Optics Quiz 6

This quiz is intended to be taken after completion of Chapters 24-26

Note: Some questions herein may have appeared first in a copyrighted source. If you own the copyright to a question and would like an acknowledgement or to have the question removed, please contact me EyeDentistAAO@gmail.com

No, you can't use a calculator (and you don't need one anyway)

Note that some questions are callbacks from previous quizzes

Bifocal adds come in two basic flavors:

Bifocal adds come in two basic flavors: Round top and flat top

$\boldsymbol{h}=$ distance from the optical center of the lens in cm

Prentice's rule: $\mathrm{PD}=\mathrm{h} \times \mathrm{D}$

$P D=$ Amount of induced prism
$\boldsymbol{D}=$ Dioptric power of the lens

- \quad refers to a sudden change in image location that occurs when gaze shifts from the distance lens to the add segment
- Image jump refers to a sudden change in image location that occurs when gaze shifts from the distance lens to the add segment
refers to the total apparent distance between an image viewed through the distance lens versus through the add segment
- Image displacement refers to the total apparent distance between an image viewed through the distance lens versus through the add segment

Which Add Is Best?

- The choice of segment type for \square is easy--a \square top segment minimizes both \square and
- On the other hand, the choice of segment type for depends on whether one needs to minimize

Myopes vs hyperopes

Which Add Is Best?

- The choice of segment type for myopes is easy--a flat-top segment minimizes both jump and displacement
- On the other hand, the choice of segment type for hyperopes depends on whether one needs to minimize jump vs displacement
- Plane mirrors
- The only rule you need to remember is that, for any light ray, the \square equals the
(with respect to the normal)
- Plane mirrors
- The only rule you need to remember is that, for any light ray, the angle of incidence equals the angle of reflection (with respect to the normal)

An object is located 50 cm from the surface of a plane mirror.
a) Where is the image located?
b) Is the image upright or inverted?
c) Is the image real or virtual?
d) Is the image magnified/minified?

Dioptric power of a mirror

An object is located in front of a

convex mirror.
a) Where is the image located?
b) Is the image upright or inverted?
c) Is the image real or virtual?
d) Is the image magnified/minified?

A ray directed toward the center of curvature...

An object is located in front of a

convex mirror.
a) Where is the image located?

A ray directed toward the center of curvature... is reflected back in the direction from whence it came.

An object is located in front of a

convex mirror.
a) Where is the irnage located?

A ray parallel to the optical axis will be reflected as if it originated from the secondary focal point.
b) Is the image upright or inverted?
c) Is the image real or virtual?
d) Is the image magnified/minified?

An object is located in front of a

concave mirror.
a) Where is the image located?
b) Is the image upright or inverted?
c) Is the image real or virtual?
d) Is the image magnified/minified?

A ray directed toward the center of curvature is reflected back in the direction from whence it came.

An object is located in front of a

concave mirror.
a) Where is the image located?
b) Is the image upright or inverted?
c) Is the image real or virtual?
d) Is the image magnified/minified?

A ray parallel to the optical axis will be reflected as if it originated from the secondary focal point.

An object is located in front of a

concave mirror.
a) Where is the image located?
b) Is the image upright or inverted?
c) Is the image real or virtual?
d) Is the image magnified/minified?

A ray directed toward the primary focal point will be reflected parallel to the optical axis.

