Astigmatic Refractive Error: The Power Cross

Basic Optics, Chapter 15

Power Cross

- The power cross is a concise and convenient format for representing astigmatic error (and its correction)
- It's also a source of considerable confusion for ophthalmologists-in-training
- Trust me when I say that, once you understand it, the Power Cross is your friend!

DOMEM CMOSS

$$
+3 \times 180
$$

A cylinder can be represented on a power cross. Note the notation conventions: Power is recorded on the meridian of power, which is 90° away from the axis of power. In this way, a power cross provides an efficient summary of the clinically relevant refractive properties of the cylinder.

Power Cross

If you have difficulty remembering the conventions of power-cross notation (i.e., that the power is notated at the meridian of power, 90° away from the axis of power)...

Power Cross

If you have difficulty remembering the conventions of power-cross notation (i.e., that the power is notated at the meridian of power, 90° away from the axis of power)...

...then picture it this way; i.e., as a cylinder oriented along the notated axis of power. Visualized this way, the meridian of power is obvious!

Cylinder combinations can be represented on a single power cross as well. As in the single-cylinder case, the power of each is recorded on its meridian of power, 90° away from its axis.

Cylinder combinations can be represented on a single power cross as well. As in the single-cylinder case, the power of each is recorded on its meridian of power, 90° away from its axis.

Cylinder combinations can be represented on a single power cross as well. As in the single-cylinder case, the power of each is recorded on its meridian of power, 90° away from its axis.

Cylinder combinations can be represented on a single power cross as well. As in the single-cylinder case, the power of each is recorded on its meridian of power, 90° away from its axis.

Power Cross

Here's where confusion concerning power crosses creeps in. The most common mistake is to treat the power cross like a spectacle/CL prescription. In the present example, the power cross could be (mis)interpreted as representing the spectacle correction +3 +2 x 090, or perhaps $+2+3 \times 180$.

Power Cross

Here's where confusion concerning power crosses creeps in. The most common mistake is to treat the power cross like a spectacle/CL prescription. In the present example, the power cross could be (mis)interpreted as representing the spectacle correction $+3+2 \times 090$, or perhaps $+2+3 \times 180$.

> Note that $+3+2 \times 090$ and $+2+3 \times 180$ cannot both be correct, as they are not equivalent refractions:
> $+3+2 \times 090$ converts to $+5-2 \times 180$ (not $+2+3 \times 180)$; likewise,
> $+2+3 \times 180$ converts to $+5-3 \times 090$ (not $+3+2 \times 090)$

DOMEM CTOSS

Here's where confusion concerning power crosses creeps in. The most common mistake is to treat the power cross like a spectacle/CL prescription. In the present example, the power cross could be (mis)interpreted as representing the spectacle correction $+3+2 \times 090$, or perhaps $+2+3 \times 180$.

What's the difference between a power cross and a prescription? A prescription is written in spherocylindrical form, whereas a power cross is written in cylinder form only. If you break down the word 'spherocylindrical,' you can see that a prescription is composed of a sphere power (the first number) and a cylinder power (the second number, and its axis). In contrast, a power cross simply states the power and axes of two cylinders-no spherical power is implied.

This states 'the entire lens has a base power of +3 , and +2 of cylinder power with axis 090 has been added.' (Note that this means the lens has a total of +5 D power at axis 090--the base +3 plus the cylindrical +2 .)
mistake is to treat the power cross like a spectacle/CL prescription. In the present example, the could be (mis)interpreted as representing the spectacle correction+3+2 x 090, onperhaps $+2+3 \times 180$.

What's the difference between a power cross and a prescription? A prescription is written in spherocylindrical form, whereas a power cross is written in cylinder form only. If you break that word down, you can see that a prescription is composed of a sphere portion (the first power) and a cylinder portion (the second power, and its axis). In contrast, a power cross simply states the power of two cylinders-no spherical power is implied.

This states 'the entire lens has a base power of +3 , and +2 of cylinder power with axis 090 has been added.' (Note that this means the lens has a total of +5 power at axis 090--the base +3 plus the cylindrical +2 .)
mistake is to treat the power cross like a spectacle/CL prescription. In the present example, the could be (mis)intorpeted as representing the spectacle correctin +3+2x 090, or perhas $+2+3 \times 180$.
What's the difference between a power cros and a prescription? A prescription is written in spherocylindrical form, whereas a power cross is written in cylinder form only. If you break that word down, you c n see that a prescription is
compos This states 'the entire lens has a base power of +2 , and +3 of cylindrical power, cylinde power with axis 180 has been added.' In this version, the lens has a total of +5 D power at axis 180 (the base +2 plus the cylindrical +3).

