional way to divvy them up

Ischemic

Nonischemic

(We’ll define *ischemic* and *nonischemic* shortly)
What if, for whatever reason, a CRVO’s ischemia-status cannot be determined?
What if, for whatever reason, a CRVO's ischemia-status cannot be determined? Such a CRVO is classified as indeterminate.
What if, for whatever reason, a CRVO’s ischemia-status cannot be determined? Such a CRVO is classified as *indeterminate*.

What is the natural history of indeterminate CRVOs?
What if, for whatever reason, a CRVO’s ischemia-status cannot be determined? Such a CRVO is classified as *indeterminate*.

What is the natural history of indeterminate CRVOs? A big % of them turn out to be ischemic, you got a 50:50 shot...
What if, for whatever reason, a CRVO’s ischemia-status cannot be determined? Such a CRVO is classified as indeterminate.

What is the natural history of indeterminate CRVOs? ~80% of them turn out to be ischemic.
What if, for whatever reason, a CRVO's ischemia-status cannot be determined? Such a CRVO is classified as *indeterminate*. What is the natural history of indeterminate CRVOs?

~80% of them turn out to be ischemic.

As an (important) aside: A number of CRVOs initially classified as nonischemic will ‘convert’ to ischemic. What depressingly-high percentage will do so by 36 months post-event?
What if, for whatever reason, a CRVO’s ischemia-status cannot be determined? Such a CRVO is classified as indeterminate. What is the natural history of indeterminate CRVOs? ~80% of them turn out to be ischemic.

As an (important) aside: A number of CRVOs initially classified as nonischemic will ‘convert’ to ischemic. What depressingly-high percentage will do so by 36 months post-event? About a third.
What test must be run to determine whether a CRVO is ischemic or nonischemic?

<table>
<thead>
<tr>
<th>Test</th>
<th>Ischemic CRVO</th>
<th>Nonischemic CRVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescein angiography</td>
<td>Prolonged retinal circulation time with capillary nonperfusion</td>
<td>Prolonged retinal circulation time, but NO capillary nonperfusion</td>
</tr>
</tbody>
</table>

What FA finding is common to both ischemic and nonischemic subtypes?
- Prolonged retinal circulation time

What FA finding defines an ischemic CRVO?
- 10+ disc diameters of capillary nonperfusion
<table>
<thead>
<tr>
<th></th>
<th>Ischemic CRVO</th>
<th>Nonischemic CRVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What test must be run to determine whether a CRVO is ischemic or nonischemic?
Fluorescein angiography
<table>
<thead>
<tr>
<th></th>
<th>Ischemic CRVO</th>
<th>Nonischemic CRVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>What is the classic description of the fundus in CRVO?</td>
<td>What test must be run to determine whether a CRVO is ischemic or nonischemic? Fluorescein angiography</td>
</tr>
</tbody>
</table>

CRVO

Ischemic CRVO

Prolonged retinal circulation time with capillary nonperfusion

Nonischemic CRVO

Prolonged retinal circulation time, but NO capillary nonperfusion
<table>
<thead>
<tr>
<th>CRVO</th>
<th>Ischemic CRVO</th>
<th>Nonischemic CRVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>What is the classic description of the fundus in CRVO?</td>
<td>Blood and thunder</td>
</tr>
<tr>
<td></td>
<td>What test must be run to determine whether a CRVO is ischemic or nonischemic?</td>
<td>Fluorescein angiography</td>
</tr>
</tbody>
</table>

10+ disc diameters of capillary nonperfusion.
CRVO: Blood and thunder
What test must be run to determine whether a CRVO is ischemic or nonischemic? Fluorescein angiography

<table>
<thead>
<tr>
<th>CRVO</th>
<th>FA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic CRVO</td>
<td>What is the classic description of the fundus in CRVO? Blood and thunder</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>What impact does this frequently have on attempts to determine whether a CRVO is ischemic or not?</td>
</tr>
</tbody>
</table>

Blood and thunder
<table>
<thead>
<tr>
<th>CRVO</th>
<th>FA</th>
<th>Ischemic CRVO</th>
<th>What is the classic description of the fundus in CRVO? Blood and thunder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nonischemic CRVO</td>
<td>What impact does this frequently have on attempts to determine whether a CRVO is ischemic or not? Heme and cotton-wool spots (CWS) may obscure FA hyperfluorescence, rendering FA interpretation problematic</td>
</tr>
</tbody>
</table>

What test must be run to determine whether a CRVO is ischemic or nonischemic? *Fluorescein angiography*
Ischemic CRVO

- What is the classic description of the fundus in CRVO?
 - Blood and thunder

- How are such CRVOs classified?
 - To determine whether a CRVO is ischemic or not?

- Heme and cotton-wool spots (CWS) may obscure FA hyperfluorescence, rendering FA interpretation problematic.

Nonischemic CRVO

- What test must be run to determine whether a CRVO is ischemic or nonischemic?
 - Fluorescein angiography

Table

<table>
<thead>
<tr>
<th>CRVO</th>
<th>FA</th>
<th>Ischemic CRVO?</th>
<th>Nonischemic CRVO?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>What is the classic description of the fundus in CRVO?</td>
<td>Blood and thunder</td>
</tr>
<tr>
<td></td>
<td></td>
<td>How are such CRVOs classified?</td>
<td>To determine whether a CRVO is ischemic or not?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heme and cotton-wool spots (CWS) may obscure FA hyperfluorescence, rendering FA interpretation problematic</td>
<td></td>
</tr>
</tbody>
</table>

Q

- What FA finding is common to both ischemic and nonischemic subtypes?
 - Prolonged retinal circulation time

- What FA finding defines an ischemic CRVO?
 - 10+ disc diameters of capillary nonperfusion
<table>
<thead>
<tr>
<th>Ischemic CRVO</th>
<th></th>
<th></th>
<th></th>
<th>FA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolonged retinal circulation time with capillary nonperfusion</td>
<td>10+ disc diameters of capillary nonperfusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolonged retinal circulation, but no capillary nonperfusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What test must be run to determine whether a CRVO is ischemic or nonischemic?
Fluorescein angiography

What FA finding is common to both ischemic and nonischemic subtypes?
Prolonged retinal circulation time

What FA finding defines an ischemic CRVO?
10+ disc diameters of capillary nonperfusion

What is the classic description of the fundus in CRVO?
Blood and thunder

How are such CRVOs classified?
As indeterminate, as mentioned previously.

Heme and cotton-wool spots (CWS) may obscure FA hyperfluorescence, rendering FA interpretation problematic.

What impact does this frequently have on attempts to determine whether a CRVO is ischemic or not?
Heme and cotton-wool spots (CWS) may obscure FA hyperfluorescence, rendering FA interpretation problematic.
What test must be run to determine whether a CRVO is ischemic or nonischemic? Fluorescein angiography

What FA finding is common to both ischemic and nonischemic subtypes?
CRVO

<table>
<thead>
<tr>
<th></th>
<th>FA findings?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic CRVO</td>
<td>Prolonged retinal circ time</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>Prolonged retinal circ time</td>
</tr>
</tbody>
</table>

What test must be run to determine whether a CRVO is ischemic or nonischemic? Fluorescein angiography

What FA finding is common to both ischemic and nonischemic subtypes? Prolonged retinal circulation time
CRVO: Prolonged circ time (note the timer)
CRVO

<table>
<thead>
<tr>
<th></th>
<th>FA findings?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic CRVO</td>
<td>Prolonged retinal circulation time with...</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>Prolonged retinal circulation time with...</td>
</tr>
</tbody>
</table>

What test must be run to determine whether a CRVO is ischemic or nonischemic?
Fluorescein angiography

What FA finding is common to both ischemic and nonischemic subtypes?
Prolonged retinal circulation time

What FA finding differentiates ischemic from nonischemic CRVO?
What test must be run to determine whether a CRVO is ischemic or nonischemic?
Fluorescein angiography

What FA finding is common to both ischemic and nonischemic subtypes?
Prolonged retinal circulation time

What FA finding differentiates ischemic from nonischemic CRVO?
The extent of capillary nonperfusion.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>FA findings?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic</td>
<td></td>
<td>Prolonged retinal circulation time with...</td>
</tr>
<tr>
<td>CRVO</td>
<td></td>
<td>capillary nonperfusion</td>
</tr>
<tr>
<td>Nonischemic</td>
<td></td>
<td>Prolonged retinal circulation time with...</td>
</tr>
<tr>
<td>CRVO</td>
<td></td>
<td>capillary nonperfusion</td>
</tr>
<tr>
<td>CRVO</td>
<td>FA findings?</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Ischemic CRVO</td>
<td>Prolonged retinal circulation time with…10+ DD capillary nonperfusion</td>
<td></td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>Prolonged retinal circulation time with…minimal capillary nonperfusion</td>
<td></td>
</tr>
</tbody>
</table>

What test must be run to determine whether a CRVO is ischemic or nonischemic?
Fluorescein angiography

What FA finding is common to both ischemic and nonischemic subtypes?
Prolonged retinal circulation time

What FA finding differentiates ischemic from nonischemic CRVO?
The extent of capillary nonperfusion. In ischemic CRVO, at least 10 disc diameters of capillary nonperfusion are present, whereas in nonischemic, only a minimal amount (if any) is present.
CRVO: Nonischemic

(A) Fundus photograph of a central retinal vein occlusion demonstrating typical features of venous tortuosity, macular thickening, and intraretinal hemorrhage in all four quadrants of the fundus. (B) Early-phase angiogram of the fundus depicted in A, demonstrating an intact parafoveal capillary network in this perfused central retinal vein occlusion.
CRVO: Ischemic

(A) Fundus photograph of an eye with central retinal vein occlusion demonstrating scattered retinal hemorrhages, venous engorgement, and cotton-wool spots. (B) Midphase fluorescein angiogram of the eye shown in A, demonstrating capillary nonperfusion involving the foveal center. This eye also had extensive peripheral nonperfusion and is an example of the nonperfused form of central retinal vein occlusion.

