Incisional Corneal Refractive Surgery

Refractive Surgery

Intraocular
- Pseudophakic
 - Refractive lens exchange (RLE)
- Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

Corneal
- Incisional
- Laser
 - PRK
 - LASEK
 - Epi-LASIK
 - LASIK
 - SMILE
- Other
 - CK
 - SAI
 - CRI
 - CXL
 - ICRS
Incisional Corneal Refractive Surgery

Refractive Surgery

Intraocular
- Pseudophakic
 - Refractive lens exchange (RLE)
- Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

Corneal
- Incisional
 - RK
 - AK
 - LRI
- Laser
 - PRK
 - LASEK
 - Epi-LASIK
 - LASIK
 - SMILE
- Other
 - CK
 - SAI
 - CRI
 - CXL
 - ICRS
Incisional Corneal Refractive Surgery

Refractive Surgery

Intraocular

- Pseudophakic
 - Refractive lens exchange (RLE)
- Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

Corneal

- Incisional
 - RK?
 - AK?
 - LRI?
- Laser
 - PRK
 - LAZEK
 - Epi-LASIK
 - LASIK
 - SMILE
- Other
 - CK
 - SAI
 - CRI
 - CXL
 - ICRS

What does RK stand for? What does AK stand for? What does LRI stand for?
Incisional Corneal Refractive Surgery

Refractive Surgery

Intraocular
- Pseudophakic
 - Refractive lens exchange (RLE)
- Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

Corneal
- Incisional
 - RK
 - AK
 - LRI
- Laser
 - PRK
 - LASEK
 - Epi-LASIK
 - LASIK
 - SMILE
- Other
 - CK
 - SAI
 - CRI
 - CXL
 - ICRS

What does RK stand for? Radial Keratotomy
What does AK stand for? Arcuate Keratotomy
What does LRI stand for? Limbal Relaxing Incisions
Incisional Corneal Refractive Surgery

Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Corneal

Incisional

Laser

Other

Incisional Corneal Refractive Surgery

What is the fundamental difference between RK vs AK/LRI (other than that RK is no longer performed)?

RK

AK

LRI

PRK

LASEK

Epi-LASIK

LASIK

SMILE

CK

SAI

CRI

CXL

ICRS
What is the fundamental difference between RK vs AK/LRI (other than that RK is no longer performed)? RK is (was) used to correct myopia, whereas AK/LRI are used to correct astigmatism.
What is the fundamental difference between RK vs AK/LRI (other than that RK is no longer performed)? RK is (was) used to correct myopia, whereas AK/LRI are used to correct astigmatism.
Incisional Corneal Refractive Surgery

Briefly, how is RK performed?

Radial incisions are made that extend from the peripheral cornea to the edge of the 'optical zone' (central portion of the cornea bounded by a 3-4 mm diameter ring). How deep are these cuts made? Quite deep—about 85-90% corneal thickness. How many cuts are made? Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately). How do radial cuts correct myopia? The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Incisional Corneal Refractive Surgery

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

Refractive Surgery

- **Intraocular**
 - Pseudophakic
 - Phakic IOL

- **Corneal**
 - Incisional
 - RK
 - Laser
 - PRK
 - Other
 - CK
Incisional Corneal Refractive Surgery

Refractive Surgery

- **Corneal**
 - **Incisional**
 - RK
 - Laser
 - PRK
 - Other
 - CK

Intraocular

- Pseudophakic
- Phakic IOL
- Refractive lens exchange (RLE)

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately)

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?
Quite deep--about 85-90% corneal thickness
Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?
Quite deep--about 85-90% corneal thickness

How many cuts are made?
Incisional Corneal Refractive Surgery

Refractive Surgery

- Intraocular
 - Pseudophakic
 - Phakic IOL

- Corneal
 - Incisional
 - RK
 - Laser
 - PRK
 - Other
 - CK

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?
Quite deep--about 85-90% corneal thickness

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately)
Incisional Corneal Refractive Surgery

Refractive Surgery

- Intraocular
 - Pseudophakic
 - Phakic IOL
- Corneal
 - Incisional
 - RK
 - Laser
 - PRK
 - Other
 - CK

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?
Quite deep--about 85-90% corneal thickness

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately)

How do radial cuts correct myopia?
Incisional Corneal Refractive Surgery

Refractive Surgery

Intraocular

- Pseudophakic
- Phakic IOL

Corneal

- Laser
 - PRK
 - Other
- Incisional
 - **RK**

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?
Quite deep--about 85-90% corneal thickness

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately)

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea.
Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?
Quite deep--about 85-90% corneal thickness

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately)

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
How is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

This is why RK can’t be used to treat hyperopia. Recall that hyperopes need added plus power to correct their refractive error. Thus, hyperopic keratorefractive surgery must steepen the central cornea in order to add plus power. However, incising the cornea (ie, RK) can only flatten it—so no RK for hyperopes.

What is the fundamental difference between RK vs AK/LRI (other than that RK is no longer performed)?
RK is (was) used to correct myopia, whereas AK/LRI are used to correct astigmatism.
Incisional Corneal Refractive Surgery

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?
Quite deep--about 85-90% corneal thickness

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately)

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

Steepening of the peripheral cornea leads inevitably to an increase in which higher-order aberration?

This steepens the peripheral cornea.

Incisional Corneal Refractive Surgery

- **Intraocular**
 - Pseudophakic
 - Phakic IOL
- **Corneal**
 - Incisional
 - Laser
 - Other
 - RK
 - PRK
 - CK

Refractive Surgery

Laser
Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?
Quite deep--about 85-90% corneal thickness

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately)

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge, which in turn steepens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

Steepening of the peripheral cornea leads inevitably to an increase in which higher-order aberration?
Spherical aberration

This steepens the peripheral cornea.
Incisional Corneal Refractive Surgery

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

The native, normal cornea is steeper centrally than it is peripherally. What is the term for this shape?

Prolate

After RK (and other myopic keratorefractive procedures), this relationship is often reversed; ie, the central cornea is flatter than the peripheral cornea. What is the term for this shape?

Oblate
Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep--about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Incisional Corneal Refractive Surgery

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

The native, normal cornea is steeper centrally than it is peripherally.

How much steeper (in diopters) is the typical central cornea than the typical peripheral cornea?
3-4
Incisional Corneal Refractive Surgery

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

The native, normal cornea is steeper centrally than it is peripherally.

How much steeper (in diopters) is the typical central cornea than the typical peripheral cornea?
3-4
Incisional Corneal Refractive Surgery

Refractive Surgery

- **Intraocular**
 - Pseudophakic
 - Phakic IOL

- **Corneal**
 - Laser
 - PRK
 - CK
 - Incisional
 - RK
 - Other
 - CK

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. **This steepens the peripheral cornea, which in turn flattens the central cornea.** Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

The native, normal cornea is steeper centrally than it is peripherally. What is the term for this shape?
Prolate

After RK (and other myopic keratorefractive procedures), this relationship is often reversed; i.e., the central cornea is flatter than the peripheral cornea. What is the term for this shape?
Oblate
Incisional Corneal Refractive Surgery

Refractive Surgery

- **Corneal**
 - **Incisional**
 - **Laser**
 - **Other**

- **Intraocular**
 - **Laser**
 - **Other**

Briefly, how is RK performed?

Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?

Quite deep—about 85-90% corneal thickness.

How many cuts are made?

Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

The native, normal cornea is steeper centrally than it is peripherally. What is the term for this shape?

