Based on the two-name eponym principle: $P = \frac{F}{A}$

Applanation Tonometry

(P is for Pressure)
Based on the *Imbert-Fick* principle: \(P = \frac{F}{A} \)
Based on the **Imbert-Fick principle**: $P = \frac{F}{A}$

- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.

I-F Principle in words

- F stands for...
- A stands for...
Based on the *Imbert-Fick* principle: $P = \frac{F}{A}$

- Pressure inside a sphere equals the force needed to flatten its surface divided by the area of flattening.
Based on the *Imbert-Fick principle*: \(P = \frac{F}{A} \)

- Pressure inside a sphere equals *force needed to flatten its surface* divided by the *area of flattening*.
- Assumes surface is *two words*, and *neither, obviously* (cornea is neither, obviously).
Based on the Imbert-Fick principle: \[P = \frac{F}{A} \]

- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.
- Assumes surface is infinitely thin, and dry (cornea is neither, obviously).
Based on the **Imbert-Fick principle**: \(P = \frac{F}{A} \)

- Pressure inside a sphere equals **force needed to flatten its surface** divided by the **area of flattening**
- Assumes surface is **infinitely thin, and dry** (cornea is neither, obviously)
- \(K \) thickness → resists applanation → **increase vs decrease** IOP reading
Based on the Imbert-Fick principle: $P = \frac{F}{A}$

- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.
- Assumes surface is infinitely thin, and dry (cornea is neither, obviously).
- K thickness → resists applanation → increases IOP reading.
Based on the **Imbert-Fick principle**: \(P = \frac{F}{A} \)

- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.
- Assumes surface is infinitely thin, and dry (cornea is neither, obviously).
- K thickness \(\rightarrow \) resists applanation \(\rightarrow \) increases IOP reading.

For the Imbert-Fick principle to hold, the **only** force resisting applanation should be the pressure within the sphere. However, real objects such as the cornea have *intrinsic* resistance to deformation owing to their physical nature, ie, because they’re made of ‘stuff.’
Based on the **Imbert-Fick principle**: $P = \frac{F}{A}$

- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.
- Assumes surface is infinitely thin, and dry (cornea is neither, obviously).
- K thickness → resists applanation → increases IOP reading

For the Imbert-Fick principle to hold, the only force resisting applanation should be the pressure within the sphere. However, real objects such as the cornea have *intrinsic* resistance to deformation owing to their physical nature, ie, because they’re made of ‘stuff.’ This inherent structural resistance of the cornea will be additive to whatever pressure is inside the eye, thereby causing the pressure reading to be falsely high. (And the thicker the cornea is, the higher the reading will be.)

No question—proceed when ready
Based on the **Imbert-Fick principle**: $P = \frac{F}{A}$
- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.
- Assumes surface is infinitely thin, and dry (cornea is neither, obviously).
 - K thickness → resists applanation → *increases* IOP reading
 - Tear film → capillary attraction → increase vs decrease IOP reading
Based on the **Imbert-Fick principle**: \(P = \frac{F}{A} \)

- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.
- Assumes surface is infinitely thin, and dry (cornea is neither, obviously).
 - K thickness → resists applanation → **increases** IOP reading
 - Tear film → capillary attraction → **decreases** IOP reading
Based on the **Imbert-Fick principle**: \(P = \frac{F}{A} \)

- Pressure inside a sphere equals the force needed to flatten its surface divided by the area of flattening.
- Assumes surface is infinitely thin, and dry (cornea is neither, obviously).
- K thickness resists applanation, increases IOP reading.
- Tear film capillary attraction decreases IOP reading.

On the other hand: The first ocular structure encountered by the applanator tip is the tear film. When contact with the tear film is made, a fluid bridge forms between the cornea and the tip. Surface tension of the water in this fluid bridge produces *capillary attraction*, which exerts a slight ‘pull’ on the applanator tip, drawing it toward the cornea.

No question—proceed when ready
Based on the **Imbert-Fick principle**: \(P = \frac{F}{A} \)

- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.
- Assumes surface is infinitely thin, and dry (cornea is neither, obviously).
- **K thickness** \(\rightarrow \) resists applanation \(\rightarrow \) increases IOP reading.
- **Tear film** \(\rightarrow \) capillary attraction \(\rightarrow \) decreases IOP reading.

On the other hand: The first ocular structure encountered by the applanator tip is the tear film. When contact with the tear film is made, a fluid bridge forms between the cornea and the tip. Surface tension of the water in this fluid bridge produces *capillary attraction*, which exerts a slight ‘pull’ on the applanator tip, drawing it toward the cornea. Because this force is drawing the applanator tip forward, it is causing the pressure reading to be falsely low.

No question—proceed when ready.
Based on the **Imbert-Fick** principle: \(P = \frac{F}{A} \)

- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.

Assumes the surface is infinitely thin, and dry (cornea is neither, obviously)

To be useful, an applanator-type device has to account for these factors.

- **K thickness** → resists applanation → **increases** IOP reading

- Tear film → capillary attraction → **decreases** IOP reading

No question—proceed when ready
Based on the **Imbert-Fick** principle: $P = \frac{F}{A}$

- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.

> To be useful, an applanator-type device has to account for these factors. Fortunately, the brilliant Dr. Goldmann was (mostly) up to the challenge… (neither obviously)

- K thickness \rightarrow resists applanation \rightarrow increases IOP reading
- Tear film \rightarrow capillary attraction \rightarrow decreases IOP reading

Applanation Tonometry

To be useful, an applanator-type device has to account for these factors. Fortunately, the brilliant Dr. Goldmann was (mostly) up to the challenge… (neither, obviously)

- K thickness \rightarrow resists applanation \rightarrow increases IOP reading
- Tear film \rightarrow capillary attraction \rightarrow decreases IOP reading

![Stan an eye king!](image)

Hans Goldmann 1899-1991

No question—pay your respects, then proceed
Based on the **Imbert-Fick principle**: \[P = \frac{F}{A} \]

- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.
- Assumes surface is infinitely thin, and dry (cornea is neither, obviously).
- \(K \) thickness → resists applanation → *increases* IOP reading.
- Tear film → capillary attraction → *decreases* IOP reading.

