All of the following are associated with follicular conjunctivitis except *(or are they all associated with it?)*:

- *Molluscum* lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- *Moraxella* conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)
All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- *Molluscum* lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- *Moraxella* conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

All are associated with it!
All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):
- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below).
All are associated with it. Follicular conjunctivitis should make you think of 3 things: **viruses**, **Chlamydia** (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a **papillary**, not follicular, response (two exceptions are discussed below). **Eyelid molluscum lesions are a classic cause**—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions.

- All of the following are associated with follicular conjunctivitis *except* (or are they all associated with it?):
 - *Molluscum* lesions of the eyelid (not conj)
 - Adult inclusion conjunctivitis
 - Trachoma
 - Parinaud’s oculoglandular syndrome
 - Toxic response to topical meds
 - *Moraxella* conjunctivitis
 - Epidemic keratoconjunctivitis (EKC)
 - Pharyngoconjunctival fever (PCF)
A single *Molluscum* lid lesion, and follicular conjunctivitis
All are associated with it. Follicular conjunctivitis should make you think of 3 things: **viruses**, **Chlamydia** (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a **papillary**, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.)
Molluscum contagiosum in HIV/AIDS
All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):
- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses.
EKC: Follicular conjunctivitis
All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):
- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common).
All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):
- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule.
All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below).

Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: **viruses**, **Chlamydia** (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a **papillary**, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for **trachoma** (serotypes A,B,C—trachoma is as simple as ABC) and **adult inclusion conjunctivitis** (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to **Bartonella** infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is **Moraxella** conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.

Q

- All of the following are associated with follicular conjunctivitis **except** (or are they all associated with it?):
 - Molluscum lesions of the eyelid (not conj)
 - Adult inclusion conjunctivitis
 - Trachoma
 - Parinaud’s oculoglandular syndrome
 - Toxic response to topical meds
 - Moraxella conjunctivitis
 - Epidemic keratoconjunctivitis (EKC)
 - Pharyngoconjunctival fever (PCF)

If a pt presents with chronic (>3 weeks) follicular conjunctivitis, consider these three causes, in this order:

1.
2.
3.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below).

Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. Extensive molluscum disease is associated with HIV infection; consider testing. Chlamydia is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.

Q/A

All of the following are associated with follicular conjunctivitis except *(or are they all associated with it?):*

- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

If a pt presents with chronic (>3 weeks) follicular conjunctivitis, consider these three causes, in this order:

1. *Molluscum*—inspect the lids carefully for lesions

2.

3. It’s Chlamydia until proven otherwise.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: **viruses**, **Chlamydia** (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a **papillary**, not follicular, response (two exceptions are discussed below).

Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for **trachoma** (serotypes A,B,C—trachoma is as simple as ABC) and **adult inclusion conjunctivitis** (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to **Bartonella** infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is **Moraxella** conjunctivitis, aka **Axenfeld conjunctivitis**—another bacteria associated with follicles.

Q/A

- All of the following are associated with follicular conjunctivitis *except* (or are they all associated with it?):
 - *Molluscum* lesions of the eyelid (not conj)
 - Adult inclusion conjunctivitis
 - Trachoma
 - Parinaud’s oculoglandular syndrome
 - Toxic response to topical meds
 - *Moraxella* conjunctivitis
 - Epidemic keratoconjunctivitis (EKC)
 - Pharyngoconjunctival fever (PCF)

If a pt presents with chronic (>3 weeks) follicular conjunctivitis, consider these three causes, in this order:

1. *Molluscum*—inspect the lids carefully for lesions. If none are found…
2.
3. *Chlamydia*—until proven otherwise.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: **viruses**, **Chlamydia** (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a **papillary**, not follicular, response (two exceptions are discussed below).

Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for **trachoma** (serotypes A,B,C—trachoma is as simple as ABC) and **adult inclusion conjunctivitis** (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

Q/A

- **All of the following are associated with follicular conjunctivitis **except** (or are they all associated with it?):
 - Molluscum lesions of the eyelid (not conj)
 - Adult inclusion conjunctivitis
 - Trachoma
 - Parinaud’s oculoglandular syndrome
 - Toxic response to topical meds
 - *Moraxella* conjunctivitis
 - Epidemic keratoconjunctivitis (EKC)
 - Pharyngoconjunctival fever (PCF)

If a pt presents with chronic (>3 weeks) follicular conjunctivitis, consider these three causes, in this order:
1. **Molluscum**—inspect the lids carefully for lesions. If none are found…
2. **Toxins**—press the pt to recall any history of topical drop use. If no drops…
3. It's **Chlamydia** until proven otherwise.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, \textit{Chlamydia} (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below).

\textbf{Eyelid molluscum lesions} are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. \textit{Chlamydia} is the agent responsible for \textit{trachoma} (serotypes \textbf{A,B,C}—trachoma is as simple as ABC) and \textit{adult inclusion conjunctivitis} (serotypes \textbf{D-K}). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to \textit{Bartonella} infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is \textit{Moraxella} conjunctivitis, aka \textit{Axenfeld conjunctivitis}—another bacteria associated with follicles.

\textbf{If a pt presents with chronic (>3 weeks) follicular conjunctivitis, consider these three causes, in this order:}
\begin{enumerate}
\item \textit{Molluscum}—inspect the lids carefully for lesions. If none are found…
\item Toxins—press the pt to recall any history of topical drop use. If no drops…
\item It’s \textit{Chlamydia} until proven otherwise.
\end{enumerate}
Follicular conjunctivitis should make you think of three things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis — another bacteria associated with follicles.

All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis — another bacteria associated with follicles.

