Clinical Optics

Last major revision 2013–2014
The American Academy of Ophthalmology is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to provide continuing medical education for physicians.

The American Academy of Ophthalmology designates this enduring material for a maximum of 15 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Originally released June 2013; reviewed for currency September 2016; CME expiration date: June 1, 2018. AMA PRA Category 1 Credits™ may be claimed only once between June 1, 2013, and the expiration date.

BCSC® volumes are designed to increase the physician’s ophthalmic knowledge through study and review. Users of this activity are encouraged to read the text and then answer the study questions provided at the back of the book.

To claim AMA PRA Category 1 Credits™ upon completion of this activity, learners must demonstrate appropriate knowledge and participation in the activity by taking the posttest for Section 3 and achieving a score of 80% or higher. For further details, please see the instructions for requesting CME credit at the back of the book.

The Academy provides this material for educational purposes only. It is not intended to represent the only or best method or procedure in every case, nor to replace a physician’s own judgment or give specific advice for case management. Including all indications, contraindications, side effects, and alternative agents for each drug or treatment is beyond the scope of this material. All information and recommendations should be verified, prior to use, with current information included in the manufacturers’ package inserts or other independent sources, and considered in light of the patient’s condition and history. Reference to certain drugs, instruments, and other products in this course is made for illustrative purposes only and is not intended to constitute an endorsement of such. Some material may include information on applications that are not considered community standard, that reflect indications not included in approved FDA labeling, or that are approved for use only in restricted research settings. The FDA has stated that it is the responsibility of the physician to determine the FDA status of each drug or device he or she wishes to use, and to use them with appropriate, informed patient consent in compliance with applicable law. The Academy specifically disclaims any and all liability for injury or other damages of any kind, from negligence or otherwise, for any and all claims that may arise from the use of any recommendations or other information contained herein.

AAO, AAOE, American Academy of Ophthalmology, Basic and Clinical Science Course, BCSC, EyeCare America, EyeNet, EyeSmart, EyeWiki, Focal Points, IRIS, ISRS, OKAP, ONE, Ophthalmic Technology Assessments, Ophthalmology, Preferred Practice Pattern, ProVision, SmartSight, The Ophthalmic News & Education Network, and the AAO logo (shown on cover) and tagline (Protecting Sight. Empowering Lives.) are, among other marks, the registered trademarks and trademarks of the American Academy of Ophthalmology.

Cover image: From BCSC Section 5, Neuro-Ophthalmology. Fundus photograph showing an arteriovenous malformation (racemose angioma) of the retina in a patient with Wyburn-Mason syndrome. (Courtesy of Mark J. Greenwald, MD.)

Copyright © 2017 American Academy of Ophthalmology. All rights reserved. No part of this publication may be reproduced without written permission.

Printed in the United States of America.
Basic and Clinical Science Course

Louis B. Cantor, MD, Indianapolis, Indiana, Senior Secretary for Clinical Education
Christopher J. Rapuano, MD, Philadelphia, Pennsylvania, Secretary for Lifelong Learning and Assessment
George A. Cioffi, MD, New York, New York, BCSC Course Chair

Section 3

Faculty

Dimitri T. Azar, MD, Chair, Chicago, Illinois
Nathalie F. Azar, MD, Chicago, Illinois
Scott E. Brodie, MD, PhD, New York, New York
Kenneth J. Hoffer, MD, Santa Monica, California
Tommy S. Korn, MD, San Diego, California
Thomas F. Mauger, MD, Columbus, Ohio
Leon Strauss, MD, PhD, Baltimore, Maryland
Edmond H. Thall, MD, Highland Heights, Ohio

The Academy wishes to acknowledge the following committees for review of this edition:

Committee on Aging: Hilary Beaver, MD, Houston, Texas

Vision Rehabilitation Committee: Mary Lou Jackson, MD, Boston, Massachusetts

Practicing Ophthalmologists Advisory Committee for Education: Robert E. Wiggins Jr, MD, Primary Reviewer, Asheville, North Carolina; William S. Clifford, MD, Past Chair, Garden City, Kansas; Hardeep S. Dhindsa, MD, Reno, Nevada; Robert Fante, MD, Denver, Colorado; Dasa Gangadhar, MD, Wichita, Kansas; Edward K. Isbey III, MD, Asheville, North Carolina; James Mitchell, MD, Edina, Minnesota; Sara O’Connell, MD, Overland Park, Kansas

European Board of Ophthalmology: Wolfgang Radner, MD, EBO Chair, Vienna, Austria; Tero Kivelä, MD, FEBO, EBO Liaison, Helsinki, Finland; Roderich Fellner, MD, Graz, Austria; Stefan Pieh, MD, Vienna, Austria; Klaus Rohrschneider, MD, FEBO, Heidelberg, Germany
Financial Disclosures

Academy staff members who contributed to the development of this product state that within the past 12 months, they have had no financial interest in or other relationship with any entity discussed in this course that produces, markets, resells, or distributes ophthalmic health care goods or services consumed by or used in patients, or with any competing commercial product or service.