CRVO: Ischemic
<table>
<thead>
<tr>
<th></th>
<th>APD?</th>
<th>VA</th>
<th>CWS?</th>
<th>FA findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic CRVO</td>
<td>Yes?</td>
<td>No?</td>
<td></td>
<td>Prolonged retinal circ time with…10+ DD capillary nonperfusion</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>Yes?</td>
<td>No?</td>
<td></td>
<td>Prolonged retinal circ time with…minimal capillary nonperfusion</td>
</tr>
<tr>
<td>APD?</td>
<td>VA</td>
<td>CWS?</td>
<td>FA findings</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Ischemic CRVO</td>
<td>Yes</td>
<td></td>
<td>Prolonged retinal circ time with…10+ DD capillary nonperfusion</td>
<td></td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>No</td>
<td></td>
<td>Prolonged retinal circ time with…minimal capillary nonperfusion</td>
<td></td>
</tr>
<tr>
<td>CRVO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td>APD?</td>
<td>VA</td>
<td>CWS?</td>
<td>FA findings</td>
</tr>
<tr>
<td>Ischemic</td>
<td>Yes</td>
<td>Good?</td>
<td>Bad?</td>
<td>Prolonged retinal circ time with… 10+ DD capillary nonperfusion</td>
</tr>
<tr>
<td>CRVO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonischemic</td>
<td>No</td>
<td>Good?</td>
<td>Bad?</td>
<td>Prolonged retinal circ time with… minimal capillary nonperfusion</td>
</tr>
<tr>
<td>CRVO</td>
<td>APD?</td>
<td>VA</td>
<td>CWS?</td>
<td>FA findings</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Ischemic</td>
<td>Yes</td>
<td>Bad</td>
<td></td>
<td>Prolonged retinal circ time with…10+ DD capillary nonperfusion</td>
</tr>
<tr>
<td>CRVO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonischemic</td>
<td>No</td>
<td>Good</td>
<td></td>
<td>Prolonged retinal circ time with…minimal capillary nonperfusion</td>
</tr>
<tr>
<td></td>
<td>APD?</td>
<td>VA</td>
<td>CWS?</td>
<td>FA findings</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Ischemic CRVO</td>
<td>Yes</td>
<td>Bad</td>
<td>Yes? No?</td>
<td>Prolonged retinal circ time with…10+ DD capillary nonperfusion</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>No</td>
<td>Good</td>
<td>Yes? No?</td>
<td>Prolonged retinal circ time with…minimal capillary nonperfusion</td>
</tr>
<tr>
<td>CRVO</td>
<td>APD?</td>
<td>VA</td>
<td>CWS?</td>
<td>FA findings</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Ischemic</td>
<td>Yes</td>
<td>Bad</td>
<td>Yes</td>
<td>Prolonged retinal circ time with…10+ DD capillary nonperfusion</td>
</tr>
<tr>
<td>CRVO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonischemic</td>
<td>No</td>
<td>Good</td>
<td>No</td>
<td>Prolonged retinal circ time with…minimal capillary nonperfusion</td>
</tr>
<tr>
<td></td>
<td>APD?</td>
<td>VA</td>
<td>CWS?</td>
<td>FA findings</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Ischemic CRVO</td>
<td>Yes</td>
<td>Bad</td>
<td>Yes</td>
<td>Prolonged retinal circ time with…10+ DD capillary nonperfusion</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>No</td>
<td>Good</td>
<td>No</td>
<td>Prolonged retinal circ time with…minimal capillary nonperfusion</td>
</tr>
</tbody>
</table>

When initial VA is… **≥20/40**

(Question is on the next slide—proceed when ready)
<table>
<thead>
<tr>
<th></th>
<th>APD?</th>
<th>VA</th>
<th>CWS?</th>
<th>FA findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic CRVO</td>
<td>Yes</td>
<td>Bad</td>
<td>Yes</td>
<td>Prolonged retinal circ time with...10+ DD capillary nonperfusion</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>No</td>
<td>Good</td>
<td>No</td>
<td>Prolonged retinal circ time with...minimal capillary nonperfusion</td>
</tr>
</tbody>
</table>

When initial VA is... ≥20/40

...final VA is likely to be...

Good? Bad? The question
<table>
<thead>
<tr>
<th>CRVO</th>
<th>APD?</th>
<th>VA</th>
<th>CWS?</th>
<th>FA findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic CRVO</td>
<td>Yes</td>
<td>Bad</td>
<td>Yes</td>
<td>Prolonged retinal circ time with…10+ DD capillary nonperfusion</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>No</td>
<td>Good</td>
<td>No</td>
<td>Prolonged retinal circ time with…minimal capillary nonperfusion</td>
</tr>
</tbody>
</table>

When initial VA is… ≥20/40

…final VA is likely to be… Good
<table>
<thead>
<tr>
<th></th>
<th>APD?</th>
<th>VA</th>
<th>CWS?</th>
<th>FA findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic CRVO</td>
<td>Yes</td>
<td>Bad</td>
<td>Yes</td>
<td>Prolonged retinal circ time with…10+ DD capillary nonperfusion</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>No</td>
<td>Good</td>
<td>No</td>
<td>Prolonged retinal circ time with…minimal capillary nonperfusion</td>
</tr>
</tbody>
</table>

When initial VA is…

...final VA is likely to be…

- Good
- Good? Bad?
<table>
<thead>
<tr>
<th></th>
<th>APD?</th>
<th>VA</th>
<th>CWS?</th>
<th>FA findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic CRVO</td>
<td>Yes</td>
<td>Bad</td>
<td>Yes</td>
<td>Prolonged retinal circ time with...10+ DD capillary nonperfusion</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>No</td>
<td>Good</td>
<td>No</td>
<td>Prolonged retinal circ time with...minimal capillary nonperfusion</td>
</tr>
</tbody>
</table>

When initial VA is... ≤20/200

...final VA is likely to be... Good

As bad, or even worse
<table>
<thead>
<tr>
<th></th>
<th>APD?</th>
<th>VA</th>
<th>CWS?</th>
<th>FA findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic CRVO</td>
<td>Yes</td>
<td>Bad</td>
<td>Yes</td>
<td>Prolonged retinal circ time with…10+ DD capillary nonperfusion</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>No</td>
<td>Good</td>
<td>No</td>
<td>Prolonged retinal circ time with…minimal capillary nonperfusion</td>
</tr>
</tbody>
</table>

When initial VA is…

<table>
<thead>
<tr>
<th></th>
<th>20/50 - 20/200</th>
<th>≤20/200</th>
</tr>
</thead>
<tbody>
<tr>
<td>…final VA is likely to be…</td>
<td>Good</td>
<td>Good? Bad?</td>
</tr>
<tr>
<td></td>
<td>APD?</td>
<td>VA</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Ischemic CRVO</td>
<td>Yes</td>
<td>Bad</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>No</td>
<td>Good</td>
</tr>
</tbody>
</table>

When initial VA is…

<table>
<thead>
<tr>
<th>20/50 - 20/200</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤20/200</td>
</tr>
</tbody>
</table>

…final VA is likely to be…

<table>
<thead>
<tr>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% stabilize 20% improve 30% worsen</td>
</tr>
<tr>
<td>As bad, or even worse</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Ischemic CRVO</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
</tr>
</tbody>
</table>

tl;dr for Final VA after CRVO:

- Ischemic CRVO: Good vision stays good, Bad vision stays bad
- Nonischemic CRVO: Good vision stays good, Bad vision remains bad

<table>
<thead>
<tr>
<th>When initial VA is…</th>
<th>≥20/40</th>
<th>20/50 - 20/200</th>
<th>≤20/200</th>
</tr>
</thead>
<tbody>
<tr>
<td>…final VA is likely to be…</td>
<td>Good</td>
<td>50% stabilize 20% improve 30% worsen</td>
<td>As bad, or even worse</td>
</tr>
</tbody>
</table>

(No question—proceed when ready)
<table>
<thead>
<tr>
<th></th>
<th>APD?</th>
<th>VA</th>
<th>CWS?</th>
<th>FA findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic CRVO</td>
<td>Yes</td>
<td>Bad</td>
<td>Yes</td>
<td>Prolonged retinal circ time with…10+ DD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>capillary nonperfusion</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>No</td>
<td>Good</td>
<td>No</td>
<td>Prolonged retinal circ time with…minimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>capillary nonperfusion</td>
</tr>
</tbody>
</table>

tl;dr for Final VA after CRVO: **Good vision stays good**…

<table>
<thead>
<tr>
<th>When initial VA is…</th>
<th>≥20/40</th>
<th>20/50 - 20/200</th>
<th>≤20/200</th>
</tr>
</thead>
<tbody>
<tr>
<td>…final VA is likely to be…</td>
<td>Good</td>
<td>50% stabilize 20% improve 30% worsen</td>
<td>As bad, or even worse</td>
</tr>
</tbody>
</table>

(No question—proceed when ready)
CRVO

<table>
<thead>
<tr>
<th></th>
<th>APD?</th>
<th>VA</th>
<th>CWS?</th>
<th>FA findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic CRVO</td>
<td>Yes</td>
<td>Bad</td>
<td>Yes</td>
<td>Prolonged retinal circ time with 10+ DD capillary nonperfusion</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>No</td>
<td>Good</td>
<td>No</td>
<td>Prolonged retinal circ time with minimal capillary nonperfusion</td>
</tr>
</tbody>
</table>

tl;dr for Final VA after CRVO: *Good vision stays good…Bad vision stays bad*

When initial VA is…
- **≥20/40**
 - **Final VA is likely to be…** Good
- **20/50 - 20/200**
 - 50% stabilize 20% improve 30% worsen
- **≤20/200**
 - As bad, or even worse

(No question—proceed when ready)
What physiological process accounts for improvement in such cases?