Dr. Goldmann realized if the diameter of the circle applanated by the device is \(.## \) mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is \(# \) \(\mu \)m).
Based on the *Imbert-Fick* principle: \(P = \frac{F}{A} \)
- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.
- Assumes surface is infinitely thin, and dry (cornea is neither, obviously).
 - K thickness → resists applanation → *increases* IOP reading
 - Tear film → capillary attraction → *decreases* IOP reading
- Dr. Goldmann realized if the diameter of the circle applanated by the device is 3.06 mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is 520 µm).
Based on the *Imbert-Fick* principle: $P = \frac{F}{A}$

- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.
- Assumes surface is infinitely thin, and dry (cornea is neither, obviously).
 - K thickness → resists applanation → increases IOP reading.
 - Tear film → capillary attraction → decreases IOP reading.

Dr. Goldmann realized if the diameter of the circle applanated by the device is 3.06 mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is 520 µm).

Goldmann believed CCT was ~520, with little variation.

No question—proceed when ready.
Based on the **Imbert-Fick principle**: $P = \frac{F}{A}$

- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.
- Assumes surface is infinitely thin, and dry (cornea is neither, obviously).
 - K thickness → resists applanation → *increases* IOP reading
 - Tear film → capillary attraction → *decreases* IOP reading

Dr Goldmann realized if the diameter of the circle applanated by the device is 3.06 mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is 520 μm)

- Goldmann believed CCT was ~520, with little variation

(We now know that CCT *averages* about 550, with wide variation among individuals)

No question—proceed when ready
Based on the **Imbert-Fick principle**: $P = \frac{F}{A}$

- Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening
- Assumes surface is infinitely thin, and dry (cornea is neither, obviously)
 - K thickness \rightarrow resists applanation \rightarrow increases IOP reading
 - Tear film \rightarrow capillary attraction \rightarrow decreases IOP reading

Dr Goldmann realized if the diameter of the circle applanated by the device is 3.06 mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is 520 μm)

- Goldmann believed CCT was \sim520, with little variation
- **When the mires line up, the diameter of the applanated area is 3.06 mm**

No question—proceed when ready
Based on the Imbert-Fick principle:

\[P = \frac{F}{A} \]

Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.

Assumes surface is infinitely thin, and dry (cornea is neither, obviously)

- \(K \) thickness \(\rightarrow \) resists applanation \(\rightarrow \) increases IOP reading
- Tear film \(\rightarrow \) capillary attraction \(\rightarrow \) decreases IOP reading

Dr. Goldmann realized if the diameter of the circle applanated by the device is 3.06 mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is 520 \(\mu \text{m} \)).

Goldmann believed CCT was ~520, with little variation.

When the mires line up, the diameter of the applanated area is 3.06 mm.

This implies that applanation IOP measurements will be off if CCT is not 520. Is that the case?

Indeed it is.

Off in which direction, i.e., too high or too low?

Depends—if CCT > 520, the reading will be higher than actual IOP, whereas if it's < 520 it will be lower.

So why don't we just use a 'CCT correction factor' to adjust the IOP obtained via applanation?

Because unfortunately for us, the relationship between CCT and applanated IOP is nonlinear, and not completely understood. Thus, as of the latest (2022) version of the Glaucoma book, "there is no validated correction factor for the effect of CCT on applanation tonometers."

Are there ways of measuring IOP that aren't affected by CCT? Why aren't they considered the 'gold standard,' and in widespread use?

Yep. Beats me.
Based on the Imbert-Fick principle:

\[P = \frac{F}{A} \]

Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.

Assumes surface is infinitely thin, and dry (cornea is neither, obviously).

- **K thickness** \(\rightarrow \) resists applanation \(\rightarrow \) increases IOP reading
- **Tear film** \(\rightarrow \) capillary attraction \(\rightarrow \) decreases IOP reading

Dr Goldmann realized if the diameter of the circle applanated by the device is 3.06 mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is 520 \(\mu \text{m} \)).

Goldmann believed CCT was ~520, with little variation.

When the mires line up, the diameter of the applanated area is 3.06 mm.

This implies that applanation IOP measurements will be off if CCT is not 520.

Is that the case? Indeed it is.

(assuming CCT is 520 \(\mu \text{m} \))
Based on the Imbert-Fick principle:

\[P = \frac{F}{A} \]

Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.

Assumes surface is infinitely thin, and dry (cornea is neither, obviously)

\(K \) thickness → resists applanation → increases IOP reading

Tear film → capillary attraction → decreases IOP reading

Dr. Goldmann realized if the diameter of the circle applanated by the device is 3.06 mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is 520 µm).

Goldmann believed CCT was ~520, with little variation.

When the mires line up, the diameter of the applanated area is 3.06 mm.

This implies that applanation IOP measurements will be off if CCT is not 520. Is that the case? Indeed it is

Off in which direction, ie, too high or too low?

(assuming CCT is 520 µm)
Based on the Imbert-Fick principle:

\[P = \frac{F}{A} \]

Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.

Assumes surface is infinitely thin, and dry (cornea is neither, obviously)

- **K (thickness)** → resists applanation → increases IOP reading
- **Tear film** → capillary attraction → decreases IOP reading

Dr Goldmann realized if the diameter of the circle applanated by the device is 3.06 mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is 520 µm).

Goldmann believed CCT was ~520, with little variation.

When the mires line up, the diameter of the applanated area is 3.06 mm.

This implies that applanation IOP measurements will be off if CCT is not 520. Is that the case? Indeed it is.

Off in which direction, ie, too high or too low?

Depends—if CCT > 520, the reading will be **higher** than actual IOP, whereas if it’s <520 it will be **lower**.

Is that the case? Indeed it is.

Off in which direction, ie, too high or too low? Depends—if CCT > 520, the reading will be **higher** than actual IOP, whereas if it’s <520 it will be **lower**.

So why don’t we just use a 'CCT correction factor' to adjust the IOP obtained via applanation?

Because unfortunately for us, the relationship between CCT and applanated IOP is nonlinear, and not completely understood. Thus, as of the latest (2022) version of the *Glaucoma* book, “there is no validated correction factor for the effect of CCT on applanation tonometers.”

Are there ways of measuring IOP that aren’t affected by CCT? Why aren’t they considered the ‘gold standard,’ and in widespread use? Yep. Beats me.
Based on the Imbert-Fick principle:
\[P = \frac{F}{A} \]
Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.