What non-ocular exam finding is common to all four of these as causes of conjunctivitis?

All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: **viruses, Chlamydia** (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a **papillary**, not follicular, response (two exceptions are discussed below).

Eyelid **molluscum lesions** are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for **trachoma** (serotypes A,B,C—**trachoma is as simple as ABC**) and **adult inclusion conjunctivitis** (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with **D** and ends with **K**) and patients should be asked about urogenital symptoms (concurrent **GC** is common).

Parinaud’s oculoglandular syndrome, secondary to **Bartonella** infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is **Moraxella conjunctivitis**, aka **Axenfeld conjunctivitis** — another bacteria associated with follicles.

What non-ocular exam finding is common to all four of these as causes of conjunctivitis? All are associated with **pre-auricular lymphadenopathy**

- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)
Preauricular lymphadenopathy in pt with epidemic keratoconjunctivitis
Where does trachoma rank as a cause of blindness?

All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. *Trachoma* is the #1 cause of preventable/infectious blindness worldwide. Patients from which three parts of the world are most likely to be affected? The Middle East, South Asia, Africa. Which ethnic group in the US is most likely to be affected? Native Americans. Does trachoma result from a single infectious episode? No, recurrent infections are required. What corneal finding is associated with trachoma? Superior pannus, and eventually opacification. In what two locations do trachoma pts develop follicles? The superior palpebral conjunctiva and the superior limbus. The question is *Moraxella conjunctivitis*, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

Where does trachoma rank as a cause of blindness?
It is the #1 cause of preventable/infectious blindness worldwide.
Where does *trachoma* rank as a cause of blindness?
It is the **#1 cause** of preventable/infectious blindness worldwide

Patients from which three parts of the world are most likely to be affected?

- The Middle East
- South Asia
- Africa

All are associated with it. Follicular conjunctivitis should make you think of three things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Chronic follicular conjunctivitis is a classic cause of molluscum lid lesions. *EKC* and *PCF* are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella conjunctivitis*, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Q

- **All of the following are associated with follicular conjunctivitis except** (or are they all associated with it?):
 - *Molluscum* lesions of the eyelid (not conj)
 - Adult inclusion conjunctivitis
 - *Trachoma*
 - Parinaud’s oculoglandular syndrome
 - Toxic response to topical meds
 - *Moraxella* conjunctivitis
 - Epidemic keratoconjunctivitis (EKC)
 - Pharyngoconjunctival fever (PCF)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics, and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

Where does trachoma rank as a cause of blindness?
It is the #1 cause of preventable/infectious blindness worldwide.

Patients from which three parts of the world are most likely to be affected?
The Middle East, South Asia, Africa
Where does trachoma rank as a cause of blindness?
It is the **#1 cause** of preventable/infectious blindness worldwide

Patients from which three parts of the world are most likely to be affected?
The Middle East, South Asia, Africa

Which ethnic group in the US is most likely to be affected?
trachoma

All are associated with it. Follicular conjunctivitis should make you think of viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. Extensive molluscum disease is associated with HIV infection; consider testing. EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for **trachoma** (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

Q

- All of the following are associated with follicular conjunctivitis **except** (or are they **all** associated with it?):
 - *Molluscum* lesions of the eyelid (not conj)
 - Adult inclusion conjunctivitis
 - Trachoma
 - Parinaud’s oculoglandular syndrome
 - Toxic response to topical meds
 - *Moraxella* conjunctivitis
 - Epidemic keratoconjunctivitis (EKC)
 - Pharyngoconjunctival fever (PCF)
All of the following are associated with follicular conjunctivitis except (or are they **all** associated with it?):
- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

Where does trachoma rank as a cause of blindness?
It is the **#1 cause** of preventable/infectious blindness worldwide.

Patients from which three parts of the world are most likely to be affected?
The Middle East, South Asia, Africa.

Which ethnic group in the US is most likely to be affected?
Native Americans.

The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis — another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

Where does trachoma rank as a cause of blindness? It is the #1 cause of preventable/infectious blindness worldwide.

Patients from which three parts of the world are most likely to be affected? The Middle East, South Asia, Africa.

Which ethnic group in the US is most likely to be affected? Native Americans.

Does trachoma result from a single infectious episode? No, recurrent infections are required.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. Extensive molluscum disease is associated with HIV infection; consider testing. EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

Where does trachoma rank as a cause of blindness? It is the #1 cause of preventable/infectious blindness worldwide.

Patients from which three parts of the world are most likely to be affected? The Middle East, South Asia, Africa.

Which ethnic group in the US is most likely to be affected? Native Americans.

Does trachoma result from a single infectious episode? No, recurrent infections are required.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

Where does trachoma rank as a cause of blindness?
It is the **#1 cause** of preventable/infectious blindness worldwide

Patients from which three parts of the world are most likely to be affected?
The Middle East, South Asia, Africa

Which ethnic group in the US is most likely to be affected?
Native Americans

Does trachoma result from a single infectious episode?
No, recurrent infections are required

What corneal finding is associated with trachoma?
Superior pannus, and eventually opacification

In what two locations do trachoma pts develop follicles?
The superior palpebral conj, and the superior limbus
All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):
- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

Where does trachoma rank as a cause of blindness? It is the **#1 cause** of preventable/infectious blindness worldwide

Patients from which three parts of the world are most likely to be affected?
The Middle East, South Asia, Africa

Which ethnic group in the US is most likely to be affected?
Native Americans

Does trachoma result from a single infectious episode?
No, recurrent infections are required

What corneal finding is associated with trachoma?
Superior pannus, and eventually opacification
All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

Where does trachoma rank as a cause of blindness? It is the **#1 cause** of preventable/infectious blindness worldwide.