- The development of collaterals (aka shunt vessels)
- What does it mean to say the blood is shunted?
 - It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye
- Where does the blood go instead of into the CRV?
 - Into the choroidal circulation
- Where are these vessels typically located?
 - In the peripapillary region
- By what name are these collaterals known?
 - 'Optociliary shunt vessels'

<table>
<thead>
<tr>
<th>CRVO Findings</th>
<th>Ischemic CRVO</th>
<th>Nonischemic CRVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolonged retinal circulation with...</td>
<td>10+ DD</td>
<td>minimal capillary nonperfusion</td>
</tr>
<tr>
<td>...final VA is likely to be...</td>
<td>Good</td>
<td>50% stabilize</td>
</tr>
<tr>
<td>...final VA is likely to be...</td>
<td>≤20/200</td>
<td>20% improve</td>
</tr>
<tr>
<td>...final VA is likely to be...</td>
<td>Good</td>
<td>30% worsen</td>
</tr>
<tr>
<td>...final VA is likely to be...</td>
<td>Bad, or even worse</td>
<td></td>
</tr>
</tbody>
</table>

What physiological process accounts for improvement in such cases?

- The development of collaterals (aka shunt vessels)
- What does it mean to say the blood is shunted?
 - It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye
- Where does the blood go instead of into the CRV?
 - Into the choroidal circulation
- Where are these vessels typically located?
 - In the peripapillary region
- By what name are these collaterals known?
 - 'Optociliary shunt vessels'
What physiological process accounts for improvement in such cases? The development of collaterals (aka shunt vessels).

What does it mean to say the blood is shunted?
It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV?
Into the choroidal circulation.

Where are these vessels typically located?
In the peripapillary region.

By what name are these collaterals known?
‘Optociliary shunt vessels’.

When initial VA is ≥20/40 20/50 - 20/200 ≤20/200...
...final VA is likely to be...
Good
50% stabilize
20% improve
30% worsen
Bad, or even worse
CRVO

What physiological process accounts for improvement in such cases?

The development of collaterals (aka *shunt vessels*).

<table>
<thead>
<tr>
<th>CRVO Findings</th>
<th>Prolonged retinal circ time with...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10+ DD capillary nonperfusion</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>minimal capillary nonperfusion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VA Initial</th>
<th>VA Final</th>
<th>Likely Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥20/40</td>
<td>≥20/40</td>
<td>Good</td>
</tr>
<tr>
<td>20/50 - 20/200</td>
<td>20/50 - 20/200</td>
<td>50% stabilize</td>
</tr>
<tr>
<td>≤20/200</td>
<td>≤20/200</td>
<td>20% improve, 30% worsen, ≤20/200</td>
</tr>
</tbody>
</table>
What physiological process accounts for improvement in such cases? The **development** of collaterals (aka shunt vessels)

Does ‘development’ here refer to the creation of new vessels, ie, neovascularization? No, it refers to small, native vessels expanding enough to allow the timely egress of normal retinal inflow.

CRVO Findings

<table>
<thead>
<tr>
<th>Prolonged retinal circ time with</th>
<th>10+ DD capillary nonperfusion</th>
<th>Ischemic CRVO</th>
<th>Yes</th>
<th>Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolonged retinal circ time with</td>
<td>minimal capillary nonperfusion</td>
<td>Nonischemic CRVO</td>
<td>No</td>
<td>Good</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When initial VA is</th>
<th>≥20/40</th>
<th>20/50 - 20/200</th>
<th>≤20/200</th>
</tr>
</thead>
<tbody>
<tr>
<td>...final VA is likely to be...</td>
<td>Good</td>
<td>50% stabilize</td>
<td>20% improve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30% worsen</td>
<td>Bad, or even worse</td>
</tr>
</tbody>
</table>

What does it mean to say the blood is shunted? It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV? Into the choroidal circulation.

Where are these vessels typically located? In the peripapillary region.

By what name are these collaterals known? ‘Optociliary shunt vessels’.
<table>
<thead>
<tr>
<th>CRVO Findings</th>
<th>Ischemic CRVO</th>
<th>Nonischemic CRVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolonged retinal circ time with...</td>
<td>10+ DD capillary nonperfusion</td>
<td>minimal capillary nonperfusion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When initial VA is...</th>
<th>≥20/40</th>
<th>20/50 - 20/200</th>
<th>≤20/200</th>
</tr>
</thead>
<tbody>
<tr>
<td>...final VA is likely to be...</td>
<td>Good</td>
<td>50% stabilize</td>
<td>20% improve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30% worsen</td>
<td>Bad, or even worse</td>
</tr>
</tbody>
</table>

What physiological process accounts for improvement in such cases?

The development of collaterals (aka shunt vessels)

Does ‘development’ here refer to the creation of new vessels, ie, neovascularization?

No, it refers to small, native vessels expanding enough to allow the timely egress of normal retinal inflow.

What does it mean to say the blood is shunted?

It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV?

Into the choroidal circulation.

Where are these vessels typically located?

In the peripapillary region.

By what name are these collaterals known?

‘Optociliary shunt vessels’.

Does ‘development’ here refer to the creation of new vessels, ie, neovascularization?

No, it refers to small, native vessels expanding enough to allow the timely egress of normal retinal inflow.
What physiological process accounts for improvement in such cases? The development of collaterals (aka shunt vessels)

What does it mean to say the blood is shunted?

It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye

Where does the blood go instead of into the CRV?

Into the choroidal circulation

Where are these vessels typically located?

In the peripapillary region

By what name are these collaterals known?

Optociliary shunt vessels

When initial VA is ≥20/40, 20/50 - 20/200, ≤20/200

…final VA is likely to be…

Good

50% stabilize

20% improve

30% worsen

Bad, or even worse

20/200
What physiological process accounts for improvement in such cases?
The development of collaterals (aka *shunt vessels*)

What does it mean to say the blood is shunted?
It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye

…final VA is likely to be…	Good	50% stabilize	20% improve	30% worsen	≤20/200
--- | --- | --- | --- | --- |
What physiological process accounts for improvement in such cases?
The development of collaterals (aka *shunt vessels*)

What does it mean to say the blood is shunted?
It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye

Where does the blood go instead of into the CRV?
Into the choroidal circulation

Where are these vessels typically located?
In the peripapillary region

By what name are these collaterals known?
'Optociliary shunt vessels'
What physiological process accounts for improvement in such cases? The development of collaterals (aka *shunt vessels*).

What does it mean to say the blood is shunted?
It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV?
Into the choroidal circulation.

Ischemic CRVO

<table>
<thead>
<tr>
<th>Final VA is likely to be…</th>
<th>Good</th>
<th>50% stabilize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30% worsen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20% improve</td>
</tr>
</tbody>
</table>

Nonischemic CRVO

<table>
<thead>
<tr>
<th>Final VA is likely to be…</th>
<th>Good</th>
<th>50% stabilize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30% worsen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clinical findings

- Prolonged retinal circ time with…
- 10+ DD capillary nonperfusion
What physiological process accounts for improvement in such cases?
The development of collaterals (aka *shunt vessels*).

What does it mean to say the blood is shunted?
It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV?
Into the choroidal circulation.

But the choroid is still *in the eye.* Where does the blood go from there?
Into the vortex veins, which in turn drain into the inferior and superior ophthalmic veins.

When initial VA is …
≥20/40
20/50 - 20/200
≤20/200
…final VA is likely to be…
Good
50% stabilize
20% improve
30% worsen
Bad, or even worse
Q/A

What physiological process accounts for improvement in such cases?

The development of collaterals (aka *shunt vessels*).

What does it mean to say the blood is shunted?

It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV?

Into the choroidal circulation.

But the choroid is still ‘in the eye.’ Where does the blood go from there?

The choroidal circulation drains into the vortex veins, which in turn drain into the inferior and superior ophthalmic veins.

<table>
<thead>
<tr>
<th>CRVO Findings</th>
<th>Prolonged Retinal Circulation</th>
<th>Capillary Nonperfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic CRVO</td>
<td>Yes</td>
<td>≤20/200</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>No</td>
<td>≥20/40 - 20/200</td>
</tr>
</tbody>
</table>

- 50% stabilize
- 20% improve
- 30% worsen
- As bad, or even worse

…final VA is likely to be…

<table>
<thead>
<tr>
<th>Good</th>
<th>20% improve</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤20/200</td>
<td>30% worsen</td>
</tr>
</tbody>
</table>
What physiological process accounts for improvement in such cases? The development of collaterals (aka *shunt vessels*).

What does it mean to say the blood is *shunted*? It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV? Into the choroidal circulation.

But the choroid is still ‘in the eye.’ Where does the blood go from there? The choroidal circulation drains into the vortex veins, which in turn drain into the inferior and superior ophthalmic veins.

<table>
<thead>
<tr>
<th>CRVO Findings</th>
<th>Prolonged retinal circulation</th>
<th>Ischemic CRVO</th>
<th>≤20/200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10+ DD</td>
<td>Yes</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>40+ DD</td>
<td>No</td>
<td>Bad</td>
</tr>
<tr>
<td></td>
<td>80+ DD</td>
<td>Yes</td>
<td>20% improve</td>
</tr>
<tr>
<td></td>
<td>50+ DD</td>
<td>No</td>
<td>30% worsen</td>
</tr>
<tr>
<td></td>
<td>100+ DD</td>
<td>Yes</td>
<td>= bad, or even worse</td>
</tr>
</tbody>
</table>

...final VA is likely to be...

Good

50% stabilize

20% improve

30% worsen

Bad, or even worse
<table>
<thead>
<tr>
<th>Findings</th>
<th>CRVO</th>
<th>Ischemic CRVO</th>
<th>Nonischemic CRVO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolonged retinal circ time with...</td>
<td>10+ DD</td>
<td>capillary nonperfusion</td>
<td>minimal capillary nonperfusion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When initial VA is...</th>
<th>≥20/40</th>
<th>20/50 - 20/200</th>
<th>≤20/200</th>
</tr>
</thead>
<tbody>
<tr>
<td>...final VA is likely to be...</td>
<td>Good</td>
<td>50% stabilize</td>
<td>20% improve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% stabilize</td>
<td>30% worsen</td>
</tr>
</tbody>
</table>
What physiological process accounts for improvement in such cases? The development of collaterals (aka shunt vessels)

What does it mean to say the blood is shunted? It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye. Where does the blood go instead of into the CRV? Into the choroidal circulation. Where are these vessels typically located? In the peripapillary region. By what name are these collaterals known? 'Optociliary shunt vessels'. But the choroid is still 'in the eye.' Where does the blood go from there? The choroidal circulation drains into the vortex veins, which in turn drain into the inferior and superior ophthalmic veins.