Assumes surface is infinitely thin, and dry (cornea is neither, obviously)

\(K \) thickness \(\rightarrow \) resists applanation \(\rightarrow \) increases IOP reading

Tear film \(\rightarrow \) capillary attraction \(\rightarrow \) decreases IOP reading

Dr. Goldmann realized if the diameter of the circle applanated by the device is 3.06 mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is 520 µm).

Goldmann believed CCT was ~520, with little variation.

When the mires line up, the diameter of the applanated area is 3.06 mm.

This implies that applanation IOP measurements will be off if CCT is not 520.

Is that the case? Indeed it is

Off in which direction, ie, too high or too low? Depends—if CCT > 520, the reading will be higher than actual IOP, whereas if it’s < 520 it will be lower.

(assuming CCT is 520 µm)
Based on the Imbert-Fick principle:

\[P = \frac{F}{A} \]

Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.

Assumes surface is infinitely thin, and dry (cornea is neither, obviously)

K thickness \(\rightarrow \) resists applanation \(\rightarrow \) increases IOP reading

Tear film \(\rightarrow \) capillary attraction \(\rightarrow \) decreases IOP reading

Dr Goldmann realized if the diameter of the circle applanated by the device is 3.06 mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is 520 \(\mu \)m).

Goldmann believed CCT was ~520, with little variation.

When the mires line up, the diameter of the applanated area is 3.06 mm.

This implies that applanation IOP measurements will be off if CCT is not 520. Is that the case? Indeed it is.

Off in which direction, ie, too high or too low? Depends—if CCT>520, the reading will be higher than actual IOP, whereas if it’s <520 it will be lower.

So why don’t we just use a ‘CCT correction factor’ to adjust the IOP obtained via applanation? Because unfortunately for us, the relationship between CCT and applanated IOP is nonlinear, and not completely understood. Thus, as of the latest (2022) version of the Glaucoma book, “there is no validated correction factor for the effect of CCT on applanation tonometers.”

Are there ways of measuring IOP that aren’t affected by CCT? Why aren’t they considered the ‘gold standard,’ and in widespread use? Yep. Beats me.
This implies that applanation IOP measurements will be off if CCT is not 520. Is that the case? Indeed it is

Off in which direction, ie, too high or too low? Depends—if CCT > 520, the reading will be higher than actual IOP, whereas if it’s < 520 it will be lower

So why don’t we just use a ‘CCT correction factor’ to adjust the IOP obtained via applanation? Because unfortunately for us, the relationship between CCT and applanated IOP is nonlinear, and not completely understood

Goldmann believed CCT was ~520, with little variation

When the mires line up, the diameter of the applanated area is 3.06 mm

(assuming CCT is 520 µm)
Based on the Imbert-Fick principle:

\[P = \frac{F}{A} \]

Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.

Assumes surface is infinitely thin, and dry (cornea is neither, obviously)

\[K \text{ thickness} \rightarrow \text{resists applanation} \rightarrow \text{increases IOP reading} \]

\[\text{Tear film} \rightarrow \text{capillary attraction} \rightarrow \text{decreases IOP reading} \]

Dr Goldmann realized if the diameter of the circle applanated by the device is 3.06 mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is 520 µm).

Goldmann believed CCT was ~520, with little variation.

When the mires line up, the diameter of the applanated area is 3.06 mm.

This implies that applanation IOP measurements will be off if CCT is not 520.

Is that the case?

Indeed it is.

Off in which direction, ie, too high or too low?

Depends—if CCT > 520, the reading will be higher than actual IOP, whereas if it’s <520 it will be lower.

So why don’t we just use a ‘CCT correction factor’ to adjust the IOP obtained via applanation?

Because unfortunately for us, the relationship between CCT and applanated IOP is nonlinear, and not completely understood. Thus, as of the latest (2022) version of the *Glaucoma* book, “there is no validated correction factor for the effect of CCT on applanation tonometers.”

So why don’t we just use a ‘CCT correction factor’ to adjust the IOP obtained via applanation?

Because unfortunately for us, the relationship between CCT and applanated IOP is nonlinear, and not completely understood. Thus, as of the latest (2022) version of the *Glaucoma* book, “there is no validated correction factor for the effect of CCT on applanation tonometers.”

(assuming CCT is 520 µm)
Based on the Imbert-Fick principle:

\[P = \frac{F}{A} \]

Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening

Assumes surface is infinitely thin, and dry (cornea is neither, obviously)

K thickness \(\rightarrow \) resists applanation \(\rightarrow \) increases IOP reading

Tear film \(\rightarrow \) capillary attraction \(\rightarrow \) decreases IOP reading

Dr Goldmann realized if the diameter of the circle applanated by the device is 3.06 mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is 520 \(\mu \)m)

Goldmann believed CCT was \(\sim \)520, with little variation

When the mires line up, the diameter of the applanated area is 3.06 mm

This implies that applanation IOP measurements will be off if CCT is not 520.

Is that the case?

Indeed it is

Off in which direction, ie, too high or too low?

Depends—if CCT>520, the reading will be higher than actual IOP, whereas if it’s <520 it will be lower

So why don’t we just use a ‘CCT correction factor’ to adjust the IOP obtained via applanation?

Because unfortunately for us, the relationship between CCT and applanated IOP is nonlinear, and not completely understood. Thus, as of the latest (2022) version of the *Glaucoma* book, “there is no validated correction factor for the effect of CCT on applanation tonometers.”

Are there ways of measuring IOP that aren’t affected by CCT?
This implies that applanation IOP measurements will be off if CCT is not 520.
Is that the case?
Indeed it is

Off in which direction, ie, too high or too low?
Depends—if CCT>520, the reading will be higher than actual IOP, whereas if it’s <520 it will be lower

So why don’t we just use a ‘CCT correction factor’ to adjust the IOP obtained via applanation?
Because unfortunately for us, the relationship between CCT and applanated IOP is nonlinear, and not completely understood. Thus, as of the latest (2022) version of the *Glaucoma* book, “there is no validated correction factor for the effect of CCT on applanation tonometers.”

Are there ways of measuring IOP that aren’t affected by CCT?
Yep

(assuming CCT is 520 µm)
Based on the Imbert-Fick principle:

\[P = \frac{F}{A} \]

Pressure inside a sphere equals force needed to flatten its surface divided by the area of flattening.