Patients from which three parts of the world are most likely to be affected?
The Middle East, South Asia, Africa

Which ethnic group in the US is most likely to be affected?
Native Americans

Does trachoma result from a single infectious episode?
No, recurrent infections are required

What corneal finding is associated with trachoma?
Superior pannus, and eventually opacification

In what two locations do trachoma pts develop follicles?

- Parinaud’s oculoglandular syndrome
- Bartonella infection (Parinaud’s oculoglandular syndrome is an exception to the ‘bacteria don’t cause follicles’ rule.)
Where does trachoma rank as a cause of blindness?
It is the #1 cause of preventable/infectious blindness worldwide

Patients from which three parts of the world are most likely to be affected?
The Middle East, South Asia, Africa

Which ethnic group in the US is most likely to be affected?
Native Americans

Does trachoma result from a single infectious episode?
No, recurrent infections are required

What corneal finding is associated with trachoma?
Superior pannus, and eventually opacification

In what two locations do trachoma pts develop follicles?
The superior palpebral conj, and the superior limbus
• All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):
 - Molluscum lesions of the eyelid (not conj)
 - Adult inclusion conjunctivitis
 - Trachoma
 - Parinaud’s oculoglandular syndrome
 - Toxic response to topical meds
 - Moraxella conjunctivitis
 - Epidemic keratoconjunctivitis (EKC)
 - Pharyngoconjunctival fever (PCF)

Where does trachoma rank as a cause of blindness?
It is the #1 cause of preventable/infectious blindness worldwide.

Patients from which three parts of the world are most likely to be affected?
The Middle East, South Asia, Africa

Which ethnic group in the US is most likely to be affected?
Native Americans

Does trachoma result from a single infectious episode?
No, recurrent infections are required

What corneal finding is associated with trachoma?
Superior pannus, and eventually opacification

In what two locations do trachoma pts develop follicles?
The superior palpebral conj, and the superior limbus

When limbal follicles scar, what eponymous exam finding results?
Herbert's pits

• All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. Extensive molluscum disease is associated with HIV infection; consider testing. EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with K?), and patients should be asked about urogenital symptoms (concurrent GC is not uncommon). Parinaud's oculoglandular syndrome (secondary to Bartonella infection) is an exception to the 'bacteria don't cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, and Axenfeld conjunctivitis —another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things:
- Viruses
- Chlamydia (which, as an obligate intracellular parasite, is very virus-like)
- Toxins

Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.

Where does trachoma rank as a cause of blindness?
It is the #1 cause of preventable/infectious blindness worldwide.

Patients from which three parts of the world are most likely to be affected?
The Middle East, South Asia, Africa

Which ethnic group in the US is most likely to be affected?
Native Americans

Does trachoma result from a single infectious episode?
No, recurrent infections are required

What corneal finding is associated with trachoma?
Superior pannus, and eventually opacification

In what two locations do trachoma pts develop follicles?
The superior palpebral conj, and the superior limbus

When limbal follicles scar, what eponymous exam finding results?
Herbert’s pits

All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):
- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)
Trachoma: Herbert’s pits
All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud's oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

Where does trachoma rank as a cause of blindness?
It is the **#1 cause** of preventable/infectious blindness worldwide.

Patients from which three parts of the world are most likely to be affected?
The Middle East, South Asia, Africa

Which ethnic group in the US is most likely to be affected?
Native Americans

Does trachoma result from a single infectious episode?
No, recurrent infections are required

When upper-lid tarsal follicles scar, what eponymous exam finding results?
Arlt's line

In what two locations do trachoma pts develop follicles?
The superior palpebral conj, and the superior limbus

The zebra in the question is Axenfeld conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D–K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

Where does trachoma rank as a cause of blindness? It is the #1 cause of preventable/infectious blindness worldwide. Patients from which three parts of the world are most likely to be affected? The Middle East, South Asia, Africa. Which ethnic group in the US is most likely to be affected? Native Americans.

Does trachoma result from a single infectious episode? No, recurrent infections are required. In what two locations do trachoma pts develop follicles? The superior palpebral conj, and the superior limbus. Where does trachoma pts develop follicles? Superior palpebral and limbal.

Does trachoma result from a single infectious episode? No, recurrent infections are required. Where does trachoma rank as a cause of blindness? It is the #1 cause of preventable/infectious blindness worldwide. Which ethnic group in the US is most likely to be affected? Native Americans.

Trachoma: Arlt’s line
All are associated with it. Follicular conjunctivitis should make you think of three things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

Where does trachoma rank as a cause of blindness? It is the #1 cause of preventable/infectious blindness worldwide. Patients from which three parts of the world are most likely to be affected? The Middle East, South Asia, Africa. Which ethnic group in the US is most likely to be affected? Native Americans. Does trachoma result from a single infectious episode? No, recurrent infections are required. What corneal finding is associated with trachoma? Superior pannus, and eventually opacification. In what two locations do trachoma pts develop follicles? The superior palpebral conj and the superior limbus. When upper-lid tarsal follicles scar, what eponymous exam finding results? Arlt’s line and...? What other, arguably more important exam finding results from scarring of the upper-lid follicles? trachoma.
All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- *Molluscum* lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- *Moraxella* conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

Where does trachoma rank as a cause of blindness?

It is the #1 cause of preventable/infectious blindness worldwide.

What other, arguably more important exam finding results from scarring of the upper-lid follicles?

Cicatricial entropion

In what two locations do trachoma pts develop follicles?

The *superior palpebral conj*, and the *superior limbus*
Trachoma: Cicatricial entropion
All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular medications are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis — another bacteria associated with follicles.

