Adult Strabismus
Preferred Practice Pattern®
PEDIATRIC OPHTHALMOLOGY/ADULT STRABISMUS PREFERRED PRACTICE PATTERN® DEVELOPMENT PROCESS AND

The Pediatric Ophthalmology/Adult Strabismus Preferred Practice Pattern® Panel of the American Association for Pediatric Ophthalmology and Strabismus Adult Strabismus Task Force members wrote the Adult Strabismus Preferred Practice Pattern® guidelines (“PPP”). The PPP Panel members discussed and reviewed successive drafts of the document, meeting in person and conducting other review by e-mail discussion, to develop a consensus over the final version of the document.

Pediatric Ophthalmology/Adult Strabismus Preferred Practice Pattern Panel of the American Association of Pediatric Ophthalmology and Strabismus 2017–2019

Chair Linda R. Dagi, MD
Vice Chair: Federico G. Velez, MD

Jonathan M. Holmes, MD
Steven M. Archer, MD
Stacy L. Pineles, MD
Mitchell B. Strominger, MD
Matthew Simon Pihlblad, MD
Evelyn A. Paysse, MD
David Stager Jr, MD
David R. Stager Sr, MD
Hatice Tuba Atalay, MD
Hilda Capo, MD
Natalie C. Kerr, MD
Burton J. Kushner, MD
Sarah E. MacKinnon, CO, COMT
Brian N. Campolattaro, MD
Jason H. Peragallo, MD
Reecha S. Bahl, MD

The Preferred Practice Patterns Committee members reviewed and discussed the document during a series of meetings spanning 2017-2019. The document was edited in response to the discussion and comments.

Preferred Practice Patterns Committee 2019
Robert S. Feder, MD, Chair
Roy S. Chuck, MD, PhD
Steven P. Dunn, MD
Christina J. Flaxel, MD
Steven J. Gedde, MD
Francis S. Mah, MD
Randall J. Olson, MD
David K. Wallace, MD, MPH
David C. Musch, PhD, MPH, Methodologist

The Adult Strabismus PPP was then sent for review to additional internal and external groups and individuals in August 2019. All those returning comments were required to provide disclosure of relevant relationships with industry to have their comments considered. Members of the Pediatric Ophthalmology/Strabismus Preferred Practice Pattern Panel reviewed and discussed these comments and determined revisions to the document. The following organizations and individuals returned comments.
FINANCIAL DISCLOSURES

In compliance with the Council of Medical Specialty Societies’ Code for Interactions with Companies (available at www.cmss.org/codeforinteractions.aspx), relevant relationships with industry are listed. The Academy has Relationship with Industry Procedures to comply with the Code (available at www.aao.org/about-preferred-practice-patterns). A majority (75%) of the members of the Adult Strabismus Preferred Practice Pattern Panel 2017–2019 had no financial relationship to disclose.

Adult Strabismus Preferred Practice Pattern Panel 2017–2019

Steven M. Archer, MD: No financial relationships to disclose
Hatice Tuba Atalay, MD: No financial relationships to disclose
Reecha S. Bahl, MD:
Brian N. Campolattaro, MD: No financial relationships to disclose
Hilda Capo, MD: No financial relationships to disclose
Linda R. Dagi, MD: Boston Neurosciences
Jonathan M. Holmes, MD: Grant support from National Institutes of Health and Research to Prevent Blindness
Natalie C. Kerr, MD: No financial relationships to disclose
Burton J. Kushner, MD: NovaSight – Scientific Advisory Board member
Sarah E. MacKinnon, CO, COMT: No financial relationships to disclose
Evelyn A. Paysse, MD: No financial relationships to disclose
Jason H. Pergallo, MD: No financial relationships to disclose
Matthew Simon Pihlblad, MD: No financial relationships to disclose
Stacy L. Pinel, MD: No financial relationships to disclose
Mitchell B. Strominger, MD: No financial relationships to disclose
David R. Stager Sr, MD: No financial relationships to disclose
David Stager Jr, MD: No financial relationships to disclose
Federico G. Velez, MD: Grant support from Omeros, Bausch+Lomb, Retrophin, Research to Prevent Blindness

Pediatric Ophthalmology/Strabismus Preferred Practice Patterns Committee 2019

David K. Wallace, MD, PhD: No financial relationships to disclose
Stephen P. Christiansen, MD: No financial relationships to disclose
Katherine A. Lee, MD, PhD: No financial relationships to disclose
Cheslie L. Morse, MD: Grant Support from Luminopia
Michael X. Repka, MD, MBA: No financial relationships to disclose
Derek T. Sprunger, MD: No financial relationships to disclose
Michele Melia, ScM: No financial relationships to disclose

Preferred Practice Patterns Committee 2019

Roy S. Chuck, MD, PhD: No financial relationships to disclose
Steven P. Dunn, MD: No financial relationships to disclose
Robert S. Feder, MD: No financial relationships to disclose
Christina J. Flaxel, MD: No financial relationships to disclose
Steven J. Gedde, MD: No financial relationships to disclose
Francis S. Mah, MD: No financial relationships to disclose
Randall J. Olson, MD: No financial relationships to disclose
David K. Wallace, MD, MPH: No financial relationships to disclose
David C. Musch, PhD, MPH: No financial relationships to disclose

Secretary for Quality of Care

Timothy W. Olsen, MD: No financial relationships to disclose

Academy Staff

Ali Al-Rajhi, PhD, MPH: No financial relationships to disclose
Andre Ambrus, MLIS: No financial relationships to disclose
Susan Garratt, Medical Editor: No financial relationships to disclose
Meghan Daly: No financial relationships to disclose
Doris Mizuiri: No financial relationships to disclose
SECTION III. STRABISMUS AFTER ORBITAL TRAUMA
INTRODUCTION ... P364
Disease Definition ... P364
Patient Population ... P364
Clinical Objectives ... P364
BACKGROUND .. P365
Prevalence and Risk Factors .. P365
Natural History ... P365
Rationale for Treatment .. P365
CARE PROCESS ... P365
Diagnosis .. P365
 History .. P365
 Examination ... P365
Management ... P366
 General Guidelines .. P366
 Guidelines for Treating Strabismus P367
Provider and Setting .. P368
Counseling and Referral ... P368

SECTION IIg. STRABISMUS ASSOCIATED WITH OTHER OPHTHALMIC SURGERY
INTRODUCTION ... P369
Disease Definition
 Cataract Extraction or Keratoplasty P369
 Glaucoma Filtering Procedures (including trabeculectomy and glaucoma plate reservoir surgery) P370
 Scleral Buckling Procedures ... P370
 Pterygium Surgery .. P370
 Blepharoplasty and Eyelid Procedures P370
Patient Population ... P371
Clinical Objectives ... P371
BACKGROUND .. P371
 Cataract Extraction .. P371
 Glaucoma Filtering Procedures P371
 Scleral Buckling Procedures .. P372
 Blepharoplasty and Eyelid Procedures P372
Natural History ... P372
Rationale for Treatment .. P372
CARE PROCESS ... P373
Patient Outcome Criteria .. P373
Diagnosis .. P373
 History .. P373
 Examination ... P373
Management ... P374
 Monitor/Observation ... P374
 Nonsurgical ... P374
 Surgical .. P374
Provider and Setting .. P375
Counseling and Referral ... P375

SECTION IIIh. SUPERIOR OBLIQUE PALSY
INTRODUCTION ... P376
Disease Definition ... P376
Patient Population ... P376
Clinical Objectives ... P376
BACKGROUND .. P377
Incidence .. P377
Risk Factors ... P377
Natural History ... P377
Rationale for Treatment .. P377
CARE PROCESS ... P377
SECTION III. SKEW DEVIATION
INTRODUCTION ... P380
Disease Definition .. P380
Patient Population .. P380
Clinical Objectives .. P380
BACKGROUND .. P381
Incidence ... P381
Risk Factors .. P381
Natural History .. P381
Rationale for Treatment .. P381
CARE PROCESS .. P381
Patient Outcome Criteria .. P381
Diagnosis .. P382
 History ... P382
 Examination ... P382
Management ... P383
Provider and Setting .. P383
Counseling and Referral ... P383

SECTION III. ABUCENS PALSY
INTRODUCTION .. P384
Disease Definition .. P384
Patient Population .. P384
Clinical Objectives .. P384
BACKGROUND .. P385
Incidence ... P385
Risk Factors .. P385
Rationale for Treatment .. P385
CARE PROCESS .. P385
Patient Outcome Criteria .. P385
Diagnosis .. P385
 History ... P386
 Examination ... P386
Ancillary Testing ... P386
Management ... P387
 Monitor/Observation ... P387
 Nonsurgical .. P387
 Surgical ... P387
Provider and Setting .. P388
Counseling and Referral ... P388

SECTION III. OCULOMOTOR PALSY
INTRODUCTION .. P389
Disease Definition .. P389
Patient Population .. P389
Clinical Objectives .. P389
BACKGROUND .. P389
Incidence ... P389
Risk Factors .. P389
Rationale for Treatment .. P390
CARE PROCESS .. P390
Patient Outcome Criteria .. P390
Diagnosis .. P390
 History ... P391
SECTION III. COMPLICATIONS OF PERFORMING ADULT STRABISMUS SURGERY

INTRODUCTION

- Prevalence and Risk Factors... P406
- Postoperative Concerns.. P406
 - Mild Concerns.. P406
 - Moderate Concerns.. P407
 - Major Concerns... P407
- Provider and Setting.. P408
- Counseling and Referral... P408

CARE PROCESS

- Anticoagulants... P409
- Adjustable Sutures... P409
- Microtropias.. P410
- Chemodenervation.. P410
- Anesthesia... P410
- Complex Strabismus... P410
- Intraoperative Issues... P411
- Monitor/Observe... P411

APPENDIX 1. GLOSSARY OR TERMS

APPENDIX 2. ALGORITHM FOR APPROACHING ADULT STRABISMUS BASED ON PRESENTATION OF DEVIATION

APPENDIX 3. LITERATURE SEARCHES FOR THIS PPP

APPENDIX 4. RELATED ACADEMY MATERIALS

REFERENCES
Background:

Strabismus has an estimated incidence of 4% in the adult population. Commonest causes include unresolved or recurrent childhood strabismus, sensory strabismus, divergence insufficiency or sagging eye syndrome, Graves orbitopathy, 4th and 6th cranial nerve palsies and convergence insufficiency. Other notable causes include orbital trauma, third nerve palsy, myasthenia gravis, myopic strabismus fixus, skew deviation, retinal misregistration ("dragged-fovea diplopia") and strabismus occurring after other ophthalmic procedures.

This Preferred Practice Pattern (PPP) details evaluation and management of all these disorders, surgical considerations unique to adults with strabismus, and improvements in quality of life often experienced by those successfully treated. The PPP recommendations are based on Cochrane-identified reliable systematic reviews.

Rationale for treatment:

Treating adult strabismus can improve binocular function including stereoacuity and binocular fields and can reduce binocular inhibition, diplopia and confusion, associated compensatory head posture, and asthenopia. Successful treatment yields psychosocial benefits due to restoration of normal eye alignment and eye contact.

Care Process:

Pre-existing suppression increases risk for the development of fixation switch diplopia, which can occur when the previously nondominant eye becomes the dominant eye as a result of monovision or optical changes associated with cataract surgery. Fixation switch diplopia may also occur if vision loss from diseases such as macular degeneration or diabetic retinopathy leaves the previously nondominant eye with better acuity.

The risk of new-onset diplopia after strabismus surgery in adults undergoing treatment for unresolved childhood strabismus without previous diplopia is under 1%, and the risk of serious sight-threatening complications is exceedingly rare. Marked improvement in health-related quality of life after successful strabismus surgery is reported in both diplopic and nondiplopic patients, including improvements in general function, reading, self-perception and social interactions.
OBJECTIVES OF PREFERRED PRACTICE PATTERN® GUIDELINES

As a service to its members and the public, the American Academy of Ophthalmology has developed a series of Preferred Practice Pattern® guidelines that identify characteristics and components of quality eye care. Appendix 1 describes the core criteria of quality eye care.

The Preferred Practice Pattern® guidelines are based on the best available scientific data as interpreted by panels of knowledgeable health professionals. In some instances, such as when results of carefully conducted clinical trials are available, the data are particularly persuasive and provide clear guidance. In other instances, the panels have to rely on their collective judgment and evaluation of available evidence.