The authors and reviewers state the following financial relationships:*
Dr D. Azar: ForSight Labs (C, O), Novartis Pharmaceuticals (C, O)
Dr N. Azar: None for self. Financial disclosure of spouse: ForSight Labs (C, O), Novartis Pharmaceuticals (C, O)
Dr Beaver: Genzyme (L)
Dr Clifford: Transcend Medical (S)
Dr Gangadhar: Inspire Pharmaceuticals (C, L)
Dr Hoffer: Haag-Streit (P), OCULUS (P), SLACK (P), Ziemer (P)
Dr Jackson: Optelec US (S)
Dr Mauger: Topcon Medical Systems (S)
Dr Rohrschneider: Heidelberg Engineering (L), Novartis Pharmaceuticals (C)
Dr Wiggins: Medflow/Allscripts (C), Ophthalmic Mutual Insurance Company (C)

The other authors and reviewers state that they have no significant financial interest or other relationship with the manufacturer of any commercial product discussed in this course or with the manufacturer of any competing commercial product.

* C = consultant fee, paid advisory boards, or fees for attending a meeting; L = lecture fees (honoraria), travel fees, or reimbursements when speaking at the invitation of a commercial sponsor; O = equity ownership/stock options of publicly or privately traded firms (excluding mutual funds) with manufacturers of commercial ophthalmic products or commercial ophthalmic services; P = patents and/or royalties that might be viewed as creating a potential conflict of interest; S = grant support for the past year (all sources) and all sources used for a specific talk or manuscript with no time limitation

Recent Past Faculty

Penny A. Asbell, MD
Neal H. Atebara, MD
Forrest J. Ellis, MD
Eleanor E. Faye, MD

In addition, the Academy gratefully acknowledges the contributions of numerous past faculty and advisory committee members who have played an important role in the development of previous editions of the Basic and Clinical Science Course.
American Academy of Ophthalmology Staff

Dale E. Fajardo, Vice President, Education
Beth Wilson, Director, Continuing Professional Development
Ann McGuire, Acquisitions and Development Manager
Stephanie Tanaka, Publications Manager
D. Jean Ray, Production Manager
Kimberly Torgerson, Publications Editor
Beth Collins, Medical Editor
Naomi Ruiz, Publications Specialist
Contents

General Introduction .. xv

Objectives ... 1

1 Geometric Optics ... 3
 Rays, Refraction, and Reflection 3
 Introduction .. 3
 Point Sources, Pencils, and Beams of Light 5
 Object Characteristics .. 7
 Image Characteristics .. 7
 Magnification ... 7
 Image Location .. 9
 Depth of Focus ... 10
 Image Quality .. 10
 Light Propagation ... 12
 Optical Media and Refractive Index 12
 Law of Rectilinear Propagation 13
 Optical Interfaces ... 14
 Law of Reflection (Specular Reflection) 14
 Law of Refraction (Specular Transmission) 15
 Normal Incidence .. 16
 Total Internal Reflection 16
 Dispersion ... 20
 Reflection and Refraction at Curved Surfaces 20
 The Fermat Principle 21
 Pinhole Imaging .. 22
 Locating the Image: The Lensmaker’s Equation 22
 Ophthalmic Lenses ... 25
 Vergence .. 25
 Reduced Vergence ... 26
 Thin-Lens Approximation 27
 Lens Combinations ... 28
 Virtual Images and Objects 28
 Focal Points and Planes 31
 Paraxial Ray Tracing Through Convex Spherical Lenses .. 31
 Paraxial Ray Tracing Through Concave Spherical Lenses .. 33
 Objects and Images at Infinity 33
 Principal Planes and Points 35
 Section Exercises ... 36
 Questions ... 36
 Answers .. 37
 Focal Lengths ... 40
Contents

2 **Optics of the Human Eye** ... 73

2.1 The Human Eye as an Optical System ... 73
2.2 Schematic Eyes .. 73
2.3 Important Axes of the Eye ... 76
2.4 Pupil Size and Its Effect on Visual Resolution 76
2.5 Visual Acuity ... 78
2.6 Contrast Sensitivity and the Contrast Sensitivity Function 81
2.7 Refractive States of the Eyes .. 83
2.8 Binocular States of the Eyes .. 86
Contents