Where does trachoma rank as a cause of blindness? It is the #1 cause of preventable/infectious blindness worldwide. Patients from which three parts of the world are most likely to be affected? The Middle East, South Asia, Africa. Which ethnic group in the US is most likely to be affected? Native Americans. Does trachoma result from a single infectious episode? No, recurrent infections are required. What corneal finding is associated with trachoma? Superior pannus, and eventually opacification. In what two locations do trachoma pts develop follicles? The superior palpebral conj, and the superior limbus. Why is cicatricial entropion a more important finding that Arlt’s line? Because while an important diagnostic clue, Arlt’s line is otherwise of no clinical significance. In contrast, cicatricial entropion is the initial event in the process that leads to blindness. What process is that? The constant irritation of the cornea by the inturned lashes of the entropic upper lid leads to its ulceration, scarring and ultimately opacification.
All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):
- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

Where does trachoma rank as a cause of blindness? It is the #1 cause of preventable/infectious blindness worldwide.

What other, arguably more important exam finding results from scarring of the upper-lid follicles?
Cicatricial entropion

Why is cicatricial entropion a more important finding that Arlt’s line?”
Because while an important diagnostic clue, Arlt’s line is otherwise of no clinical significance. In contrast, cicatricial entropion is the initial event in the process that leads to blindness.

In what two locations do trachoma pts develop follicles?
- Superior palpebral conj
- Superior limbus

The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis — another bacteria associated with follicles.

What does trachoma result from and does it require recurrent infections?
- Recurrent infections are required.

What corneal finding is associated with trachoma?
Superior pannus, and eventually opacification

In what two locations do trachoma pts develop follicles?
- Superior palpebral conj
- Superior limbus

Why is cicatricial entropion a more important finding than Arlt’s line?
Because while an important diagnostic clue, Arlt’s line is otherwise of no clinical significance. In contrast, cicatricial entropion is the initial event in the process that leads to blindness.

What other, arguably more important exam finding results from scarring of the upper-lid follicles?
Cicatricial entropion

Where does trachoma rank as a cause of blindness? It is the #1 cause of preventable/infectious blindness worldwide.

What corneal finding is associated with trachoma?
Superior pannus, and eventually opacification

In what two locations do trachoma pts develop follicles?
- Superior palpebral conj
- Superior limbus

The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis — another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.

Where does trachoma rank as a cause of blindness? It is the #1 cause of preventable/infectious blindness worldwide. Patients from which three parts of the world are most likely to be affected? The Middle East, South Asia, Africa. Which ethnic group in the US is most likely to be affected? Native Americans. Does trachoma result from a single infectious episode? No, recurrent infections are required. What corneal finding is associated with trachoma? Superior pannus, and eventually opacification. In what two locations do trachoma pts develop follicles? The superior palpebral conj and the superior limbus. Whoa, when upper-lid tarsal follicles scar, what eponymous exam finding results? Arlt’s line and...cicatricial entropion. Why is cicatricial entropion a more important finding than Arlt’s line? Because while an important diagnostic clue, Arlt’s line is otherwise of no clinical significance. In contrast, cicatricial entropion is the initial event in the process that leads to blindness. What process is that? Trachoma.

All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

Where does trachoma rank as a cause of blindness? It is the #1 cause of preventable/infectious blindness worldwide.

What other, arguably more important exam finding results from scarring of the upper-lid follicles?
Cicatricial entropion

Why is cicatricial entropion a more important finding than Arlt’s line?
Because while an important diagnostic clue, Arlt’s line is otherwise of no clinical significance. In contrast, cicatricial entropion is the initial event in the process that leads to blindness.

What process is that?
The constant irritation of the cornea by the inturned lashes of the entropic upper lid leads to its ulceration, scarring and ultimately opacification.

Arlt’s line and...cicatricial entropion

In what two locations do trachoma pts develop follicles? The superior palpebral conj, and the superior limbus.

The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis — another bacteria associated with follicles.
Trachoma: Cicatricial entropion/trichiasis with corneal opacification
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

How does the follicular reaction of trachoma differ from that of adult inclusion conjunctivitis?
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.

How does the follicular reaction of trachoma differ from that of adult inclusion conjunctivitis?
The follicles of trachoma are found predominantly on the superior conjunctiva (especially the tarsal conj), whereas in adult inclusion disease the follicles are usually confined to the inferior palpebral conj.
Follicular conjunctivitis should make you think of viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion conjunctivitis is a systemic disease, and must be treated as such. (That said, trachoma is often treated with both systemic and topical antibiotics.)

How does the follicular reaction of trachoma differ from that of adult inclusion conjunctivitis?

The follicles of trachoma are found predominantly on the superior conjunctiva (especially the tarsal conj), whereas in adult inclusion disease the follicles are usually confined to the inferior palpebral conj.

How are trachoma and adult inclusion conjunctivitis treated?

Azithromycin 1 gm PO x 1 dose is the most convenient. Regimens employing erythromycin, doxycycline or tetracycline are also used. In addition to the systemic abx, trachoma is treated with topical tetracycline.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is a systemic disease, and must be treated as such. (That said, trachoma is often treated with both systemic and topical antibiotics.)

How does the follicular reaction of trachoma differ from that of adult inclusion conjunctivitis?
The follicles of trachoma are found predominantly on the superior conjunctiva (especially the tarsal conj), whereas in adult inclusion disease the follicles are usually confined to the inferior palpebral conj.