These documents provide guidance for the pattern of practice, not for the care of a particular individual. While they should generally meet the needs of most patients, they cannot possibly best meet the needs of all patients. Adherence to these PPPs will not ensure a successful outcome in every situation. These practice patterns should not be deemed inclusive of all proper methods of care or exclusive of other methods of care reasonably directed at obtaining the best results. It may be necessary to approach different patients’ needs in different ways. The physician must make the ultimate judgment about the propriety of the care of a particular patient in light of all of the circumstances presented by that patient. The American Academy of Ophthalmology is available to assist members in resolving ethical dilemmas that arise in the course of ophthalmic practice.

Preferred Practice Pattern® guidelines are not medical standards to be adhered to in all individual situations. The Academy specifically disclaims any and all liability for injury or other damages of any kind, from negligence or otherwise, for any and all claims that may arise out of the use of any recommendations or other information contained herein.

References to certain drugs, instruments, and other products are made for illustrative purposes only and are not intended to constitute an endorsement of such. Such material may include information on applications that are not considered community standard, that reflect indications not included in approved U.S. Food and Drug Administration (FDA) labeling, or that are approved for use only in restricted research settings. The FDA has stated that it is the responsibility of the physician to determine the FDA status of each drug or device he or she wishes to use, and to use them with appropriate patient consent in compliance with applicable law.

Innovation in medicine is essential to ensure the future health of the American public, and the Academy encourages the development of new diagnostic and therapeutic methods that will improve eye care. It is essential to recognize that true medical excellence is achieved only when the patients’ needs are the foremost consideration.

All Preferred Practice Pattern® guidelines are reviewed by their parent panel annually or earlier if developments warrant and updated accordingly. To ensure that all PPPs are current, each is valid for 5 years from the “approved by” date unless superseded by a revision. Preferred Practice Pattern guidelines are funded by the Academy without commercial support. Authors and reviewers of PPPs are volunteers and do not receive any financial compensation for their contributions to the documents. The PPPs are externally reviewed by experts and stakeholders, including consumer representatives, before publication. The PPPs are developed in compliance with the Council of Medical Specialty Societies’ Code for Interactions with Companies. The Academy has Relationship with Industry Procedures (available at www.aao.org/about-preferred-practice-patterns) to comply with the Code.

Appendix 2 contains the International Statistical Classification of Diseases and Related Health Problems (ICD) codes for the disease entities that this PPP covers. The intended users of the Esotropia and Exotropia PPP are ophthalmologists.
METHODS AND KEY TO RATINGS

Preferred Practice Pattern® guidelines should be clinically relevant and specific enough to provide useful information to practitioners. Where evidence exists to support a recommendation for care, the recommendation should be given an explicit rating that shows the strength of evidence. To accomplish these aims, methods from the Scottish Intercollegiate Guideline Network¹ (SIGN) and the Grading of Recommendations Assessment, Development and Evaluation² (GRADE) group are used. GRADE is a systematic approach to grading the strength of the total body of evidence that is available to support recommendations on a specific clinical management issue. Organizations that have adopted GRADE include SIGN, the World Health Organization, the Agency for Healthcare Research and Policy, and the American College of Physicians.³

◆ All studies used to form a recommendation for care are graded for strength of evidence individually, and that grade is listed with the study citation.

◆ To rate individual studies, a scale based on SIGN¹ is used. The definitions and levels of evidence to rate individual studies are as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I++</td>
<td>High-quality meta-analyses, systematic reviews of randomized controlled trials (RCTs), or RCTs with a very low risk of bias</td>
</tr>
<tr>
<td>I+</td>
<td>Well-conducted meta-analyses, systematic reviews of RCTs, or RCTs with a low risk of bias</td>
</tr>
<tr>
<td>I-</td>
<td>Meta-analyses, systematic reviews of RCTs, or RCTs with a high risk of bias</td>
</tr>
<tr>
<td>II++</td>
<td>High-quality systematic reviews of case-control or cohort studies</td>
</tr>
<tr>
<td>II+</td>
<td>High-quality case-control or cohort studies with a very low risk of confounding or bias and a high probability that the relationship is causal</td>
</tr>
<tr>
<td>II-</td>
<td>Well-conducted case-control or cohort studies with a low risk of confounding or bias and a moderate probability that the relationship is causal</td>
</tr>
<tr>
<td>III</td>
<td>Case-control or cohort studies with a high risk of confounding or bias and a significant risk that the relationship is not causal</td>
</tr>
<tr>
<td></td>
<td>Nonanalytic studies (e.g., case reports, case series)</td>
</tr>
</tbody>
</table>

◆ Recommendations for care are formed based on the body of the evidence. The body of evidence quality ratings are defined by GRADE² as follows:

<table>
<thead>
<tr>
<th>Quality</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Further research is very unlikely to change our confidence in the estimate of effect</td>
</tr>
<tr>
<td>Moderate</td>
<td>Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate</td>
</tr>
<tr>
<td>Insufficient</td>
<td>Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate</td>
</tr>
<tr>
<td></td>
<td>Any estimate of effect is very uncertain</td>
</tr>
</tbody>
</table>

◆ Key recommendations for care are defined by GRADE² as follows:

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>Used when the desirable effects of an intervention clearly outweigh the undesirable effects or clearly do not</td>
</tr>
<tr>
<td>Discretionary</td>
<td>Used when the trade-offs are less certain—either because of low-quality evidence or because evidence suggests that desirable and undesirable effects are closely balanced</td>
</tr>
</tbody>
</table>

◆ The Highlighted Findings and Recommendations for Care section lists points determined by the PPP Panel to be of particular importance to vision and quality of life outcomes.

◆ All recommendations for care in this PPP were rated using the system described above. Ratings are embedded throughout the PPP main text in italics.

◆ Literature searches to update the PPP were undertaken in March 2016, February 2017, and June 2019 in the PubMed and Cochrane databases. Complete details of the literature searches are available in Appendix 3.
HIGHLIGHTED FINDINGS & RECOMMENDATIONS FOR CARE

Strabismus in adults has profound negative effects on quality of life and many aspects of day-to-day function. Strabismus surgery very often improves quality of life and function, and there are instruments to assess these aspects of evaluation and treatment. Patients with diplopia tend to have greatest improvements in functional domains, and nondiplopic patients tend to have greatest improvements in psychosocial domains.

Recessions of the restricted muscles are the mainstay of surgical correction in thyroid eye disease. Resection is generally avoided in restrictive disease out of concern for further reducing ductions and operating on a rectus muscle that would best be spared to provide ciliary artery supply to the anterior segment. However, it can be a useful adjunct in select cases, particularly when extremely large recessions have not fully corrected the alignment.

Screening for a history of childhood amblyopia or strabismus, checking spectacles for prism, and performing a cycloplegic refraction and cover testing are recommended for all patients undergoing refractive or cataract surgery, especially for those patients for whom monovision is planned. Patients with a history of childhood strabismus and suppression are particularly at risk for developing fixation switch diplopia. This form of diplopia results when the previously nondominant eye becomes the dominant eye as a result of intended or unintended monovision by refractive manipulation or cataract surgery. A trial of monovision with contact lenses is prudent prior to corneal or lenticular refractive surgery to determine whether surgically induced monovision will result in new-onset diplopia. The development of asymmetric vision loss from other common diseases such as macular degeneration, myopia with axial elongation in the previously dominant eye, or diabetic retinopathy when the nondominant eye is left with better acuity may also result in fixation switch diplopia.
SECTION I. ADULT STRABISMUS OVERVIEW

INTRODUCTION

DISEASE DEFINITION

Strabismus is misalignment of the eyes and may be congenital or acquired. Although more typically associated with the pediatric population, strabismus is quite common among adults, with an estimated incidence of 4% in this population.4-6 The causes of strabismus in the adult population are numerous, in part because the challenges to ocular alignment common in the pediatric population persist, and because new disorders destabilizing alignment occur secondary to aging, vision loss, myopia, endocrine and neurologic disorders, and iatrogenic and non-iatrogenic trauma to the globe or orbit. Notable causes of strabismus in the adult population include:

- Recurrent or unresolved childhood strabismus
- Sensory strabismus
- Convergence insufficiency
- Divergence insufficiency
- Sagging eye syndrome
- Strabismus associated with high axial myopia
- Strabismus fixus
- Graves’ disease
- Orbital trauma
- Strabismus associated with other ophthalmic surgery
- Fourth nerve palsy
- Skew deviation
- Sixth nerve palsy
- Third nerve palsy
- Myasthenia gravis
- Fixation switch diplopia
- Retinal Misregistration or Binocular Retinal Diplopia

Accordingly, accurate diagnosis of the etiology of strabismus in the adult population requires the expertise to recognize associated signs and symptoms and familiarity with studies that may confirm the diagnosis. In addition, the goal(s) of treatment may impact the plan for surgical or nonsurgical intervention. Adult patients often have unique concerns associated with functional vision as well as psychosocial concerns that affect quality of life. In the past, most emphasis was on improving motor alignment, but it is now understood that the goals of treatment should be much broader and include sensory recovery when possible as well as gains in psychosocial and functional domains of vision-related quality of life.
Success rates depend on the subpopulation studied and the goals of surgery, but overall they are approximately 80% after one procedure\(^5,7,8\) and may exceed 95% if a second procedure is performed on eyes failing the first intervention.\(^4\) Intractable postoperative diplopia in primary gaze for adult patients without diplopia prior to intervention occurs in 1% or fewer cases.\(^4,7,9,10\) Satisfactory resolution of diplopia in primary position for those who present for treatment of diplopia is possible more than 95% of the time, although diplopia in eccentric gaze may persist.\(^5\)

PATIENT POPULATION

The patient population is adults with strabismus.

CLINICAL OBJECTIVES

- Perform a clinical examination and ancillary testing as indicated to diagnose the cause of strabismus
- Counsel the patient on the diagnosis and treatment options
- Consult other medical providers if the diagnosis indicates the need for multidisciplinary management
- Establish priorities in the goal-directed management of strabismus (improved eye contact and appearance of alignment (reconstructive), enhancing binocular potential, or reduction or resolution of diplopia and/or compensatory head posture\(^11,12\))
- Inform the patient’s primary care and other health care providers of the diagnosis and treatment plan

BACKGROUND

PREVALENCE

Individual practice estimates vary based on setting and provider. Intelligent Research in Sight (IRIS) registry data document a prevalence of 2.7% in ophthalmology practices.\(^4,6,13\)

RATIONALE FOR TREATMENT

In general, the goal of adult strabismus surgery is to optimize the functional visual status of patients while also addressing psychosocial concerns. The potential benefits of strabismus surgery in adults include:

- Improvement in binocularity (ranging from simultaneous perception to stereopsis)\(^1,4,7,14-17\)
- Improvement in diplopia or compensatory head position\(^4,5,7\)
- Normalization of binocular visual field\(^18\)
- Improvement in binocular summation or resolution of binocular inhibition\(^19\)
- Reduction of asthenopia
- Psychosocial benefits related to the restoration, rehabilitation, and improvement in an abnormal facial appearance secondary to ocular misalignment\(^4,6,7,20-26\)
The overall rate of success for achieving satisfactory ocular alignment cannot easily be summarized because of the vast heterogeneity within this group and the lack of consensus on what constitutes “success.” However, analysis of several studies comprising multiple strabismus subtypes suggests that the overall success rate approaches 80%,4,7,27 with resolution of diplopia in a similar proportion.4,7,27 Functional improvement in binocularity can also be achieved in many patients. Although the highest level of binocularity (high-grade stereopsis) requires good vision in each eye, orthotropia and baseline binocular potential, lower levels of binocularity (such as simultaneous perception or peripheral fusion) can be achieved in patients with poorer vision or longstanding strabismus. Additionally, patients with poor vision in one eye or even infantile-onset strabismus can achieve improvement in binocular summation after surgery.19 Successful strabismus surgery may also increase the binocular visual field in patients with esotropia.18