Prolate

After RK (and other myopic keratorefractive procedures), this relationship is often reversed; ie, the central cornea is flatter than the peripheral cornea. What is the term for this shape?

Oblate
Incisional Corneal Refractive Surgery

Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Corneal

Incisional

Laser

Other

RK

PRK

CK

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the optical zone (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

In two words, what is the main short-term problem with RK?
'Diurnal fluctuation.'

What does this refer to?
To the fact that a significant proportion of RK eyes are more hyperopic upon awakening in the morning.

Is this hyperopic shift permanent?
No. As the day proceeds, the extra hyperopia 'wears off,' and the eye reverts to its previous state.

What accounts for diurnal fluctuation?
Hypoxic edema. Closed eyelids during sleep deprive the cornea of O2, and the resulting hypoxia causes the incisions to swell a little. This swelling in turn induces increased flattening of the central cornea, resulting in more hyperopia. After several hours of O2 exposure while the eyes are open, the edema dissipates, and the excess hyperopia resolves.
Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the 'optical zone' (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

In two words, what is the main short-term problem with RK? 'Diurnal fluctuation'.

What does this refer to?
To the fact that a significant proportion of RK eyes are more hyperopic upon awakening in the morning.

Is this hyperopic shift permanent?
No. As the day proceeds, the extra hyperopia 'wears off,' and the eye reverts to its previous state.

What accounts for diurnal fluctuation?
Hypoxic edema. Closed eyelids during sleep deprive the cornea of O2, and the resulting hypoxia causes the incisions to swell a little. This swelling in turn induces increased flattening of the central cornea, resulting in more hyperopia. After several hours of O2 exposure while the eyes are open, the edema dissipates, and the excess hyperopia resolves.
In two words, what is the main short-term problem with RK?

‘Diurnal fluctuation’

What does this refer to?

In the context of Radial Keratotomy (RK), diurnal fluctuation refers to the temporary hyperopic shift that occurs after RK surgery. This phenomenon is characterized by increased hyperopia in the early morning hours, which gradually improves throughout the day as the eye returns to its pre-surgery state. The shift is attributed to hypoxic edema, where closed eyelids during sleep deprive the cornea of oxygen, leading to incision swelling and increased flattening of the central cornea. This swelling induces the hyperopic effect. As oxygen levels increase during the day, the swelling resolves, and the eye returns to its baseline state.
In two words, what is the main short-term problem with RK?
‘Diurnal fluctuation’

What does this refer to?
To the fact that a significant proportion of RK eyes are more hyperopic upon awakening in the morning.
In two words, what is the main short-term problem with RK? ‘Diurnal fluctuation’

What does this refer to?
To the fact that a significant proportion of RK eyes are more hyperopic upon awakening in the morning

Is this hyperopic shift permanent?
No. As the day proceeds, the extra hyperopia ‘wears off,’ and the eye reverts to its previous state.

What accounts for diurnal fluctuation?
Hypoxic edema. Closed eyelids during sleep deprive the cornea of O2, and the resulting hypoxia causes the incisions to swell a little. This swelling in turn induces increased flattening of the central cornea, resulting in more hyperopia. After several hours of O2 exposure while the eyes are open, the edema dissipates, and the excess hyperopia resolves.
Incisional Corneal Refractive Surgery

Refractive Surgery

Intraocular

- Pseudophakic
- Phakic IOL

Corneal

- Incisional
 - RK
- Laser
 - PRK
- Other
 - CK

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the 'optical zone' (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

In two words, what is the main short-term problem with RK?
'Diurnal fluctuation'

What does this refer to?
To the fact that a significant proportion of RK eyes are more hyperopic upon awakening in the morning.

Is this hyperopic shift permanent?
No. As the day proceeds, the extra hyperopia 'wears off,' and the eye reverts to its previous state.

What accounts for diurnal fluctuation?
Hypoxic edema. Closed eyelids during sleep deprive the cornea of O₂, and the resulting hypoxia causes the incisions to swell a little. This swelling in turn induces increased flattening of the central cornea, resulting in more hyperopia. After several hours of O₂ exposure while the eyes are open, the edema dissipates, and the excess hyperopia resolves.
Incisional Corneal Refractive Surgery

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the 'optical zone' (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

In two words, what is the main short-term problem with RK?
‘Diurnal fluctuation’

What does this refer to?
To the fact that a significant proportion of RK eyes are more hyperopic upon awakening in the morning.

Is this hyperopic shift permanent?
No. As the day proceeds, the extra hyperopia ‘wears off,’ and the eye reverts to its previous state.

What accounts for diurnal fluctuation?
Hypoxic edema. Closed eyelids during sleep deprive the cornea of O2, and the resulting hypoxia causes the incisions to swell a little. This swelling in turn induces increased flattening of the central cornea, resulting in more hyperopia. After several hours of O2 exposure while the eyes are open, the edema dissipates, and the excess hyperopia resolves.
Incisional Corneal Refractive Surgery

In two words, what is the main **short-term problem** with RK?

‘Diurnal fluctuation’

What does this refer to?

To the fact that a significant proportion of RK eyes are more hyperopic upon awakening in the morning.

Is this hyperopic shift permanent?

No. As the day proceeds, the extra hyperopia ‘wears off,’ and the eye reverts to its previous state.

What accounts for diurnal fluctuation?

Hypoxic edema. Closed eyelids during sleep deprive the cornea of O₂, and the resulting hypoxia causes the incisions to swell a little. This swelling in turn induces increased flattening of the central cornea, resulting in more hyperopia. After several hours of O₂ exposure while the eyes are open, the edema dissipates, and the excess hyperopia resolves.
Incisional Corneal Refractive Surgery

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

In two words, what is the main long-term problem with RK?
Hyperopic drift

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. *Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.*
Incisional Corneal Refractive Surgery

Refractive Surgery

Corneal

Intraocular

Pseudophakic

Phakic IOL

IncisionalRK

Laser

PRK

Other

CK

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

In two words, what is the main long-term problem with RK?
‘Hyperopic drift’

(Note: ‘Hyperopic drift’ is aka progressive flattening effect of surgery)
Incisional Corneal Refractive Surgery

Refractive Surgery

- **Incisional**
 - Pseudophakic
 - Phakic IOL
 - Incisional Corneal Refractive Surgery
 - PRK
 - LASEK
 - CK
 - ICRS
 - CXL
 - LASIK
 - SMILE
 - Epi-LASIK
 - RK
 - AK
 - LRI

Intraocular

- Pseudophakic
- Phakic IOL

Corneal

- Laser
- Laser (PRK)
- Other
- CK

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

In two words, what is the main long-term problem with RK?
‘Hyperopic drift’

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Just over 40!
Incisional Corneal Refractive Surgery

Refractive Surgery

- **Intraocular**
 - Pseudophakic
 - Phakic IOL

- **Corneal**
 - Incisional
 - **RK**
 - Laser
 - PRK
 - Other
 - CK

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

- **How deep are these cuts made?**
 - Quite deep—about 85-90% corneal thickness
- **How many cuts are made?**
 - Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately)
- **How do radial cuts correct myopia?**
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. **Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.**

In two words, what is the main long-term problem with RK?
Hyperopic drift

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.
Refractive surgery

Incisional Corneal Refractive Surgery

Intraocular

- Pseudophakic
 - Refractive lens exchange (RLE)
- Phakic IOL

Corneal

- Incisional
 - RK
- Laser
 - PRK
- Other
 - CK

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

In two words, what is the main long-term problem with RK?
‘Hyperopic drift’

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Just over 40!
Incisional Corneal Refractive Surgery

Refractive Surgery

Intraocular
- Pseudophakic
 - Refractive lens exchange (RLE)
- Phakic IOL

Corneal
- Incisional
 - RK
- Laser
 - PRK
- Other
 - CK

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

In two words, what is the main long-term problem with RK?
‘Hyperopic drift’

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Incisional Corneal Refractive Surgery

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

In two words, what is the main long-term problem with RK?
‘Hyperopic drift’

For those pts with visually significant hyperopic drift, are they candidates for corrective K-R surgery?
Yes, they can be treated with a keratoablative laser procedure (eg LASIK; PRK).