How many vortex veins are there? Usually four, occasionally five.

When initial VA is "≥20/40 20/50 - 20/200 ≤20/200," final VA is likely to be... Good. 50% stabilize, 20% improve, 30% worsen. As bad, or even worse.

How many vortex veins are there? Usually four, occasionally five.
CRVO

What physiological process accounts for improvement in such cases?
The development of collaterals (aka *shunt vessels*)

What does it mean to say the blood is shunted?
It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV?
Into the choroidal circulation.

Where are these vessels typically located?
In the peripapillary region.

By what name are these collaterals known?
'Optociliary shunt vessels'.

But the choroid is still 'in the eye.' Where does the blood go from there?
The choroidal circulation drains into the vortex veins, which in turn drain into the inferior and superior ophthalmic veins.

One aspect of the vortex veins is visible on DFE. What is it?
Vortex veins.

<table>
<thead>
<tr>
<th>CRVO findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prolonged retinal circ time with...</td>
</tr>
<tr>
<td>Capillary nonperfusion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>When initial VA is...</th>
<th>≥20/40</th>
<th>20/50 - 20/200</th>
<th>≤20/200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final VA is likely to be...</td>
<td>Good</td>
<td>50% stabilize</td>
<td>Bad, or even worse</td>
</tr>
</tbody>
</table>

- **20% improve**
What physiological process accounts for improvement in such cases? The development of collaterals (aka *shunt vessels*).

Q/A

What does it mean to say the blood is shunted?

How many vortex veins are there?

Usually four, occasionally five.

One aspect of the vortex veins is visible on DFE. What is it?

Their collecting channels (aka *vortex veins*).

Where are these vessels typically located?

In the peripapillary region.

By what name are these collaterals known?

'Optociliary shunt vessels'.

But the choroid is still 'in the eye.' Where does the blood go from there?

The choroidal circulation drains into the vortex veins, which in turn drain into the inferior and superior ophthalmic veins.

Where (as in anterior, posterior, etc) are the ampullae located?

Usually right at the retina’s equator.

How many vortex veins are there?

Usually four, occasionally five.

One aspect of the vortex veins is visible on DFE. What is it?

Their collecting channels (aka *vortex veins*).

How does blood enter the retinal circulation find an anatomic pathway by which to bypass the occluded CRV and leave the eye?

Where does the blood go instead of into the CRV?

Into the choroidal circulation.

Where are these vessels typically located?

In the peripapillary region.

By what name are these collaterals known?

'Optociliary shunt vessels'.

But the choroid is still 'in the eye.' Where does the blood go from there?

The choroidal circulation drains into the vortex veins, which in turn drain into the inferior and superior ophthalmic veins.

Where (as in anterior, posterior, etc) are the ampullae located?

Usually right at the retina’s equator.

What does it mean to say the blood is shunted?

How many vortex veins are there?

Usually four, occasionally five.

One aspect of the vortex veins is visible on DFE. What is it?

Their collecting channels (aka *vortex veins*).

Where are these vessels typically located?

In the peripapillary region.

By what name are these collaterals known?

'Optociliary shunt vessels'.

But the choroid is still 'in the eye.' Where does the blood go from there?

The choroidal circulation drains into the vortex veins, which in turn drain into the inferior and superior ophthalmic veins.

Where (as in anterior, posterior, etc) are the ampullae located?

Usually right at the retina’s equator.
What physiological process accounts for improvement in such cases?
The development of collaterals (aka shunt vessels)

What does it mean to say the blood is shunted?
It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye

Where does the blood go instead of into the CRV?
Into the choroidal circulation

Where are these vessels typically located?
In the peripapillary region

By what name are these collaterals known?
‘Optociliary shunt vessels’

But the choroid is still ‘in the eye.’ Where does the blood go from there?
The choroidal circulation drains into the vortex veins, which in turn drain into the inferior and superior ophthalmic veins

How many vortex veins are there? Usually four, occasionally five

One aspect of the vortex veins is visible on DFE. What is it?
Their collecting channels (aka ampullae)

How many vortex veins are there? Usually four, occasionally five

One aspect of the vortex veins is visible on DFE. What is it?
Their collecting channels (aka ampullae)

...final VA is likely to be...

...≥20/40
Good
50% stabilize
30% improve

...final VA is likely to be...

...≤20/200
Bad, or even worse

20% improve

RVO
Vortex vein ampullae
What physiological process accounts for improvement in such cases?

The development of collaterals (aka **shunt vessels**)

What does it mean to say the blood is shunted?

It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV?

Into the choroidal circulation.

Where are these vessels typically located?

In the peripapillary region.

By what name are these collaterals known?

'Optociliary shunt vessels'.

But the choroid is still 'in the eye.' Where does the blood go from there?

The choroidal circulation drains into the vortex veins, which in turn drain into the inferior and superior ophthalmic veins.

How many vortex veins are there?

Usually four, occasionally five.

One aspect of the vortex veins is visible on DFE. What is it?

Their collecting channels (aka **ampullae**).

Where (as in anterior, posterior, etc) are the ampullae located?

Usually right at the retina's equator.

<table>
<thead>
<tr>
<th>Findings</th>
<th>Prolonged retinal circ time with 10+ DD capillary nonperfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic CRVO</td>
<td>Bad</td>
</tr>
<tr>
<td>Nonischemic CRVO</td>
<td>Good</td>
</tr>
</tbody>
</table>

For final VA:

- $\geq 20/40$: Likely to be good
- $20/50 - 20/200$: 50% stabilize, 20% improve, 30% worsen
- $\leq 20/200$: Bad, or even worse

What does it mean to say the blood is shunted?

It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV?

Into the choroidal circulation.

Where are these vessels typically located?

In the peripapillary region.

By what name are these collaterals known?

'Optociliary shunt vessels'.

But the choroid is still 'in the eye.' Where does the blood go from there?

The choroidal circulation drains into the vortex veins, which in turn drain into the inferior and superior ophthalmic veins.

How many vortex veins are there?

Usually four, occasionally five.

One aspect of the vortex veins is visible on DFE. What is it?

Their collecting channels (aka **ampullae**).

Where (as in anterior, posterior, etc) are the ampullae located?

Usually right at the retina's equator.
What physiological process accounts for improvement in such cases? The development of collaterals (aka shunt vessels)

What does it mean to say the blood is shunted? It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV? Into the choroidal circulation.

Where are these vessels typically located? In the peripapillary region.

By what name are these collaterals known? 'Optociliary shunt vessels.'

But the choroid is still 'in the eye.' Where does the blood go from there? The choroidal circulation drains into the vortex veins, which in turn drain into the inferior and superior ophthalmic veins.

How many vortex veins are there? Usually four, occasionally five.

One aspect of the vortex veins is visible on DFE. What is it? Their collecting channels (aka ampullae).

Where (as in anterior, posterior, etc) are the ampullae located? Usually right at the retina's equator.

The choroidal circulation drains into the vortex veins, which in turn drain into the inferior and superior ophthalmic veins.
Vortex vein ampullae (blue circle indicates the equator)
What physiological process accounts for improvement in such cases? The development of collaterals (aka shunt vessels)

What does it mean to say the blood is shunted? It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV? Into the choroidal circulation.

Where are the shunt vessels typically located? In the peripapillary region.

By what name are these collaterals known? 'Optociliary shunt vessels'

When initial VA is...

- ≥20/40: Good
- 20/50 - 20/200: 50% stabilize
- ≤20/200: 20% improve

...final VA is likely to be...

- Good
- 50% stabilize
- 20% improve
- 30% worsen
- As bad, or even worse
What physiological process accounts for improvement in such cases? The development of collaterals (aka *shunt vessels*).

What does it mean to say the blood is shunted? It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV? Into the choroidal circulation.

Where are the shunt vessels typically located? In the peripapillary region.

When initial VA is ≥20/40, 20/50 - 20/200, ≤20/200… final VA is likely to be…

<table>
<thead>
<tr>
<th>…final VA is likely to be…</th>
<th>Good</th>
<th>50% stabilize</th>
<th>20% improve</th>
<th>30% worsen</th>
<th>Bad, or even worse</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥20/40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/50 - 20/200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤20/200</td>
<td></td>
<td>50% stabilize</td>
<td>20% improve</td>
<td>30% worsen</td>
<td>Bad, or even worse</td>
</tr>
</tbody>
</table>

As bad, or even worse.
What physiological process accounts for improvement in such cases?
The development of collaterals (aka *shunt vessels*).

What does it mean to say the blood is shunted?
It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye.

Where does the blood go instead of into the CRV?
Into the choroidal circulation.

Where are the shunt vessels typically located?
In the peripapillary region.

By what name are these collaterals known?
"Optociliary shunt vessels."
What physiological process accounts for improvement in such cases?
The development of collaterals (aka *shunt vessels*)

What does it mean to say the blood is shunted?
It means blood entering the retinal circulation finds an anatomic pathway by which to bypass the occluded CRV and leave the eye

Where does the blood go instead of into the CRV?
Into the choroidal circulation

Where are the shunt vessels typically located?
In the peripapillary region

By what name are these collaterals known?
‘Optociliary shunt vessels’

<table>
<thead>
<tr>
<th>CRVO Findings</th>
<th>Prolonged retinal circ time with...</th>
<th>10+ DD capillary nonperfusion</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>When initial VA is...</th>
<th>≤20/200</th>
</tr>
</thead>
<tbody>
<tr>
<td>...final VA is likely to be...</td>
<td>Good</td>
</tr>
<tr>
<td>50% stabilize</td>
<td>20% improve</td>
</tr>
<tr>
<td>20% improve</td>
<td>30% worsen</td>
</tr>
<tr>
<td>50% stabilize</td>
<td>As bad, or even worse</td>
</tr>
</tbody>
</table>

Note: VA stands for Visual Acuity.
Optociliary shunt vessels

CRVO
Bruh, that sure looks like NVD to me. How could you distinguish between optociliary shunt vessels and NVD?
Bruh, that sure looks like NVD to me. How could you distinguish between optociliary shunt vessels and NVD?