For individual patients, a realistic functional goal for surgical success is dependent on their strabismus subtype as well as the duration of strabismus. For example, in patients with strabismus acquired during adulthood, the functional goal of surgery is likely to be resolution of or improvement in diplopia or compensatory head position and high-grade stereopsis. However, in adults with a longstanding history of infantile-onset strabismus, achieving bifoveal fixation is not a realistic goal, and functional goals would therefore include normalization of visual fields, improvement in binocular summation, or improvement of diplopia or compensatory head position, if present. It is important to measure and document diplopia in addition to ocular alignment,28 and there are now methods to quantify diplopia. The field of binocular single vision can be plotted on a Goldmann perimeter,29 a cervical range-of-motion device can be used to record diplopia in specific positions of gaze,30,31 or the Diplopia Questionnaire can be used to assess the frequency of diplopia in specific positions of gaze.32

Aside from the functional goals of surgery described above, psychosocial concerns are also important. Patients with strabismus endure both psychosocial and economic hardships, such as difficulty obtaining employment,33 receiving promotions,34 and overcoming negative social bias.25 Assessment of psychosocial aspects of the impact of strabismus is best achieved using patient-reported outcomes measures (PROMs). These PROMs are typically questionnaires completed by the patient and then evaluated and scored. The Adult Strabismus-2035 questionnaire was developed using a rigorous method of conducting individual patient interviews to identify concerns and to generate potential questions. A master questionnaire was then refined by eliminating questions that were not broadly applicable, that had marked ceiling or floor effects, or that were limited by socioeconomic status or location.35 Subsequent studies revealed that the questions should be further subdivided into two psychosocial domains (self-perception and interactions) and two function domains (reading function and general function).36

Using PROM questionnaires, several studies have reported marked improvement in health-related quality of life after strabismus surgery in both diplopic and nondiplopic patients.22,37-39 In some patients, this improvement has...
been found to correlate with improvements in binocular function.40 In general, patients with diplopia tend to have greatest improvements in function domains, and nondiplopic patients tend to have greatest improvements in psychosocial domains.38 Nevertheless, even adults with limited binocular potential have been found to have function-related benefits from strabismus surgery.41 The use of PROM questionnaires adds to previous methods of assessing residual motor angle of deviation and the presence or absence of diplopia.28,39 Additionally, even some patients who might have been classified as surgical failures, based on residual angle and diplopia, report dramatic improvements in health-related quality of life, often attributable to improvements in psychosocial issues.42 In addition to improvements in health-related quality of life, other facets of mental health such as mood, depression, anxiety, social avoidance, and self-esteem have been found to improve after strabismus surgery in adults.22,43-45 Strabismus surgery may also have a positive impact of other aspects of overall health, such as reducing falls in the elderly.46

Nevertheless, despite improvements in binocular function and psychosocial issues for most adults undergoing strabismus surgery, there are some patients who do not perceive an improvement in quality of life. Such lack of improvement is likely multifactorial, but it may be due to depressive symptoms that are not at the level of clinical depression,47 other mental illnesses,48 or unrealistic expectations.49 Therefore, physicians must counsel patients preoperatively to ensure that there is mutual understanding about realistic goals of surgery and—if there are mental health issues—that these are identified and appropriate referrals made.

Although the primary goal of strabismus surgery is typically ocular realignment,27 patient-specific surgical success metrics should be based on achieving a goal mutually set by the physician and the patient. This goal should incorporate the patient’s primary concerns as well as the physician’s determination of which goals are achievable considering the underlying etiology, previous treatment history, and disease duration. Specific, goal-determined metrics for surgical success have been suggested for patients with esotropia and exotropia.11,12 These suggested metrics11,12 combine ratings of the following four goals:

- Binocular potential
- Reconstruction of ocular alignment
- Resolution or reduction of diplopia
- Improvement of compensatory head position, or ocular torticollis

In summary, strabismus in adults has profound negative effects on quality of life and many aspects of day-to-day function. There is excellent evidence that strabismus surgery very often improves quality of life and function, and there are now questionnaires to assess these aspects of evaluation and treatment.
SECTION II. COMMON AND CLINICALLY IMPORTANT MANIFESTATIONS OF ADULT STRABISMUS

IIa. PERSISTENT OR RECURRENT CHILDHOOD STRABISMUS

INTRODUCTION

DISEASE DEFINITION

Persistent or recurrent childhood strabismus in adults is strabismus that originated in early childhood before visual maturity (most often defined as before 9 years of age). This type of adult strabismus arises in several different ways:

- Childhood strabismus that was untreated
- Decompensation of previously asymptomatic strabismus
- Recurrence of a previously treated strabismus
- Evolution of consecutive strabismus after childhood treatment

PATIENT POPULATION

The patient population is adults who had onset of strabismus in early childhood.

CLINICAL OBJECTIVES

- Counsel the patient on the diagnosis and treatment options
- Provide goal-directed management of strabismus (to restore eye alignment for improved self-image, restore binocular vision, if possible, and reduce diplopia or compensatory head posture, if present)
- Inform the patient’s other health care providers about the diagnosis and treatment plan
BACKGROUND

PREVALENCE

Prevalence varies according to setting. The authors of one report found that 60% of cases in their adult strabismus clinic had recurrent or previously untreated childhood strabismus.5,7

NATURAL HISTORY

The ocular misalignment in adults with persistent or recurrent childhood strabismus will not resolve spontaneously. However, signs and symptoms may range in severity from mild (that is psychosocially acceptable) to large-angle misalignment of the eyes, with or without diplopia.

RATIONALE FOR TREATMENT

Psychosocial concerns are among the many reasons for considering surgical intervention in cases of childhood strabismus presenting or re-presenting in the adult years.4,5,7,11,12,16-19 These include poor self-perception, impaired social interactions, and poor eye contact. The psychosocial benefits of such intervention have been extensively reviewed.6,8,20-22,24-26,50 In addition, increased difficulty in maintaining binocular fusion or the development of increasing compensatory head positioning to maintain binocular fusion, and episodic diplopia are reasons to consider intervention as well.

Although there is a vast range of presenting patterns, consecutive exotropia after prior surgery for esotropia is a particularly common form of this type of strabismus. Whereas anisometropia, amblyopia, hypermetropia, and dissociated vertical deviation (DVD) are risk factors for consecutive exotropia in childhood,51,52 adduction deficits are more typically associated with consecutive exotropia in the adult population and require a specific surgical approach.53,54

Adults with a history of childhood strabismus often have a successful outcome from surgery later in life. Over 90% of adults treated with strabismus surgery demonstrate improvement in alignment or in binocular function, and as many as 25% achieve both after surgery in their adult years.5 In a study of 359 adults with longstanding strabismus, an absence of diplopia prior to strabismus surgery, and attainment of postoperative motor alignment within 8 prism diopters of orthophoria, 86% demonstrated postoperative binocularity based on testing with Bagolini lenses (striated lenses used to test for suppression and for normal or abnormal retinal correspondence).16,55 In another study of adults with a history of infantile esotropia and failure to obtain motor alignment by 2 years of age but who achieved motor alignment within 8 prism diopters of orthophoria as adults, all achieved peripheral fusion (Worth 4-Dot at near) and nearly half achieved 200 or more arc seconds of stereopsis.17 It is not always possible to predict which patients will acquire sensory fusion. However, patients with a history of congenital esotropia and a positive response to prism adaptation often demonstrate postoperative fusion along with good motor alignment.56 In a review of outcomes of strabismus surgery,
postoperative diplopia is a concern but, although transient diplopia after surgery is common, patients can be reassured that persistent diplopia after successful surgery occurs in 1% or fewer patients, even in those whose preoperative prism testing suggests that it may occur.

CARE PROCESS

PATIENT OUTCOME CRITERIA

Treatment in adult strabismus is goal directed, and targeted outcomes may include:

- Restoration of normal ocular alignment and appearance, and improved self-image
- Restoration of binocular function
- Reduction of diplopia (if present)
- Reduction of compensatory head position (if present)

DIAGNOSIS

History

- Ocular misalignment in an adult with a history of persistent or recurrent childhood strabismus.
- Strabismus angle and direction may be the same as original presentation in childhood or different as a result of aging of the extraocular muscles or the impact of prior strabismus surgery
- History of chronicity is important. An acute change or newly symptomatic diplopia may warrant evaluation for other causes such as cranial nerve palsy, thyroid eye disease (TED), or fixation switch diplopia. (See appropriate subsections of this PPP.) Formal neuro-ophthalmic evaluation may be indicated in some cases where presentation suggests other neurologic or systemic disease. An attempt should be made to acquire and review past clinical and surgical records as well as any prior imaging studies.

Examination

The examination should include the following elements:

- A careful review of the current optical correction (glasses) and the presence of any ground-in or overlay prism, and the impact that the current correction might have on alignment
- Manifest refraction to identify refractive barriers to binocular alignment or fusion
- Assessment of alignment by light reflex testing (e.g., Krimsky) to compare with cover test measurements and identification of abnormal angle kappa

P341
Dry manifest and cycloplegic refraction, which may reveal anisometropia or high hyperopia, providing clues to original ocular motor disturbance. Consideration should be given to changing the current correction, which might resolve strabismus.

Complete motility examination, including cover-uncover and alternate-cover testing as well as testing for binocular fusion and stereopsis. Strabismus patterns suggestive of cranial nerve palsy, skew deviation, or the presence of new-onset nystagmus, proptosis or inflammatory changes may indicate central nervous system or endocrine pathology (see sections on cranial nerve palsies, skew deviation and thyroid eye disease). These disorders can, of course, impact the population of patients with unrelated childhood strabismus and warrant further evaluation and potentially different treatment.

Inspection of the ocular surface for conjunctival scars (prior incision sites) and exposure of the thinned sclera behind anatomical insertions (evidence of likely muscle recession), because inspection can provide clues indicating details of prior extraocular muscle surgery.

Inspection of the interpalpebral fissures for evidence of possible prior vertical or horizontal rectus muscle resection (smaller interpalpebral fissure) or recession (larger interpalpebral fissure).

Prism testing to simulate the desired postsurgical alignment and the range of overcorrection and undercorrection comfortably tolerated and unlikely to result in diplopia. With adult strabismus originating in early childhood, however, the response to prism can be misleading owing to frequent coexistent anomalous retinal correspondence, which often changes postoperatively. Often a patient will have diplopia when the misalignment is corrected with prism but will rapidly readapt to the same correction when induced by surgery, resulting in a very low incidence of new longstanding postoperative diplopia.

Assessment for ocular torsion by sensory testing or by anatomic evidence of torsion noted during indirect ophthalmoscopy, particularly in patients with vertical strabismus. Fortunately, it is very rare for torsional diplopia to be problematic in adult patients with early childhood onset strabismus due to either suppression or torsional anomalous retinal correspondence, which nearly always readapts postoperatively.

Imaging, such as computed tomography (CT), magnetic resonance imaging (MRI), or orbital ultrasound may aid in localization of previously operated extraocular muscles, although nearly all these cases can be managed without imaging using careful preoperative and intraoperative assessment.
MANAGEMENT

Monitor/Observe
The patient should be monitored/observed if symptoms are mild, occasional, and well tolerated or if the patient is opposed to treatment.

Nonsurgical
For refractive error, consider whether alignment might be improved using all the information gained from dry and cycloplegic refraction, for example, by correction of hyperopia and appropriate bifocal or progressive lenses for adults approaching presbyopia. Reversal of monovision may be necessary and may resolve symptoms for some patients (see Section II.m. Fixation Switch Diplopia). The impact of this intervention can often be appraised in-office. Prisms to address some forms of diplopia and orthoptic exercises to address some forms of diplopia and asthenopia can also be considered in some cases.

Surgical
Correction of childhood strabismus in adults is generally surgical but, because a broad range of conditions may be responsible, the specifics of the surgical treatment will vary. However, there are often sequelae of previous surgery (such as underaction of a recessed muscle, restriction of a scarred muscle, or unsightly conjunctival scarring) that should be addressed to optimize the postoperative alignment. Many patients, particularly those with a history of infantile esotropia, have poor fusion along with accompanying sensory adaptations such as suppression and anomalous retinal correspondence. As adults, the majority readily adapt to the new ocular alignment resulting from strabismus surgery, although some may require more time to adapt to this change.

PROVIDER AND SETTING
Diagnosis and management of persistent or recurrent childhood strabismus require the training and clinical judgment of an experienced ophthalmologist. Working under the supervision of an ophthalmologist, orthoptists can be an asset in the examination, diagnosis, and nonsurgical management of adult strabismus. Surgical treatment of childhood-onset strabismus in adults is often challenging because of pre-existing surgical scarring, uncertainty about extraocular muscle attributes and location, possible limited fusional skills, and (in rare cases) impaired ability to adapt to new alignment.