Should they undergo a flap-based (eg, LASIK) or a surface-based (eg, PRK) procedure?
While either is acceptable, surface-based procedures are probably preferable, as trying to create a flap in a post-RK cornea can lead to incision-related complications.
Incisional Corneal Refractive Surgery

<table>
<thead>
<tr>
<th>Refractive Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraocular</td>
</tr>
<tr>
<td>Pseudophakic</td>
</tr>
<tr>
<td>Phakic IOL</td>
</tr>
<tr>
<td>Corneal</td>
</tr>
<tr>
<td>Incisional</td>
</tr>
<tr>
<td>Laser</td>
</tr>
<tr>
<td>PRK</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>RK</td>
</tr>
<tr>
<td>PRK</td>
</tr>
</tbody>
</table>

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the 'optical zone' (central portion of the cornea surrounded by a 3-4 mm diameter ring).

To two words, what is the main long-term problem with RK?
Hyperopic drift

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately)

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

In two words, what is the main long-term problem with RK?
Hyperopic drift

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!

For those pts with visually significant hyperopic drift, are they candidates for corrective K-R surgery?
Yes, they can be treated with a keratoablative laser procedure (eg LASIK; PRK). Should they undergo a flap-based (eg, LASIK) or a surface-based (eg, PRK) procedure? While either is acceptable, surface-based procedures are probably preferable, as trying to create a flap in a post-RK cornea can lead to incision-related complications.
Incisional Corneal Refractive Surgery

Refractive Surgery

- **Intraocular**
 - Pseudophakic
 - Phakic IOL

- **Corneal**
 - Incisional
 - **RK**
 - Laser
 - PRK
 - Other
 - CK

Briefly, how is RK performed?

Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?

Quite deep—about 85-90% corneal thickness.

How many cuts are made?

Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

In two words, what is the main long-term problem with RK?

‘Hyperopic drift’

For those pts with visually significant hyperopic drift, are they candidates for corrective K-R surgery?

Yes, they can be treated with a keratoablative laser procedure (eg LASIK; PRK).

Should they undergo a flap-based (eg, LASIK) or a surface-based (eg, PRK) procedure?

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?

Over 40!

While either is acceptable, surface-based procedures are probably preferable, as trying to create a flap in a post-RK cornea can lead to incision-related complications.

Quitting smoking within 6 months?
Incisional Corneal Refractive Surgery

Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Corneal

Incisional

Laser

Other

RK

PRK

CK

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

In two words, what is the main long-term problem with RK?
'Hyperopic drift'

For those pts with visually significant hyperopic drift, are they candidates for corrective K-R surgery?
Yes, they can be treated with a keratoablative laser procedure (eg LASIK; PRK).

Should they undergo a flap-based (eg, LASIK) or a surface-based (eg, PRK) procedure?
While either is acceptable, surface-based procedures are probably preferable, as trying to create a flap in a post-RK cornea can lead to incision-related complications
Incisional Corneal Refractive Surgery

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

In two words, what is the main long-term problem with RK?
Hyperopic drift

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)
Imprecision in IOL calculations for cataract surgery.

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.
Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring). The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)
Imprecision in IOL calculations for cataract surgery.

In two words, what is the main long-term problem with RK?
‘Hyperopic drift’

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!
Incisional Corneal Refractive Surgery

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)
Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

In two words, what is the main long-term problem with RK?
‘Hyperopic drift’

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Incisional Corneal Refractive Surgery

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)

Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?

This is discussed in greater depth in the slide-set entitled *IOL Calculations*. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.

Briefly, how is RK performed?

Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

In two words, what is the main long-term problem with RK?

Hyperopic drift

What does this refer to?

To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?

Over 40!

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Incisional Corneal Refractive Surgery

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.) Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.

If standard IOL calc techniques are applied to an RK eye, will the resulting ‘refractive surprise’ be myopic, or hyperopic?

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

In two words, what is the main long-term problem with RK?
‘Hyperopic drift’

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)
Imprecision in IOL calculations for cataract surgery.

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.

If standard IOL calc techniques are applied to an RK eye, will the resulting ‘refractive surprise’ be myopic, or hyperopic?
Hyperopic.

In two words, what is the main long-term problem with RK?
‘Hyperopic drift’

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!
Incisional Corneal Refractive Surgery

Refractive

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)

Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?

This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the optical zone. Hence, imprecision is unavoidable.

If standard IOL calc techniques are applied to an RK eye, will the resulting ‘refractive surprise’ be myopic, or hyperopic?

Hyperopic

In two words, what is the main long-term problem with RK?

‘Hyperopic drift’

What does this refer to?

To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?

Over 40!

Is there anything that can be done to reduce the likelihood of a hyperopic refractive surprise?

Yes. A number of alternative IOL power calculation techniques have been developed (see the IOL Calculations slide-set for details). The short version is as follows:

First, determine corneal power by either 1) measuring it directly (via a technology capable of doing so in a post-RK eye); 2) using keratometric measurements obtained pre-RK (usually difficult or impossible to obtain); or 3) performing a hard contact-lens overrefraction; then

Second, performing the calcs via several of the 3rd or 4th generation calc formula, then using the highest IOL power that pops out of those calcs.

Briefly, how is RK performed?

Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?

Quite deep—about 85-90% corneal thickness.

How many cuts are made?

Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)

Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?

This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the optical zone; thus, the assumptions simply no longer apply.

If standard IOL calc techniques are applied to an RK eye, will the resulting ‘refractive surprise’ be myopic, or hyperopic?

Hyperopic

In two words, what is the main long-term problem with RK?

‘Hyperopic drift’

What does this refer to?

To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?

Over 40!

Is there anything that can be done to reduce the likelihood of a hyperopic refractive surprise?

Yes. A number of alternative IOL power calculation techniques have been developed (see the IOL Calculations slide-set for details). The short version is as follows:

First, determine corneal power by either 1) measuring it directly (via a technology capable of doing so in a post-RK eye); 2) using keratometric measurements obtained pre-RK (usually difficult or impossible to obtain); or 3) performing a hard contact-lens overrefraction; then

Second, performing the calcs via several of the 3rd or 4th generation calc formula, then using the highest IOL power that pops out of those calcs.

Briefly, how is RK performed?

Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?

Quite deep—about 85-90% corneal thickness.

How many cuts are made?

Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Incisional Corneal Refractive Surgery

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.) Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled *IOL Calculations*. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone.

Is there anything that can be done to reduce the likelihood of a hyperopic refractive surprise? Yes. A number of alternative IOL power calculation techniques have been developed (see the *IOL Calculations* slide-set for details). The short version is as follows:

First, determine corneal power by either 1) measuring it directly (via a technology capable of doing so in a post-RK eye); 2) using keratometric measurements obtained pre-RK (usually difficult or impossible to obtain); or 3) performing a hard contact-lens overrefraction; then

In two words, what is the main long-term problem with RK? ‘Hyperopic drift’

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Incisional Corneal Refractive Surgery

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)

Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.

