Is a choroidal dystrophy:

For each statement, identify whether it applies to **gyrate atrophy** or **choroideremia** (or both, or neither)
For each statement, identify whether it applies to
gyrate atrophy or **choroideremia** (or both, or neither)

- Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?

Why all the prevaricating?
Is a choroidal dystrophy: **Gyrate. Wait…Yep, gyrate. No wait--both?**

Why all the prevaricating?
When choroideremia and gyrate atrophy were first identified, they were categorized as choroidal dystrophies based on their clinical appearance. And the primary site of pathology in gyrate locates to the RPE and choroid, so it is probably fair to call it a choroidal dystrophy of sorts. However, it is now known that the fundamental pathology in choroideremia is that of a **rod-cone dystrophy**. Because of this, choroideremia was considered to be a form of **retinitis pigmentosa** (RP). This was the state of play in the BCSC *Retina* book--that is, until publication of the latest revision (the 2018-19 edition). In this edition, the Academy seems to be phasing out the term **retinitis pigmentosa**. (The book states the term is "no longer preferred"). Further, the scope of conditions covered by this 'non-preferred' umbrella term is shrinking. And one of the no-longer-considered-RP conditions is…choroideremia.

tl;dr I don't know if choroideremia is considered a choroidal dystrophy. Caveat emptor.
Why all the prevaricating?
When choroideremia and gyrate atrophy were first identified, they were categorized as choroidal dystrophies based on their clinical appearance. And the primary site of pathology in gyrate locates to the RPE and choroid, so it is probably fair to call it a choroidal dystrophy of sorts. However, it is now know that the fundamental pathology in choroideremia is that of a rod-cone dystrophy. Because of this, choroideremia was considered to be a form of retinitis pigmentosa (RP).
Is a choroidal dystrophy: **Gyrate. Wait…Yep, gyrate. No wait--both?**

Why all the prevaricating?
When choroideremia and gyrate atrophy were first identified, they were categorized as choroidal dystrophies based on their clinical appearance. And the primary site of pathology in gyrate locates to the RPE and choroid, so it is probably fair to call it a choroidal dystrophy of sorts. However, it is now known that the fundamental pathology in choroideremia is that of a **rod-cone dystrophy**. Because of this, choroideremia was considered to be a form of **retinitis pigmentosa (RP)**.

This was the state of play in the BCSC *Retina* book--that is, until publication of the latest revision (the 2018-19 edition). In this edition, the Academy seems to be phasing out the term **retinitis pigmentosa**. (The book states the term is “no longer preferred.”) Further, the scope of conditions covered by this ‘non-preferred’ umbrella term is shrinking. And one of the no-longer-considered-RP conditions is…choroideremia.

tl;dr I don’t know if choroideremia is considered a choroidal dystrophy. **Caveat emptor.**
Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?

Why all the prevaricating?
When choroideremia and gyrate atrophy were first identified, they were categorized as choroidal dystrophies based on their clinical appearance. And the primary site of pathology in gyrate locates to the RPE and choroid, so it is probably fair to call it a choroidal dystrophy of sorts. However, it is now know that the fundamental pathology in choroideremia is that of a rod-cone dystrophy. Because of this, choroideremia was considered to be a form of retinitis pigmentosa (RP).

Regarding phenotype, three classic manifestations of RP are absent in choroideremia. What are they?
--
--
--

tl;dr I don’t know if choroideremia is considered a choroidal dystrophy. Caveat emptor.
Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?

Why all the prevaricating?
When choroideremia and gyrate atrophy were first identified, they were categorized as choroidal dystrophies based on their clinical appearance. And the primary site of pathology in gyrate locates to the RPE and choroid, so it is probably fair to call it a choroidal dystrophy of sorts. However, it is now known that the fundamental pathology in choroideremia is that of a rod-cone dystrophy. Because of this, choroideremia was considered to be a form of retinitis pigmentosa (RP).

This was the state of play in the BCSC Retina book—until publication of the latest revision (the 2018-19 edition). In this edition, the Academy seems to be phasing out the term retinitis pigmentosa. Further, the scope of conditions covered by this ‘no-longer-preferred’ umbrella term is shrinking. And one of the no-longer-considered-RP conditions is…choroideremia.

Regarding phenotype, three classic manifestations of RP are absent in choroideremia. What are they?