Assumes surface is infinitely thin, and dry (cornea is neither, obviously)

- **K thickness** → resists applanation → increases IOP reading
- **Tear film** → capillary attraction → decreases IOP reading

Dr. Goldmann realized if the diameter of the circle applanated by the device is 3.06 mm, capillary attraction and corneal thickness would cancel each other out (assuming CCT is 520 µm).

Goldmann believed CCT was ~520, with little variation.

When the mires line up, the diameter of the applanated area is 3.06 mm.

This implies that applanation IOP measurements will be off if CCT is not 520. Is that the case? Indeed it is.

Off in which direction, ie, too high or too low?
Depends—if CCT>520, the reading will be higher than actual IOP, whereas if it’s <520 it will be lower.

So why don’t we just use a ‘CCT correction factor’ to adjust the IOP obtained via applanation?
Because unfortunately for us, the relationship between CCT and applanation IOP is nonlinear, and not completely understood. Thus, as of the latest (2022) version of the *Glaucoma* book, “there is no validated correction factor for the effect of CCT on applanation tonometers.”

Are there ways of measuring IOP that aren’t affected by CCT? Why aren’t they considered the ‘gold standard,’ and in widespread use? Yep

(assuming CCT is 520 µm)
This implies that applanation IOP measurements will be off if CCT is not 520. Is that the case? Indeed it is

Off in which direction, ie, too high or too low? Depends—if CCT>520, the reading will be higher than actual IOP, whereas if it’s <520 it will be lower

So why don’t we just use a ‘CCT correction factor’ to adjust the IOP obtained via applanation? Because unfortunately for us, the relationship between CCT and applanated IOP is nonlinear, and not completely understood. Thus, as of the latest (2022) version of the Glaucoma book, “there is no validated correction factor for the effect of CCT on applanation tonometers.”

Are there ways of measuring IOP that aren’t affected by CCT? Why aren’t they considered the ‘gold standard,’ and in widespread use? Yep. Beats me.

(assuming CCT is 520 µm)
What happens during applanation tonometry, and how does it measure IOP?

- When the mires line up, the diameter of the applanated area is 3.06 mm.
Applanation Tonometry

What happens during applanation tonometry, and how does it measure IOP?
During applanation tonometry, the tip of the applanator pushes against the cornea, flattening it. As the tip flattens the cornea, fluorescein flows into and fills the rim-area between the cornea and the applanator tip, forming a ‘meniscus ring.’

- When the mires line up, the diameter of the applanated area is 3.06 mm
Applanation Tonometry
Applanation Tonometry

What happens during applanation tonometry, and how does it measure IOP?

During applanation tonometry, the tip of the applanator pushes against the cornea, flattening it. As the tip flattens the cornea, fluorescein flows into and fills the rim-area between the cornea and the applanator tip, forming a 'meniscus ring.' The size of this ring is a function of how much the tip is flattening the cornea—if the tip is flattening a large area, the ring will be large; if it's flattening a small area, it will be small. To measure IOP, you must adjust the pressure being applied by the device (ie, turn the knob) until the diameter of the fluorescein circle is exactly 3.06 mm. When this is done, the force being applied by the applanator exactly matches the force on the inside of the cornea—that is, the IOP.

- When the mires line up, the diameter of the applanated area is 3.06 mm
Applanation tonometry: When the diameter of the flattened area is 3.06 mm, the force being applied by the tip equals the pressure inside the eye.
What happens during applanation tonometry, and how does it measure IOP?

During applanation tonometry, the tip of the applanator pushes against the cornea, flattening it. As the tip flattens the cornea, fluorescein flows into and fills the rim-area between the cornea and the applanator tip, forming a ‘meniscus ring.’ The size of this ring is a function of how much the tip is flattening the cornea—if the tip is flattening a large area, the ring will be large; if it’s flattening a small area, it will be small. To measure IOP, you must adjust the pressure being applied by the device (ie, turn the knob) until the diameter of the fluorescein circle is exactly 3.06 mm. When this is done, the force being applied by the applanator exactly matches the force on the inside of the cornea—that is, the IOP. When the pressure inside the eye is higher than the force applied by the tip, the area of flattened cornea will have a diameter less than 3.06 mm, and thus so will the meniscus.
When the diameter of the flattened area is less than 3.06 mm, the force being applied by the tip is less than the pressure inside the eye.
What happens during applanation tonometry, and how does it measure IOP?

During applanation tonometry, the tip of the applanator pushes against the cornea, flattening it. As the tip flattens the cornea, fluorescein flows into and fills the rim-area between the cornea and the applanator tip, forming a ‘meniscus ring.’ The size of this ring is a function of how much the tip is flattening the cornea—if the tip is flattening a large area, the ring will be large; if it’s flattening a small area, it will be small. To measure IOP, you must adjust the pressure being applied by the device (ie, turn the knob) until the diameter of the fluorescein circle is exactly 3.06 mm. When this is done, the force being applied by the applanator exactly matches the force on the inside of the cornea—that is, the IOP. When the pressure inside the eye is higher than the force applied by the tip, the area of flattened cornea will have a diameter less than 3.06 mm, and thus so will the meniscus. Likewise, when the pressure inside the eye is lower than the force applied by the tip, the area of cornea flattened will have a diameter greater than 3.06 mm, and so too will the meniscus.

- When the mires line up, the diameter of the applanated area is 3.06 mm
When the diameter of the flattened area is greater than 3.06 mm, the force being applied by the tip is greater than the pressure inside the eye.
What happens during applanation tonometry, and how does it measure IOP?

During applanation tonometry, the tip of the applanator pushes against the cornea, flattening it. As the tip flattens the cornea, fluorescein flows into and fills the rim-area between the cornea and the applanator tip, forming a ‘meniscus ring.’ The size of this ring is a function of how much the tip is flattening the cornea—if the tip is flattening a large area, the ring will be large; if it’s flattening a small area, it will be small. To measure IOP, you must adjust the pressure being applied by the device (ie, turn the knob) until the diameter of the fluorescein circle is exactly 3.06 mm. When this is done, the force being applied by the applanator exactly matches the force on the inside of the cornea—that is, the IOP. When the pressure inside the eye is higher than the force applied by the tip, the area of flattened cornea will have a diameter less than 3.06 mm, and thus so will the meniscus. Likewise, when the pressure inside the eye is lower than the force applied by the tip, the area of cornea flattened will have a diameter greater than 3.06 mm, and so too will the meniscus.