Accommodation and Presbyopia .. 86
Epidemiology of Refractive Errors ... 87
Developmental Myopia .. 88
Developmental Hyperopia .. 89
Prevention of Refractive Errors .. 89
Chapter Exercises .. 90
 Questions .. 90
 Answers ... 91

3 Clinical Refraction ... 93

Objective Refraction Technique: Retinoscopy 93
 Positioning and Alignment .. 94
 Fixation and Fogging .. 94
 The Retinal Reflex .. 95
 The Correcting Lens ... 96
 Finding Neutrality .. 97
 Retinoscopy of Regular Astigmatism ... 97
 Aberrations of the Retinoscopic Reflex .. 101

Subjective Refraction Techniques .. 102
 Astigmatic Dial Technique ... 102
 Stenopeic Slit Technique ... 104
 Cross-Cylinder Technique .. 104
 Refining the Sphere ... 106
 Binocular Balance ... 108

Cycloplegic and Noncycloplegic Refraction 109
Overrefraction .. 109

Spectacle Correction of Ametropias .. 110
 Spherical Correcting Lenses and the Far Point Concept 110
 The Importance of Vertex Distance ... 110
 Cylindrical Correcting Lenses and the Far Point Concept 111

Prescribing for Children ... 113
 Myopia ... 113
 Hyperopia ... 114
 Anisometropia .. 114

Clinical Accommodative Problems ... 115
 Presbyopia .. 115
 Accommodative Insufficiency .. 115
 Accommodative Excess ... 116
 Accommodative Convergence/Accommodation Ratio 116
 Effect of Spectacle and Contact Lens Correction on
 Accommodation and Convergence ... 117

Prescribing Multifocal Lenses ... 118
 Determining the Add Power of a Bifocal Lens 118
 Types of Bifocal Lenses ... 120
 Trifocal Lenses ... 120
 Progressive Addition Lenses ... 120
 The Prentice Rule and Bifocal Lens Design 123
 Occupation and Bifocal Segment .. 129
Contents

Prescribing Special Lenses ... 130
 Aphakic Lenses .. 130
 Absorptive Lenses ... 132
 Special Lens Materials .. 134
 Therapeutic Use of Prisms .. 136
Chapter Exercises .. 137
 Questions ... 137
 Answers ... 139
Appendix 3.1 .. 141
 Common Guidelines for Prescribing Cylinders for
 Spectacle Correction .. 141

4 Contact Lenses .. 151
 Introduction .. 151
 Contact Lens Glossary ... 151
Clinically Important Features of Contact Lens Optics 153
 Field of Vision ... 154
 Image Size ... 155
 Accommodation ... 157
 Convergence Demands ... 160
 Tear Lens ... 160
 Correcting Astigmatism .. 162
 Correcting Presbyopia .. 164
Contact Lens Materials and Manufacturing 165
 Materials ... 165
 Manufacturing .. 166
Patient Examination and Contact Lens Selection 167
 Patient Examination ... 167
 Contact Lens Selection .. 168
Contact Lens Fitting ... 169
 Soft Contact Lenses .. 169
 Rigid Gas-Permeable Contact Lenses 171
 Toric Soft Contact Lenses ... 174
 Contact Lenses for Presbyopia 176
 Keratoconus and the Abnormal Cornea 178
 Contact Lens Overrefraction 179
 Gas-Permeable Scleral Contact Lenses 179
Therapeutic Lens Usage ... 181
Orthokeratology and Corneal Reshaping 182
Custom Contact Lenses and Wavefront Technology 183
Contact Lens Care and Solutions 184
Contact Lens–Related Problems and Complications 185
 Infections .. 185
 Hypoxic/Metabolic Problems 186
 Toxicity ... 187
 Mechanical Problems .. 187
 Inflammation .. 188
 Dry Eye ... 190
Chapter Exercises 190
Questions .. . 190
Answers .. . 191
Appendix 4.1 192
Transmission of Human Immunodeficiency Virus in Contact Lens Care 192
Appendix 4.2 193
Federal Law and Contact Lenses 193