- Waxy
- Retinal arteriolar
- The presence of

tl;dr I don't know if choroideremia is considered a choroidal dystrophy. Caveat emptor.
Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?

Why all the prevaricating?
When choroideremia and gyrate atrophy were first identified, they were categorized as choroidal dystrophies based on their clinical appearance. And the primary site of pathology in gyrate locates to the RPE and choroid, so it is probably fair to call it a choroidal dystrophy of sorts. However, it is now know that the fundamental pathology in choroideremia is that of a rod-cone dystrophy. Because of this, choroideremia was considered to be a form of retinitis pigmentosa (RP).

Regarding phenotype, three classic manifestations of RP are absent in choroideremia. What are they?
--Waxy disc pallor (the ONH is normal in choroideremia)
--Retinal arteriolar attenuation (the retinal arterioles are normal in choroideremia)
--The presence of bony spicules (these are absent in choroideremia)

This was the state of play in the BCSC Retina book--that is, until publication of the latest revision (the 2018-19 edition). In this edition, the Academy seems to be phasing out the term retinitis pigmentosa. (The book states the term is “no longer preferred.”) Further, the scope of conditions covered by this ‘non-preferred’ umbrella term is shrinking. And one of the no-longer-considered-RP conditions is…choroideremia.

tl;dr I don’t know if choroideremia is considered a choroidal dystrophy. Caveat emptor.
For each statement, identify whether it applies to **gyrate atrophy** or **choroideremia** (or both, or neither)

- Is a choroidal dystrophy: **Gyrate. Wait…Yep, gyrate. No wait--both?**
- Deficiency of enzyme *geranyl geranyl transferase*:
For each statement, identify whether it applies to **gyrate atrophy or choroideremia** (or both, or neither)

- Is a choroidal dystrophy: **Gyrate. Wait...Yep, gyrate. No wait--both?**
- Deficiency of enzyme **geranyl geranyl transferase**: **Choroideremia**
For each statement, identify whether it applies to
gyrate atrophy or **choroideremia** (or both, or neither)

- Is a choroidal dystrophy: **Gyrate. Wait…Yep, gyrate. No wait--both?**
- Deficiency of enzyme *geranyl geranyl transferase*: **Choroideremia**
- Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels:
● Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
● Deficiency of enzyme *geranyl geranyl transferase*: Choroideremia
● Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: Gyrate
For each statement, identify whether it applies to gyrate atrophy or choroideremia (or both, or neither)

- Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
- Deficiency of enzyme *geranyl geranyl transferase*: Choroideremia
- Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: Gyrate

Why are excess ornithine levels a problem?
● Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
● Deficiency of enzyme *geranyl geranyl transferase*: Choroideremia
● Defect in *ornithine aminotransferase* enzyme leads to **excess serum ornithine levels**: Gyrate

Why are excess ornithine levels a problem?
Because ornithine is toxic to the RPE and choroid
Is a choroidal dystrophy: **Gyrate. Wait…Yep, gyrate. No wait--both?**

Deficiency of enzyme *geranyl geranyl transferase*: **Choroideremia**

Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: **Gyrate**

DFE: ’Pavingstones;’ later coalesce into scalloped areas:
For each statement, identify whether it applies to gyrate atrophy or choroideremia (or both, or neither)

- Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
- Deficiency of enzyme *geranyl geranyl transferase*: Choroideremia
- Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: Gyrate
- DFE: ’Pavingstones;’ later coalesce into scalloped areas: Gyrate
Gyrate atrophy: Pavingstones
Gyrate atrophy: Scalloped areas

For each statement, identify whether it applies to **gyrate atrophy** or **choroideremia** (or both, or neither)
Gyrate atrophy: Scalloped areas
For each statement, identify whether it applies to gyrate atrophy or choroideremia (or both, or neither)

- Is a choroidal dystrophy: **Gyrate. Wait...Yep, gyrate. No wait--both?**
- Deficiency of enzyme *geranyl geranyl transferase*: **Choroideremia**
- Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: **Gyrate**
- DFE: 'Pavingstones;' later coalesce into scalloped areas: **Gyrate**
- DFE: Near total absence of choroid, choriocapillaris, and RPE: **Choroideremia**
For each statement, identify whether it applies to gyrate atrophy or choroideremia (or both, or neither)

- Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
- Deficiency of enzyme geranyl geranyl transferase: Choroideremia
- Defect in ornithine aminotransferase enzyme leads to excess serum ornithine levels: Gyrate
- DFE: 'Pavingstones;' later coalesce into scalloped areas: Gyrate
- DFE: Near total absence of choroid, choriocapillaris, and RPE: Choroideremia
For each statement, identify whether it applies to
gyrate atrophy or choroideremia (or both, or neither)

Choroideremia
Is a choroidal dystrophy: **Gyrate. Wait…Yep, gyrate. No wait--both?**

- Deficiency of enzyme *geranyl geranyl transferase*: **Choroideremia**
- Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: **Gyrate**
- DFE: ’Pavingstones;’ later coalesce into scalloped areas: **Gyrate**
- DFE: Near total absence of choroid, choriocapillaris, and RPE: **Choroideremia**
- Vitamin B$_6$ treatment effective in a small percentage of patients:
For each statement, identify whether it applies to gyrate atrophy or choroideremia (or both, or neither)

- Is a choroidal dystrophy: **Gyrate. Wait…Yep, gyrate. No wait--both?**
- Deficiency of enzyme *geranyl geranyl transferase*: **Choroideremia**
- Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: **Gyrate**
- DFE: ’Pavingstones;’ later coalesce into scalloped areas: **Gyrate**
- DFE: Near total absence of choroid, choriocapillaris, and RPE: **Choroideremia**
- Vitamin B$_6$ treatment effective in a small percentage of patients: **Gyrate**
Q

For each statement, identify whether it applies to gyrate atrophy or choroideremia (or both, or neither)

- Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
- Deficiency of enzyme *geranyl geranyl transferase*: Choroideremia
- Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: Gyrate
- DFE: 'Pavingstones;' later coalesce into scalloped areas: Gyrate
- DFE: Near total absence of choroid, choriocapillaris, and RPE: Choroideremia
- Vitamin B₆ treatment effective in a small percentage of patients: Gyrate

If B₆ therapy is tried, check serum level to assess response; if level doesn’t fall, do this
For each statement, identify whether it applies to **gyrate atrophy** or **choroideremia** (or both, or neither)

- Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
- Deficiency of enzyme *geranyl geranyl transferase*: Choroideremia
- Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: Gyrate
- DFE: ’Pavingstones;’ later coalesce into scalloped areas: Gyrate
- DFE: Near total absence of choroid, choriocapillaris, and RPE: Choroideremia
- Vitamin B₆ treatment effective in a small percentage of patients: **Gyrate**

If B₆ therapy is tried, check serum ornithine level to assess response; if level doesn’t fall, discontinue therapy
For each statement, identify whether it applies to gyrate atrophy or choroideremia (or both, or neither)

- Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
- Deficiency of enzyme geranyl geranyl transferase: Choroideremia
- Defect in ornithine aminotransferase enzyme leads to excess serum ornithine levels: Gyrate
- DFE: ’Pavingstones;’ later coalesce into scalloped areas: Gyrate
- DFE: Near total absence of choroid, choriocapillaris, and RPE: Choroideremia
- Vitamin B₆ treatment effective in a small percentage of patients: Gyrate
- X-linked recessive inheritance:
For each statement, identify whether it applies to **gyrate atrophy** or **choroideremia** (or both, or neither)

- Is a choroidal dystrophy: **Gyrate. Wait…Yep, gyrate. No wait--both?**
- Deficiency of enzyme *geranyl geranyl transferase*: **Choroideremia**
- Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: **Gyrate**
- DFE: ’Pavingstones;’ later coalesce into scalloped areas: **Gyrate**
- DFE: Near total absence of choroid, choriocapillaris, and RPE: **Choroideremia**
- Vitamin B$_6$ treatment effective in a small percentage of patients: **Gyrate**
- X-linked recessive inheritance: **Choroideremia**
For each statement, identify whether it applies to gyrate atrophy or choroideremia (or both, or neither)

- Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
- Deficiency of enzyme geranyl geranyl transferase: Choroideremia
- Defect in ornithine aminotransferase enzyme leads to excess serum ornithine levels: Gyrate
- DFE: ’Pavingstones;’ later coalesce into scalloped areas: Gyrate
- DFE: Near total absence of choroid, choriocapillaris, and RPE: Choroideremia
- Vitamin B₆ treatment effective in a small percentage of patients: Gyrate
- X-linked recessive inheritance: Choroideremia
- Inherited AR:
For each statement, identify whether it applies to **gyrate atrophy** or **choroideremia** (or both, or neither)