You could perform FA (fluorescein angiography). How does FA differentiate between NVD and shunt vessels? Whereas NVD vessels don't leak on FA, optociliary shunt vessels don't.
Bruh, that sure looks like NVD to me. How could you distinguish between optociliary shunt vessels and NVD?
You could perform FA

Optociliary shunt vessels
Bruh, that sure looks like NVD to me. How could you distinguish between optociliary shunt vessels and NVD? You could perform FA.

How does FA differentiate between NVD and shunt vessels?
Bruh, that sure looks like NVD to me. How could you distinguish between optociliary shunt vessels and NVD?
You could perform FA

How does FA differentiate between NVD and shunt vessels?
Whereas NVD vessels do not leak on FA, optociliary shunt vessels do not.
Bruh, that sure looks like NVD to me. How could you distinguish between optociliary shunt vessels and NVD?

You could perform FA

How does FA differentiate between NVD and shunt vessels?
Whereas NVD vessels do leak on FA, optociliary shunt vessels don’t
Re NVI after CRVO: According to the CVOS...

What does CVOS stand for in this context?
Re NVI after CRVO: According to the CVOS…

What does CVOS stand for in this context? Central Vein Occlusion Study
Re NVI after CRVO: According to the CVOS…

What is the #1 predictor for neo?
Re NVI after CRVO: According to the CVOS…

- *What is the #1 predictor for neo? Poor VA*
Re NVI after CRVO: According to the CVOS…

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?
Re NVI after CRVO: According to the CVOS…

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence? No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.
Re NVI after CRVO: According to the CVOS…

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence? No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

If not prophylactically, at what point should PRP be applied?
Re NVI after CRVO: According to the CVOS...

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence? No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

If not prophylactically, at what point should PRP be applied?
Most clinicians perform PRP at the first sign of NVI
Re NVI after CRVO: According to the CVOS…

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence? No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.
- When is the follow-up visit after PRP?
Re NVI after CRVO: According to the CVOS...

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence? No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

- When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed
Re NVI after CRVO: According to the CVOS…

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI?
 - No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP when NVI developed.

When is the follow-up visit after PRP?
- One week; check IOP and assess response; re-treat if needed

Why is this important?
- For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.
- In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
 - Gonioscopy
- What are you checking for via gonioscopy?
 - First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.
Re NVI after CRVO: According to the CVOS…

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?

- No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

Why is this important?
For many reasons, not least of which is the fact that so many CRVO pts have glaucoma

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed
Re NVI after CRVO: According to the CVOS...

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI? No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP.

Why is this important?
For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?

- When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.
Re NVI after CRVO: According to the CVOS...

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence? No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

Why is this important?
For many reasons, not least of which is the fact that so many CRVO pts have glaucoma

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed? Gonioscopy

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed
Re NVI after CRVO: According to the CVOS...

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?

No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

Why is this important?
For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed? Gonioscopy

What are you checking for via gonioscopy?

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.
Re NVI after CRVO: According to the CVOS...

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence? No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

Why is this important?
For many reasons, not least of which is the fact that so many CRVO pts have glaucoma

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed? Gonioscopy

What are you checking for via gonioscopy?
First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of neovascularization/diabetic retinopathy.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.
Re NVI after CRVO: According to the CVOS...

- **What is the #1 predictor for neo?** Poor VA
- **If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI?** No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

Why is this important?
For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
Gonioscopy

What are you checking for via gonioscopy?
First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

- **When is the follow-up visit after PRP?** One week; check IOP and assess response; re-treat if needed.
Re NVI after CRVO: According to the CVOS…

- **What is the #1 predictor for neo?** Poor VA
- **If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI?** No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

Assuming no PRP or other treatment (a subject we’ll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?

Gonioscopy

What are you checking for via gonioscopy?

First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Q

CRVO
Re NVI after CRVO: According to the CVOS…

- **What is the #1 predictor for neo?** Poor VA
- **If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI?** No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

Q/A

- **Why is this important?** For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?

- **Gonioscopy**

What are you checking for via gonioscopy?

First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we’ll get to shortly), **how frequently should a CRVO pt be re-evaluated, and for how long?**

Every ___ for at least ___.
Re NVI after CRVO: According to the CVOS...

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence? No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

- When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

Why is this important? For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed? Gonioscopy.

What are you checking for via gonioscopy? First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we’ll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long? Every month for at least 6 months.
Re NVI after CRVO: According to the CVOS…

- **What is the #1 predictor for neo?** Poor VA
- **If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI?** No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

Why is this important? For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?

- **Gonioscopy**

 What are you checking for via gonioscopy?
 - First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we’ll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?

- Every month for at least 6 months

What is the main thing you’re looking to catch at these visits?

- The development of anterior-segment neovascularization
Re NVI after CRVO: According to the CVOS…

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI?
 No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

Why is this important? For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
Gonioscopy

What are you checking for via gonioscopy?
First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we’ll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?
Every month for at least 6 months

What is the main thing you’re looking to catch at these visits?
The development of NVA (which could result in NVG, a disastrous sequelae)
Re NVI after CRVO: According to the CVOS…

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI? No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

Why is this important? For many reasons, not least of which is the fact that so many CRVO pts have glaucoma. In addition to checking IOP, what other glaucoma-related exam maneuver should be performed? Gonioscopy. What are you checking for via gonioscopy? First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA. Assuming no PRP or other treatment (a subject we’ll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long? Every month for at least 6 months. What is the main thing you’re looking to catch at these visits? The development of NVA (which could result in NVG, a disastrous sequelae).
- Re NVI after CRVO: According to the CVOS...
 - What is the #1 predictor for neo? Poor VA
 - If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence? No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

- When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

- Why is this important? For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

- In addition to checking IOP, what other glaucoma-related exam maneuver should be performed? Gonioscopy.

- What are you checking for via gonioscopy? First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

- Assuming no PRP or other treatment (a subject we'll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long? Every month for at least 6 months.

- What is the main thing you’re looking to catch at these visits? The development of NVA (which could result in NVG, a disastrous sequelae).

- Is anterior-segment neovascularization common after ischemic CRVO? Very—over 50% of cases will develop it.

- Typically, how much time passes after an ischemic CRVO until NVG appears? Somewhere in the 3-5 month range.
Re NVI after CRVO: According to the CVOS...

- **What is the #1 predictor for neo?** Poor VA
- **If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI?** No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

- **When is the follow-up visit after PRP?** One week; check IOP and assess response; re-treat if needed

Q/A

- **Why is this important?** For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

- **In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?** Gonioscopy.

- **What are you checking for via gonioscopy?** First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

- **Assuming no PRP or other treatment (a subject we’ll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?** Every month for at least 6 months.

- **What is the main thing you’re looking to catch at these visits?** The development of NVA (which could result in NVG, a disastrous sequelae).

- **Is anterior-segment neovascularization common after ischemic CRVO?** Very—over % of cases will develop it.
Re NVI after CRVO: According to the CVOS...

- **What is the #1 predictor for neo?** Poor VA
- **If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI?** No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

Is anterior-segment neovascularization common after ischemic CRVO? Very—over 50% of cases will develop it.

What are you checking for via gonioscopy? First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

What is the main thing you’re looking to catch at these visits? The development of NVA (which could result in NVG, a disastrous sequelae).

Why for re-treatment? Assuming no PRP should a CRVO. Every month for...

In addition, what should be performed? For GLA.

For GLA, what are you checking for? For GLA.
Re NVI after CRVO: According to the CVOS...

- **What is the #1 predictor for neo?** Poor VA
- **If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI?**

 No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

Why is this important? For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed? Gonioscopy.

What are you checking for via gonioscopy?

- First is a basic assessment of the status of the angle.
- After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we’ll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long? Every month for at least 6 months.

What is the main thing you’re looking to catch at these visits? The development of NVA (which could result in NVG, a disastrous sequelae).

Is anterior-segment neovascularization common after ischemic CRVO? Very—over 50% of cases will develop it.

Typically, how much time passes after an ischemic CRVO until NVG appears? Somewhere in the 3-5 month range.
Re NVI after CRVO: According to the CVOS…

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI? No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

Why is this important? For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed? Gonioscopy.

What are you checking for via gonioscopy? First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we’ll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long? Every month for at least 6 months.

What is the main thing you’re looking to catch at these visits? The development of NVA (which could result in NVG, a disastrous sequela).

Is anterior-segment neovascularization common after ischemic CRVO? Very—over 50% of cases will develop it.

Typically, how much time passes after an ischemic CRVO until NVG appears? Somewhere in the 3-5 month range.
Re NVI after CRVO: According to the CVOS...

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed to prevent the development of NVI? No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP when NVI developed.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

Why is this important? For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed? Gonioscopy.

What are you checking for via gonioscopy? First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Typically, how much time passes after an ischemic CRVO until NVG appears? Somewhere in the 3-5 month range. This explains the name by which post-CRVO NVG is known. What is that name? 'One-hundred-day glaucoma.'
Re NVI after CRVO: According to the CVOS…

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?
 - No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP?
- One week; check IOP and assess response; re-treat if needed

Why is this important?
- For many reasons, not least of which is the fact that so many CRVO pts have glaucoma

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
- Gonioscopy

What are you checking for via gonioscopy?
- First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we'll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?
- Every month for at least 6 months

What is the main thing you're looking to catch at these visits?
- The development of NVA (which could result in NVG, a disastrous sequelae)

Is anterior-segment neovascularization common after ischemic CRVO?
- Very—over 50% of cases will develop it

Typically, how much time passes after an ischemic CRVO until NVG appears?
- Somewhere in the 3-5 month range

3-5 months later…This explains the name by which post-CRVO NVG is known. What is that name?
- 'One-hundred-day glaucoma'
Re NVI after CRVO: According to the CVOS...

- What is the #1 predictor for neo? Poor VA
- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?
 No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP?
One week; check IOP and assess response; re-treat if needed.

Why is this important?
For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
Gonioscopy

What are you checking for via gonioscopy?
First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Is anterior-segment neovascularization common after ischemic CRVO?
Very—over 50% of cases will develop it.

Typically, how much time passes after an ischemic CRVO until NVG appears?
Somewhere in the 3-5 month range.