5 Intraocular Lenses ... 195
Intraocular Lens Designs .. . 195
Classification 195
Background 196
Optical Considerations for Intraocular Lenses 198
Intraocular Lens Power Calculation 198
Piggyback and Supplemental Intraocular Lenses. 206
Intraocular Lens Power Calculation After Corneal Refractive Surgery . 206
Instrument Error .. . 207
Index of Refraction Error. 207
Formula Error 207
Power Calculation Methods for the Post–Keratorefractive Procedure Eye .. . 207
Intraocular Lens Power in Corneal Transplant Eyes 208
Silicone Oil Eyes 209
Pediatric Eyes .. . 209
Image Magnification 209
Lens-Related Vision Disturbances 210
Nonspherical Optics .. . 211
Multifocal Intraocular Lenses .. . 211
Types of Multifocal Intraocular Lenses 212
Clinical Results of Multifocal Intraocular Lenses. 214
Accommodating Intraocular Lenses 215
Intraocular Lens Standards. 215
Chapter Exercises 216
Questions .. . 216
Answers .. . 217
Appendix 5.1 218
History of Intraocular Lens Design .. . 218

6 Optical Considerations in Keratorefractive Surgery 223
Corneal Shape 223
Angle Kappa 228
Pupil Size 228
Irregular Astigmatism 229
Application of Wavefront Analysis in Irregular Astigmatism 230
Causes of Irregular Astigmatism 233
Contents

Conclusion ... 234
Chapter Exercises .. 234
Questions ... 234
Answers .. 235

7 Optical Instruments and Low Vision Aids 237
Magnification .. 237
Telescopes ... 238
Galilean Telescope .. 238
Astronomical Telescope .. 239
Accommodation Through a Telescope 240
Surgical Loupe .. 240
General Principles of Optical Engineering 241
Terminology ... 241
Measurements of Performance of Optical Systems 242
Optical Instruments and Techniques Used in Ophthalmic Practice 242
Direct Ophthalmoscope .. 242
Indirect Ophthalmoscope .. 243
Fundus Camera ... 247
Slit-Lamp Biomicroscope .. 248
Gonioscopy .. 250
Surgical Microscope .. 250
Geneva Lens Clock ... 252
Lensmeter .. 252
Knapp's Rule ... 253
Optical Pachymeter ... 253
Applanation Tonometry .. 254
Specular Microscopy .. 254
Keratometer ... 256
Topography .. 257
Ultrasonography of the Eye and Orbit 257
Macular Function Tests .. 258
Scanning Laser Ophthalmoscopes 258
Scheimpflug Camera .. 259
Autorefractors ... 259
Optical Coherence Tomography 260
Optical Aids .. 262
Magnifiers .. 262
Telescopes .. 263
Prisms .. 265
High-Add Spectacles .. 265
Nonoptical Aids ... 266
Electronic Devices ... 266
Lighting, Glare Control, and Contrast Enhancement 268
Nonvisual Assistance ... 268
Eccentric Viewing or Fixation Training 268
Instruction and Training ... 268
Chapter Exercises ... 269
Questions .. 269
Answers .. 271
Appendix 7.1 ... 273
Approach to the Patient With Low Vision 273

8 Physical Optics ... 285
The Corpuscular Theory of Light 285
Diffraction ... 286
The Speed of Light .. 287
The Superposition of Waves .. 287
Coherence ... 289
Electromagnetic Waves .. 292
Polarization ... 292
Refractive Index and Dispersion 293
Reflection, Transmission, and Absorption 293
The Electromagnetic Spectrum 294
Frequency and Color .. 294
Energy in an Electromagnetic Wave 295
Quantum Theory ... 295
Light Sources .. 296
Thermal Sources ... 296
Luminescent Sources ... 297
Fluorescence ... 298
Phosphorescence ... 298
Lasers .. 299
Light–Tissue Interactions .. 300
Photocoagulation .. 300
Photoablation .. 300
Photodisruption ... 301
Photoactivation .. 301
Light Scattering .. 301
Rayleigh Scattering ... 301
Mie Scattering .. 301
The Tyndall Effect ... 302
Radiometry and Photometry 302
Light Hazards ... 302
Clinical Applications ... 303
Polarization .. 303
Interference ... 303
Diffraction ... 304
Imaging and the Point Spread Function 305
Image Quality—Modulation Transfer Function 306
Chapter Exercises ... 307
Questions .. 307
Answers .. 308
Appendix 8.1 ... 309
Radiometric and Photometric Units 309
Contents

Basic Texts ... 313
Related Academy Materials 315
Requesting Continuing Medical Education Credit 317
Study Questions .. 319
Answer Sheet for Section 3 Study Questions 327
Answers ... 329
Index ... 339
General Introduction

The Basic and Clinical Science Course (BCSC) is designed to meet the needs of residents and practitioners for a comprehensive yet concise curriculum of the field of ophthalmology. The BCSC has developed from its original brief outline format, which relied heavily on outside readings, to a more convenient and educationally useful self-contained text. The Academy updates and revises the course annually, with the goals of integrating the basic science and clinical practice of ophthalmology and of keeping ophthalmologists current with new developments in the various subspecialties.