- Is a choroidal dystrophy: **Gyrate. Wait…Yep, gyrate. No wait--both?**
- Deficiency of enzyme *geranyl geranyl transferase*: **Choroideremia**
- Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: **Gyrate**
- DFE: 'Pavingstones;' later coalesce into scalloped areas: **Gyrate**
- DFE: Near total absence of choroid, choriocapillaris, and RPE: **Choroideremia**
- Vitamin B₆ treatment effective in a small percentage of patients: **Gyrate**
- X-linked recessive inheritance: **Choroideremia**
- Inherited AR: **Gyrate**
Is a choroidal dystrophy: **Gyrate. Wait…Yep, gyrate. No wait--both?**

Deficiency of enzyme *geranyl geranyl transferase*: **Choroideremia**

Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: **Gyrate**

DFE: ’Pavingstones;’ later coalesce into scalloped areas: **Gyrate**

DFE: Near total absence of choroid, choriocapillaris, and RPE: **Choroideremia**

Vitamin B₆ treatment effective in a small percentage of patients: **Gyrate**

X-linked recessive inheritance: **Choroideremia**

Inherited AR: **Gyrate**

Develop night blindness in childhood/teens:
<table>
<thead>
<tr>
<th>Statement</th>
<th>gyrate atrophy</th>
<th>choroideremia</th>
<th>both</th>
<th>neither</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is a choroidal dystrophy:</td>
<td>Gyrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deficiency of enzyme geranyl geranyl transferase:</td>
<td></td>
<td>Choroideremia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defect in ornithine aminotransferase enzyme leads to excess serum ornithine levels:</td>
<td>Gyrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFE: ’Pavingstones;' later coalesce into scalloped areas:</td>
<td>Gyrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFE: Near total absence of choroid, choriocapillaris, and RPE:</td>
<td></td>
<td>Choroideremia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin B₆ treatment effective in a small percentage of patients:</td>
<td>Gyrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-linked recessive inheritance:</td>
<td></td>
<td>Choroideremia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inherited AR:</td>
<td>Gyrate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop night blindness in childhood/teens:</td>
<td>Both</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Is a choroidal dystrophy: **Gyrate.** Wait…Yep, gyrate. No wait--both?

Deficiency of enzyme *geranyl geranyl transferase*: **Choroideremia**

Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: **Gyrate**

DFE: ’Pavingstones;' later coalesce into scalloped areas: **Gyrate**

DFE: Near total absence of choroid, choriocapillaris, and RPE: **Choroideremia**

Vitamin B₆ treatment effective in a small percentage of patients: **Gyrate**

X-linked recessive inheritance: **Choroideremia**

Inherited AR: **Gyrate**

Develop night blindness in childhood/teens: **Both**

ERG abnormal early, extinguished late: **Both**
For each statement, identify whether it applies to **gyrate atrophy** or **choroideremia** (or both, or neither)

- Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
- Deficiency of enzyme *geranyl geranyl transferase*: Choroideremia
- Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: Gyrate
- DFE: ’Pavingstones;’ later coalesce into scalloped areas: Gyrate
- DFE: Near total absence of choroid, choriocapillaris, and RPE: Choroideremia
- Vitamin B₆ treatment effective in a small percentage of patients: Gyrate
- X-linked recessive inheritance: Choroideremia
- Inherited AR: Gyrate
- Develop night blindness in childhood/teens: Both
- ERG abnormal early, extinguished late: Both
For each statement, identify whether it applies to gyrate atrophy or choroideremia (or both, or neither)

- Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
- Deficiency of enzyme geranyl geranyl transferase: Choroideremia
- Defect in ornithine aminotransferase enzyme leads to excess serum ornithine levels: Gyrate
- DFE: ’Pavingstones;’ later coalesce into scalloped areas: Gyrate
- DFE: Near total absence of choroid, choriocapillaris, and RPE: Choroideremia
- Vitamin B₆ treatment effective in a small percentage of patients: Gyrate
- X-linked recessive inheritance: Choroideremia
- Inherited AR: Gyrate
- Develop night blindness in childhood/teens: Both
- ERG abnormal early, extinguished late: Both
- VA ≤ 20/200 by 40s – 50s:
For each statement, identify whether it applies to gyrate atrophy or choroideremia (or both, or neither)

- Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
- Deficiency of enzyme geranyl geranyl transferase: Choroideremia
- Defect in ornithine aminotransferase enzyme leads to excess serum ornithine levels: Gyrate
- DFE: ’Pavingstones;’ later coalesce into scalloped areas: Gyrate
- DFE: Near total absence of choroid, choriocapillaris, and RPE: Choroideremia
- Vitamin B₆ treatment effective in a small percentage of patients: Gyrate
- X-linked recessive inheritance: Choroideremia
- Inherited AR: Gyrate
- Develop night blindness in childhood/teens: Both
- ERG abnormal early, extinguished late: Both
- VA ≤ 20/200 by 40s – 50s: Both
Is a choroidal dystrophy: **Gyrate.** Wait…Yep, gyrate. No wait--both?

Deficiency of enzyme *geranyl geranyl transferase*: **Choroideremia**

Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: **Gyrate**

DFE: ’Pavingstones;’ later coalesce into scalloped areas: **Gyrate**

DFE: Near total absence of choroid, choriocapillaris, and RPE: **Choroideremia**

Vitamin B₆ treatment effective in a small percentage of patients: **Gyrate**

X-linked recessive inheritance: **Choroideremia**

Inherited AR: **Gyrate**

Develop night blindness in childhood/teens: **Both**

ERG abnormal early, extinguished late: **Both**

VA ≤ 20/200 by 40s – 50s: **Both**

Progressive loss of VF occurs:
For each statement, identify whether it applies to **gyrate atrophy** or **choroideremia** (or both, or neither)

- Is a choroidal dystrophy: **Gyrate.** Wait…Yep, gyrate. No wait--both?
- Deficiency of enzyme *geranyl geranyl transferase*: **Choroideremia**
- Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: **Gyrate**
- DFE: 'Pavingstones;' later coalesce into scalloped areas: **Gyrate**
- DFE: Near total absence of choroid, choriocapillaris, and RPE: **Choroideremia**
- Vitamin B₆ treatment effective in a small percentage of patients: **Gyrate**
- X-linked recessive inheritance: **Choroideremia**
- Inherited AR: **Gyrate**
- Develop night blindness in childhood/teens: **Both**
- ERG abnormal early, extinguished late: **Both**
- VA ≤ 20/200 by 40s – 50s: **Both**
- Progressive loss of VF occurs: **Both**
Is a choroidal dystrophy: **Gyrate. Wait…Yep, gyrate. No wait--both?**
Deficiency of enzyme *geranyl geranyl transferase*: **Choroideremia**
Defect in *ornithine aminotransferase* enzyme leads to excess serum ornithine levels: **Gyrate**
DFE: ’Pavingstones;’ later coalesce into scalloped areas: **Gyrate**
DFE: Near total absence of choroid, choriocapillaris, and RPE: **Choroideremia**
Vitamin B₆ treatment effective in a small percentage of patients: **Gyrate**
X-linked recessive inheritance: **Choroideremia**
Inherited AR: **Gyrate**
Develop night blindness in childhood/teens: **Both**
ERG abnormal early, extinguished late: **Both**
VA ≤ 20/200 by 40s – 50s: **Both**
Progressive loss of VF occurs: **Both**
Treatment: Restrict dietary arginine:
Is a choroidal dystrophy: Gyrate. Wait…Yep, gyrate. No wait--both?
- Deficiency of enzyme geranyl geranyl transferase: Choroideremia
- Defect in ornithine aminotransferase enzyme leads to excess serum ornithine levels: Gyrate
- DFE: 'Pavingstones;' later coalesce into scalloped areas: Gyrate
- DFE: Near total absence of choroid, choriocapillaris, and RPE: Choroideremia
- Vitamin B₆ treatment effective in a small percentage of patients: Gyrate
- X-linked recessive inheritance: Choroideremia
- Inherited AR: Gyrate
- Develop night blindness in childhood/teens: Both
- ERG abnormal early, extinguished late: Both
- VA ≤ 20/200 by 40s – 50s: Both
- Progressive loss of VF occurs: Both
- Treatment: Restrict dietary arginine: Gyrate