OK, but why does the applanator use a prism to split the circle?

- When the mires line up, the diameter of the applanated area is 3.06 mm
What happens during applanation tonometry, and how does it measure IOP?
During applanation tonometry, the tip of the applanator pushes against the cornea, flattening it. As the tip flattens the cornea, fluorescein flows into and fills the rim-area between the cornea and the applanator tip, forming a ‘meniscus ring.’ The size of this ring is a function of how much the tip is flattening the cornea—if the tip is flattening a large area, the ring will be large; if it’s flattening a small area, it will be small. To measure IOP, you must adjust the pressure being applied by the device (ie, turn the knob) until the diameter of the fluorescein circle is exactly 3.06 mm. When this is done, the force being applied by the applanator exactly matches the force on the inside of the cornea—that is, the IOP. When the pressure inside the eye is higher than the force applied by the tip, the area of flattened cornea will have a diameter less than 3.06 mm, and thus so will the meniscus. Likewise, when the pressure inside the eye is lower than the force applied by the tip, the area of cornea flattened will have a diameter greater than 3.06 mm, and so too will the meniscus.

OK, but why does the applanator use a prism to split the circle?
Consider if the applanator didn’t contain a prism. The tip would press against the cornea, and you would adjust the knob until the diameter of the circle was 3.06 mm. Seems straightforward enough, until you consider this: How would you know when the diameter is 3.06 mm? One way would be to simply etch a 3.06 mm line into the optics of the slit-lamp. This would provide an easy-to-use measurement tool. OTOH, the line would be visible during the rest of the exam—not good. What else you got?

- When the mires line up, the diameter of the applanated area is 3.06 mm
What happens during applanation tonometry, and how does it measure IOP?

During applanation tonometry, the tip of the applanator pushes against the cornea, flattening it. As the tip flattens the cornea, fluorescein flows into and fills the rim-area between the cornea and the applanator tip, forming a ‘meniscus ring.’ The size of this ring is a function of how much the tip is flattening the cornea—if the tip is flattening a large area, the ring will be large; if it’s flattening a small area, it will be small. To measure IOP, you must adjust the pressure being applied by the device (ie, turn the knob) until the diameter of the fluorescein circle is exactly 3.06 mm. When this is done, the force being applied by the applanator exactly matches the force on the inside of the cornea—that is, the IOP. When the pressure inside the eye is higher than the force applied by the tip, the area of flattened cornea will have a diameter less than 3.06 mm, and thus so will the meniscus. Likewise, when the pressure inside the eye is lower than the force applied by the tip, the area of cornea flattened will have a diameter greater than 3.06 mm, and so too will the meniscus.

OK, but why does the applanator use a prism to split the circle?

Consider if the applanator didn’t contain a prism. The tip would press against the cornea, and you would adjust the knob until the diameter of the circle was 3.06 mm. Seems straightforward enough, until you consider this: How would you know when the diameter is 3.06 mm? One way would be to simply etch a 3.06 mm line into the optics of the slit-lamp. This would provide an easy-to-use measurement tool. OTOH, the line would be visible during the rest of the exam—not good. What else you got?

Enter the prism. The prism splits the image of the circle in half, but not in a random way. Rather, the prism is powered so that *the two half-circles will exactly overlap when the diameter of the circle is 3.06 mm.* Thus, as the pressure applied by the tip is manipulated (ie, as you turn the knob on the applanator), it *looks* like the mires are moving toward or away from one another—but they’re not. What’s *actually* happening is *the circle is getting larger or smaller.*

- **When the mires line up, the diameter of the applanated area is 3.06 mm**
What happens during applanation tonometry, and how does it measure IOP?
During applanation tonometry, the tip of the applanator pushes against the cornea, flattening it. As the tip flattens the cornea, fluorescein flows into and fills the rim-area between the cornea and the applanator tip, forming a ‘meniscus ring.’ The size of this ring is a function of how much the tip is flattening the cornea—if the tip is flattening a large area, the ring will be large; if it’s flattening a small area, it will be small. To measure IOP, you must adjust the pressure being applied by the device (ie, turn the knob) until the diameter of the fluorescein circle is exactly 3.06 mm. When this is done, the force being applied by the applanator exactly matches the force on the inside of the cornea—that is, the IOP. When the pressure inside the eye is higher than the force applied by the tip, the area of flattened cornea will have a diameter less than 3.06 mm, and thus so will the meniscus. Likewise, when the pressure inside the eye is lower than the force applied by the tip, the area of cornea flattened will have a diameter greater than 3.06 mm, and so too will the meniscus.

OK, but why does the applanator use a prism to split the circle?
Consider if the applanator didn’t contain a prism. The tip would press against the cornea, and you would adjust the knob until the diameter of the circle was 3.06 mm. Seems straightforward enough, until you consider this: How would you know when the diameter is 3.06 mm? One way would be to simply etch a 3.06 mm line into the optics of the slit-lamp. This would provide an easy-to-use measurement tool. OTOH, the line would be visible during the rest of the exam—not good. What else you got?
Enter the prism. The prism splits the image of the circle in half, but not in a random way. Rather, the prism is powered so that the two half-circles will exactly overlap when the diameter of the circle is 3.06 mm. Thus, as the pressure applied by the tip is manipulated (ie, as you turn the knob on the applanator), it looks like the mires are moving toward or away from one another—but they’re not. What’s actually happening is the circle is getting larger or smaller. (Next time you applanate someone, take note of the heights of the mires as you adjust the knob, and you’ll be better able to appreciate the fact that it’s the size of the circle that’s actually changing, not the distance between the segments).

