Most *noncorneal* tissues heal via fibrovascular proliferation.
Most *noncorneal* tissues heal via fibrovascular proliferation.
Most noncorneal tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via fibrosis.
Most noncorneal tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via fibrosis.
Most noncorneal tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via fibrosis.

Stromal wound healing is heralded by an influx of immune cell type.
Most noncorneal tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via fibrosis.

Stromal wound healing is heralded by an influx of neutrophils.
Most noncorneal tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via fibrosis.

Stromal wound healing is heralded by an influx of neutrophils.
Most *noncorneal* tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via *fibrosis*.

Stromal wound healing is heralded by an influx of *neutrophils*.

How do neutrophils get to the wound?
Via the tear film.
Most noncorneal tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via fibrosis.

Stromal wound healing is heralded by an influx of neutrophils. Neutrophils debride the wound with collagenases known as matrix metalloproteinases (MMPs).
Most *noncorneal* tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via fibrosis.

Stromal wound healing is heralded by an influx of neutrophils. Neutrophils debride the wound with collagenases known as *matrix metalloproteinases (MMPs)*.
Most *noncorneal* tissues heal via *fibrovascular proliferation*. However, the cornea can’t heal in this manner because it is *avascular*. Instead, the cornea heals via *fibrosis*.

Stromal wound healing is heralded by an influx of *neutrophils*. Neutrophils debride the wound with collagenases known as *matrix metalloproteinases (MMPs)*.

Once the wound is cleaned up, collagen is laid across the wound by activated **corneal cell type** which are behaving as fibroblasts.
Most noncorneal tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via fibrosis.

Stromal wound healing is heralded by an influx of neutrophils. Neutrophils debride the wound with collagenases known as matrix metalloproteinases (MMPs).

Once the wound is cleaned up, collagen is laid across the wound by activated keratocytes, which are behaving as fibroblasts.
Most *noncorneal* tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via *fibrosis*.

Stromal wound healing is heralded by an influx of neutrophils. Neutrophils debride the wound with collagenases known as *matrix metalloproteinases* (MMPs).

Once the wound is cleaned up, collagen is laid across the wound by activated *keratocytes*, which are behaving as fibroblasts.

The BCSC *Cornea* book states “Keratocytes are flattened fibroblasts.”
Most noncorneal tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via fibrosis.

Stromal wound healing is heralded by an influx of neutrophils. Neutrophils debride the wound with collagenases known as matrix metalloproteinases (MMPs).

Once the wound is cleaned up, collagen is laid across the wound by activated keratocytes, which are behaving as fibroblasts.

Successful stromal healing requires the presence of epithelium, which releases growth factors necessary for completion of healing.
Most *noncorneal* tissues heal via *fibrovascular proliferation*. However, the cornea can’t heal in this manner because it is *avascular*. Instead, the cornea heals via *fibrosis*.

Stromal wound healing is heralded by an influx of *neutrophils*. Neutrophils debride the wound with collagenases known as *matrix metalloproteinases (MMPs).*

Once the wound is cleaned up, collagen is laid across the wound by activated *keratocytes*, which are behaving as fibroblasts.

Successful stromal healing requires the presence of *epithelium*, which releases growth factors necessary for completion of healing.
Most noncorneal tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via fibrosis.

Stromal wound healing is heralded by an influx of neutrophils. Neutrophils debride the wound with collagenases known as matrix metalloproteinases (MMPs).

Once the wound is cleaned up, collagen is laid across the wound by activated keratocytes, which are behaving as fibroblasts.

Successful stromal healing requires the presence of epithelium, which releases growth factors necessary for completion of healing.

What about endothelial wounds? How do they heal?

Depends on which book you ask. Per the Cornea book, "Human corneal endothelial cells do not proliferate in vivo." However, according to the Path book, "a few [endothelial] cells are replaced through mitotic activity." Caveat emptor.
Most noncorneal tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via fibrosis.

Stromal wound healing is heralded by an influx of neutrophils. Neutrophils debride the wound with collagenases known as matrix metalloproteinases (MMPs).

Once the wound is cleaned up, collagen is laid across the wound by activated keratocytes, which are behaving as fibroblasts.

Successful stromal healing requires the presence of epithelium, which releases growth factors necessary for completion of healing.

What about endothelial wounds? How do they heal? Mainly via endothelial cell enlargement and migration to cover the wound.

Depends on which book you ask. Per the Cornea book, “Human corneal endothelial cells do not proliferate in vivo.” However, according to the Path book, “a few [endothelial] cells are replaced through mitotic activity.” Caveat emptor.
Most noncorneal tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via fibrosis.

Stromal wound healing is heralded by an influx of neutrophils. Neutrophils debride the wound with collagenases known as matrix metalloproteinases (MMPs).

Once the wound is cleaned up, collagen is laid across the wound by activated keratocytes, which are behaving as fibroblasts.

Successful stromal healing requires the presence of epithelium, which releases growth factors necessary for completion of healing.

What about endothelial wounds? How do they heal?
Mainly via endothelial cell enlargement and migration to cover the wound.

What role does endothelial proliferation play in wound healing?

What role does endothelial proliferation play in wound healing?
Most *noncorneal* tissues heal via fibrovascular proliferation. However, the cornea can’t heal in this manner because it is avascular. Instead, the cornea heals via *fibrosis*.

Stromal wound healing is heralded by an influx of neutrophils. Neutrophils debride the wound with collagenases known as *matrix metalloproteinases* (MMPs).

Once the wound is cleaned up, collagen is laid across the wound by activated keratocytes, which are behaving as *fibroblasts*.

Successful stromal healing requires the presence of *epithelium*, which releases growth factors necessary for completion of healing.

What about endothelial wounds? How do they heal?

Mainly via endothelial cell enlargement and migration to cover the wound.

What role does endothelial proliferation play in wound healing?

Depends on which book you ask. Per the *Cornea* book, “Human corneal endothelial cells do not proliferate in *vivo*.” However, according to the *Path* book, “a few [endothelial] cells are replaced through mitotic activity.” Caveat emptor.