Is there anything that can be done to reduce the likelihood of a hyperopic refractive surprise?
Yes. A number of alternative IOL power calculation techniques have been developed (see the IOL Calculations slide-set for details). The short version is as follows:

First, determine corneal power by either 1) measuring it directly (via a technology capable of doing so in a post-RK eye); 2) using keratometric measurements obtained pre-RK (usually difficult or impossible to obtain); or 3) performing a hard contact-lens overrefraction; then

Second, performing the calcs via several of the 3rd or 4th generation calc formula, then using the highest IOL power that pops out of those calcs

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately)

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)

Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.

Is there anything that can be done to reduce the likelihood of a hyperopic refractive surprise?
Yes. A number of alternative IOL power calculation techniques have been developed (see the IOL Calculations slide-set for details). The short version is as follows:

First, determine corneal power by either 1) measuring it directly (via a technology capable of doing so in a post-RK eye); 2) using keratometric measurements obtained pre-RK (usually difficult or impossible to obtain); or 3) performing a hard contact-lens overrefraction; then

Second, performing the calcs via several of the 3rd or 4th generation calc formula, then using the highest IOL power that pops out of those calcs

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately)

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Incisional Corneal Refractive Surgery

Refractive Surgery

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)

Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?

This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the optical zone.

Is there anything that can be done to reduce the likelihood of a hyperopic refractive surprise?

Yes. A number of alternative IOL power calculation techniques have been developed (see the IOL Calculations slide-set for details). The short version is as follows:

First, determine corneal power by either 1) measuring it directly (via a technology capable of doing so in a post-RK eye); 2) using keratometric measurements obtained pre-RK (usually difficult or impossible to obtain); or 3) performing a hard contact-lens overrefraction; then Second, performing the calcs via several of the 3rd or 4th generation calc formula, then using the highest IOL power that pops out of those calcs

What does this refer to?

To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

Usually quite!

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?

Over 40!

In two words, what is the main long-term problem with RK?

Hyperopic drift

What does this refer to?

To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Incisional Corneal Refractive Surgery

Refractive Surgery

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)

Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?

This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.

If standard IOL calc techniques are applied to an RK eye, will the resulting ‘refractive surprise’ be myopic, or hyperopic?

Hyperopic

In two words, what is the main long-term problem with RK?

‘Hyperopic drift’

What does this refer to?

To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time

According to the Prospective Evaluation of Radial Keratototomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?

Over 40!

Is there anything that can be done to reduce the likelihood of a hyperopic refractive surprise?

Yes. A number of alternative IOL power calculation techniques have been developed (see the IOL Calculations slide-set for details). The short version is as follows:

First, determine corneal power by either 1) measuring it directly (via a technology capable of doing so in a post-RK eye); 2) using keratometric measurements obtained pre-RK (usually difficult or impossible to obtain), or 3) performing a hard contact-lens overrefraction; then

Second, performing the calcs via several of the 3rd or 4th generation calc formula, then using the highest IOL power that pops out of those calcs

With regard to the IOL itself, can a toric and/or a multifocal lens be used in a post RK eye?

A toric lens can be considered, but multifocals should be avoided in these eyes.

Briefly, how is RK performed?

Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?

Quite deep—about 85-90% corneal thickness

How many cuts are made?

Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately)

How do radial cuts correct myopia?

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Incisional Corneal Refractive Surgery

Refractive Surgery

Corneal Incisional Laser Surgery

Iris-fixated Intraocular Pseudophakic Phakic IOL Sulcus-fixated Refractive lens exchange (RLE)

Other Incisional Corneal Refractive Surgery

PRK
LASEK
CK
ICRS
CXL
LASIK
SMILE
Epi-LASIK
RK
AK
LRI

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the "optical zone" (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately)

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

What is the other main problem associated with RK? (Hint: It's not usually encountered until the pt is 60+ years old.)
Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don't measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and these optical zone measurements

If standard IOL calculation techniques are applied to a post-RK eye, will the resulting 'refractive surprise' be myopic, or hyperopic?
Hyperopic

In two words, what is the main long-term problem with RK?
"Hyperopic drift"

With regard to the IOL itself, can a toric and/or a multifocal lens be used in a post RK eye? What does this refer to?
A toric lens can be considered, but multifocals should be avoided in these eyes

to the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!
Incisional Corneal Refractive Surgery

Refractive Surgery

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)
Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the optical zone.

If standard IOL calc techniques are applied to an RK eye, will the resulting ‘refractive surprise’ be myopic, or hyperopic?
Hyperopic

In two words, what is the main long-term problem with RK?
‘Hyperopic drift’

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!

Is there anything that can be done to reduce the likelihood of a hyperopic refractive surprise?
Yes. A number of alternative IOL power calculation techniques have been developed (see the IOL Calculations slide-set for details). The short version is as follows:

1. Determine corneal power by either 1) measuring it directly (via a technology capable of doing so in a post-RK eye); 2) using keratometric measurements obtained pre-RK (usually difficult or impossible to obtain); or 3) performing a hard contact-lens overrefraction; then
2. Performing the calcs via several of the 3rd or 4th generation calc formula, then using the highest IOL power that pops out of those calcs

With regard to the IOL itself, can a toric and/or a multifocal lens be used in a post RK eye?
A toric lens can be considered, but multifocals should be avoided in these eyes

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately)

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

Other Incisional Corneal Refractive Surgery
PRK
LASEK
CK
ICRS
CXL
LASIK
SMILE
Epi-LASIK
RK
AK
LRI
Incisional Corneal Refractive Surgery

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)
Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.

If standard IOL calc techniques are applied to an RK eye, will the resulting ‘refractive surprise’ be myopic, or hyperopic?
Hyperopic

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)

In two words, what is the main long-term problem with RK?
‘Hyperopic drift’

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)

Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?

This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed based on virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.

If standard IOL calc techniques are applied to an RK eye, will the resulting ‘refractive surprise’ be myopic, or hyperopic? Hyperopic

In two words, what is the main long-term problem with RK?

‘Hyperopic drift’

What does this refer to?

to the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years? Over 40!

Briefly, how is RK performed?

Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring). The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Incisional Corneal Refractive Surgery

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)
Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined.

What about the cataract surgery itself—are there any adjustments in technique that should be considered?
Yes. The surgeon should give consideration to employing a scleral-tunnel incision, in order to avoid 'crossing' the RK incisions.

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the 'optical zone' (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)
Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don't measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.

If standard IOL calc techniques are applied to an RK eye, will the resulting 'refractive surprise' be myopic, or hyperopic?
Hyperopic

In two words, what is the main long-term problem with RK?
'Hyperopic drift'

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!
Incisional Corneal Refractive Surgery

What is the other main problem associated with RK? (Hint: It's not usually encountered until the pt is 60+ years old.)
Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don't measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.

If standard IOL calc techniques are applied to an RK eye, will the resulting 'refractive surprise' be myopic, or hyperopic?
Hyperopic

In two words, what is the main long-term problem with RK?
'Hyperopic drift'

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately)

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

If the RK cornea possesses significant astigmatism, where should the cataract incision be placed?
If feasible, on the steep meridian other
Incisional Corneal Refractive Surgery

Refractive Surgery

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)
Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.

If standard IOL calc techniques are applied to an RK eye, will the resulting ‘refractive surprise’ be myopic, or hyperopic?
Hyperopic

In two words, what is the main long-term problem with RK?
‘Hyperopic drift’

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring)...