- When the mires line up, the diameter of the applanated area is 3.06 mm
What you think you’re seeing when you turn the knob: One size of ring segment moving closer and farther apart

Applanation Tonometry

Dia. of applanated area >3.06 mm

Dia. of applanated area < 3.06 mm

Dia. of applanated area = 3.06 mm

Number on dial is too high Number on dial is too low Number on dial = IOP

No question—proceed when ready
Applanation Tonometry

Dia. of applanated area > 3.06 mm

Dia. of applanated area < 3.06 mm

Dia. of applanated area = 3.06 mm

Number on dial is too *high*

Number on dial is too *low*

Number on dial = IOP

What you think you’re seeing when you turn the knob: One size of ring segment moving closer and farther apart

What you’re actually seeing: The size of the ring segment getting larger and smaller

No question—proceed when ready
More on Applanation Tonometry

- Reading will be falsely *LOW* if:
 - Cornea is in pathologic state
More on Applanation Tonometry

- Reading will be falsely LOW if:
 - Cornea is edematous
More on Applanation Tonometry

- Reading will be falsely **LOW** if:
 - Cornea is **edematous**

*But an edematous cornea is a thick cornea, and we all know that thicker corneas yield falsely **high** applanation pressures. What gives?*
More on Applanation Tonometry

Reading will be falsely low if:

- Cornea is edematous

But an edematous cornea is a thick cornea, and we all know that thicker corneas yield falsely high applanation pressures. What gives? Not all thick corneas are biomechanically equivalent. A ‘naturally thick’ (i.e., thicker-than-normal in the non-pathologic state) cornea yields falsely high applanation readings because it has greater intrinsic biomechanical resistance compared with thinner corneas.
More on Applanation Tonometry

- Reading will be falsely LOW if:
 - Cornea is **edematous**

But an edematous cornea is a thick cornea, and we all know that thicker corneas yield falsely high applanation pressures. What gives?

Not all thick corneas are biomechanically equivalent. A ‘naturally thick’ (i.e., thicker-than-normal in the non-pathologic state) cornea yields falsely high applanation readings because it has greater intrinsic biomechanical resistance compared with thinner corneas. On the other hand, an edematous cornea undergoes a **decrease** in its native biomechanical resistance (think of it as being ‘gooey’). Thickness *per se* is not the issue.
More on Applanation Tonometry

- Reading will be falsely LOW if:
 - Cornea is edematous
 - Applanation performed over a
More on Applanation Tonometry

- Reading will be falsely **LOW** if:
 - Cornea is **edematous**
 - Applanation performed over a **soft CL**
More on Applanation Tonometry

- Reading will be falsely **LOW** if:
 - Cornea is **edematous**
 - Applanation performed over a **soft CL**
 - After **two words** surgery (changes scleral rigidity)
More on Applanation Tonometry

- Reading will be falsely **LOW** if:
 - Cornea is **edematous**
 - Applanation performed over a **soft CL**
 - After **scleral buckling** surgery (changes scleral rigidity)
More on Applanation Tonometry

Reading will be falsely LOW if:

- Cornea is edematous
- Applanation performed over a soft CL
- After scleral buckling surgery (changes scleral rigidity)
- Too much vs little fluorescein in tear film
More on Applanation Tonometry

- Reading will be falsely LOW if:
 - Cornea is edematous
 - Applanation performed over a soft CL
 - After scleral buckling surgery (changes scleral rigidity)
 - Too little fluorescein in tear film
More on Applanation Tonometry

Reading will be falsely **LOW** if:

- Cornea is edematous
- Applanation performed over a **soft CL**
- After **scleral buckling surgery** (changes scleral rigidity)
- Too **little** fluorescein in tear film

Why would too little fluorescein make the reading falsely low?
More on Applanation Tonometry

Reading will be falsely *LOW* if:

- Cornea is *edematous*
- Applanation performed over a *soft CL*
- After *scleral buckling surgery* (changes scleral rigidity)
- Too *little* fluorescein in tear film

Why would too little fluorescein make the reading falsely low?
Mainly because it makes the inner edge of the mires difficult to appreciate, so the knob isn’t turned up as it needs to be
More on Applanation Tonometry

Reading will be falsely LOW if:
- Cornea is edematous
- Applanation performed over a soft CL
- After scleral buckling surgery (changes scleral rigidity)
- Too little fluorescein in tear film

Reading will be falsely HIGH if:
- Performed over a two words
More on Applanation Tonometry

Reading will be falsely **LOW** if:
- Cornea is edematous
- Applanation performed over a soft CL
- After **scleral buckling** surgery (changes scleral rigidity)
- Too little fluorescein in tear film

Reading will be falsely **HIGH** if:
- Performed over a corneal scar
More on Applanation Tonometry

- Reading will be falsely **LOW** if:
 - Cornea is **edematous**
 - Applanation performed over a **soft CL**
 - After **scleral buckling** surgery (changes scleral rigidity)
 - Too **little** fluorescein in tear film

- Reading will be falsely **HIGH** if:
 - Performed over a **corneal scar**
 - Too **duh** fluorescein in tear film
More on Applanation Tonometry

- Reading will be falsely **LOW** if:
 - Cornea is *edematous*
 - Applanation performed over a *soft CL*
 - After *scleral buckling* surgery (changes scleral rigidity)
 - Too *little* fluorescein in tear film

- Reading will be falsely **HIGH** if:
 - Performed over a *corneal scar*
 - Too *much* fluorescein in tear film
More on Applanation Tonometry

- Reading will be falsely **LOW** if:
 - Cornea is **edematous**
 - Applanation performed over a **soft CL**
 - After **scleral buckling surgery** (changes scleral rigidity)
 - Too **little** fluorescein in tear film

- Reading will be falsely **HIGH** if:
 - Performed over a **corneal scar**
 - Too **much** fluorescein in tear film

*Why does too much fluorescein make the reading falsely high? Does it make the mires **too** easy to see?*
More on Applanation Tonometry

- Reading will be falsely LOW if:
 - Cornea is edematous
 - Applanation performed over a soft CL
 - After scleral buckling surgery (changes scleral rigidity)
 - Too little fluorescein in tear film

- Reading will be falsely HIGH if:
 - Performed over a corneal scar
 - Too much fluorescein in tear film

Why does too much fluress make the reading falsely high? Does it make the mires too easy to see?