The BCSC incorporates the effort and expertise of more than 90 ophthalmologists, organized into 13 Section faculties, working with Academy editorial staff. In addition, the course continues to benefit from many lasting contributions made by the faculties of previous editions. Members of the Academy Practicing Ophthalmologists Advisory Committee for Education, Committee on Aging, and Vision Rehabilitation Committee review every volume before major revisions. Members of the European Board of Ophthalmology, organized into Section faculties, also review each volume before major revisions, focusing primarily on differences between American and European ophthalmology practice.

Organization of the Course

The Basic and Clinical Science Course comprises 13 volumes, incorporating fundamental ophthalmic knowledge, subspecialty areas, and special topics:

1. Update on General Medicine
2. Fundamentals and Principles of Ophthalmology
3. Clinical Optics
4. Ophthalmic Pathology and Intraocular Tumors
5. Neuro-Ophthalmology
6. Pediatric Ophthalmology and Strabismus
7. Orbit, Eyelids, and Lacrimal System
8. External Disease and Cornea
9. Intraocular Inflammation and Uveitis
10. Glaucoma
11. Lens and Cataract
12. Retina and Vitreous
13. Refractive Surgery

In addition, a comprehensive Master Index allows the reader to easily locate subjects throughout the entire series.

References

Readers who wish to explore specific topics in greater detail may consult the references cited within each chapter and listed in the Basic Texts section at the back of the book.
These references are intended to be selective rather than exhaustive, chosen by the BCSC faculty as being important, current, and readily available to residents and practitioners.

Study Questions and CME Credit

Each volume of the BCSC is designed as an independent study activity for ophthalmology residents and practitioners. The learning objectives for this volume are given on page 1. The text, illustrations, and references provide the information necessary to achieve the objectives; the study questions allow readers to test their understanding of the material and their mastery of the objectives. Physicians who wish to claim CME credit for this educational activity may do so by following the instructions given at the end of the book.

Conclusion

The Basic and Clinical Science Course has expanded greatly over the years, with the addition of much new text, numerous illustrations, and video content. Recent editions have sought to place greater emphasis on clinical applicability while maintaining a solid foundation in basic science. As with any educational program, it reflects the experience of its authors. As its faculties change and medicine progresses, new viewpoints emerge on controversial subjects and techniques. Not all alternate approaches can be included in this series; as with any educational endeavor, the learner should seek additional sources, including Academy Preferred Practice Pattern Guidelines.

The BCSC faculty and staff continually strive to improve the educational usefulness of the course; you, the reader, can contribute to this ongoing process. If you have any suggestions or questions about the series, please do not hesitate to contact the faculty or the editors.

The authors, editors, and reviewers hope that your study of the BCSC will be of lasting value and that each Section will serve as a practical resource for quality patient care.
Objectives

Upon completion of BCSC Section 3, Clinical Optics, the reader should be able to

- explain the principles of light propagation and image formation and work through some of the fundamental equations that describe or measure such properties as refraction, reflection, magnification, and vergence
- explain how these principles can be applied diagnostically and therapeutically
- describe the clinical application of Snell’s law and the lensmaker’s equation
- identify optical models of the human eye and describe how to apply them
- define the various types of visual perception and function, including visual acuity, brightness sensitivity, color perception, and contrast sensitivity
- summarize the steps for performing streak retinoscopy
- identify the steps for performing a manifest refraction using a phoropter or trial lenses
- describe the use of the Jackson cross cylinder
- describe the indications for prescribing bifocal lenses and common difficulties encountered in their use
- identify the materials and fitting parameters of both soft and rigid contact lenses
- explain the optical principles underlying various modalities of refractive correction: spectacles, contact lenses, intraocular lenses, and refractive surgery
- discern the differences among these types of refractive correction and describe how to apply them most appropriately to individual patients
• discuss the basic methods of calculating intraocular lens (IOL) powers and the advantages and disadvantages of the different methods
• explain the conceptual basis of multifocal IOLs and how the correction of presbyopia differs between IOLs and spectacles
• appraise the visual needs of low vision patients and determine how to address these needs through use of optical and nonoptical devices and/or appropriate referrals
• describe the operating principles of various optical instruments in order to use them more effectively
• compare and contrast physical and geometric optics
• describe the clinical and technical relevance of such optical phenomena as interference, coherence, polarization, diffraction, and scattering
• explain the basic properties of laser light and how they affect laser–tissue interaction