COUNSELING AND REFERRAL
The ophthalmologist should discuss the findings, explain the disorder, provide a diagnosis, and discuss management options with the patient and any caregivers.
SECTION IIb. SENSORY STRABISMUS

INTRODUCTION

DISEASE DEFINITION

Sensory strabismus denotes an ocular misalignment in the setting of vision loss in one or both eyes. There are myriad causes of sensory strabismus, which include the following:

- Congenital structural ocular defects (i.e., optic nerve hypoplasia)
- Amblyopia from anisometropia or deprivation (i.e., pediatric cataract)
- Acquired vision loss from ophthalmic disease or trauma (e.g., glaucoma, retinal detachment, or optic atrophy)

PATIENT POPULATION

The patient population is adults with sensory strabismus.

CLINICAL OBJECTIVES

- Counsel the patient on the diagnosis and treatment options
- Provide goal-directed management of strabismus (reconstruction of ocular alignment and, in some cases, restoration of binocular function and reduction of diplopia)
- Inform the patient’s other health care providers about the diagnosis and treatment plan

BACKGROUND

PREVALENCE

About 7% of adults over the age of 60 who have been treated with strabismus surgery have sensory strabismus.7

NATURAL HISTORY

Loss of visual acuity in one or both eyes and loss of binocular function often results in compromised alignment. Whereas esotropia is more common in early childhood, later onset vision loss is more typically associated with exotropia. Sixty-nine percent of this population present with exotropia versus 31% who present with esotropia.58 Coexisting vertical misalignment is not uncommon.59,60
Rationale for Treatment

Although improvements in binocular function are uncommon after the surgical treatment of sensory strabismus, there are significant benefits to patients following ocular realignment. In esotropic patients, ocular realignment can yield improvement in peripheral vision and visual field expansion.\(^8\) Also, enhanced emotional health, self-esteem, employment opportunities, and social interactions have been well documented after the correction of sensory strabismus.\(^5,6,20-22,24-26\) Long-lasting improvement in sensory strabismus is common despite the lack of binocular potential in most patients.\(^23\)

Care Process

Patient Outcome Criteria

- Restoration of normal ocular alignment and appearance, with improved self-image
- Potential for improvement in other psychosocial domains

Diagnosis

History

A detailed medical and ocular history, including specific questions about patient symptoms and perception of ocular misalignment, may be helpful.

Examination

Complete sensorimotor examination should be performed, and misalignment should be measured by prism and alternate cover test, if possible. However, in the setting of significant vision loss, an estimation of binocular alignment is often best accomplished using the Krimsky, modified Krimsky, or Hirschberg tests at distance and near.\(^57\) Misalignment is appraised when the better sighted eye is fixated on an accommodative target, because that is often the angle that warrants repair with surgical intervention. If there is eccentric fixation with the poorer seeing eye, the prism and alternate cover test may be misleading. A modified Krimsky or Hirschberg test, using a muscle light at 1/3 meter, may better guide surgical management.

The presence of treatable causes of vision loss should be determined prior to strabismus surgery and treated as possible or appropriate. Sometimes this will improve the ability to maintain normal alignment as may occur after cataract extraction in a patient with a history of prior excellent binocular fusion. At other times, treatment may only increase symptoms of diplopia and patients may defer or delay this intervention in order to minimize diplopia awareness.
MANAGEMENT

Monitor/Observed

The patient should be monitored/observed if symptoms are mild, occasional, and well tolerated or if the patient is opposed to treatment.

Nonsurgical

Chemodenervation (botulinum toxin) can yield long-term improvement in ocular alignment in some cases.61

Surgical

Surgical treatment for sensory strabismus includes the complete realm of current strabismus surgical techniques, with some surgeons favoring the use of adjustable sutures.7 Patients with sensory strabismus may also suffer from asymmetric eyelid or globe position (i.e., ptosis, proptosis, enophthalmos, or exophthalmos). In some cases, these eyelid abnormalities may be iatrogenic and associated with prior orbital or retinal surgery or trauma. In such cases, use of large extraocular muscle recessions can also improve concomitant ptosis or enophthalmos via its effect on globe position within the orbit. Similarly, large extraocular resections can reduce proptosis and exophthalmos by repositioning the globe within the orbit. Such dual benefits can be particularly important to patients who may not have the means to afford elective oculoplastic surgery.62

PROVIDER AND SETTING

Diagnosis and management of sensory strabismus requires the training and clinical judgment of an experienced ophthalmologist. Working under the supervision of an ophthalmologist, orthoptists can be an asset with the examination and diagnosis of sensory adult strabismus.

COUNSELING AND REFERRAL

The ophthalmologist should discuss the findings, explain the disorder, provide diagnosis, and discuss management options with the patient and any caregivers. The risks of strabismus surgery in patients with sensory strabismus are like those of any patient undergoing strabismus surgery and include the remote risk of scleral perforation, new onset diplopia, and (in select cases) disruption of extraocular muscles or dislodging of orbital implants. (See Section Ilg. Iatrogenic Strabismus.)
SECTION IIc. CONVERGENCE INSUFFICIENCY

INTRODUCTION

DISEASE DEFINITION

Convergence insufficiency is a binocular disorder associated with eyestrain, headaches, blurred vision, horizontal diplopia, or a need to close one eye to avoid diplopia while reading or engaged in near activities. Difficulty concentrating, movement of print, and loss of comprehension after short periods of reading are described as well. It is also associated with exophoria or exotropia at near.

PATIENT POPULATION

The patient population is adults with convergence insufficiency.

CLINICAL OBJECTIVES

- Counsel the patient on the diagnosis and treatment options
- Provide goal-directed management of symptoms (reduction of asthenopia, improved reading, binocular vision, and/or reduction of diplopia)
- Communicate with the patient’s other health care providers on the diagnosis and treatment plan

BACKGROUND

INCIDENCE

Convergence insufficiency has an annual incidence of 8.4 per 100,000 people and represents 15.7% of new-onset adult strabismus cases. Though the median age of new-onset adult cases is 69 years old, some adults present after decompensation of convergence insufficiency that began earlier in life.

RISK FACTORS

A history of concussion, recurrent sub-concussive events, and certain central nervous system disorders such as Parkinson’s disease are associated with convergence insufficiency.

NATURAL HISTORY

In general, convergence insufficiency does not improve, but symptoms may vary as demands for near work change over time. Cases of convergence insufficiency secondary to concussion may improve over time.
RATIONALE FOR TREATMENT

Treatment for convergence insufficiency is offered to ameliorate asthenopia and intermittent diplopia at near and to enhance ability to perform activities requiring binocularity at near.

CARE PROCESS

PATIENT OUTCOME CRITERIA

Treatment of convergence insufficiency in adult strabismus is symptom directed, and targeted outcomes may include the following:

• Resolution of asthenopia or increasing comfort with reading and near work
• Control of diplopia at near
• Improvement in binocular function at near

DIAGNOSIS

The diagnosis of a patient with convergence insufficiency includes a comprehensive examination of adult strabismus patient and the following:

• Detailed sensorimotor evaluation
• Assessment of refractive status
• Dilated fundus exam

History

A detailed medical history should include information/medical records on prior ocular surgery and diseases or trauma to the central nervous system. Assessment and quantification of patient symptoms can be achieved using the Convergence Insufficiency Symptom Survey and/or the Diplopia Questionnaire. 69

Examination

A sensorimotor exam in the presence of convergence insufficiency demonstrates the following: 64,70,71

• Exophoria greater at near than distance
• Insufficient positive fusional vergence at near (<20 PD mean positive fusional vergence blur or failing Sheards’ criterion; mean positive fusional vergence measured less than twice the near phoria magnitude)
• Distant near point convergence (> 6 cm)

It should always be verified that the optical correction is appropriate for near activities.
MANAGEMENT

Monitor/Observation

The patient should be monitored/observed if symptoms are mild, occasional, and not bothering the patient or if the patient is opposed to treatment.

Nonsurgical

Convergence orthoptic exercises are often helpful. Office-based training appears to be more effective than home-based exercises in children. However, in young adults (19–30 years old) office-based training was found to be more effective than home-based training at improving positive fusional vergence but not near point of convergence or patient symptoms. In general, results of convergence training are less consistent in the adult population than in children. Nonsurgical treatment can also include prism reading glasses.

Surgical

Strabismus surgery may be helpful in some cases, particularly when a manifest distance deviation is present, symptoms are consistent, and prism reading glasses are not satisfactory. Lateral rectus recession (based on distance deviation) and/or medial rectus resection (based on near deviation) have been reported to be successful for surgical management, although other options (including chemodenervation, slanting insertions and augmentation of lateral rectus resections) have been studied and have possible advantages in certain populations.

PROVIDER AND SETTING

Diagnosis and management of convergence insufficiency requires the training, clinical judgment, and experience of an ophthalmologist familiar with this diagnosis, and treatment may benefit from the assistance of an orthoptist or an optometrist.

COUNSELING AND REFERRAL

The ophthalmologist should discuss the findings, explain the disorder, provide a diagnosis, and discuss management options with the patient and any caregivers.
SECTION IIId. ACQUIRED STRABISMUS RELATED TO AGING AND MYOPIA

INTRODUCTION

DISEASE DEFINITION

Acquired strabismus related to aging and myopia focuses on forms of strabismus typically associated with aging of the extraocular muscle and pulley complex and with exacerbation of this in the myopic eye—divergence insufficiency, sagging eye syndrome, and strabismus fixus (“heavy eye”).

Divergence Insufficiency

Divergence insufficiency is characterized by an esotropia that increases with distance fixation and may also be known as age-related distance esotropia. Patients present with an acquired comitant esotropia that is at least 10 prism diopters larger at distance than at near and complain about progressive or subacute-onset double vision at distance (e.g., while driving or watching television). They rarely have diplopia at near. Primary divergence insufficiency may be associated with decompensation of a long-standing esodeviation, loss of fusion, or mechanical changes to the extraocular muscles. Secondary divergence insufficiency is associated with neurological disease and typically caused by a lesion to a supranuclear divergence center, subtle sixth nerve palsy, neurologic abnormality associated with pontine tumors, or head trauma. (See Section IIi. Abducens Palsy.)

Sagging Eye Syndrome

Some cases of divergence insufficiency may be seen in association with an age-related degeneration of the lateral rectus-superior rectus (SR-LR) connective tissue band known as sagging eye syndrome. This band typically maintains a fixed distance between the lateral rectus and the superior rectus as they course posteriorly, but age or other degeneration can result in a medial shift of the superior rectus and an inferior shift of the lateral rectus due to failure of this connective tissue band. As the lateral rectus sags downward, abduction becomes impaired and esotropia results. The esotropia is often greater at distance than at near. This downward shift of the lateral rectus muscle may be responsible for an often-associated small-angle hypotropia, although other extraocular muscle and pulley abnormalities have been reported in addition to the inferior sagging of the lateral rectus and the disruption of the SR-LR band.

Sagging eye syndrome also shares some imaging characteristics with myopic strabismus fixus; however, myopic strabismus fixus results in more extreme displacement of the lateral rectus, nasal displacement of the superior rectus muscle, and superotemporal prolapse of the globe.
Strabismus Fixus (“Heavy Eye Syndrome”)

Strabismus fixus is progressive large-angle esotropia and hypotropia with a limitation in ocular rotation in patients with longstanding pathological high myopia. As a result of the increased axial length, there is development of a staphyloma or a staphylomatous-like change in globe dimensions that results in rupture of the SR-LR band. An inferior shift of the lateral rectus muscle\(^83\) and a nasal shift of the superior rectus muscles ensue.\(^84\)\(^85\)\(^86\)\(^87\) Globe dislocation (prolapse) into the superotemporal orbit and outside the confines defined by the lateral rectus and superior rectus occurs. Ocular rotations in myopic strabismus fixus are much more severely altered than in sagging eye syndrome; there is a component of mechanical restriction not seen in sagging eye syndrome, likely secondary to secondary medial rectus contracture as well as globe prolapse into the superotemporal orbit. Not all cases of axial high axial myopic result in strabismus fixus. In some cases the globe elongation is axial only, superotemporal globe dislocation does not occur, and the patient may be treated as if he or she has classic divergence insufficiency.\(^86\)

PATIENT POPULATION

The patient population is adults with divergence insufficiency, sagging eye syndrome, or strabismus fixus.