How are trachoma and adult inclusion conjunctivitis treated?
It’s important to remember that, whereas trachoma is an ocular condition, adult inclusion conjunctivitis is a systemic disease, and must be treated as such. (That said, trachoma is often treated with both systemic and topical antibiotics.)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: **viruses**, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a *papillary*, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for **trachoma** (serotypes A,B,C—trachoma is as simple as ABC) and **adult inclusion conjunctivitis** (serotypes D-K). Adult inclusion conjunctivitis **is** a systemic disease, and must be treated as such. (That said, trachoma is **often** treated with both systemic and topical antibiotics.)

How are trachoma and adult inclusion conjunctivitis treated?

It’s important to remember that, whereas trachoma is an ocular condition, adult inclusion conjunctivitis is a **systemic** disease, and must be treated as such. (That said, trachoma is often treated with both systemic and topical antibiotics.)

What treatment regimens are used?
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

How does the follicular reaction of trachoma differ from that of adult inclusion conjunctivitis? The follicles of trachoma are found predominantly on the superior conjunctiva (especially the tarsal conj), whereas in adult inclusion disease the follicles are usually confined to the inferior palpebral conj.

How are trachoma and adult inclusion conjunctivitis treated? It’s important to remember that, whereas trachoma is an ocular condition, adult inclusion conjunctivitis is a systemic disease, and must be treated as such. (That said, trachoma is often treated with both systemic and topical antibiotics.)

What treatment regimens are used? Azithromycin 1 gm PO x 1 dose is the most convenient. Regimens employing erythromycin, doxycycline or tetracycline are also used.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion conjunctivitis should elicit a thorough search for sexually transmitted disease (can you think of a sex-related word that starts with D and ends with K?). Patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

How does the follicular reaction of trachoma differ from that of adult inclusion conjunctivitis? The follicles of trachoma are found predominantly on the superior conjunctiva (especially the tarsal conj), whereas in adult inclusion disease the follicles are usually confined to the inferior palpebral conj.

How are trachoma and adult inclusion conjunctivitis treated? It’s important to remember that, whereas trachoma is an ocular condition, adult inclusion conjunctivitis is a systemic disease, and must be treated as such. (That said, trachoma is often treated with both systemic and topical antibiotics.)

What treatment regimens are used? Azithromycin 1 gm PO x 1 dose is the most convenient. Regimens employing erythromycin, doxycycline or tetracycline are also used. In addition to the systemic abx, trachoma is treated with topical tetracycline.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?). Patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

What must you consider if a child presents with adult inclusion conjunctivitis?
All are associated with it. Follicular conjunctivitis should make you think of 3 things: **viruses**, **Chlamydia** (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a **papillary**, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for **trachoma** (serotypes A,B,C—**trachoma is as simple as ABC**) and **adult inclusion conjunctivitis** (serotypes D-K). **Adult inclusion disease is sexually transmitted** (can you think of a sex-related word that starts with D and ends with K?). Parinaud’s oculoglandular syndrome, secondary to **Bartonella** infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is **Moraxella** conjunctivitis, aka **Axenfeld conjunctivitis**—another bacteria associated with follicles.

What must you consider if a child presents with adult inclusion conjunctivitis?
That the child is a victim of sexual abuse
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a *papillary*, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (serotypes A,B,C—*trachoma is as simple as ABC*) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella conjunctivitis*, aka *Axenfeld conjunctivitis* —another bacteria associated with follicles.

Q/A

Briefly, how would you describe Parinaud oculoglandular syndrome?

All of the following are associated with follicular conjunctivitis *except* (or are they *all* associated with it?):
- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxin response to topical meds
- *Moraxella conjunctivitis*
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted, and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.

All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):
- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngocconjunctival fever (PCF)

Briefly, how would you describe Parinaud oculoglandular syndrome?

It is a laterality, **NOT ‘follicular’** conjunctivitis
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.

Briefly, how would you describe Parinaud oculoglandular syndrome?

It is a unilateral granulomatous conjunctivitis.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.

Q/A

Briefly, how would you describe Parinaud oculoglandular syndrome?

It is a unilateral granulomatous conjunctivitis associated with nonocular finding.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: **viruses**, **Chlamydia** (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a **papillary**, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for **trachoma** (serotypes A,B,C—trachoma is as simple as ABC) and **adult inclusion conjunctivitis** (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to **Bartonella** infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is **Moraxella conjunctivitis**, aka **Axenfeld conjunctivitis**—another bacteria associated with follicles.

Q/A

All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):
- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

Briefly, how would you describe Parinaud oculoglandular syndrome?
It is a unilateral granulomatous conjunctivitis associated with lymphadenopathy.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Q/A

- Briefly, how would you describe Parinaud oculoglandular syndrome?
 - It is a unilateral granulomatous conjunctivitis associated with lymphadenopathy in the [] and [] regions.

- All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):
 - Molluscum lesions of the eyelid (not conj)
 - Adult inclusion conjunctivitis
 - Trachoma
 - Parinaud’s oculoglandular syndrome
 - Toxic response to topical meds
 - *Moraxella* conjunctivitis
 - Epidemic keratoconjunctivitis (EKC)
 - Pharyngoconjunctival fever (PCF)
All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- Moraxella conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)

Briefly, how would you describe Parinaud oculoglandular syndrome? It is a unilateral granulomatous conjunctivitis associated with lymphadenopathy in the preauricular and submandibular regions.

Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses. Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC), and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—a bacteria associated with follicles.

Briefly, how would you describe Parinaud oculoglandular syndrome? It is a unilateral granulomatous conjunctivitis associated with lymphadenopathy in the preauricular and submandibular regions. Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—a bacteria associated with follicles.

Take note of this! The BCSC books describe the conjunctivitis in POS as granulomatous, not ‘follicular.’ (The POS entry on the Academy website EyeWiki calls POS a “granulomatous follicular conjunctivitis.”)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud's oculoglandular syndrome, secondary to Bartonella infection, is an exception to the 'bacteria don't cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.