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately)

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

What about the cataract surgery itself--are there any adjustments in technique that should be considered?
Yes. The surgeon should give consideration to employing a scleral-tunnel incision, in order to avoid ‘crossing’ the RK incisions.

If the RK cornea possesses significant astigmatism, where should the cataract incision be placed?
If feasible, on the flat vs steep meridian

If RK cornea is flat vs steep

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Incisional Corneal Refractive Surgery

What is the other main problem associated with RK? (Hint: It’s not usually encountered until the pt is 60+ years old.)

Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?

This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don’t measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.

If standard IOL calc techniques are applied to an RK eye, will the resulting ‘refractive surprise’ be myopic, or hyperopic?

Hyperopic

In two words, what is the main long-term problem with RK?

‘Hyperopic drift’

What does this refer to?

To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?

Over 40!

Briefly, how is RK performed?

Radial incisions are made that extend from the peripheral cornea to the edge of the ‘optical zone’ (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?

Quite deep—about 85-90% corneal thickness

How many cuts are made?

Usually 4 or 8, occasionally 16, hopefully not 32 (although it’s been done, unfortunately)

How do radial cuts correct myopia?

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

If the RK cornea possesses significant astigmatism, where should the cataract incision be placed?

If feasible, on the steep meridian

What about the cataract surgery itself—are there any adjustments in technique that should be considered?

Yes. The surgeon should give consideration to employing a scleral-tunnel incision, in order to avoid ‘crossing’ the RK incisions.

The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.
Incisional Corneal Refractive Surgery

Refractive Surgery

Incisional Corneal Refractive Surgery

PRK
LASEK
CK
ICRS
CXL
LASIK
SMILE
Epi-LASIK
RK
AK
LRI

Briefly, how is RK performed?
Radial incisions are made that extend from the peripheral cornea to the edge of the 'optical zone' (central portion of the cornea bounded by a 3-4 mm diameter ring).

How deep are these cuts made?
Quite deep—about 85-90% corneal thickness.

How many cuts are made?
Usually 4 or 8, occasionally 16, hopefully not 32 (although it's been done, unfortunately).

How do radial cuts correct myopia?
The radial cuts gape, causing the peripheral cornea to bulge. This steepens the peripheral cornea, which in turn flattens the central cornea. Essentially, RK works by redistributing corneal power from the central cornea to the peripheral cornea.

In two words, what is the main short-term problem with RK?
'Diurnal fluctuation'

What does this refer to?
To the fact that a significant proportion of RK eyes are more hyperopic upon awakening in the morning.

Is this hyperopic shift permanent?
No. As the day proceeds, the extra hyperopia 'wears off,' and the eye reverts to its previous state.

What accounts for diurnal fluctuation?
Hypoxic edema. Closed eyelids during sleep deprive the cornea of O2, and the resulting hypoxia causes the incisions to swell a little. This swelling in turn induces increased flattening of the central cornea, resulting in more hyperopia. After several hours of increased O2 exposure while the eyes are open, the edema dissipates, and the excess hyperopia resolves.

In two words, what is the main long-term problem with RK?
'Hyperopic drift'

What does this refer to?
To the fact that a significant proportion of RK eyes gradually become more and more hyperopic over time.

According to the Prospective Evaluation of Radial Keratotomy (PERK) study, what percentage of RK eyes will manifest a diopter or more of hyperopic drift after 10 years?
Over 40!

What is the other main problem associated with RK? (Hint: It's not usually encountered until the pt is 60+ years old.)
Imprecision in IOL calculations for cataract surgery

Why does RK lead to imprecise IOL calcs?
This is discussed in greater depth in the slide-set entitled IOL Calculations. But briefly, the problem lies in the way central corneal power is determined. Standard techniques (keratometry; Placido-disc topography) don't measure central power directly; rather, they measure power at about the 3-4 mm optical zone, then infer central power based on assumptions concerning the relationship between corneal curvature at these two areas. The trouble is, these assumptions were developed with virgin corneas. By inducing central corneal flattening, RK radically alters the relationship between central power and power at the 3-4 mm optical zone; thus, the assumptions simply no longer apply.

If standard IOL calc techniques are applied to an RK eye, will the resulting 'refractive surprise' be myopic, or hyperopic? Hyperopic

Because of these (and other) issues, RK is considered 'obsolete,' and thus is no longer performed in the US.
There is another procedure, similar to AK and LRI, that was at one time commonly used to correct astigmatism, but is rarely used today. What is it?
There is another procedure, similar to AK and LRI, that was at one time commonly used to correct astigmatism, but is rarely used today. What is it? Transverse keratotomy

(Note: ‘Transverse keratotomy’ is aka tangential keratotomy)
There is another procedure, similar to AK and LRI, that was at one time commonly used to correct astigmatism, but is rarely used today. What is it? **Transverse keratotomy**

In what fundamental way does transverse keratotomy differ from AK and LRI?
Refractive Surgery

Incisional Corneal Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Corneal

Incisional

Laser

Other

PRK

LASEK

Epi-LASIK

LASIK

SMILE

RK

AK

LRI

Transverse keratotomy

There is another procedure, similar to AK and LRI, that was at one time commonly used to correct astigmatism, but is rarely used today. What is it?

Transverse keratotomy

In what fundamental way does transverse keratotomy differ from AK and LRI?

In terms of the shape of the incision—AK/LRI incisions are curved whereas transverse keratotomy incisions are straight.
There is another procedure, similar to AK and LRI, that was at one time commonly used to correct astigmatism, but is rarely used today. What is it? Transverse keratotomy

In what fundamental way does transverse keratotomy differ from AK and LRI? In terms of the shape of the incision--AK/LRI incisions are curved, whereas transverse keratotomy incisions are straight.
In what fundamental way does AK differ from LRI?

AK incisions are made ~7 mm from the center of the cornea, whereas LRI incisions are made at the limbus.
In what fundamental way does AK differ from LRI? In terms of the location of the incision--AK incisions are made ~3.5 mm from the center of the cornea, whereas LRI incisions are made at the location.
In what fundamental way does AK differ from LRI? In terms of the location of the incision--AK incisions are made ~3.5 mm from the center of the cornea, whereas LRI incisions are made at the limbus.
In what fundamental way does AK differ from LRI? In terms of the location of the incision—AK incisions are made ~3.5 mm from the center of the cornea, whereas LRI incisions are made at the limbus. (Note that this results in an AK optical zone of ~7 mm)
Incisional Corneal Refractive Surgery

Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?

Corneal

Laser

- PRK
- LASEK
- Epi-LASIK
- LASIK
- SMILE

Other

- CK
- SAI
- CRI
- CXL
- ICRS
Incisional Corneal Refractive Surgery

Corneal

- Incisional
 - RK
 - AK
 - LRI

- Laser
 - PRK
 - LASEK
 - Epi-LASIK
 - LASIK
 - SMILE

- Other
 - CK
 - SAI
 - CRI
 - CXL
 - ICRS

Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?
The steep
Incisional Corneal Refractive Surgery

Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea? The steep

Are they performed singularly, or in pairs?