CLINICAL OBJECTIVES

- Counsel the patient on the diagnosis and treatment options
- Provide goal-directed management of strabismus (restoration of binocularity and control of diplopia and, when severe, reconstruction of normal appearing alignment, improved eye contact, and self-image)
- Communicate with the patient’s other health care providers about the diagnosis and treatment plan

BACKGROUND

PREVALENCE AND RISK FACTORS

Divergence Insufficiency

The annual incidence of 6.0 per 100,000 people represents 10.6% of new-onset adult strabismus cases.\(^63\) The median age of presentation is 74 years.\(^63\) Divergence insufficiency typically presents after 50 years of age, and it frequency increases with age.\(^63\)

Sagging Eye

The prevalence of sagging eye syndrome as a distinct variant of divergence insufficiency is unknown because the clinical description is relatively new, and not all practitioners distinguish this entity from the
more general descriptor, divergence insufficiency. Sagging eye occurs more frequently in myopic patients, and the most common age of participants in research studies is 66 to 69.81,88,89

Strabismus Fixus or “Heavy Eye”

The prevalence globally is unknown but has been estimated to be 2.65% among high myopes in Japan.90 Progressive strabismus fixus is most often associated with middle or older age, with less severe divergence insufficiency predating this progression.91,92 Severe myopia with an axial length of more than 27mm is characteristic.83,84,87

NATURAL HISTORY

The strabismus and diplopia caused by divergence insufficiency, sagging eye syndrome, and strabismus fixus will not resolve spontaneously. Strabismus fixus is often the most progressive in severity.86,92

RATIONALE FOR TREATMENT

Diplopia, the inability to make eye contact, and severe ocular misalignment preventing proper eye examinations or other needed ophthalmic surgery (in the case of strabismus fixus) warrant treatment.

CARE PROCESS

PATIENT OUTCOME CRITERIA

Treatment of adult strabismus is symptom directed, and targeted outcomes may include:

- Reduction of diplopia
- Improving/returning binocular vision
- Reconstruction of ocular alignment
- Reduction of compensatory head position (if present)

DIAGNOSIS

History

Patients present with a history of subacute onset of binocular diplopia from esotropia, worse at distance, and sometimes associated with modest vertical misalignment. This group of disorders is progressive, and may begin to impact alignment at near. Detailed medical history should include the use of prism correction in glasses.91 Symptoms first become apparent with distant fixation (e.g., while driving) and most commonly after age 50 years for classic divergence insufficiency 63. Symptoms are similar for sagging eye syndrome, with associated small-angle vertical and torsional diplopia at times; presentation with sagging eye syndrome is more common in the seventh decade of life or older. Associated changes of blepharoptosis
Treatment or other
Diplopia, will not resolve spontaneously. The strabismus and diplopia caused by divergence insufficiency, sagging eye syndrome with associated small after age 50 years in glass may begin to impact alignment at near. Patients present with a history of
Reduction
Reconstruction of ocular alignment
Improving/returning binocular vision
Reduction of
caracteristic
Progressive strabismus fixus is most often associated with middle or older age, with
The p and the m.
more gene
revalence
of
adult strabismus is symptom
inability to make eye contact, and severe ocular misalignment preventing proper e.
Symptoms first.
Sympomatic
progression
become
ap
is more common in the seventh decade of life o

t is 66

is 93

83,84,87

slopes

Sagging eye o

occurs
an

will be

2.65%

is

69

is

81,88,89

includ

inpatients with myopic strabismus fixus there may be limited rotations and measurements can be obtained only with the modified prisms light reflex (Krimsky) test. High-resolution orbital imaging is useful for evaluation of patients with likely sagging eye or myopic strabismus fixus to look for evidence of disruption of the LR-SR band. This characteristic is best seen on coronal T1-weighted images obtained without fat suppression. The lateral rectus sags downward,

Examination

Divergence Insufficiency

• More esotropia at distance than at near (usually 10 prism diopters or more)
• Similar esotropia in right and left gaze in the absence of pontine or other neurological pathology or significant abduction nystagmus
• No limitation on forced duction under anesthesia

Sagging Eye Syndrome

• Esotropia, often greater at distance, and sometimes accompanied by a small vertical deviation and cyclotropia
• Deviations are nearly comitant, except for possible distance-near disparity
• Mild to no limitation of ocular rotation
• Associated changes of blepharoptosis (29%), deep superior lid sulcus defect (64%) with a previous history of blepharoplasty, brow lift, or facelift surgery in some cases

Strabismus Fixus

• Severe myopia, typically -8.00 diopters or more but often much greater
• Axial length of more than 27 mm
• Large-angle ocular deviation of esotropia with or without hypotropia
• Limitation of ocular rotations such as abduction or elevation
• An SR-LR dislocation angle of 121° ± 7° (measuring the angle between the centroids of the superior rectus muscle and lateral rectus muscle on quasicoronal imaging)

A complete ocular motility examination for these syndromes should include cover testing at near and distance in primary and secondary gaze positions and evaluation of torsion for patients with vertical misalignment. In patients with myopic strabismus fixus there may be limited rotations and measurements can be obtained only with the modified prisms light reflex (Krimsky) test.
creating a large angle between the lateral rectus and superior rectus (typically 104° ± 11) for patients with sagging eye syndrome. There is fat prolapse within this potential space.

In contrast, for patients with myopic strabismus fixus ("heavy eye syndrome") the angle between the lateral rectus and the superior rectus is much larger (described as 121° ± 7°) and there is frank prolapse of the globe within this space. The globe itself demonstrates axial elongation and often posterior enlargement.

Brain imaging and further neurologic workup is indicated if the patient presents with significant abduction nystagmus and lateral incomitance suggesting the alternative diagnosis of sixth nerve palsy, or with signs or symptoms of elevated intracranial pressure such as headache and papilledema or other neurologic decline which may result in 6th nerve palsy. (See Chapter IIj)

Conditions resembling myopic strabismus fixus and presenting with restrictive esotropia with or without hypertropia include orbital trauma, chronic complete 6th nerve palsy, thyroid eye disease and acquired fibrosis of the extraocular muscles but are readily distinguished based on history and characteristic orbital imaging.

MANAGEMENT

Divergence Insufficiency

Monitor/Observ

The patient should be monitored/observed if symptoms are mild and occasional or if the patient is opposed to treatment.

Nonsurgical

Fresnel or ground-in prisms can be temporary (prior to surgical correction) or long-term treatment options. Patients should be counseled that the magnitude of prism correction needed to control diplopia may increase over time and that the ability to control the diplopia when glasses are not used will likely decline. There is little evidence to support the use of fusional exercise for the treatment of divergence insufficiency. In fact, previous studies have reported no benefit.

Surgical

Lateral rectus resection as well as medial rectus recession have proven successful at resolving divergence insufficiency esotropia. Surgery can be performed bilaterally or unilaterally.
Typically, a greater surgical dose (than indicated in the standard tables) is needed for this type of esotropia. Therefore, some surgeons find adjustable sutures very useful with a target angle of a 2 to 4 prism diopters of exophoria in the distance.

It is useful to check convergence amplitudes at near prior to surgery. The presence of robust convergence amplitudes at near generally protects the patient from developing postoperative diplopia with convergence insufficiency at near.

Sagging Eye Syndrome

Monitor/Observe
The patient should be monitored/observed if symptoms are mild and occasional or if the patient is opposed to treatment.

Nonsurgical
Fresnel or ground-in prisms are helpful for patients with new-onset deviation, intermittent or constant and small in angle.

Surgical
Surgical prognosis for this group of patients is quite favorable and can be addressed using a variety of techniques, including marginal insertional tenotomies, recessions, resections, and plications. Surgical resolution or reduction of diplopia has been particularly beneficial for patients who don’t otherwise need glasses for distance vision. As described for patients with divergence insufficiency unrelated to sagging eye syndrome, more than typical recession of the medial rectus muscles is usually needed.

Strabismus Fixus

Monitor/Observe
The patient should be monitored/observed if he or she is opposed to treatment.

Nonsurgical
Prisms are not typically an option to correct the baseline strabismus but may be used postoperatively in patients with residual deviation.

Surgical
In general, surgery is the only alternative to correct the large-angle esotropia and frequent hypotropia and to normalize ocular rotations. Referral to a retina specialist for preoperative evaluation should be considered to ensure that progressive myopic degeneration is not associated with active retinal
Adult Strabismus PPP

pathology requiring treatment prior to strabismus surgery. Measuring the angle between the SR muscle and LR muscle (dislocation angle) is helpful in determining the severity of the disease and for planning the surgery. A forced duction test to determine if limitation to ocular rotation is the result of a medial rectus muscle restriction or, more rarely, an orbital mechanical restriction resulting from the increased axial length and adjacency of the globe to the lateral orbital wall should be performed at the onset of surgery. If the forced duction test confirms restriction to abducting rotation, the medial rectus muscle should be recessed. However, some orbital mechanical restriction may be present even after medial rectus recession. In such cases, restriction to abduction may persist, limiting the outcome of the surgery. Medial rectus recession is typically accompanied by one of several muscle union procedures that join the superior rectus to the lateral rectus to reposition the muscle paths. The classical approach is the Yokoyama procedure, a vessel-sparing suture union of the superior rectus and lateral rectus 15 mm posterior to their insertions, typically accompanied by a medial rectus recession. Many variants have been described, including union by a silicone sleeve and the use of a three-suture lateral rectus-superior rectus union to successfully reduce more extreme degrees of esotropia.

In some cases of very high axial myopia and esotropia, prolapse of the globe beyond the confines of the superior and lateral rectus may not be present. Such cases can be surgically managed like sagging syndrome or basic divergence insufficiency and do not typically require loop myopexy to resolve misalignment and diplopia.

PROVIDER AND SETTING

Diagnosis and management of divergence insufficiency and associated sagging eye syndrome and myopic strabismus fixus benefit from the training and clinical judgment of an experienced ophthalmologist. Working under the supervision of an ophthalmologist, orthoptists can be an asset in the examination, diagnosis, and nonsurgical management when appropriate.

COUNSELING AND REFERRAL

Divergence Insufficiency/Sagging Eye Syndrome

Magnetic resonance imaging and referral for central nervous system evaluation should be considered if other signs, such as abduction nystagmus, papilledema, or neurologic decline, are present.

Strabismus Fixus

Magnetic resonance imaging is often helpful in confirming the diagnosis of strabismus fixus. Referral to a retina specialist for preoperative evaluation should be considered to ensure that progressive myopic degeneration is not associated with active retinal pathology that, untreated, might increase risk of post-

P356
operative retinal tear or detachment. Exposure keratopathy should be monitored and treated in cases of
associated exophthalmos sometimes seen with high axial myopia or referred to an oculoplastic specialist for
more definitive care. The ophthalmologist should discuss the findings, explain the disorder, provide a
diagnosis, and discuss management options with the patient and any caregivers.
SECTION IIc. THYROID EYE DISEASE

INTRODUCTION

DISEASE DEFINITION

Thyroid eye disease is an autoimmune disorder characterized by congestion and inflammation of the orbit and surrounding tissues.103 Typical ocular findings include soft tissue congestion with enlargement of the preseptal fat pads, eyelid retraction, exophthalmos, restrictive extraocular myopathy, and optic neuropathy.104 Vision can be compromised from corneal exposure or optic neuropathy or as a result of development of diplopia secondary to congestive and restrictive extraocular muscle myopathy.

PATIENT POPULATION

The patient population is adults with strabismus and thyroid eye disease.

CLINICAL OBJECTIVES

- Counsel the patient on the diagnosis and treatment options
- Carefully monitor patients at risk for vision loss secondary to compressive optic neuropathy due to crowding at the orbital apex or severe exposure keratopathy from eyelid retraction with or without exophthalmos
- Manage binocular diplopia, compensatory head posture, and sometimes associated elevation in IOP
- Refer to an orbital specialist if the patient experiences vision-threatening disease, moderate-to-severe exophthalmos and/or significant orbital pain related to thyroid eye disease
- Inform the patient’s other health care providers about the diagnosis and work collaboratively on the treatment plan

BACKGROUND

INCIDENCE

The incidence of TED in an adult Caucasian population is 16 per 100,000 per year in women and 2.9 per 100,000 per year in men.105

RISK FACTORS

Thyroid eye disease can occur at any age, but onset is most often in the fourth to fifth decade of life.106 There is a predilection for TED among women (8:1).107 Risk of TED causing restrictive strabismus increases with
Thyroid eye disease is an autoimmune disorder characterized by congestion and inflammation of the orbit and surrounding tissues. Typical ocular findings include soft tissue congestion with enlargement of the preseptal fat pads, eyelid retraction, exophthalmos, restrictive extraocular myopathy, and optic neuropathy. Vision can be compromised from corneal exposure or optic neuropathy or as a result of development of diplopia secondary to congestive and restrictive extraocular muscle myopathy. The patient population is adults with strabismus and thyroid eye disease.