A number of other bugs can cause Parinaud oculoglandular syndrome. Which four did I choose to list below?

--?
--?
--?
--?
--?

Parinaud's oculoglandular syndrome
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the 'bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: **viruses**, **Chlamydia** (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a **papillary**, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. Extensive molluscum disease is associated with HIV infection; consider testing.

EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for **trachoma** (serotypes A, B, C—trachoma is as simple as ABC) and **adult inclusion conjunctivitis** (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

F. tularensis is the causative organism for what disease?

- Tularemia
- *Francisella tularensis* is the causative organism for *Tularemia*.
- *Francisella tularensis* is the causative organism for Tularemia.
- *Francisella tularensis* is the causative organism for Tularemia.
- *Francisella tularensis* is the causative organism for Tularemia.
- *Francisella tularensis* is the causative organism for Tularemia.
- *Francisella tularensis* is the causative organism for Tularemia.

Parinaud’s oculoglandular syndrome
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A, B, C--trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D–K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: **viruses**, **Chlamydia** (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) **EKC** and **PCF** are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for **trachoma** (serotypes A,B,C—trachoma is as simple as ABC) and **adult inclusion conjunctivitis** (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). **Parinaud's oculoglandular syndrome**, secondary to *Bartonella* infection, is an exception to the 'bacteria don't cause follicles' rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is **Moraxella conjunctivitis**, aka **Axenfeld conjunctivitis**—another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: **viruses**, **Chlamydia** (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for **trachoma** (serotypes A,B,C—trachoma is as simple as ABC) and **adult inclusion conjunctivitis** (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is **Moraxella** conjunctivitis, aka **Axenfeld conjunctivitis** —another bacteria associated with follicles.

F. tularensis is the causative organism for what disease?
Tularemia

What history would clue you in that a pt might have tularemia?
Direct contact with wild animals (eg, rabbits; raccoons)

Parinaud’s oculoglandular syndrome
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below).

Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis* —another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--?
--?
--?
--?
--?
--?
--?
--?

Hints forthcoming…
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis* —another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:
--?
--?
--?
--?
--?
--?
--?
--?
--?
--?
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A, B, C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--- Preservatives (a near-ubiquitous component of all drops)

---?
---?
---?
---?

---?
---?
---?

---?
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Q

Identify the classic causes of toxic (but *not necessarily follicular!*) keratoconjunctivitis:

---Preservatives

---?

---?

---?

---?

---?

---?

---?

---?

---?

---?

---?

---?
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below).

Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:
- Preservatives
- Anesthetics
- ?
- ?
- ?
- ?
- ?
- ?
- ?

(a class of med used in virtually all clinic visits, and most surgeries)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (serotypes A, B, C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D–K). Adult inclusion disease is sexually transmitted (*can you think of a sex-related word that starts with D and ends with K?*), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella conjunctivitis*, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--Preservatives
--Anesthetics
--Aminoglycosides (a class of antibiotic)
--?
--?
--?
--?
--?

All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- *Molluscum* lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- *Moraxella* conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below).

Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?) and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis* —another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:
- Preservatives
- Anesthetics
- Aminoglycosides
- ?
- ?
- ?
- ?
- ?

(a class of med used in most clinic visits, and most surgeries)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka Axenfeld conjunctivitis—a bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:
--Preservatives
--Anesthetics
--Aminoglycosides
--Cycloplegics (a class of med used in most clinic visits, and most surgeries)
--?
--?
--?
--?
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:
--Preservatives
--Anesthetics
--Aminoglycosides
--Cycloplegics
--? (a class of anti-infective)
--?
--?
--?
--?
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:
--Preservatives
--Anesthetics
--Aminoglycosides
--Cycloplegics
--Antivirals (a class of anti-infective)
--?
--?
--?
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below).

Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (**can you think of a sex-related word that starts with D and ends with K?**), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella conjunctivitis*, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--Preservatives
--Anesthetics
--Aminoglycosides
--Cycloplegics
--Antivirals
--?
--?
(a class of glaucoma med)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (*serotypes A,B,C—trachoma is as simple as ABC*) and *adult inclusion conjunctivitis* (*serotypes D-K*). Adult inclusion disease is sexually transmitted (*can you think of a sex-related word that starts with D and ends with K?*), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis* —another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--Preservatives
--Anesthetics
--Aminoglycosides
--Cycloplegics
--Antivirals
--Miotics
--?
--?

(a class of glaucoma med)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--Preservatives
--Anesthetics
--Aminoglycosides
--Cycloplegics
--Antivirals
--Miotics
--?

(another class of glaucoma med)

patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis* —another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C)—trachoma is as simple as ABC—and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A, B, C—trachoma is as simple as ABC), and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis* —another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:
--Preservatives
--Anesthetics
--Aminoglycosides
--Cycloplegics
--Antivirals
--Miotics
--α-agonists
--? (a class of med used adjunctively in some surgical procedures)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--Preservatives
--Anesthetics
--Aminoglycosides
--Cycloplegics
--Antivirals
--Miotics
--α-agonists
--Antineoplastic (a class of med used adjunctively in some surgical procedures)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, \textit{Chlamydia} (which, as an obligate intracellular parasite, is very virus-like), and \textit{toxins}. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for \textit{trachoma} (serotypes \textit{A,B,C}—trachoma is as simple as ABC) and \textit{adult inclusion conjunctivitis} (serotypes \textit{D-K}). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?) and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to \textit{Bartonella} infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is \textit{Moraxella} conjunctivitis, aka \textit{Axenfeld conjunctivitis}—another bacteria associated with follicles.