This states 'the entire lens has a base power of +3 , and +2 of cylinder power with axis 090 has been added.' (Note that this means the lens has a total of +5 p power at axis 090--the base +3 plus the cylindrical +2 .)
mistake is to treat the power cross like a spectacle/CL prescription.
 the spectacle

What's the difference between a power cros is written in spherocylindrical form, whereas form only. If you break that word down, you c n see that a prescriptidn is
compo $\sqrt{\text { This states 'the entire lens has a base power of }+2 \text {, and }+3 \text { of cylindrical }}$ power, cylinde
power with axis 180 has been added.' In this version, the lens has a total of +5 D power at axis 180 (the base +2 plus the cylindrical +3).

DOMQM M NOSS

Here's where confusion concerning power crosses creeps in. The most common mistake is to treat the power cross like a spectacle/CL prescription. In the present example, the power cross could be (mis)interpreted as representing the spectacle correction $+3+2 \times 090$, or perhaps $+2+3 \times 180$.

What's the difference between a power cross and a prescription? A prescription is written in spherocylindrical form, whereas a power cross is written in cylinder
form only. If In conntrast, this is simply stating 'the lens has a power of +2 at axis 090 composed
power, and and +3 at axis 180.'
cylinders-no spherical power is implied.

DOMQM M NOSS

Here's where confusion concerning power crosses creeps in. The most common mistake is to treat the power cross like a spectacle/CL prescription. In the present example, the power cross could be (mis)interpreted as representing the spectacle correction $+3+2 \times 090$, or perhaps $+2+3 \times 180$.

What's the difference between a power cross and a prescription? A prescription is written in spherocylindrical form, whereas a power cross is written in cylinder
form only. fin manak that in in simply stating 'the lens has a power of +2 at axis 090 composed
power, and and +3 at axis 180.'
cylinders-no spherical power is implied.

$$
\begin{aligned}
& +3 \times 180 \\
& +2 \times 090
\end{aligned}
$$

Power Cross

A power cross can easily be converted to its spherocylindrical equivalent. Simply pick one of the cylinders to serve as the basis for the spherical component, then adjust the power of the other cylinder as needed.

Power Cross

A power cross can easily be converted to its spherocylindrical equivalent. Simply pick one of the cylinders to serve as the basis for the spherical component, then adjust the power of the other cylinder as needed. For instance, in the present example we could use +2D as our base sphere. The power needed at axis 090 is now in place. What about at 180? Since there is already +2 D present there (courtesy of our +2D base sphere), we need an additional $+1 \times 180$ to produce the +3 D power needed in this axis. Thus, if using a +2 D base sphere lens, the spherocylindrical (prescription) equivalent of our power cross is $+2+1 \times 180$.

DOMME円 CTOSO

A power cross can easily be converted to its spherocylindrical equivalent. Simply pick one of the cylinders to serve as the basis for the spherical component, then adjust the power of the other cylinder as needed. For instance, in the present example we could use +2D as our base sphere. The power needed at axis 090 is now in place. What about at 180? Since there is already +2D present there (courtesy of our +2 D base sphere), we need an additional $+1 \times 180$ to produce the +3 D power needed in this axis. Thus, if using a +2D base sphere lens, the spherocylindrical (prescription) equivalent of our power cross is $+2+1 \times 180$.

Or, we could use the +3 D cylinder to create our base sphere. Note that this provides 1D of plus more than is needed at axis 090. To offset this excess plus we need -1×090 to produce the power needed in this axis. Thus the spherocylindrical (prescription) equivalent would be $+3-1 \times 090$.

Power Cross

A power cross can easily be converted to its spherocylindrical equivalent. Simply pick one of the cylinders to serve as the basis for the spherical component, then adjust the power of the other cylinder as needed. For instance, in the present example we could use +2D as our base sphere. The power needed at axis 090 is now in place. What about at 180? Since there is already +2D present there (courtesv of our $+2 n$ hase sohere) wh need an additional $+1 \times 180$ to produce
Note the two prescriptions are equivalent:
$+2+1 \times 180$ converts to $+3-1 \times 090$, and
$+3-1 \times 090$ converts to $+2+1 \times 180$
us, if using a +2D base spherelons the

1D of plus more than is needed at axis 090. To offset $=$ excess plus we need -1×090 to produce the power needed in this axi. hus the spherocylindrical (prescription) equivalent would b $+3-1 \times 090$.

Power Cross

Let's take more of a cookbook approach to the conversion of a power cross to a spherocylindrical correction. Here's how to convert a power cross into a spherocylindrical prescription in four easy steps!

Power Cross

Power Cross

2. Make one cylinder the sphere by adding its power to the other arm.

Power Cross

1. Separate the cylinders.

2. Make one cylinder the
sphere by adding its power
to the other arm.
3. Subtract the same amount from the same arm of the other cylinder.

Power Cross

1. Separate the cylinders.

2. Make one cylinder the
sphere by adding its power
to the other arm.
3. Subtract the same amount from the same arm of the other cylinder.