OK, it makes sense that we want to preclude development of NVG. But wouldn’t it be better to do this via DFE, looking for the onset of NVD or NVE?
No, that would be a distinctly inadequate strategy.

Why is DFE inadequate as a surveillance method in CRVO?
Because very frequently, anterior-segment neo in CRVO occurs without neovascularization of the posterior segment.

The development of NVA (which could result in NVG, a disastrous sequelae)
Re NVI after CRVO: According to the CVOS…

- **What is the #1 predictor for neo?** Poor VA

- **If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?** No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

- **When is the follow-up visit after PRP?** One week; check IOP and assess response; re-treat if needed

OK, it makes sense that we want to preclude development of NVG. But wouldn’t it be better to do this via DFE, looking for the onset of NVD or NVE?

No, that would be a distinctly inadequate strategy

For many reasons, not least of which is the fact that so many CRVO pts have glaucoma

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?

Gonioscopy

What are you checking for via gonioscopy?

First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we’ll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?

Every month for at least 6 months

What is the main thing you’re looking to catch at these visits?

The development of NVA (which could result in NVG, a disastrous sequelae)

Typically, how much time passes after an ischemic CRVO until NVG appears?

Somewhere in the 3-5 month range

Is anterior-segment neovascularization common after ischemic CRVO?

Very—over 50% of cases will develop it

Why is this important?

For many reasons, not least of which is the fact that so many CRVO pts have glaucoma

Why is DFE inadequate as a surveillance method in CRVO?

Because very frequently, anterior-segment neo in CRVO occurs without neovascularization of the posterior segment
Re NVI after CRVO: According to the CVOS…

- **What is the #1 predictor for neo?** Poor VA

- **If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?**

 No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed

Why is this important? For many reasons, not least of which is the fact that so many CRVO pts have glaucoma

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed? Gonioscopy

What are you checking for via gonioscopy? First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Is anterior-segment neovascularization common after ischemic CRVO? Very—over 50% of cases will develop it

Typically, how much time passes after an ischemic CRVO until NVG appears? Somewhere in the 3-5 month range

OK, it makes sense that we want to preclude development of NVG. But wouldn’t it be better to do this via DFE, looking for the onset of NVD or NVE?

No, that would be a distinctly inadequate strategy

Why is DFE inadequate as a surveillance method in CRVO? Because very frequently, anterior-segment neo in CRVO occurs without neovascularization of the posterior segment
Re NVI after CRVO: According to the CVOS…

- **What is the #1 predictor for neo?** Poor VA

- **If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?** No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

Why is this important? For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed? **Gonioscopy**

What are you checking for via gonioscopy? First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Why is DFE inadequate as a surveillance method in CRVO? Because very frequently, anterior-seg neo in CRVO occurs **without** neovascularization of the posterior segment.

Is anterior-segment neovascularization common after ischemic CRVO? Very—over 50% of cases will develop it.

Typically, how much time passes after an ischemic CRVO until NVG appears? Somewhere in the 3-5 month range.

OK, it makes sense that we want to preclude development of NVG. But wouldn’t it be better to do this via DFE, looking for the onset of NVD or NVE?

No, that would be a distinctly inadequate strategy.
Re NVI after CRVO: According to the CVOS...

What is the #1 predictor for neo?
Poor VA

If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?
No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

Why is this important?
For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
Gonioscopy.

What are you checking for via gonioscopy?
First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we'll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?
Every month for at least 6 months.

What is the main thing you're looking to catch at these visits?
The development of NVA (which could result in NVG, a disastrous sequela).

Is anterior-segment neovascularization common after ischemic CRVO?
Very—over 50% of cases will develop it.

Typically, how much time passes after an ischemic CRVO until NVG appears?
Somewhere in the 3-5 month range.

OK, it makes sense that we want to preclude development of NVG. But wouldn't it be better to do this via DFE, looking for the onset of NVD or NVE?
No, that would be a distinctly inadequate strategy.

Why is DFE inadequate as a surveillance method in CRVO?
Because very frequently, anterior-segment neo in CRVO occurs without neovascularization of the posterior segment.

OK then, it makes sense that to preclude NVG in CRVO, we need to monitor the anterior segment directly for signs of neo. That being said, and assuming gonioscopy at the initial visit reveals no NVA, is it adequate to simply surveil the iris for evidence of NVI at subsequent visits?
No, that would be a distinctly inadequate strategy.

Gonio must be performed at every visit.

Why is iris surveillance inadequate?
Because in some cases, NVA in CRVO occurs without neovascularization of the iris.
Re NVI after CRVO: According to the CVOS...

- What is the #1 predictor for neo?
 - Poor VA

- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?
 - No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

- When is the follow-up visit after PRP?
 - One week; check IOP and assess response; re-treat if needed

- Why is this important?
 - For many reasons, not least of which is the fact that so many CRVO pts have glaucoma

- In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
 - Gonioscopy

- What are you checking for via gonioscopy?
 - First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

- Assuming no PRP or other treatment (a subject we'll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?
 - Every month for at least 6 months

- What is the main thing you're looking to catch at these visits?
 - The development of NVA (which could result in NVG, a disastrous sequela)

- Is anterior-segment neovascularization common after ischemic CRVO?
 - Very—over 50% of cases will develop it

- Typically, how much time passes after an ischemic CRVO until NVG appears?
 - Somewhere in the 3-5 month range

- OK, it makes sense that we want to preclude NVG. But wouldn't it be better to do this via DFE, looking for the onset of NVD or NVE?
 - No, that would be a distinctly inadequate strategy

- Why is DFE inadequate as a surveillance method in CRVO?
 - Because very frequently, anterior-seg neo in CRVO occurs without neovascularization of the posterior segment

- OK then, it makes sense that to preclude NVG in CRVO, we need to monitor the anterior segment directly for signs of neo. That being said (and assuming gonioscopy at the initial visit reveals no NVA), is it adequate to simply surveil the iris for evidence of NVI at subsequent visits?
 - No, that would be a distinctly inadequate strategy. Gonio must be performed at every visit.

- Why is iris surveillance inadequate?
 - Because in some cases, NVA in CRVO occurs without neovascularization of the iris
Re NVI after CRVO: According to the CVOS...

- OK then, it makes sense that to preclude NVG in CRVO, we need to monitor the anterior segment directly for signs of neo. That being said (and assuming gonioscopy at the initial visit reveals no NVA), is it adequate to simply surveil the iris for evidence of NVI at subsequent visits?

- No, that would be a distinctly inadequate strategy. Gonio must be performed at every visit.

Why is iris surveillance inadequate?

- Why is DFE inadequate as a surveillance method in CRVO?

- Because very frequently, anterior-segment neo in CRVO occurs without neovascularization of the posterior segment.

- The development of NVA (which could result in NVG, a disastrous sequelae)

- First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.
Re NVI after CRVO: According to the CVOS...

- What is the #1 predictor for neo?
 - Poor VA

- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?
 - No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

- When is the follow-up visit after PRP?
 - One week; check IOP and assess response; re-treat if needed

Why is this important?
- For many reasons, not least of which is the fact that so many CRVO pts have glaucoma

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
- Gonioscopy

What are you checking for via gonioscopy?
- First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Is anterior-segment neovascularization common after ischemic CRVO?
- Very—over 50% of cases will develop it

Typically, how much time passes after an ischemic CRVO until NVG appears?
- Somewhere in the 3-5 month range

OK, it makes sense that we want to preclude NVG in CRVO. But wouldn't it be better to do this via DFE, looking for the onset of NVD or NVE?
- No, that would be a distinctly inadequate strategy.

Why is DFE inadequate as a surveillance method in CRVO?
- Because very frequently, anterior-seg neo in CRVO occurs without neovascularization of the posterior segment.

OK then, it makes sense that to preclude NVG in CRVO, we need to monitor the anterior segment directly for signs of neo. That being said (and assuming gonioscopy at the initial visit reveals no NVA), is it adequate to simply surveil the iris for evidence of NVI at subsequent visits?
- No, that would be a distinctly inadequate strategy. Gonio must be performed at every visit.

Why is iris surveillance inadequate?
- Because in some cases, NVA in CRVO occurs without neovascularization of the iris.
Re NVI after CRVO: According to the CVOS...

OK then, it makes sense that to preclude NVG in CRVO, we need to monitor the anterior segment directly for signs of neo. That being said (and assuming gonioscopy at the initial visit at least every visit), why is iris surveillance inadequate?

No, the development of NVA (which could result in NVG, a disastrous sequela) may occur without neovascularization of the iris. Anterior-seg neo in CRVO occurs without neovascularization of the posterior segment.

So, in CRVO NVI occurs in the absence of NVD/NVE, and...

Why is DFE inadequate as a surveillance method in CRVO?

Because very frequently, anterior-seg neo in CRVO occurs without neovascularization of the posterior segment.

Why is iris surveillance inadequate?

Because in some cases, NVA in CRVO occurs without neovascularization of the iris.

So, in CRVO NVI occurs in the absence of NVD/NVE, and NVA occurs in the absence of NVI.

When is the follow-up visit after PRP? One week; check IOP and assess response; re-treat if needed.

(No question—proceed when ready)
Re NVI after CRVO: According to the CVOS...

- What is the #1 predictor for neo?
Poor VA

- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?
No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

- When is the follow-up visit after PRP?
One week; check IOP and assess response; re-treat if needed

Why is this important?
For many reasons, not least of which is the fact that so many CRVO pts have glaucoma

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
Gonioscopy

What are you checking for via gonioscopy?
First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we'll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?
Every month for at least 6 months

What is the main thing you're looking to catch at these visits?
The development of NVA (which could result in NVG, a disastrous sequelae)

Is anterior-segment neovascularization common after ischemic CRVO?
Very—over 50% of cases will develop it

Typically, how much time passes after an ischemic CRVO until NVG appears?
Somewhere in the 3-5 month range

OK, it makes sense that we want to preclude NVG. But wouldn't it be better to do this via DFE, looking for the onset of NVD/NVE?
No, that would be a distinctly inadequate strategy

Why is DFE inadequate as a surveillance method in CRVO?
Because very frequently, anterior-seg neo in CRVO occurs without neovascularization of the posterior segment

So, in CRVO NVI occurs in the absence of NVD/NVE, and NVA occurs in the absence of NVI.
Re NVI after CRVO: According to the CVOS…

What is the #1 predictor for neo?
Poor VA

If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?
No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

When is the follow-up visit after PRP?
One week; check IOP and assess response; re-treat if needed.