\textbf{Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:}

\textbf{--Preservatives}

\begin{itemize}
 \item Anesthetics
 \item Aminoglycosides
 \item Cycloplegics
 \item Antivirals
 \item Miotics
 \item \(\alpha\)-agonists
 \item Antineoplastic
\end{itemize}

Which preservative is most commonly implicated in toxic keratoconjunctivitis?

\begin{itemize}
 \item BAK
\end{itemize}
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:
---Preservatives
---Anesthetics
---Aminoglycosides
---Cycloplegics
---Antivirals
---Miotics
---α-agonists
---Antineoplastic

Which preservative is most commonly implicated in toxic keratoconjunctivitis?
BAK
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (*serotypes* A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (*serotypes* D-K). Adult inclusion disease is sexually transmitted (*can you think of a sex-related word that starts with D and ends with K?*), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--- **Preservatives**

-- Anesthetics
-- Aminoglycosides
-- Cycloplegs
-- Antivirals
-- Miotics
-- α-agonists
-- Antineoplastic

Which preservative is most commonly implicated in toxic keratoconjunctivitis? BAK

What does BAK stand for?

BAK

Benzalkonium (chloride)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

---Preservatives
- Anesthetics
- Aminoglycosides
- Cycloplegia
- Antivirals
- Miotics
- \(\alpha\)-agonists
- Antineoplastic

Which preservative is most commonly implicated in toxic keratoconjunctivitis?
- BAK

What does BAK stand for?
- Benzalkonium (chloride)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (serotypes A, B, C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D–K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

---Preservatives
---Anesthetics
---Aminoglycosides
---Corticosteroids
---Antivirus
---Miotics
---α-agonists
---Antineoplastic

Which topical anesthetic is most commonly implicated in toxic keratoconjunctivitis?

Proparacaine
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--- Preservatives
--- Anesthetics
--- **Aminoglycosides**

Name three topical aminoglycosides notorious for inducing toxic keratoconjunctivitis:

---?
---?
---?

--- Antineoplastic

--- All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- Molluscum lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- *Moraxella* conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below).

Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—a another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--Preservatives
--Anesthetics
--Aminoglycosides

Name three topical aminoglycosides notorious for inducing toxic keratoconjunctivitis:
--Gentamycin
--Neomycin
--Tobramycin

--Antineoplastic
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause--any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

- Preservatives
- Anesthetics
- Aminoglycosides
- **Cycloplegics**
- Antivirals
- Miotics
- α-agonists
- Antineoplastic

Which cycloplegic is most likely to result in a toxic keratoconjunctivitis?
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

- Preservatives
- Anesthetics
- Aminoglycosides
- **Cycloplegics**
- Antivirals
- Miotics
- \(\alpha\)-agonists
- Antineoplastic

Which cycloplegic is most likely to result in a toxic keratoconjunctivitis?

Atropine

A

- All of the following are associated with follicular conjunctivitis *except* (or are they all associated with it?):
 - Molluscum lesions of the eyelid (not conj)
 - Adult inclusion conjunctivitis
 - Trachoma
 - Parinaud’s oculoglandular syndrome
 - Toxic response to topical meds
 - Moraxella conjunctivitis
 - Epidemic keratoconjunctivitis (EKC)
 - Pharyngoconjunctival fever (PCF)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A,B,C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?) and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis* —another bacteria associated with follicles.

<table>
<thead>
<tr>
<th>Are all associated with follicular conjunctivitis except (or are they all associated with it?):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molluscum lesions of the eyelid (not conj)</td>
</tr>
<tr>
<td>Adult inclusion conjunctivitis</td>
</tr>
<tr>
<td>Trachoma</td>
</tr>
<tr>
<td>Parinaud’s oculoglandular syndrome</td>
</tr>
<tr>
<td>Toxic response to topical meds</td>
</tr>
<tr>
<td>Moraxella conjunctivitis</td>
</tr>
<tr>
<td>Epidemic keratoconjunctivitis (EKC)</td>
</tr>
<tr>
<td>Pharyngoconjunctival fever (PCF)</td>
</tr>
</tbody>
</table>

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--- Preservatives
--- Anesthetics
--- Aminoglycosides
--- Cycloplegics
--- **Antivirals**
--- Miotics
--- α-agonists
--- Antineoplastics

Which topical antiviral is most commonly implicated in toxic keratoconjunctivitis?
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

---Preservatives
---Anesthetics
---Aminoglycosides
---Cycloplegics
---Antivirals
---Miotics
---α-agonists
---Antineoplastics

Which topical antiviral is most commonly implicated in toxic keratoconjunctivitis?

Trifluorothymidine
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a *papillary, not follicular* response (two exceptions are discussed below).

Eyelid *molluscum lesions* are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka Axenfeld conjunctivitis—a *another bacteria associated with follicles.*
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A, B, C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?) and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis* —another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

- Preservatives
- Anesthetics
- Aminoglycosides
- Cycloplegics
- **Antivirals**
- Miotics
- α-agonists
- Antineoplastics

Which topical antiviral is most commonly implicated in toxic keratoconjunctivitis?

Trifluorothymidine

What is the brand name for trifluorothymidine in the US?

Viroptic
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka Axenfeld conjunctivitis —another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--Preservatives
--Anesthetics
--Aminoglycosides
--Cycloplegics
--Antivirals

Miotics

Which miotic glaucoma med is known to cause toxic keratoconjunctivitis?