- Counsel the patient on the diagnosis and treatment options
- Carefully monitor patients at risk for vision loss secondary to compressive optic neuropathy due to crowding at the orbital apex or severe exposure keratopathy from eyelid retraction with or without exophthalmos
- Manage binocular diplopia, compensatory head posture, and sometimes associated elevation in IOP
- Refer to an orbital specialist if the patient experiences vision-threatening disease, moderate-to-severe exophthalmos and/or significant orbital pain related to thyroid eye disease
- Inform the patient’s other health care providers about the diagnosis and work collaboratively on the treatment plan

The incidence of TED in an adult Caucasian population is 16 per 100,000 per year in women and 2.9 per 100,000 per year in men. Thyroid eye disease can occur at any age, but onset is most often in the fourth to fifth decade of life. There is a predilection for TED among women (8:1). Risk of TED causing restrictive strabismus increases with age. Smoking, diseases resulting in reduced oxygen saturation (such as emphysema), and exposure to ionizing radiation increase the risk for and severity of orbitopathy. A history of prior orbital decompression is associated with an increased risk of strabismus, an association that worsens with age. Radioactive iodine treatment, high anti-thyroid antibody titer and serum vitamin D deficiency are independent risk factors for developing TED.

NATURAL HISTORY
Between 30% and 50% of patients with TED develop restrictive myopathy. Ocular motility is restricted initially by inflammatory edema and later by fibrosis. The most frequently affected muscle in TED is the inferior rectus, followed by the medial rectus, although more global extraocular muscle involvement is common.

RATIONALE FOR TREATMENT
Motility impairment causing diplopia and compensatory head posture is a frequent manifestation of TED. This impacts visual function, affects quality of life, and can have profound socioeconomic consequences.

CARE PROCESS
PATIENT OUTCOME CRITERIA
Treatment of thyroid eye disease is symptom directed, and targeted outcomes may include the following:
- Recognition and prevention of primary vision loss due to optic neuropathy, exposure keratopathy, and elevation in intraocular pressure (IOP)
- Restoration of ocular alignment
- Reduction of diplopia
- Improvement of compensatory head position

The goal of the strabismus surgeon is to re-establish single binocular vision in primary gaze and reading position and a substantial usable field of single binocular vision.

DIAGNOSIS
History
A detailed medical and ocular history should include specific questions about weight gain or loss, tachycardia, and unexplained fatigue potentially secondary to hyperthyroidism or hypothyroidism. Strabismus is likely to be associated with diplopia and, in some cases, a compensatory head posture (i.e.,
ocular torticollis, often a chin-up position in this population). Because the incidence of myasthenia is increased in patients with TED, assessment for the coexistence of myasthenia is suggested if indicated by findings on clinical examination.

Examination

The examination should include a full sensorimotor examination, noting evidence of mechanical restriction. Forced ductions can confirm restriction but classic features, such as fixation duress (brow elevation and augmentation of eyelid retraction on attempted ocular elevation), may confirm the restrictive nature of the associated strabismus. Hypotropia of the affected eye(s) with esotropia is the most frequent deviation owing to involvement of the inferior and medial rectus muscles, although other rectus muscles are commonly involved, resulting in other strabismus patterns. More global extraocular muscle involvement may be apparent on orbital imaging or with forced duction testing.117,118

The examination should also include the following elements:

- Binocular field testing to map the region of single binocular vision. Duction deficits can be measured and monitored using uniconical fields of fixation.
- Measurement of the exophthalmos by exophthalmometer, which is important diagnostically and to follow clinical course.
- Surveillance for optic neuropathy, paying close attention to acuity, color vision, visual fields, pupillary exam, and fundus exam (for disc edema or optic atrophy).
- Ocular coherence tomography and Humphrey visual fields, which provide ancillary information and are used to screen for or monitor possible associated compressive optic neuropathy.

Screening and management of possible associated optic neuropathy may fall within the expertise of the co-managing orbital specialist, e.g. neuro-ophthalmologist or oculoplastic surgeon.

Orbital CT or MRI can be performed to confirm the diagnosis and evaluate the size of the extraocular muscles and the volume of orbital fat. Imaging features include tendon-sparing enlargement of one or more of the extraocular muscles and proptosis. Muscle involvement and proptosis are often bilateral but frequently asymmetric.118 Imaging may also help determine whether the superior oblique is involved and demonstrate the degree of orbital apex crowding. The size of the rectus muscles as measured by CT does not however directly correlate with the degree of muscle dysfunction.119

Thyroid function and associated immune studies may be ordered, although this is typically handled by the associated primary care or endocrinology specialist; patients may be hyperthyroid, hypothyroid, or euthyroid at the time of presentation with TED.120
MANAGEMENT

Ocular lubricants are almost always needed to combat exposure related to eyelid retraction and proptosis. Punctal plugs can also be useful. Patients should be counseled to cease smoking.107

Selenium supplementation in patients with selenium deficiency has been shown to reduce some inflammatory symptoms in patients with milder TED,121 perhaps in part through an antioxidant effect.122 It does not impact control of hyperthyroidism in populations, at least in populations that are not selenium deficient.123 Treatment with teprotumamab, a human monoclonal antibody inhibitor of IGF-IR demonstrated to attenuate the actions of IGF-I, thyrotropin, thyroid-stimulating immunoglobulins, and immunoglobulins in patients with Graves’ disease reduces proptosis and the clinical activity score of disease in many with active disease.124

Orbital decompression, high-dose steroids, or radiation treatment should be considered, as indicated, for severe proptosis or optic neuropathy.125 In patients with concurrent proptosis and significant strabismus, the predictable worsening of proptosis following recession of fibrotic muscles may warrant consultation with an orbital specialist to consider orbital decompression surgery prior to strabismus surgery. If orbital decompression is indicated, strabismus repair should be delayed until after the decompression because new onset or exacerbated strabismus may result.126-128 Shift of the extraocular muscles and the globe into newly available space, or, in some cases, disinsertion and reinsertion of the inferior oblique muscle to improve exposure, can significantly impact alignment.129-131 There is some evidence that preserving the orbital strut may diminish the risk of new-onset strabismus.126,132

Observation133

Patients can be observed if there is no diplopia in primary gaze or reading position and should be observed if the angle of strabismus is not yet stable. Observation is also necessary if the patient requires orbital decompression surgery, as this procedure often changes ocular alignment.134,135

Nonsurgical

Fresnel or ground-in prism can provide temporary relief from diplopia while awaiting definitive treatment or may be suitable for modest residual deviation after surgical correction.107 Chemodenervation during the active phase of the disease is advocated by some for temporary relief of diplopia. Its use may favorably reduce the misalignment left after the initial inflammatory stage of the disease.136-139

Surgical

Surgery is required in most patients with persistent diplopia in primary or reading positions of gaze. This is usually undertaken when the inflammatory stage has subsided and the angle of deviation has been stable for at least 6 months,118,140 but earlier surgery in select patients can also have satisfactory outcomes and shorten the period of disability.141 Quiescence is usually determined on clinical grounds.142 Less frequently, MRI
sequences T2, FSE or fast spin echo, postcontrast T1 (T1Gad) signal intensity ratios and normalized-apparent diffusion coefficient (n-ADC)143 and water content on STIR (Short TI Inversion Recovery) sequences may be used to determine if the disease has become quiescent.144

Recessions of the restricted muscles are the mainstay of surgical correction. Resection is generally avoided in restrictive disease out of concern for further reducing ductions;118 but can be a useful adjunct in select cases,145 particularly when extremely large recessions have not fully corrected the alignment.

The rectus muscles of the thyroid patient can be severely tight. Thyroid eye disease is the most commonly identified risk factor for development of “pulled in two syndrome,”146 an unplanned horizontal transection of a rectus muscle that seems to spontaneously occur while it is hooked during surgery. Because this transection takes place typically 4 to 9 mm or further from the anatomical insertion, recovery of the already taught distal end can prove quite challenging.146 Care should be taken during surgery to avoid this complication.

Surgery for horizontal deviations is more successful than surgery for vertical strabismus (84\% vs. 66\% success after the primary surgery).140 Because the orbitopathy often affects the inferior rectus muscle, vertical deviations are more common.147 Recession of the inferior rectus muscle is frequently complicated by consecutive hypertropia, in part, because of suboptimal contact of the recessed muscle with the globe,148 ipsilateral superior rectus involvement,149-151 or imbalanced contralateral disease.152,153 Use of the Kushner semi-adjustable suture technique may help minimize unanticipated muscle drift,150 as may intentional undercorrection of the inferior rectus recession117 with the use of adjustable sutures,154 wider spreading of the muscle to prevent sagging of the center of the insertion over time,151 and the use of permanent polyester sutures. Large bilateral inferior rectus recession may result in an A-pattern with unanticipated exotropia in downgaze as well as intorsion. This occurs because the superior oblique becomes the dominant infraductor;107,112 and may be exacerbated by primary involvement of the superior oblique muscle in the disease process.155 Because managing vertical deviations in TED is complex, a step-by-step approach appraising preoperative and intraoperative forced ductions of all extraocular muscles and attention to preoperative and intraoperative ocular torsion may significantly minimize the risk of an undesired postoperative result.151,155 Recession of the inferior rectus muscle, even with careful dissection from the lower lid retractors, may result in lower lid retraction. Releasing restriction with recession of rectus muscles may result in increased proptosis of the globe.156 Preoperative counseling with the patient and communication with the treating orbital surgeon are important in this regard. Recession of tenon’s capsule from overlying conjunctiva may augment the effect of rectus muscle recession and in turn improve postoperative ductions and the range of single binocular vision in select cases.157,158
Surgeons generally prefer an absorbable suture (6–0 polyglactin) for isolating the muscle and reattaching it to the globe. Some surgeons favor non-absorbable sutures for large recessions of the inferior rectus muscle because they may reduce the risk of postoperative overcorrection. The role of adjustable suture surgery in TED remains controversial. Some surgeons claim more successful results, whereas others never use the technique because of concern over possible overcorrection and/or muscle slippage. Some surgeons advocate a “relaxed muscle positioning technique” where the muscles are recessed to a position where they rest freely on the globe without tension. In patients with concurrent proptosis and significant strabismus, the predictable worsening of proptosis following recession of fibrotic muscles may warrant consultation with an orbital specialist for orbital decompression surgery prior to strabismus surgery.

PROVIDER AND SETTING
Diagnosis and management of strabismus in a patient with TED requires the training and clinical judgment of an experienced ophthalmologist comfortable with very complex strabismus and managing severe restrictive disease. Working under the supervision of an ophthalmologist, orthoptists can be an asset with the examination, diagnosis, and nonsurgical management of TED.

COUNSELING AND REFERRAL
A multidisciplinary approach to TED treatment is recommended, combining the expertise of endocrinology, oculoplastics, and neuro-ophthalmology as indicated. The ophthalmologist should discuss the findings, explain the disorder, provide diagnosis, and discuss management options with the patient and any caregivers.
SECTION IIIf. STRABISMUS AFTER ORBITAL TRAUMA

INTRODUCTION

DISEASE DEFINITION

Strabismus after orbital trauma is common and may be present along with other ophthalmic, medical, and surgical conditions. Although all life-threatening and vision-threatening conditions need to be addressed before treating strabismus, the presence and pattern of ocular misalignment may indicate other orbital or central nervous system trauma guiding primary triage, imaging, and treatment.

Determining the cause of diplopia after orbital trauma requires a detailed history, examination, and, often, imaging. The etiology of the strabismus may be multifactorial, including direct damage to the extraocular muscles and surrounding orbital structures or contemporaneous trauma to the central nervous system. Rectus or oblique muscle avulsion, partial or complete “loss,” flap tear, hemorrhage, edema, or paresis may occur in addition to orbital hemorrhage or edema, soft tissue swelling, and fracture of orbital bones, with and without entrapment of muscle, fat, or muscle pulleys. Cranial neuropathies, disorders of accommodation or convergence, disruption of fusion, fusional amplitudes, saccades and smooth pursuit, decompensation of previous heterophoria, and other supranuclear defects may result in diplopia.