In pairs, on opposite sides of the cornea

Which is more commonly used today? LRIs, by a mile

What is the typical context in which LRIs are used? They are usually performed at the time of cataract surgery, or shortly thereafter

What is the typical context in which AKs are used? To correct post-penetrating keratoplasty astigmatism
Incisional Corneal Refractive Surgery

Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?
The steep

Are they performed singularly, or in pairs?
In pairs, on opposite sides of the cornea

Corneal

Incisional
- RK
- AK
- LRI

Laser
- PRK
- LASEK
- Epi-LASIK
- LASIK
- SMILE

Other
- CK
- SAI
- CRI
- CXL
- ICRS
Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?
The steep

Are they performed singularly, or in pairs?
In pairs, on opposite sides of the cornea

Which is more commonly used today?

Incisional Corneal Refractive Surgery

- RK
- AK
- LRI

Corneal

Laser

- PRK
- LASEK
- Epi-LASIK
- LASIK
- SMILE

Other

- CK
- SAI
- CRI
- CXL
- ICRS
Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?
The steep

Are they performed singularly, or in pairs?
In pairs, on opposite sides of the cornea

Which is more commonly used today?
LRI, by a mile
Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?
The steep

Are they performed singularly, or in pairs?
In pairs, on opposite sides of the cornea

Which is more commonly used today?
LRIs, by a mile

What is the typical context in which LRIs are used?

They are usually performed at the time of cataract surgery, or shortly thereafter
Incisional Corneal Refractive Surgery

Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea? The steep

Are they performed singularly, or in pairs? In pairs, on opposite sides of the cornea

Which is more commonly used today? LRIs, by a mile

What is the typical context in which LRIs are used? They are usually performed at the time of cataract surgery, or shortly thereafter
Incisional Corneal Refractive Surgery

Refractive Surgery

Corneal

Incisional

Laser

Other

PRK

SAI

CRI

CXL

ICRS

Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?
The steep

Are they performed singularly, or in pairs?
In pairs, on opposite sides of the cornea

Which is more commonly used today?
LRIs, by a mile

What is the typical context in which LRIs are used?
They are usually performed at the time of cataract surgery, or shortly thereafter

What is the typical context in which AKs are used?
Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?
The steep

Are they performed singularly, or in pairs?
In pairs, on opposite sides of the cornea

Which is more commonly used today?
LRIs, by a mile

What is the typical context in which LRIs are used?
They are usually performed at the time of cataract surgery, or shortly thereafter

What is the typical context in which AKs are used?
To correct post-astigmatism common eye surgery
Incisional Corneal Refractive Surgery

Refractive Surgery

Corneal

Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?
The steep

Are they performed singularly, or in pairs?
In pairs, on opposite sides of the cornea

Which is more commonly used today?
LRIs, by a mile

What is the typical context in which LRIs are used?
They are usually performed at the time of cataract surgery, or shortly thereafter

What is the typical context in which AKs are used?
To correct post-penetrating keratoplasty astigmatism

Incisional

Laser

Other

RK

AK

LRI

PRK

LASEK

Epi-LASIK

LASIK

SMILE

CK

SAI

CRI

CXL

ICRS
Incisional Corneal Refractive Surgery

Refractive Surgery

Corneal

Incisional

- RK
- AK
- LRI

Laser

- PRK
- LASEK
- Epi-LASIK
- LASIK
- CXL
- CK
- SAI
- CRI
- CRS

Other

Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?
The steep

Are they performed singularly, or in pairs?
In pairs, on opposite sides of the cornea

Which is more commonly used today?
LRI s, by a mile

What is the typical context in which LRIs are used?
They are usually performed at the time of cataract surgery, or shortly thereafter

What is the typical context in which AKs are used?
To correct post-penetrating keratoplasty astigmatism

In treating post-PK astigmatism, where are the AK incisions placed?
Incisional Corneal Refractive Surgery

Refractive Surgery

Corneal

Incisional

Laser

Other

PRK
LASEK
Epi-LASIK
LASIK
CK
SAI
CRI
CXL
CRS

Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?
The steep

Are they performed singularly, or in pairs?
In pairs, on opposite sides of the cornea

Which is more commonly used today?
LRIs, by a mile

What is the typical context in which LRIs are used?
They are usually performed at the time of cataract surgery, or shortly thereafter

What is the typical context in which AKs are used?
To correct post-penetrating keratoplasty astigmatism

In treating post-PK astigmatism, where are the AK incisions placed?
Either in the host vs donor cornea, or the PK incision itself
Incisional Corneal Refractive Surgery

Refractive Surgery

Corneal

Incisional

Laser

Other

- RK
- AK
- LRI

- PRK
- LASEK
- Epi-LASIK
- LASIK

- CK
- SAI
- CRI
- CXL
- CRS

Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?
The steep

Are they performed singularly, or in pairs?
In pairs, on opposite sides of the cornea

Which is more commonly used today?
LRIs, by a mile

What is the typical context in which LRIs are used?
They are usually performed at the time of cataract surgery, or shortly thereafter

What is the typical context in which AKs are used?
To correct post-penetrating keratoplasty astigmatism

In treating post-PK astigmatism, where are the AK incisions placed?
Either in the donor cornea, or the PK incision itself
Incisional Corneal Refractive Surgery

Refractive Surgery

Corneal

Incisional
- RK
- AK
- LRI

Laser
- PRK
- LASEK
- Epi-LASIK
- LASIK
- CXL
- CRS

Other
- CK
- SAI
- CRI

Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?
The steep

Are they performed singularly, or in pairs?
In pairs, on opposite sides of the cornea

Which is more commonly used today?
LRIs, by a mile

What is the typical context in which LRIs are used?
They are usually performed at the time of cataract surgery, or shortly thereafter

What is the typical context in which AKs are used?
To correct post-penetrating keratoplasty astigmatism

In treating post-PK astigmatism, where are the AK incisions placed?
Either in the donor cornea, or the PK incision itself

Why not place the incisions in the host bed?
Incisional Corneal Refractive Surgery

Are AK and LRI incisions placed on the steep, or the flat meridian of the cornea?
The steep

Are they performed singularly, or in pairs?
In pairs, on opposite sides of the cornea

Which is more commonly used today?
LRIs, by a mile

What is the typical context in which LRIs are used?
They are usually performed at the time of cataract surgery, or shortly thereafter

What is the typical context in which AKs are used?
To correct post-penetrating keratoplasty astigmatism

In treating post-PK astigmatism, where are the AK incisions placed?
Either in the donor cornea, or the PK incision itself

Why not place the incisions in the host bed?
Because doing so produces only a negligible effect on the astigmatism
Incisional Corneal Refractive Surgery

What was the typical context in which transverse keratotomy was used?

Transverse keratotomy
Incisional Corneal Refractive Surgery

Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Corneal

Incisional

Laser

Other

RK

AK

LRI

PRK

LASEK

Epi-LASIK

LASIK

SMILE

CK

SAI

CRI

CXL

ICRS

Transverse keratotomy

What was the typical context in which transverse keratotomy was used?

It was used in conjunction with RK to correct the astigmatic portion of the RK pt’s refractive error. As RK fell out of favor, transverse keratotomy fell with it.
Incisional Corneal Refractive Surgery

When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness?

They flatten it.

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)?

They steepen it.

What is the name for the phenomenon of incisions producing steepening in the opposite meridian?

Coupling

In this context, what is the coupling ratio?

It is an index of the relative flattening and steepening caused by the incisions. It is defined as the amount of flattening (in diopters) divided by the amount of steepening (again, in diopters).

What is the effect of the incisions on the spherical equivalent (SE) of the eye if the coupling ratio is…

> 1? There is a hyperopic shift.

< 1? There is a myopic shift.

= 1? The SE is unchanged.

Other

CK

SAI

CRI

CXL

ICRS
When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness? They flatten it.