No, smart AGAB*
More on Applanation Tonometry

- Reading will be falsely \textit{LOW} if:
 - Cornea is \textit{edematous}
 - Applanation performed over a \textit{soft CL}
 - After \textit{scleral buckling surgery} (changes scleral rigidity)
 - Too \textit{little} fluorescein in tear film

- Reading will be falsely \textit{HIGH} if:
 - Performed over a \textit{corneal scar}
 - Too \textit{much} fluorescein in tear film

\textit{Why does too much fluress make the reading falsely high? Does it make the mires \textbf{too} easy to see?}

\textit{No, smart AGAB*}

\textit{OK seriously, I’ve been told it’s because the extra fluress makes the mires too thick. Is that the case?}
More on Applanation Tonometry

Reading will be falsely LOW if:
- Cornea is edematous
- Applanation performed over a soft CL
- After scleral buckling surgery (changes scleral rigidity)
- Too little fluorescein in tear film

Reading will be falsely HIGH if:
- Performed over a corneal scar
- Too much fluorescein in tear film

Why does too much fluress make the reading falsely high? Does it make the mires too easy to see? No, smart AGAB*

OK seriously, I’ve been told it’s because the extra fluress makes the mires too thick. Is that the case? You’d think so, but no. No matter how much fluress is in the tear film, overlap of the inner aspect of the mires means the flattened circle’s diameter is exactly 3.06 mm.
More on Applanation Tonometry

- Reading will be falsely LOW if:
 - Cornea is edematous
 - Applanation performed over a soft CL
 - After scleral buckling surgery (changes scleral rigidity)
 - Too little fluorescein in tear film

- Reading will be falsely HIGH if:
 - Performed over a corneal scar
 - Too much fluorescein in tear film

Why does too much fluress make the reading falsely high? Does it make the mires too easy to see? No, smart AGAB*

OK seriously, I’ve been told it’s because the extra fluress makes the mires too thick. Is that the case? You’d think so, but no. No matter how much fluress is in the tear film, overlap of the inner aspect of the mires means the flattened circle’s diameter is exactly 3.06 mm.
Why does too much fluress make the reading falsely high? Does it make the mires too easy to see?

No, smart AGAR*

OK seriously, I've been told it's because the extra fluress makes the mires too thick. Is that the case?

You'd think so, but no. No matter how much fluress is in the tear film, overlap of the inner aspect of the mires means the flattened circle's diameter is exactly 3.06 mm.

Q

More on Applanation Tonometry

Reading will be falsely LOW if:
- Cornea is edematous
- Applanation performed over a soft CL
- After scleral buckling surgery (changes scleral rigidity)
- Too little fluorescein in tear film

Reading will be falsely HIGH if:
- Performed over a corneal scar
- Too much fluorescein in tear film

Why does too much fluress make the reading falsely high? Does it make the mires too easy to see?

No, smart AGAR*

OK, then why does too much fluress make the reading falsely high?
More on Applanation Tonometry

Reading will be falsely LOW if:
- Cornea is edematous
- Applanation performed over a soft CL
- After scleral buckling surgery (changes scleral rigidity)
- Too little fluorescein in tear film

Reading will be falsely HIGH if:
- Performed over a corneal scar
- Too much fluorescein in tear film

Why does too much fluress make the reading falsely high? Does it make the mires too easy to see?
No, smart AGAR*

OK, then why does too much fluress make the reading falsely high?
Too much fluress makes the tear film extra thick. An extra-thick tear film renders the radius-of-curvature of the tear film longer, which in turn increases its surface tension.
Why does too much fluress make the reading falsely high? Does it make the mires too easy to see?

No, smart AGAR*

OK, then why does too much fluress make the reading falsely high?

Too much fluress makes the tear film extra thick. An extra-thick tear film renders the radius-of-curvature of the tear film longer, which in turn decreases its surface tension.
Why does too much fluress make the reading falsely high? Does it make the mires too easy to see?

No, smart AGAR*

OK seriously, I've been told it's because the extra fluress makes the mires too thick. Is that the case?

You'd think so, but no. No matter how much fluress is in the tear film, overlap of the inner aspect of the mires means the flattened circle's diameter is exactly 3.06 mm.

Why does too much fluress make the reading falsely high? Does it make the mires too easy to see?

OK, then why does too much fluress make the reading falsely high?

Too much fluress makes the tear film extra thick. An extra-thick tear film renders the radius-of-curvature of the tear film longer, which in turn decreases its surface tension. The decrease in surface tension means there's less of the 'pull' on the applanation tip that's assumed to be present, and so the knob has to be cranked more to compensate—thereby producing a falsely high reading.
More on Applanation Tonometry

Reading will be falsely **LOW** if:
- Cornea is *edematous*
- Applanation performed over a *soft CL*
- After *scleral buckling* surgery (changes scleral rigidity)
- Too *little* fluorescein in tear film

Reading will be falsely **HIGH** if:
- Performed over a *corneal scar*
- Too *much* fluorescein in tear film

Reading will be just plain **WEIRD** if the eye has significant corneal...
More on Applanation Tonometry

- Reading will be falsely LOW if:
 - Cornea is edematous
 - Applanation performed over a soft CL
 - After scleral buckling surgery (changes scleral rigidity)
 - Too little fluorescein in tear film

- Reading will be falsely HIGH if:
 - Performed over a corneal scar
 - Too much fluorescein in tear film

- Reading will be just plain WEIRD if the eye has significant corneal astigmatism
Applanation Tonometry

More on Applanation Tonometry

- Reading will be falsely **LOW** if:
 - Cornea is edematous
 - Applanation performed over a soft CL
 - After scleral buckling surgery (changes scleral rigidity)
 - Too little fluorescein in tear film

- Reading will be falsely **HIGH** if:
 - Performed over a corneal scar
 - Too much fluorescein in tear film

- Reading will be just plain **WEIRD** if the eye has significant corneal astigmatism

What will be weird when applanating an eye with a lot of corneal astigmatism?
More on Applanation Tonometry

- **Reading will be falsely LOW if:**
 - Cornea is edematous
 - Applanation performed over a soft CL
 - After scleral buckling surgery (changes scleral rigidity)
 - Too little fluorescein in tear film

- **Reading will be falsely HIGH if:**
 - Performed over a corneal scar
 - Too much fluorescein in tear film

- **Reading will be just plain WEIRD if the eye has significant corneal astigmatism:**
 - The mires won’t be round; rather, they’ll be ovoid.
 - That is weird. How do oval mires impact IOP reading?
 - The IOP reading will be different depending upon whether you align the mires along the short vs long axis of the ellipse.
 - What can be done to get an accurate IOP reading in this situation?
 - Align the mark on the prism so that it’s pointing at the middle of the meridian that is least curved, ie, the flatter meridian—that value will be accurate. Or if you can’t remember which axis to check, you can check IOP at any two meridia that are 90° apart and average the two readings.
More on Applanation Tonometry

Reading will be falsely LOW if:

- Cornea is edematous
- Applanation performed over a soft CL
- After scleral buckling surgery (changes scleral rigidity)
- Too little fluorescein in tear film

Reading will be falsely HIGH if:

- Performed over a corneal scar
- Too much fluorescein in tear film

Reading will be just plain WEIRD if the eye has significant corneal astigmatism.