Why is this important?
For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
Gonioscopy.

What are you checking for via gonioscopy?
First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we'll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?
Every month for at least 6 months.

What is the main thing you're looking to catch at these visits?
The development of NVA (which could result in NVG, a disastrous sequela).

Is anterior-segment neovascularization common after ischemic CRVO?
Very—over 50% of cases will develop it.

Typically, how much time passes after an ischemic CRVO until NVG appears?
Somewhere in the 3-5 month range.

OK, it makes sense that we want to preclude development of NVG. But wouldn't it be better to do this via DFE, looking for the onset of NVD or NVE?
No, that would be a distinctly inadequate strategy.

Why is DFE inadequate as a surveillance method in CRVO?
Because very frequently, anterior-segment neo in CRVO occurs without neovascularization of the posterior segment.

OK then, it makes sense that to preclude NVG in CRVO, we need to monitor the anterior segment directly for signs of neo. That being said (and assuming gonioscopy at the initial visit), and assuming no PRP or other treatment, how frequently should a CRVO pt be re-evaluated, and for how long?
Every month for at least 6 months.

What is the main thing you're looking to catch at these visits?
The development of NVA (which could result in NVG, a disastrous sequela).

How does this compare with neovascularization following a branch RVO?
In BRVO the pattern is the opposite of what it is in CRVO—that is, neo will develop in the posterior segment, but only rarely in the anterior segment.

So, in CRVO NVI occurs in the absence of NVD/NVE, and NVA occurs in the absence of NVI.

Why is iris surveillance inadequate?
Because in some cases, NVA in CRVO occurs without neovascularization of the iris.

So, in CRVO NVI occurs in the absence of NVD/NVE, and NVA occurs in the absence of NVI.

How does this compare with neovascularization following a branch RVO?
In BRVO the pattern is the opposite of what it is in CRVO—that is, neo will develop in the posterior segment, but only rarely in the anterior segment.

Why is this important?
For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
Gonioscopy.

What are you checking for via gonioscopy?
First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we'll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?
Every month for at least 6 months.

What is the main thing you're looking to catch at these visits?
The development of NVA (which could result in NVG, a disastrous sequelae).

Is anterior-segment neovascularization common after ischemic CRVO?
Very—over 50% of cases will develop it.

Typically, how much time passes after an ischemic CRVO until NVG appears?
Somewhere in the 3-5 month range.

OK, it makes sense that we want to preclude development of NVG. But wouldn't it be better to do this via DFE, looking for the onset of NVD or NVE?
No, that would be a distinctly inadequate strategy.

Why is DFE inadequate as a surveillance method in CRVO?
Because very frequently, anterior-segment neo in CRVO occurs without neovascularization of the posterior segment.

OK then, it makes sense that to preclude NVG in CRVO, we need to monitor the anterior segment directly for signs of neo. That being said (and assuming gonioscopy at the initial visit), and assuming no PRP or other treatment, how frequently should a CRVO pt be re-evaluated, and for how long?
Every month for at least 6 months.

What is the main thing you're looking to catch at these visits?
The development of NVA (which could result in NVG, a disastrous sequela).

How does this compare with neovascularization following a branch RVO?
In BRVO the pattern is the opposite of what it is in CRVO—that is, neo will develop in the posterior segment, but only rarely in the anterior segment.

So, in CRVO NVI occurs in the absence of NVD/NVE, and NVA occurs in the absence of NVI.

Why is iris surveillance inadequate?
Because in some cases, NVA in CRVO occurs without neovascularization of the iris.

So, in CRVO NVI occurs in the absence of NVD/NVE, and NVA occurs in the absence of NVI.

How does this compare with neovascularization following a branch RVO?
In BRVO the pattern is the opposite of what it is in CRVO—that is, neo will develop in the posterior segment, but only rarely in the anterior segment.

Why is this important?
For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
Gonioscopy.

What are you checking for via gonioscopy?
First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we'll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?
Every month for at least 6 months.

What is the main thing you're looking to catch at these visits?
The development of NVA (which could result in NVG, a disastrous sequela).

Is anterior-segment neovascularization common after ischemic CRVO?
Very—over 50% of cases will develop it.

Typically, how much time passes after an ischemic CRVO until NVG appears?
Somewhere in the 3-5 month range.

OK, it makes sense that we want to preclude development of NVG. But wouldn't it be better to do this via DFE, looking for the onset of NVD or NVE?
No, that would be a distinctly inadequate strategy.

Why is DFE inadequate as a surveillance method in CRVO?
Because very frequently, anterior-segment neo in CRVO occurs without neovascularization of the posterior segment.

OK then, it makes sense that to preclude NVG in CRVO, we need to monitor the anterior segment directly for signs of neo. That being said (and assuming gonioscopy at the initial visit), and assuming no PRP or other treatment, how frequently should a CRVO pt be re-evaluated, and for how long?
Every month for at least 6 months.

What is the main thing you're looking to catch at these visits?
The development of NVA (which could result in NVG, a disastrous sequela).

How does this compare with neovascularization following a branch RVO?
In BRVO the pattern is the opposite of what it is in CRVO—that is, neo will develop in the posterior segment, but only rarely in the anterior segment.

So, in CRVO NVI occurs in the absence of NVD/NVE, and NVA occurs in the absence of NVI.

Why is iris surveillance inadequate?
Because in some cases, NVA in CRVO occurs without neovascularization of the iris.

So, in CRVO NVI occurs in the absence of NVD/NVE, and NVA occurs in the absence of NVI.

How does this compare with neovascularization following a branch RVO?
In BRVO the pattern is the opposite of what it is in CRVO—that is, neo will develop in the posterior segment, but only rarely in the anterior segment.

Why is this important?
For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
Gonioscopy.

What are you checking for via gonioscopy?
First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

Assuming no PRP or other treatment (a subject we'll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?
Every month for at least 6 months.

What is the main thing you're looking to catch at these visits?
The development of NVA (which could result in NVG, a disastrous sequela).

Is anterior-segment neovascularization common after ischemic CRVO?
Very—over 50% of cases will develop it.

Typically, how much time passes after an ischemic CRVO until NVG appears?
Somewhere in the 3-5 month range.

OK, it makes sense that we want to preclude development of NVG. But wouldn't it be better to do this via DFE, looking for the onset of NVD or NVE?
No, that would be a distinctly inadequate strategy.

Why is DFE inadequate as a surveillance method in CRVO?
Because very frequently, anterior-segment neo in CRVO occurs without neovascularization of the posterior segment.

OK then, it makes sense that to preclude NVG in CRVO, we need to monitor the anterior segment directly for signs of neo. That being said (and assuming gonioscopy at the initial visit), and assuming no PRP or other treatment, how frequently should a CRVO pt be re-evaluated, and for how long?
Every month for at least 6 months.

What is the main thing you're looking to catch at these visits?
The development of NVA (which could result in NVG, a disastrous sequela).

How does this compare with neovascularization following a branch RVO?
In BRVO the pattern is the opposite of what it is in CRVO—that is, neo will develop in the posterior segment, but only rarely in the anterior segment.
Re NVI after CRVO: According to the CVOS...

- What is the #1 predictor for NVI?
 - Poor VA

- If a CRVO is demonstrably ischemic, should PRP be performed in anticipation of the development of NVI, in order to prevent its occurrence?
 - No. The CVOS demonstrated that prophylactic PRP did not prevent the development of NVI, and in fact seemed to reduce the effectiveness of subsequent PRP that was placed when NVI developed.

- When is the follow-up visit after PRP?
 - One week; check IOP and assess response; re-treat if needed.

- Why is this important?
 - For many reasons, not least of which is the fact that so many CRVO pts have glaucoma.

- In addition to checking IOP, what other glaucoma-related exam maneuver should be performed?
 - Gonioscopy

- What are you checking for via gonioscopy?
 - First is a basic assessment of the status of the angle. After that is an ongoing evaluation for the development of NVA.

- Assuming no PRP or other treatment (a subject we'll get to shortly), how frequently should a CRVO pt be re-evaluated, and for how long?
 - Every month for at least 6 months.

- What is the main thing you're looking to catch at these visits?
 - The development of NVA (which could result in NVG, a disastrous sequela.)

- Is anterior-segment neovascularization common after ischemic CRVO?
 - Very—over 50% of cases will develop it.

- Typically, how much time passes after an ischemic CRVO until NVG appears?
 - Somewhere in the 3-5 month range.

- OK, it makes sense that we want to preclude development of NVG. But wouldn't it be better to do this via DFE, looking for the onset of NVD or NVE?
 - No, that would be a distinctly inadequate strategy.

- Why is DFE inadequate as a surveillance method in CRVO?
 - Because very frequently, anterior-segment neo in CRVO occurs without neovascularization of the posterior segment.

- OK then, it makes sense that to preclude NVG in CRVO, we need to monitor the anterior segment directly for signs of neo. That being said (and assuming gonioscopy at the initial visit), if no NVA is noted, is it adequate to surveil the iris for evidence of NVI at subsequent visits?
 - No, that would be a distinctly inadequate strategy. Gonio must be performed at every visit.

- Why is iris surveillance inadequate?
 - Because in some cases, NVA in CRVO occurs without neovascularization of the iris.

- So, in CRVO NVI occurs in the absence of NVD/NVE, and NVA occurs in the absence of NVI.

- How does this compare with neovascularization following a branch RVO?
 - In BRVO the pattern is the opposite of what it is in CRVO—that is, neo will develop in the posterior segment, but only rarely in the anterior segment.

- In CRVO NVI occurs in the absence of NVD/NVE, and NVA occurs in the absence of NVI.

- The development of NVA (which could result in NVG, a disastrous sequela.)

- When is the follow-up visit after PRP? One week; check IOP.
CVOS recs re macular edema after CRVO...