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)? They steepen it.

What is the name for the phenomenon of incisions producing steepening in the opposite meridian? Coupling

In this context, what is the coupling ratio? It is an index of the relative flattening and steepening caused by the incisions. It is defined as the amount of flattening (in diopters) divided by the amount of steepening (again, in diopters).

What is the effect of the incisions on the spherical equivalent (SE) of the eye if the coupling ratio is...>1? There is a hyperopic shift.<1? There is a myopic shift.=1? The SE is unchanged.
Incisional Corneal Refractive Surgery

When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness?
They flatten it

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)?

Other

- CK
- SAI
- CRI
- CXL
- ICRS
When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness? They flatten it.

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)? They steepen it.

In this context, what is the coupling ratio? It is an index of the relative flattening and steepening caused by the incisions. It is defined as the amount of flattening (in diopters) divided by the amount of steepening (again, in diopters).

What is the effect of the incisions on the spherical equivalent (SE) of the eye if the coupling ratio is…

- If >1, there is a hyperopic shift.
- If <1, there is a myopic shift.
- If =1, the SE is unchanged.
When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness? They **flatten** it.

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)? They **steepen** it.

What is the name for the phenomenon of incisions producing steepening in the opposite meridian? **Coupling**

In this context, what is the **coupling ratio**? It is an index of the relative flattening and steepening caused by the incisions. It is defined as the amount of flattening (in diopters) divided by the amount of steepening (again, in diopters).

What is the effect of the incisions on the spherical equivalent (SE) of the eye if the coupling ratio is...?

- **>1**? There is a **hyperopic shift**
- **<1**? There is a **myopic shift**
- **=1**? The **SE is unchanged**

Other:
- CK
- SAI
- CRI
- CXL
- ICRS
When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness?
They flatten it.

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)?
They steepen it.

What is the name for the phenomenon of incisions producing steepening in the opposite meridian?
Coupling
When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness?

They flatten it.

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (i.e., the opposite meridian)?

They steepen it.

What is the name for the phenomenon of incisions producing steepening in the opposite meridian?

Coupling.

In this context, what is the coupling ratio?

When the coupling ratio is greater than 1, there is a hyperopic shift. When the coupling ratio is less than 1, there is a myopic shift. When the coupling ratio is 1, the spherical equivalent of the eye remains unchanged.
Incisional Corneal Refractive Surgery

When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness?
They flatten it

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)?
They steepen it

What is the name for the phenomenon of incisions producing steepening in the opposite meridian?
Coupling

In this context, what is the coupling ratio?
It is an index of the relative flattening and steepening caused by the incisions. It is defined as the amount of flattening (in diopters) divided by the amount of steepening (again, in diopters).
When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness?
They flatten it.

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)? They steepen it.

What is the name for the phenomenon of incisions producing steepening in the opposite meridian? **Coupling**

In this context, what is the coupling ratio? It is an index of the relative flattening and steepening caused by the incisions. It is defined as the amount of flattening (in diopters) divided by the amount of steepening (again, in diopters).

What is the effect of the incisions on the spherical equivalent (SE) of the eye if the coupling ratio is…
>1?
<1?
=1?
When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness?
They **flatten** it

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (i.e., the opposite meridian)?
They **steepen** it

What is the name for the phenomenon of incisions producing steepening in the opposite meridian?
Coupling

In this context, what is the coupling ratio?
It is an index of the relative flattening and steepening caused by the incisions. It is defined as the amount of flattening (in diopters) divided by the amount of steepening (again, in diopters).

What is the effect of the incisions on the spherical equivalent (SE) of the eye if the coupling ratio is...

- >1? There is a **hyperopic** shift
- <1? There is a **myopic** shift
- =1? The SE is **unchanged**
When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness?
They flatten it.

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)?
They steepen it.

What is the name for the phenomenon of incisions producing steepening in the opposite meridian?
Coupling.

In this context, what is the coupling ratio?
It is an index of the relative flattening and steepening caused by the incisions. It is defined as the amount of flattening (in diopters) divided by the amount of steepening (again, in diopters).

What is the effect of the incisions on the spherical equivalent (SE) of the eye if the coupling ratio is…
>1? There is a hyperopic shift.
<1? There is a myopic shift.
=1? The SE is unchanged.

What is the most important factor in determining the coupling ratio of an AK/LRI procedure?

The procedure itself. Specifically, the LRI procedure essentially always produces a ratio of 1.0, whereas results with the AK procedure are more variable.
Incisional Corneal Refractive Surgery

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Incisional Corneal Refractive Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRK</td>
<td></td>
</tr>
<tr>
<td>LASEK</td>
<td></td>
</tr>
<tr>
<td>EpilASIK</td>
<td></td>
</tr>
<tr>
<td>CK</td>
<td></td>
</tr>
<tr>
<td>SAI</td>
<td></td>
</tr>
</tbody>
</table>

When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness? They flatten it.

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)? They steepen it.

What is the name for the phenomenon of incisions producing steepening in the opposite meridian? Coupling

In this context, what is the coupling ratio? It is an index of the relative flattening and steepening caused by the incisions. It is defined as the amount of flattening (in diopters) divided by the amount of steepening (again, in diopters).

What is the effect of the incisions on the spherical equivalent (SE) of the eye if the coupling ratio is…

- >1? There is a hyperopic shift
- <1? There is a myopic shift
- =1? The SE is unchanged

What is the most important factor in determining the coupling ratio of an AK/LRI procedure? The procedure itself. Specifically, the AK procedure essentially always produces a ratio of 1.0, whereas results with the LRI procedure are more variable (but usually ~1.0).
When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness? They flatten it.

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)? They steepen it.

What is the name for the phenomenon of incisions producing steepening in the opposite meridian? Coupling.

In this context, what is the coupling ratio? It is an index of the relative flattening and steepening caused by the incisions. It is defined as the amount of flattening (in diopters) divided by the amount of steepening (again, in diopters).

What is the effect of the incisions on the spherical equivalent (SE) of the eye if the coupling ratio is…

>1? There is a hyperopic shift

<1? There is a myopic shift

=1? The SE is unchanged.

What is the most important factor in determining the coupling ratio of an AK/LRI procedure? The procedure itself. Specifically, the LRI procedure essentially always produces a ratio of 1.0, whereas results with the AK procedure are more variable (but usually ~1.0).
When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness? They flatten it.

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)? They steepen it.

What is the name for the phenomenon of incisions producing steepening in the opposite meridian? Coupling.

In this context, what is the coupling ratio? It is an index of the relative flattening and steepening caused by the incisions. It is defined as the amount of flattening (in diopters) divided by the amount of steepening (again, in diopters).

What is the effect of the incisions on the spherical equivalent (SE) of the eye if the coupling ratio is... >1? There is a hyperopic shift. <1? There is a myopic shift. =1? The SE is unchanged.

What is the most important factor in determining the coupling ratio of an AK/LRI procedure? The procedure itself. Specifically, the LRI procedure essentially always produces a ratio of 1.0, whereas results with the AK procedure are more variable (but usually ~1.0).

With respect to AK, what factors influence the coupling ratio? -- -- --
When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness? They flatten it.

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)? They steepen it.

What is the name for the phenomenon of incisions producing steepening in the opposite meridian? Coupling.

In this context, what is the coupling ratio? It is an index of the relative flattening and steepening caused by the incisions. It is defined as the amount of flattening (in diopters) divided by the amount of steepening (again, in diopters).