What will be weird when applanating an eye with a lot of corneal astigmatism? The mires won’t be round; rather, they’ll be ovoid.
More on Applanation Tonometry

- Reading will be falsely **LOW** if:
 - Cornea is edematous
 - Applanation performed over a soft CL
 - After scleral buckling surgery (changes scleral rigidity)
 - Too little fluorescein in tear film

- Reading will be falsely **HIGH** if:
 - Performed over a corneal scar
 - Too much fluorescein in tear film

- Reading will be just plain **WEIRD** if the eye has significant corneal astigmatism.

 What will be weird when applanating an eye with a lot of corneal astigmatism?

 The mires won’t be round; rather, they’ll be ovoid

 That is weird. How do oval mires impact IOP reading?

 What can be done to get an accurate IOP reading in this situation?

 Align the mark on the prism so that it’s pointing at the middle of the meridian that is least curved, ie, the flatter meridian—that value will be accurate. Or if you can’t remember which axis to check, you can check IOP at any two meridia that are 90° apart and average the two readings.
More on Applanation Tonometry

- Reading will be falsely **LOW** if:

 - Cornea is edematous
 - Applanation performed over a soft CL
 - After scleral buckling surgery (changes scleral rigidity)
 - Too little fluorescein in tear film

- Reading will be falsely **HIGH** if:

 - Performed over a corneal scar
 - Too much fluorescein in tear film

- Reading will be just plain **WEIRD** if the eye has significant corneal astigmatism

 What will be weird when applanating an eye with a lot of corneal astigmatism? The mires won’t be round; rather, they’ll be ovoid

 That is weird. How do oval mires impact IOP reading? The IOP reading will be different depending upon whether you align the mires along the short vs long axis of the ellipse

 Align the mark on the prism so that it’s pointing at the middle of the meridian that is least curved, ie, the flatter meridian—that value will be accurate. Or if you can’t remember which axis to check, you can check IOP at any two meridia that are 90° apart and average the two readings.
More on Applanation Tonometry

Reading will be falsely **LOW** if:

- Cornea is edematous
- Applanation performed over a soft CL
- After scleral buckling surgery (changes scleral rigidity)
- Too little fluorescein in tear film

Reading will be falsely **HIGH** if:

- Performed over a corneal scar
- Too much fluorescein in tear film

Reading will be just plain **WEIRD** if the eye has significant corneal **astigmatism**

What will be weird when applanating an eye with a lot of corneal astigmatism?
The mires won’t be round; rather, they’ll be ovoid.

That is weird. How do oval mires impact IOP reading?
The IOP reading will be different depending upon whether you align the mires along the short vs long axis of the ellipse.

What can be done to get an accurate IOP reading in this situation?

- Align the mark on the prism so that it’s pointing at the middle of the meridian that is least curved, ie, the flatter meridian—that value will be accurate.
- Or if you can’t remember which axis to check, you can check IOP at any two meridia that are 90° apart and average the two readings.
More on Applanation Tonometry

Reading will be falsely **LOW** if:

- Cornea is edematous
- Applanation performed over a soft CL
- After scleral buckling surgery (changes scleral rigidity)
- Too little fluorescein in tear film

Reading will be falsely **HIGH** if:

- Performed over a corneal scar
- Too much fluorescein in tear film

Reading will be just plain **WEIRD** if the eye has significant corneal astigmatism.
More on Applanation Tonometry

- Reading will be falsely **LOW** if:
 - Cornea is edematous
 - Applanation performed over a soft CL
 - After scleral buckling surgery (changes scleral rigidity)
 - Too little fluorescein in tear film

- Reading will be falsely **HIGH** if:
 - Performed over a corneal scar
 - Too much fluorescein in tear film

- Reading will be just plain **WEIRD** if the eye has significant corneal astigmatism

What will be weird when applanating an eye with a lot of corneal astigmatism?
The mires won’t be round; rather, they’ll be ovoid

That is weird. How do oval mires impact IOP reading?
The IOP reading will be different depending upon whether you align the mires along the short vs long axis of the ellipse

What can be done to get an accurate IOP reading in this situation?
Align the mark on the prism so that it’s pointing at the middle of the meridian that is least curved, ie, the flatter meridian—that value will be accurate
More on Applanation Tonometry

Reading will be falsely LOW if:

- Cornea is edematous
- Applanation performed over a soft CL
- After scleral buckling surgery (changes scleral rigidity)
- Too little fluorescein in tear film

Reading will be falsely HIGH if:

- Performed over a corneal scar
- Too much fluorescein in tear film

Reading will be just plain WEIRD if the eye has significant corneal astigmatism.

What will be weird when applanating an eye with a lot of corneal astigmatism?
The mires won’t be round; rather, they’ll be ovoid.

That is weird. How do oval mires impact IOP reading?
The IOP reading will be different depending upon whether you align the mires along the short vs long axis of the ellipse.

What can be done to get an accurate IOP reading in this situation?
Align the mark on the prism so that it’s pointing at the middle of the meridian that is least curved, ie, the flatter meridian—that value will be accurate. Or if you can’t remember which axis to check, you can check IOP at any two meridia that are 90° apart and average the readings.
More on Applanation Tonometry

Reading will be falsely **LOW** if:

- Cornea is edematous
- Applanation performed over a soft CL
- After scleral buckling surgery (changes scleral rigidity)
- Too little fluorescein in tear film

Reading will be falsely **HIGH** if:

- Performed over a corneal scar
- Too much fluorescein in tear film

Reading will be just plain **WEIRD** if the eye has significant corneal **astigmatism**

What will be weird when applanating an eye with a lot of corneal astigmatism?

The mires won’t be round; rather, they’ll be ovoid

That is weird. How do oval mires impact IOP reading?

The IOP reading will be different depending upon whether you align the mires along the short vs long axis of the ellipse

What can be done to get an accurate IOP reading in this situation?

Align the mark on the prism so that it’s pointing at the middle of the meridian that is least curved, ie, the flatter meridian—that value will be accurate. Or if you can’t remember which axis to check, you can check IOP at any two meridia that are 90° apart and average the readings.