--α-agonists
--Antineoplastic
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). *Eyelid molluscum lesions* are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?) and patients should be asked about urogenital symptoms (concurrent GC is common). *Parinaud’s oculoglandular syndrome*, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:
- Preservatives
- Anesthetics
- Aminoglycosides
- Cycloplegics
- Antivirals
- **Miotics**
 - *α*-agonists
 - Pilocarpine
- Antineoplastic

Which miotic glaucoma med is known to cause toxic keratoconjunctivitis?

- Pilocarpine
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and **toxins**. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. *Chlamydia* is the agent responsible for *trachoma* (serotypes A, B, C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D–K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Q

Identify the classic causes of toxic (but not necessarily follicular!) **keratoconjunctivitis**:

- Preservatives
- Anesthetics
- Aminoglycosides
- Cycloplegics
- Antivirals
- Miotics
- **α-agonists**
- Antineoplastics

Which alpha-agonist is most commonly implicated in toxic keratoconjunctivitis?

All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- *Molluscum* lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- *Moraxella* conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below).

Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

- Preservatives
- Anesthetics
- Aminoglycosides
- Cycloplegics
- Antivirals
- Miotics
- **α-agonists**
- Antineoplastic

Which α-agonist is most commonly implicated in toxic keratoconjunctivitis?

Brimonidine
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below).

Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the 'bacteria don’t cause follicles' rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--Preservatives
--Anesthetics
--Aminoglycosides
--Cycloplegics
--Antivirals
--Miotics
--α-agonists
--Antineoplastic

Which α-agonist is most commonly implicated in toxic keratoconjunctivitis? Brimonidine

Wait—what about apraclonidine? I thought it was more toxic. What’s the deal?
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, \textit{Chlamydia} (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. \textit{Chlamydia} is the agent responsible for \textit{trachoma} (serotypes \textit{A,B,C}—trachoma is as simple as \textit{ABC}) and \textit{adult inclusion conjunctivitis} (serotypes \textit{D-K}). \textit{Adult inclusion disease} is sexually transmitted (can you think of a sex-related word that starts with \textit{D} and ends with \textit{K}?) and patients should be asked about urogenital symptoms (concurrent \textit{GC} is common). Parinaud’s oculoglandular syndrome, secondary to \textit{Bartonella} infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is \textit{Moraxella} conjunctivitis, aka \textit{Axenfeld conjunctivitis}—another bacteria associated with follicles.

\textbf{Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:}

--Preservatives
--Anesthetics
--Aminoglycosides
--Cycloplegics
--Antivirals
--Miotics
\textbf{--\textit{\alpha}-agonists}

\textbf{Which alpha-agonist is most commonly implicated in toxic keratoconjunctivitis?}
Brimonidine

\textbf{Wait—what about apraclonidine? I thought it was more toxic. What’s the deal?}
It probably is, but as it is rarely used on a chronic basis, the overall incidence of toxicity is lower.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, Chlamydia (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below).

Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to Bartonella infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocularmeds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is Moraxella conjunctivitis, aka Axenfeld conjunctivitis—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:
--Preservatives
--Anesthetics
--Aminoglycosides
--Cycloplegics
--Antivirals
--Miotics
--α-agonists

Which antineoplastic is referred to here?
Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and *toxins*. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--Preservatives
--Anesthetics
--Aminoglycosides
--Cycloplegics
--Antivirals
--Miotics
--α-agonists

Which antineoplastic is referred to here?

Mitomycin C
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—anym chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for trachoma (serotypes A, B, C—trachoma is as simple as ABC) and adult inclusion conjunctivitis (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?), and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.
All are associated with it. Follicular conjunctivitis should make you think of 3 things: viruses, *Chlamydia* (which, as an obligate intracellular parasite, is very virus-like), and toxins. Bacteria generally cause a papillary, not follicular, response (two exceptions are discussed below). Eyelid molluscum lesions are a classic cause—any chronic follicular conjunctivitis should elicit a thorough search for molluscum lid lesions. (Extensive molluscum disease is associated with HIV infection; consider testing.) EKC and PCF are adenoviral syndromes with brisk follicular responses. Chlamydia is the agent responsible for *trachoma* (serotypes A,B,C—trachoma is as simple as ABC) and *adult inclusion conjunctivitis* (serotypes D-K). Adult inclusion disease is sexually transmitted (can you think of a sex-related word that starts with D and ends with K?) and patients should be asked about urogenital symptoms (concurrent GC is common). Parinaud’s oculoglandular syndrome, secondary to *Bartonella* infection, is an exception to the ‘bacteria don’t cause follicles’ rule. Ocular meds are notorious for producing a follicular conjunctivitis; atropine, dipivefrin, miotics and Viroptic are classic culprits. The zebra in the question is *Moraxella* conjunctivitis, aka *Axenfeld conjunctivitis*—another bacteria associated with follicles.

Identify the classic causes of toxic (but not necessarily follicular!) keratoconjunctivitis:

--Preservatives
--Anesthetics
--Aminoglycosides
--**Cycloplegics**
--Antivirals
--**Miotics**
--α-agonists
--Antineoplastic

Circling back to something mentioned previously: While all of the meds discussed are capable of producing a toxic keratoconjunctivitis, not all cause a toxic **follicular** conjunctivitis. Of the listed classes, which are known to result in a toxic follicular conjunctivitis?

Cycloplegics, miotics and alpha-agonists

All of the following are associated with follicular conjunctivitis except (or are they all associated with it?):

- *Molluscum* lesions of the eyelid (not conj)
- Adult inclusion conjunctivitis
- Trachoma
- Parinaud’s oculoglandular syndrome
- Toxic response to topical meds
- *Moraxella* conjunctivitis
- Epidemic keratoconjunctivitis (EKC)
- Pharyngoconjunctival fever (PCF)