- Wait for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is to , and
 - FA reveals
- Per CVOS, patients treated with GML are:
 - twice as likely to , and
 - twice as likely to
CVOS recs re macular edema after CRVO…

- Wait ______ for spontaneous resolution
- Perform grid macular laser (GML) if:
 - VA is ______ to ______, and
 - FA reveals ______
- Per CVOS, patients treated with GML are:
 - twice as likely to ______, and
 - twice as likely to ______

*Trick question! The CVOS demonstrated that GML improved macular edema *angiographically*, but did not improve vision. For this reason, **GML is contraindicated in CRVO!**
What are the options for CRVO tx?

Two categories of treatment

??
What are the options for CRVO tx?

Two categories of treatment

Surgical Pharmacologic
Q

What are the options for CRVO tx?

Surgical

? Two specific treatments?

Pharmacologic
What are the options for CRVO tx?

- **Surgical**
 - Vitrectomy
 - PRP
 - Two specific treatments

- **Pharmacologic**
What are the options for CRVO tx?

Surgical
- Vitrectomy
- PRP

Pharmacologic
- Two specific treatments
 - ?
 - ?
What are the options for CRVO tx?

- Surgical
 - Vitrectomy
 - PRP
- Pharmacologic
 - Anti-VEGF
 - Steroids

Two specific treatments
We’ve already addressed PRP
(tl;dr Do it at the first sign of NVI)
What is the most common indication for vitrectomy after CRVO?
What is the most common indication for vitrectomy after CRVO? Vitreous hemorrhage interfering with either vision, or treatment (eg, preventing PRP in the setting of NVI)
What is the most common indication for vitrectomy after CRVO?
Vitreous hemorrhage interfering with either vision, or treatment (eg, preventing PRP in the setting of NVI)

Can vitreous hemorrhage occur even in the absence of clinically apparent posterior segment neo?
What is the most common indication for vitrectomy after CRVO?
Vitreous hemorrhage interfering with either vision, or treatment (eg, preventing PRP in the setting of NVI)

Can vitreous hemorrhage occur even in the absence of clinically apparent posterior segment neo?
Indeed it can
What is the indication for intravitreal anti-VEGF therapy in CRVO?
What is the indication for intravitreal anti-VEGF therapy in CRVO?
Cystoid macular edema (CME)
What is the indication for intravitreal anti-VEGF therapy in CRVO?
Cystoid macular edema (CME)

What are the three anti-VEGF meds that have been used in clinical trials for the tx of CRVO?
What is the indication for intravitreal anti-VEGF therapy in CRVO?
Cystoid macular edema (CME)

What are the three anti-VEGF meds that have been used in clinical trials for the tx of CRVO?
What is the indication for intravitreal anti-VEGF therapy in CRVO?
Cystoid macular edema (CME)

Are IVit anti-VEGF meds effective?
What is the indication for intravitreal anti-VEGF therapy in CRVO?
Cystoid macular edema (CME)

Are IVit anti-VEGF meds effective?
Indeed they are—at 6 months post-event, about % of CRVO pts will gain # or more ETDRS letters above baseline
What is the indication for intravitreal anti-VEGF therapy in CRVO?
Cystoid macular edema (CME)

Are IVit anti-VEGF meds effective?
Indeed they are—at 6 months post-event, about 50% of CRVO pts will gain 15 or more ETDRS letters above baseline
What is the indication for intravitreal anti-VEGF therapy in CRVO?
Cystoid macular edema (CME)

Are IVit anti-VEGF meds effective?
Indeed they are—at 6 months post-event, about 50% of CRVO pts will gain 15 or more ETDRS letters above baseline

What complications/side effects were revealed in the anti-VEGF clinical trials?
What is the indication for intravitreal anti-VEGF therapy in CRVO?
Cystoid macular edema (CME)

Are IVit anti-VEGF meds effective?
Indeed they are—at 6 months post-event, about 50% of CRVO pts will gain 15 or more ETDRS letters above baseline

What complications/side effects were revealed in the anti-VEGF clinical trials?
None to speak of
What is the indication for intravitreal anti-VEGF therapy in CRVO?

Cystoid macular edema (CME)

Are IVit anti-VEGF meds effective?

Indeed they are—at 6 months post-event, about 50% of CRVO pts will gain 15 or more ETDRS letters above baseline.

What complications/side effects were revealed in the anti-VEGF clinical trials?

None to speak of.
What is the indication for intravitreal anti-VEGF therapy in CRVO?

Cystoid macular edema (CME)

Are IVIT anti-VEGF meds effective?

Indeed they are—at 6 months post-event, about 50% of CRVO pts will gain 15 or more ETDRS letters above baseline

What complications/side effects were revealed in the anti-VEGF clinical trials?

None to speak of

CRVO tx

Surgical

Pharmacologic

Anti-VEGF

Ranibizumab

Bevacizumab

Aflibercept

Steroids

The clinical trials that had these results—what injection schedule did they use?

Monthly

Are IVIT anti-VEGF meds effective?

Indeed they are—at 6 months post-event, about 50% of CRVO pts will gain 15 or more ETDRS letters above baseline

What complications/side effects were revealed in the anti-VEGF clinical trials?

None to speak of
What is the indication for intravitreal anti-VEGF therapy in CRVO?

Cystoid macular edema (CME)

Are IVit anti-VEGF meds effective?

Indeed they are—at 6 months post-event, about 50% of CRVO pts will gain 15 or more ETDRS letters above baseline

What complications/side effects were revealed in the anti-VEGF clinical trials?

None to speak of
What is the indication for intravitreal anti-VEGF therapy in CRVO?

Cystoid macular edema (CME)

Are IVit anti-VEGF meds effective?

Indeed they are—at 6 months post-event, about 50% of CRVO pts will gain 15 or more ETDRS letters above baseline.

What complications/side effects were revealed in the anti-VEGF clinical trials?

None to speak of.
What is the indication for intravitreal anti-VEGF therapy in CRVO?

Cystoid macular edema (CME)

Are IVIT anti-VEGF meds effective?

Indeed they are—at 6 months post-event, about 50% of CRVO pts will gain 15 or more ETDRS letters above baseline.

What complications/side effects were revealed in the anti-VEGF clinical trials?

None to speak of.
What is the indication for intravitreal anti-VEGF therapy in CRVO?
Cystoid macular edema (CME)

Are IVit anti-VEGF meds effective?
Indeed they are—at 6 months post-event, about 50% of CRVO pts will gain 15 or more ETDRS letters above baseline

What complications/side effects were revealed in the anti-VEGF clinical trials?
None to speak of

CRVO tx

Surgical
Vitrectomy
PRP

Pharmacologic
Anti-VEGF

Ranibizumab?
Bevacizumab?
Aflibercept?

Of the three, which works best?
What is the indication for intravitreal anti-VEGF therapy in CRVO?
Cystoid macular edema (CME)

Are IVit anti-VEGF meds effective?
Indeed they are—at 6 months post-event, about 50% of CRVO pts will gain 15 or more ETDRS letters above baseline

What complications/side effects were revealed in the anti-VEGF clinical trials?
None to speak of

CRVO tx

Surgical
- Vitrectomy
- PRP

Pharmacologic
- Anti-VEGF
 - Ranibizumab!
 - Bevacizumab!
 - Aflibercept!

Of the three, which works best? None (ie, all are of equal efficacy)
What is the indication for intravitreal steroids in CRVO?
What is the indication for intravitreal steroids in CRVO?
The same thing—CME
What is the indication for intravitreal steroids in CRVO?
The same thing—CME

What are the two means of IVit steroid delivery?
What is the indication for intravitreal steroids in CRVO?
The same thing—CME

What are the two means of IVit steroid delivery?

CRVO tx

Surgical
 - Vitrectomy
 - PRP

Pharmacologic
 - Anti-VEGF
 - Steroids
 - Intravitreal injection
 - Intravitreal implant
What is the indication for intravitreal steroids in CRVO?
The same thing—CME

What are the two means of IVit steroid delivery?
What steroid is used for each?
What is the indication for intravitreal steroids in CRVO?
The same thing—CME

What are the two means of IVit steroid delivery?
What steroid is used for each?
What is the indication for intravitreal steroids in CRVO?
The same thing—CME

Are IVit steroids effective?
What is the indication for intravitreal steroids in CRVO?
The same thing—CME

Are IVit steroids effective?
Meh. IVit triamcinolone is about $\%$ as good as IVit anti-VEGF tx, with about $\%$ of pts picking up 15+ ETDRS letters.
What is the indication for intravitreal steroids in CRVO?
The same thing—CME

Are IVit steroids effective?
Meh. IVit triamcinolone is about half as good as IVit anti-VEGF tx, with about 25% of pts picking up 15+ ETDRS letters.
What is the indication for intravitreal steroids in CRVO?
The same thing—CME

Are IVit steroids effective?
Meh. IVit triamcinolone is about half as good as IVit anti-VEGF tx, with about 25% of pts picking up 15+ ETDRS letters. The IVit implant fared even worse—while pts picked up ETDRS letters initially, after 3 months or so they lost most of their gainz, brah.
What is the indication for intravitreal steroids in CRVO?
The same thing—CME

Are IVit steroids effective?
Meh. IVit triamcinolone is about half as good as IVit anti-VEGF tx, with about 25% of pts picking up 15+ ETDRS letters. The IVit implant fared even worse—while pts picked up ETDRS letters initially, after 3 months or so they lost most of their gainz, brah.

What complications/side effects were revealed in IVit steroid clinical trials?
What is the indication for intravitreal steroids in CRVO?
The same thing—CME

Are IVit steroids effective?
Meh. IVit triamcinolone is about half as good as IVit anti-VEGF tx, with about 25% of pts picking up 15+ ETDRS letters. The IVit implant fared even worse—while pts picked up ETDRS letters initially, after 3 months or so they lost most of their gainz, brah.

What complications/side effects were revealed in IVit steroid clinical trials?
The same two that dog all chronic ocular steroid use—cataract formation and IOP elevation
Finally: Is anti-coagulation therapy indicated in the management of CRVO?
Finally: Is anti-coagulation therapy indicated in the management of CRVO? No. Not only has it failed to demonstrate efficacy, it has been shown to worsen the intraretinal hemorrhages.