Power Cross

Power Cross

$+1$

Your turn. These are refractive results (not eye errors). Convert each power cross to spherocylindrical spectacle prescriptions in both plus and minus cylinder formats. Then calculate the S.E. (or can you determine the S.E. simply by looking at the power crosses?)

Power Cross

Power Cross

If we let the base sphere be +1D... we will need an extra +1D at axis 090 to get the +2 power needed there.

Plus cyl: $\quad+1.0+1.0 \times 090$

Power Cross

Plus cyl: $\quad+1.0+1.0 \times 090$
$+2.0$
If we let the base sphere be $+2 \mathrm{D} .$. .

Power Cross

Plus cyl: $\quad+1.0+1.0 \times 090$
Minus cyl: +2.0-1.0 x 180
If we let the base sphere be $+2 \mathrm{D} .$. we will need a-1D at axis 180 to get the +1 power needed there.

Power Cross

Power Cross

Power Cross

\rightarrow Spherical equivalent $=+1+(+1) / 2=+1.50$
Plus cyl: $\quad+1.0+1.0 \times 090$
Minus cyl: +2.0-1.0 x 180
Spherical equivalent = ?

Power Cross

- Spherical equivalent $=+1+(+1) / 2=+1.50$

Plus cyl: $\quad+1.0+1.0 \times 090$
Minus cyl: +2.0-1.0 x 180
Spherical equivalent $=+2+(-1) / 2=\boldsymbol{+ 1 . 5 0}$

Power Cross

Plus cyl: $\quad+1.0+1.0 \times 090$ Minus cyl: +2.0-1.0 x 180 S.E.: +1.50

Power Cross

-8.0

If we let the base sphere be -8D...

Power Cross

Plus cyl: $\quad-8.0+4.0 \times 045$

If we let the base sphere be -8D...
we will need an extra +4D at axis 045 to get the -4 power needed there.

Power Cross

$\begin{array}{ll}\text { Plus cyl: } & -8.0+4.0 \times 045 \\ & -4.0\end{array}$

If we let the base sphere be -4D...

Power Cross

Plus cyl: $\quad-8.0+4.0 \times 045$
Minus cyl: -4.0-4.0x 135

If we let the base sphere be -4D... we will need an extra -4D at axis 135 to get the -8 power needed there.

Power Cross

Spherical equivalent $=$?

Power Cross

Spherical equivalent $=-8+(+4) / 2=-6.0$

Power Cross

Plus cyl: $\quad-8.0+4.0 \times 045$
Minus cyl: -4.0-4.0× 135
Spherical equivalent = ?

Power Cross

Plus cyl: $\quad-8.0+4.0 \times 045$
Minus cyl: -4.0-4.0× 135

$$
\text { Spherical equivalent }=-4+(-4) / 2=-6.0
$$

Power Cross

Plus cyl: $\quad-8.0+4.0 \times 045$ Minus cyl: -4.0-4.0x 135 S.E.: -6.0

Power Cross

Power Cross

If we let the base sphere be -4D... we will need an extra +12 D at axis 135 to get the +8 power needed there.

Plus cyl: $-4.0+12.0 \times 135$

Power Cross

Plus cyl: $-4.0+12.0 \times 135$
+8.0

If we let the base sphere be $+8 \mathrm{D} . .$.

Power Cross

If we let the base sphere be $+8 \mathrm{D} . .$. we will need an extra -12D at axis 045 to get the -4 power needed there.

Power Cross

Spherical equivalent = ?

Power Cross

Spherical equivalent $=-4+(+12) / 2=+2.0$
Plus cyl: $-4.0+12.0 \times 135$

Power Cross

Spherical equivalent $=$?

Power Cross

Spherical equivalent $=+8+(-12) / 2=+2.0$

Power Cross

Plus cyl: $-4.0+12.0 \times 135$ Minus cyl: +8.0-12.0 x 045 S.E.: +2.0

Power Cross

+1

$$
\begin{aligned}
& \text { Plus: }+1.0+1.0 \times 090 \\
& \text { Minus: +2.0-1.0 } 180 \\
& \text { S.E.: +1.50 }
\end{aligned}
$$

Plus: $-8.0+4.0 \times 045$
Minus: $-4.0-4.0 \times 135$
S.E.: -6.0

$$
\begin{aligned}
& \text { Plus: }-4.0+12.0 \times 135 \\
& \text { Minus: }+8.0-12.0 \times 045 \\
& \text { S.E.: +2.0 }
\end{aligned}
$$

Note that the S.E., being at the 'dioptric center' of the conoid of Sturm, is simply the halfway point between the two cylinder powers. This can be determined by averaging the cylinder powers-converting to spherocylindrical form first is unnecessary.

At this juncture, you should assess your Optics knowledge by taking Quiz 3 (slide-set BO29). After that, resume the tutorial with slide-set BO16.