What is the effect of the incisions on the spherical equivalent (SE) of the eye if the coupling ratio is…

>1? There is a hyperopic shift

<1? There is a myopic shift

=1? The SE is unchanged.

What is the most important factor in determining the coupling ratio of an AK/LRI procedure? The procedure itself. Specifically, the LRI procedure essentially always produces a ratio of 1.0, whereas results with the AK procedure are more variable (but usually ~1.0).

With respect to AK, what factors influence the coupling ratio?

--The length of the incisions

--The depth of the incisions

--The size of the optical axis
When AK and LRI incisions placed on the steep meridian of the cornea, what effect do they have on that meridian’s steepness? They flatten it.

What effect (if any) does placement of AK or LRI incisions have on the steepness of the meridian 90 degrees away (ie, the opposite meridian)? They steepen it.

What is the name for the phenomenon of incisions producing steepening in the opposite meridian? Coupling.

In this context, what is the coupling ratio? It is an index of the relative flattening and steepening caused by the incisions. It is defined as the amount of flattening (in diopters) divided by the amount of steepening (again, in diopters).

What is the effect of the incisions on the spherical equivalent (SE) of the eye if the coupling ratio is…

>1? There is a hyperopic shift
<1? There is a myopic shift
=1? The SE is unchanged

What is the most important factor in determining the coupling ratio of an AK/LRI procedure? The procedure itself. Specifically, the LRI procedure essentially always produces a ratio of 1.0, whereas results with the AK procedure are more variable (but usually ~1.0).

With respect to AK, what factors influence the coupling ratio?
--The length of the incisions
--The depth of the incisions
--The size of the optical zone
Incisional Corneal Refractive Surgery

With regard to AKs and LRIs, what factors influence their effectiveness?
-- Pt age
-- The number of incisions
-- The length of the incisions
-- The depth of the incisions

Should incisional correction of astigmatism be based on a manifest refraction, or corneal topography?
It depends. AKs performed as a stand-alone procedure should be based on the manifest refraction, so as to offset both corneal and lenticular astigmatism. In contrast, LRIs performed at the time of cataract surgery should be based on corneal topography, because any astigmatism owing to the lens will be dealt with by the CE surgery.

When marking the pt's eye prior to making the incisions, what should you have the pt do?
Sit up
Why? In a word, cyclotorsion. When a pt lies down, their eyes rotate up to 15°. Thus, assuming the pt was refracted/had topography performed while seated, incisions based on the position of the eye while the pt is supine will be off by up to 15°.
With regard to AKs and LRIs, what factors influence their effectiveness?

- Patient age
- The number of incisions
- The length of the incisions
- The depth of the incisions

Incisional Corneal Refractive Surgery

- Incisional Corneal Refractive Surgery
 - RK
 - AK
 - LRI

- Laser
 - PRK
 - LASEK
 - Epi-LASIK
 - LASIK
 - SMILE

- Other
 - CK
 - SAI
 - CRI
 - CXL
 - ICRS
Incisional Corneal Refractive Surgery

With regard to AKs and LRIs, what factors influence their effectiveness?
--Pt age
--The number of incisions
--The length of the incisions
--The depth of the incisions

Should incisional correction of astigmatism be based on a manifest refraction, or corneal topography?
It depends. AKs performed as a stand-alone procedure should be based on the manifest refraction, so as to offset both corneal and lenticular astigmatism. In contrast, LRIs performed at the time of cataract surgery should be based on corneal topography, because any astigmatism owing to the lens will be dealt with by the CE surgery.

When marking the pt's eye prior to making the incisions, what should you have the pt do?
Sit up
Why?
In a word, cyclotorsion. When a pt lies down, their eyes rotate up to 15 o. Thus, assuming the pt was refracted/had topography performed while seated, incisions based on the position of the eye while the pt is supine will be off by up to 15 o.
Incisional Corneal Refractive Surgery

With regard to AKs and LRIs, what factors influence their effectiveness?
--Pt age
--The number of incisions
--The length of the incisions
--The depth of the incisions

Should incisional correction of astigmatism be based on a manifest refraction, or corneal topography?

Sit up

In a word, cyclotorsion. When a pt lies down, their eyes rotate up to 15°. Thus, assuming the pt was refracted/had topography performed while seated, incisions based on the position of the eye while the pt is supine will be off by up to 15°.
Incisional Corneal Refractive Surgery

With regard to AKs and LRIs, what factors influence their effectiveness?
--Pt age
--The number of incisions
--The length of the incisions
--The depth of the incisions

Should incisional correction of astigmatism be based on a manifest refraction, or corneal topography?
It depends. AKs performed as a stand-alone procedure should be based on the manifest refraction, so as to offset both corneal and lenticular astigmatism. In contrast, LRIs performed at the time of cataract surgery should be based on corneal topography, because any astigmatism owing to the lens will be dealt with by the CE surgery.
Incisional Corneal Refractive Surgery

With regard to AKs and LRIs, what factors influence their effectiveness?
--Pt age
--The number of incisions
--The length of the incisions
--The depth of the incisions

Should incisional correction of astigmatism be based on a manifest refraction, or corneal topography?
It depends. AKs performed as a stand-alone procedure should be based on the manifest refraction, so as to offset both corneal and lenticular astigmatism. In contrast, LRIs performed at the time of cataract surgery should be based on corneal topography, because any astigmatism owing to the lens will be dealt with by the CE surgery.

When marking the pt’s eye prior to making the incisions, what should you have the pt do?
With regard to AKs and LRIs, what factors influence their effectiveness?
--Pt age
--The number of incisions
--The length of the incisions
--The depth of the incisions

Should incisional correction of astigmatism be based on a manifest refraction, or corneal topography?
It depends. AKs performed as a stand-alone procedure should be based on the manifest refraction, so as to offset both corneal and lenticular astigmatism. In contrast, LRIs performed at the time of cataract surgery should be based on corneal topography, because any astigmatism owing to the lens will be dealt with by the CE surgery.

When marking the pt’s eye prior to making the incisions, what should you have the pt do?
Sit up
Incisional Corneal Refractive Surgery

With regard to AKs and LRIs, what factors influence their effectiveness?
--Pt age
--The number of incisions
--The length of the incisions
--The depth of the incisions

Should incisional correction of astigmatism be based on a manifest refraction, or corneal topography?
It depends. AKs performed as a stand-alone procedure should be based on the manifest refraction, so as to offset both corneal and lenticular astigmatism. In contrast, LRIs performed at the time of cataract surgery should be based on corneal topography, because any astigmatism owing to the lens will be dealt with by the CE surgery.

When marking the pt’s eye prior to making the incisions, what should you have the pt do?
Sit up

Why?
With regard to AKs and LRIs, what factors influence their effectiveness?
--Pt age
--The number of incisions
--The length of the incisions
--The depth of the incisions

Should incisional correction of astigmatism be based on a manifest refraction, or corneal topography?
It depends. AKs performed as a stand-alone procedure should be based on the manifest refraction, so as to offset both corneal and lenticular astigmatism. In contrast, LRIs performed at the time of cataract surgery should be based on corneal topography, because any astigmatism owing to the lens will be dealt with by the CE surgery.

When marking the pt’s eye prior to making the incisions, what should you have the pt do?
Sit up

Why?
In a word, cyclotorsion. When a pt lies down, their eyes rotate up to 15°. Thus, assuming the pt was refracted/had topography performed while seated, incisions based on the position of the eye while the pt is supine will be off by up to 15°.