Diplopia is very common after orbital trauma and reported to occur in 58% to 68% of blowout fractures. Strabismus surgery was required in 7% to 24% of cases in two series of patients with orbital floor fractures. Less commonly, strabismus can occur iatrogenically after sinus surgery or other periocular surgeries, including surgery to the eyelids (See Section IIg Strabismus Associated With Other Ophthalmic Surgery).

PATIENT POPULATION

The patient population is adults with strabismus following orbital trauma.

CLINICAL OBJECTIVES

- Counsel the patient on the diagnosis and treatment options
- Provide goal-directed management of strabismus (reconstructive restoration of binocular vision, or treatment of diplopia or compensatory head posture)
- Inform the patient’s other health care providers of the diagnosis and treatment plan.
BACKGROUND

PREVALENCE AND RISK FACTORS

In self-reported population studies, the incidence of trauma in adults ranged from 1.7% to 19.8%. In all of these studies, younger age and male sex were identified as risk factors.

NATURAL HISTORY

Diplopia may be transient following ocular trauma, but if it has not resolved within 6 months it is unlikely that it will resolve on its own.

RATIONALE FOR TREATMENT

Diplopia, loss of binocular vision, compensatory head position, and inability to make eye contact all warrant treatment.

CARE PROCESS

DIAGNOSIS

History

A detailed medical and ocular history, including specific questions about symptoms of diplopia, vision loss, and details on the nature and timing of the trauma are helpful.

Examination

A thorough examination should include vision testing, refraction (if possible), pupillary examination, IOP measurement, confrontational visual field testing, slit-lamp examination, a dilated (if safe) or undilated fundus examination (with attention to any torsion), testing of facial sensation, and exophthalmometry. The goal of the primary examination is to rule out any globe injury or sight-threatening injury. Patients with orbital or cranial trauma may also have decreased vision (secondary to corneal scars, traumatic cataract, optic neuropathy, or other damage to the retina or other ocular structures) or decreased visual fields. Care should be taken to note these limitations, as it may help guide test selection during the examination.

A detailed sensorimotor exam should be performed, with attention to versions, ductions, saccades, pursuit, vergence, and near reflex, along with alignment in multiple gaze positions with attention to primary and secondary deviations. Forced duction and forced generation testing may help distinguish restriction from paresis of the extraocular muscles. Double Maddox rod, Lancaster red-green, Hess screen, or synoptophore (especially if there is concern for disrupted central fusion) may also be helpful.
Vital signs looking for any bradycardia or heart block, along with symptoms of dizziness, nausea, vomiting, or loss of consciousness in a patient with orbital trauma may indicate an entrapped muscle causing the oculocardiac reflex.180 This can be life threatening and usually requires medical and surgical treatment.

Imaging studies are frequently indicated. Computed tomography rather than MRI is required if there is any concern about a possible ferrous-metallic foreign body and often provides sufficient information about the presence of orbital fracture and entrapment. Magnetic resonance imaging provides more precise imaging of the extraocular muscles and surrounding tissues, including the pulley system, and reduces radiation exposure. It can sometimes be performed dynamically and provides additional useful information for planning an intervention.181-184 Occasionally, patients with atypical strabismus demonstrate occult fractures absent a history of trauma recalled by the patient.185

MANAGEMENT

General Guidelines

All life-threatening and vision-threatening conditions need to be treated before the strabismus. In one series of 379 patients who underwent surgical repair of facial fractures, 5.5% had complete loss of vision in one eye and 0.8% had complete loss of vision in both eyes.186 Another series of blowout fractures demonstrated serious ocular injury in 24% of cases.187

Timing of surgical repair of orbital fractures has been debated.168,169 Current recommendations for timing of repair of isolated orbital floor fractures are as follows:188

- Immediate repair:
 - Immediate repair is indicated for patients with CT evidence of an entrapped muscle or periorbital tissue associated with a nonresolving oculocardiac reflex
 - “White-eyed blow-out fracture”189, a form of trap-door fracture with muscle entrapment and oculocardiac reflex (seen in children) requires urgent repair as well.
 - Globe subluxation into the maxillary sinus, a rare occurrence, demands immediate surgical repair.190,191

- Repair within 2 weeks:
 - Symptomatic diplopia with positive forced ductions or entrapment on CT and minimal improvement over time is best repaired within about 2 weeks. Significant fat or periorbital tissue entrapment can also result in permanent strabismus in the absence of muscle entrapment.192
 - Large floor fractures, hypoglobus, and progressive infraorbital hypoesthesia are also best addressed within about 2 weeks.
 - Early enophthalmos or hypoglobus causing facial asymmetry will not resolve and are best addressed within about 2 weeks.
• Delayed Repair:
 o Restrictive strabismus and unresolved enophthalmos may benefit from delayed repair

• Observation:
 o Observation may be considered in cases of minimal diplopia (not in primary or downgaze), and good ocular motility without significant enophthalmos or hypoglobus.

Guidelines for Treating Strabismus
Even with repair or observation of orbital fractures, strabismus and diplopia can persist. In a series of 54 patients who underwent repair of orbital blowout fractures, 86% had had diplopia preoperatively and 37% postoperatively.193

Monitor/Observed
Some forms of strabismus after orbital trauma will improve with time, and watchful waiting is often a reasonable approach. A short burst of oral steroids can hasten recovery and uncover strabismus that will persist despite resolution of orbital edema/hematoma.

Nonsurgical
In the absence of muscle entrapment, waiting 4 to 6 months after orbital trauma is advised because strabismus may resolve on its own unless substantial fat and orbital pulley entrapment suggests benefit in earlier repair.194 Conservative treatment such as occlusion, filters, Fresnel prisms, and prism glasses may provide temporary or permanent relief of diplopia.

Surgical
For patients who do not meet the criteria for early surgical intervention, waiting 4 to 6 months after the injury is advised to ensure stability of the misalignment prior to repair.171 The goals of surgical intervention should be clearly discussed with the patient and are often to eliminate diplopia in the primary position and downgaze and to enlarge the field of binocular single vision. More than one operation and supplementation with prism glasses may be required. Every situation is unique, and more than one method of repair is possible.195 Preoperative forced generation and preoperative and intraoperative forced duction testing is very important.

Fat entrapment can prove nearly as challenging as extraocular muscle entrapment, resulting in fibrotic and adhesion syndromes not readily relieved with dissection around the involved muscle.192 Adhesions and entrapment may extend well into the deeper orbit, out of reach of the strabismus surgeon. Adhesion of extraocular muscles, particularly to porous implants, can be equally problematic at times,196,197 as can iatrogenic disinsertion of the inferior oblique at its origin, which may be required to place an implant along the nasal wall of the orbit.198
Some general principles include an attempt to recover “lost” muscles whenever possible. If recovery of a muscle proves impossible or if a muscle is determined to be severely paretic, a transposition procedure may be indicated. Matching restriction with the use of posterior fixation sutures or Scott procedures (recess/resect) on the unaffected eye are established methods of expanding the field of single binocular vision. Adjustable sutures are often helpful in these cases.

Because the etiology of the strabismus may be multifactorial and the misalignment incomitant, complete elimination of diplopia is often difficult, if not impossible.

PROVIDER AND SETTING
A multidisciplinary approach may be required and it may be applied in different settings—an emergency department or inpatient or outpatient facilities. Diagnosis and management of strabismus caused by ocular trauma requires the training and clinical judgment of an experienced ophthalmologist. Working under the supervision of an ophthalmologist, orthoptists can be an asset in the examination, diagnosis, and nonsurgical management.

COUNSELING AND REFERRAL
Consultation or comanagement with comprehensive ophthalmology, oculoplastics, neuro-ophthalmology as well as plastics, otolaryngology, emergency department, and neurosurgery may prove necessary, depending on the circumstances of the injury and the timing of the strabismus evaluation.
SECTION IIg. STRABISMUS ASSOCIATED WITH OTHER OPHTHALMIC SURGERY

INTRODUCTION

This section focuses on strabismus acquired after the following procedures:

- Cataract extraction or Keratoplasty
- Glaucoma filtering
- Scleral buckling
- Pterygium excision
- Blepharoplasty and Ptosis Repair

Strabismus sometimes resulting in diplopia has been reported after virtually any periocular procedure including major orbital surgery as well as dacryocystorhinostomy. A detailed discussion on management of these causes of strabismus in the adult population is outside the purview of this PPP. However, determining whether muscle or nerve damage is responsible and whether paresis versus restriction is the major cause is a common theme that informs the evaluation and treatment of all forms of strabismus associated with other ophthalmic surgery.\(^{201}\)

DISEASE DEFINITION

Iatrogenic strabismus can occur following different procedures or treatments.

Cataract extraction or keratoplasty:

Anesthetic myotoxicity following retrobulbar or peribulbar anesthesia for any ocular procedure including cataract extraction or keratoplasty may occur. Initial presentation is usually transient paresis followed by deviation of the eye into the field of action of the involved extraocular muscle. The hypertropia or hypotropia may result from restriction of the involved extraocular muscle when damage is extensive, or as an overaction pattern due to focal contracture or muscle hypertrophy.\(^{202-206}\) Superior and inferior rectus muscles are the most commonly injured by regional and local anesthesia, in retrobulbar or peribulbar blocks,\(^{207}\) but any muscle including the superior and inferior oblique muscles, may be involved as well.\(^{208-211}\)

Surgical manipulation of orbital tissue from a bridle suture under a rectus muscle can also result in small-angle strabismus due to nicking the rectus muscle, local bleeding, and scar formation. Likewise, temporary disinsertion and subsequent reattachment of an extraocular muscle in the course of repairing a globe laceration may result in strabismus. Causes of binocular diplopia after cataract surgery or keratoplas...
addition to local anesthetic myotoxity and direct surgical manipulation of the extraocular muscles and periorbital tissue include: previously undiagnosed TED;212 pre-existing/unmasked binocular disorders; and fixation switch diplopia. These conditions are addressed in other sections of this PPP.

Glaucoma Filtering Procedures (including trabeculectomy and glaucoma plate reservoir surgery)

Motility disturbances occur from a variety of causes, including mass effect from the implant or associated bleb, scarring, fat adhesion, or incorporation of adjacent extraocular muscles.213 These complications result in a wide array of motility patterns, including Brown syndrome, partial disinsertion of the superior oblique muscle, and restriction of gaze in the direction of the adjacent muscle.214-218

Scleral Buckling Procedures

Following scleral buckling procedures, the root cause of the resulting strabismus may be multifactorial. Patients may develop strabismus secondary to loss of fusion, poor vision, aniseikonia, direct trauma to the muscles, myotoxicity from retrobulbar anesthesia, malposition of a detached muscle, scar tissue formation, muscle slippage or disinsertion, entanglement of the superior oblique tendon, and mass effect.219-222 Fusional disturbance, aniseikonia, and torsional diplopia may sometimes accompany repair of retinal detachment, even without scleral buckling. These threats to binocular fusion increase the complexity of treating the mechanical aspect of strabismus induced by a buckling procedure.223

Pterygium Surgery

New-onset diplopia can occur after pterygium surgery as a result of direct injury to the adjacent medial rectus or florid scaring associated with recurrence.224-227 This can result in consecutive exotropia from medial rectus damage or restrictive incomitant esotropia from scarring.224-227

Blepharooplasty and Eyelid Procedures

New onset diplopia can occur after upper lid blepharooplasty, sometimes associated with trochlear damage,228,229 and after lower lid blepharooplasty, sometimes due to damage to the inferior rectus.230 Scarring and hemorrhage in adjacent tissue or fat adherence231 has been implicated among other mechanisms.

New-onset diplopia can occur after ptosis repair as a result of late recognition of previously existing strabismus. The classic example would be double elevator palsy with a limitation of upgaze that is recognized only after the associated ptosis is repaired.
PATIENT POPULATION

The patient population is adults who have strabismus associated with other ophthalmic surgeries that may disrupt normal extraocular muscle function or sensory fusion.

CLINICAL OBJECTIVES

- Counsel the patient on the diagnosis and treatment options
- Provide goal-directed management of strabismus (to restore binocular vision, or minimize diplopia or compensatory head posture, and in some cases for the reconstructive benefit to improve eye alignment, eye contact, and self-image)
- Inform the patient’s other health care providers, and in particular their ophthalmic specialists, of the diagnosis and treatment plan

BACKGROUND

Cataract extraction and keratoplasty

Incidence (anesthetic myotoxicity)

There is a 0.18% incidence of secondary strabismus and a 0.23% incidence of secondary strabismus for cases involving retrobulbar block anesthesia used most often for cataract surgery. Diplopia may be transient or persist.

Risk Factors

Risk factors that increase the incidence of secondary strabismus after retrobulbar or peribulbar block are injection by a nonophthalmologist, left eye injection, and the absence of hyaluronidase in the block. Topical anesthesia is associated with a lower risk of diplopia than regional anesthesia. It is more typically associated with other factors that threaten binocular stability, such as the choice of monovision for cataract surgery or fixation switch diplopia.

Fixation switch diplopia occurs if a previously suppressed eye becomes the dominant eye. (See Section lik. Oculumotor Palsy.)

GLAUCOMA-FILTERING PROCEDURES

Incidence

Transient strabismus occurs in 1% of patients after trabeculectomy and in 3% of patients following glaucoma plate reservoir surgery. Persistent motility disorders can range from 2% to 77% following glaucoma plate reservoir surgery depending, in part, on the type of implant used, the length of
follow-up, and whether the setting was one that afforded an adequate audit of postoperative alignment. One center reported a prevalence of binocular diplopia of 21% in those treated with plate reservoir surgery and 3% in those treated with trabeculectomy.213

Risk Factors
Advanced age is a risk factor for the development of binocular diplopia.235 Superior placement of plate reservoir versus inferior placement may be associated with less risk of diplopia in the reading position.201,235

SCLERAL-BUCKLING PROCEDURES

Incidence
Ocular motility disturbance is reported in up to 60% of patients after retinal detachment repaired by scleral buckle.237 The strabismus may be transient and resolve within 6 months. Persistent strabismus, however, has been reported in up to 23% of patients treated with an encircling scleral buckle procedure, although not all required strabismus surgery.238 In another single center study of 1030 patients treated with a scleral buckling procedure, only 3.8% had persistent strabismus and were referred for intervention.239

Risk Factors
The risk of strabismus after placement of a radial scleral buckle is substantially less than after placement of an encircling band.238

BLEPHAROPLASTY AND EYELID PROCEDURES

Incidence
The incidence of strabismus is very low, estimated at under 3% (three cases in 920 procedures) and much lower in association with other eyelid procedures.240

Risk Factors
Excessive cautery, hemorrhage, and misdirected dissection likely causes strabismus, but there are no other identified risk factors.

NATURAL HISTORY
As noted above, diplopia may be transient following other ocular surgeries, but if it has not resolved or demonstrated improvement within 6 months of the procedure, diplopia is less likely to resolve on its own.
RATIONALE FOR TREATMENT
Diplopia, loss of binocular vision, compensatory head position, and inability to make eye contact with poor eye alignment all warrant treatment.

CARE PROCESS

PATIENT OUTCOME CRITERIA
- Reduction of diplopia
- Improvement in or return of binocular vision
- Improvement of compensatory head position
- Restoration of ocular alignment, improved eye contact, and self-esteem.

DIAGNOSIS

History
A detailed medical and ocular history, including specific questions about particular surgical procedures, anesthetic used, and onset of patient symptoms should be obtained.

Examination
A detailed sensorimotor evaluation, assessment of refractive status, and dilated fundus examination should be performed to assess the oculomotor status, including possible ocular torsion impacting fusion. In-office forced ductions, if tolerated, may help determine the significance of the restrictive component. If this is not possible, the impact of mechanical restriction can be determined at the time of surgery.

Strabismus following retrobulbar or peribulbar block is characterized by an initial paresis with underaction of the affected muscle or more extensive contracture resulting in limitation strabismus, followed by segmental contracture of the affected muscle resulting in overaction of the muscle. The most commonly affected muscle is the inferior rectus muscle (70%). Strabismus following glaucoma plate reservoir surgery usually presents within 3 months of glaucoma implant placement, often within the first month. Superotemporal implants more frequently cause hypertropia and exotropia, and restriction or scarring may create a “pseudoresection” effect on adjacent muscles. Superonasal implants more frequently cause hypotropia. In patients who present with ocular deviation away from the implant, the mechanical bulk of the implant (e.g., in the superior nasal quadrant) may be responsible.

In patients who have had scleral buckling, strabismus is usually incomitant and restrictive with limitations to ocular rotations. Approximately 50% of the patients with diplopia have a torsional component, usually excyclotropia. Evaluation on the synoptophore is helpful, using fusible targets with square contours, to determine how much torsional correction is needed to restore single vision.
In patients postblepharoplasty or other eyelid surgery, strabismus may be transient. Many cases improve after 8 to 15 months if it is the result of local injury or hemorrhage without permanent loss of function or significant scarring. As diplopia is often incomitant, prism correction is rarely satisfactory in the long run and a combination of imaging, forced ductions, and surgical exploration may be required to maximize the outcome.

MANAGEMENT

Monitor/Observe

The patient should be monitored/observed if symptoms are mild, occasional, and not bothering the patient or if the patient is opposed to treatment. If the potential compromise to optic nerve function with removal of the reservoir is too great for patients with a glaucoma plate reservoir, other options such as prism correction, occlusion, and contralateral eye surgery may need to be considered. Close communication with the physician treating the patient’s glaucoma often clarifies a course of action that facilitates surgical treatment of the secondary strabismus, along with a method of controlling IOP.

Nonsurgical

Transient strabismus is common, so early treatment with prisms may be offered. Prisms may also be helpful for residual diplopia following strabismus surgery.

Surgical

For patients with persistent strabismus, prisms and surgery are recommended. Patients may require multiple surgeries, including surgery in the non-affected eye. In general, surgery of the affected eye is indicated in patients who have limited ocular rotations in the affected eye. Surgery on the non-affected eye may be considered when, for example, surgery designed to match restrictions seems preferable, or when there is minimal mechanical strabismus and surgery on the contralateral eye is preferable to reduce the risk of destabilizing the achieved outcome for the involved eye.

For patients with a glaucoma plate reservoir, if the potential compromise to optic nerve function with removal of the reservoir is too great, other options such as prism correction or occlusion may need to be considered. Close communication with the physician treating the patient’s glaucoma often clarifies a course of action that facilitates surgical treatment of the secondary strabismus, along with a method of controlling IOP. When operating in the field of a glaucoma implant, the surgeon should be prepared to manage hypotony and the added risk of intraocular infection if an intraocular breach occurs.
Generally, careful evaluation with forced ductions at the time of surgery will clarify the mechanism of the induced strabismus. High resolution MRI may provide additional insight into the multiple causes of misalignment and thus inform management.242

In patients with a scleral buckle, factors associated with better surgical outcomes include small preoperative deviation and minimally restricted ocular rotations. In patients with ocular torsion, exploration of the superior oblique tendon and the inferior rectus muscles should be considered.219 The benefits of removing a scleral buckle are controversial. Some surgeons believe it is almost never necessary to remove the buckle and they will recess, resect, and transpose muscles and tendons over, under, and around the hardware, whereas other surgeons prefer to remove the buckle at the time of strabismus surgery.243 244 The risk of retinal re-detachment is about 8% after scleral buckle removal.245 Preoperative discussion with the specialist who placed the periocular hardware, or another colleague in this subspecialty, should address the risks associated with displacement of this hardware. Some procedures might benefit from having both surgeons present and scrubbed for the strabismus repair.

Chemodenervation (botulinum toxin) has proven successful in some cases.246 Regardless of the etiology, a careful sensorimotor evaluation with attention to torsional strabismus and incomitance, forced ductions, and surgical exploration may be necessary to optimize outcomes because the details of repair will be determined on a case-by-case basis,

PROVIDER AND SETTING

Diagnosis and management of strabismus occurring after other ocular surgery requires the training and clinical judgment of an experienced ophthalmologist. Communication, as possible, should be established with the surgeon who is performing the original surgical procedure that is associated with the development or exacerbation of strabismus. Working under the supervision of an ophthalmologist, orthoptists can be an asset in the examination, diagnosis, and nonsurgical management. Optometrists may add additional support in the management of aniseikonia, or contact lens fitting, as appropriate.

COUNSELING AND REFERRAL

The ophthalmologist should discuss the findings, explain the disorder, provide diagnosis, and discuss management options with the patient, the referring ophthalmic surgeon, and any caregivers. When surgical treatment of the strabismus is considered, consultation with the specialist who performed the initial surgery, or another ophthalmologist with expertise in the relevant subspecialty is recommended. This should include a discussion of the potential impact of removing or disrupting implanted hardware. Review of the surgical record from the index case can provide additional information on the approach to the surgical field.
SECTION IIh. SUPERIOR OBLIQUE PALSY

INTRODUCTION

DISEASE DEFINITION

Superior oblique palsy (SOP) is due to partial or complete paralysis of the fourth cranial nerve (trochlear nerve), resulting in weakness of the superior oblique muscle. The motility disturbance creates a combination of vertical, torsional, and, to a lesser degree, horizontal incomitant strabismus pattern. Both congenital and acquired forms exist, with the presumed congenital type often presenting for the initial evaluation in adulthood.247

Patients will show hypertropia of the involved eye, often accompanied by a compensatory head tilt away from the affected eye. Complaints include diplopia, asthenopia, and/or anomalous head posture. Patients with decompensated congenital SOP may have facial asymmetry, demonstrating a shorter maxilla on the opposite the side of the SOP (and thus reduced distance between the corner of the mouth and lateral canthus).248

Head trauma (including concussion) is one of the most common identifiable causes of both unilateral and bilateral acquired superior oblique palsy, although in extremely rare cases isolated trochlear schwannomas and giant cell arteritis can result in acquired SOP.249-251, 247

Skew deviation has a motility pattern that can resemble the misalignment seen with superior oblique palsy. Distinguishing characteristics, particularly related to fundus torsion, symptoms of ocular tilt and, at times, the impact of upright versus supine positioning of the patient are described at length in Section III. Skew Deviation.252 Distinction is critical as skew deviation is more frequently associated with less benign etiology.

PATIENT POPULATION

The patient population includes adults with strabismus associated with congenital or acquired superior oblique palsy.

CLINICAL OBJECTIVES

- Determine if SOP is congenital or acquired and unilateral or bilateral
- Counsel the patient on the diagnosis and the treatment options
- Provide goal-directed management of strabismus (reconstructive to enhance binocular vision, reduce diplopia or a compensatory head posture)
- Inform the patient’s other health care providers of the diagnosis and treatment plan
BACKGROUND

INCIDENCE
Superior oblique palsy is one of the common types of vertical strabismus seen in adults. Annual incidence has been reported to be 6.3 cases per 100,000 people, with a higher incidence among males than females.\(^6\)

RISK FACTORS
Risk factors include head trauma and age-related decompensation of congenital weakness.

NATURAL HISTORY
Patients may experience no diplopia or only intermittent diplopia in cases of longstanding and presumed congenital superior oblique palsy. A longstanding and effective compensatory head position minimizes diplopia awareness by avoiding the field of action of the weak superior oblique muscle.

RATIONALE FOR TREATMENT
Diplopia, compensatory head position sometimes associated with neck pain, and asthenopia warrant treatment.

CARE PROCESS

PATIENT OUTCOME CRITERIA
Treatment in adult strabismus is symptom directed, and targeted outcomes may include:
- Reconstruction of ocular alignment
- Improved binocular vision
- Improved control of diplopia, especially in the primary position and in side gaze
- Reduction in compensatory head position

DIAGNOSIS
History
A detailed medical and ocular history, including specific questions about prior head trauma, diplopia, and compensatory head posture is important. Sometimes a review of prior photos demonstrates a pattern of longstanding and potentially worsening compensatory head posture.
Examination

A sensorimotor evaluation with special attention is recommended to measure torsion and determine position of gaze with the greatest deviation. The Parks Bielschowsky three-step test is often used to confirm the diagnosis. Hypertropia is greatest in opposite lateral gaze and head tilt to the same side. Assessing whether torsion is a barrier to fusion is an essential part of the evaluation. Quantifying the magnitude and direction of torsional diplopia enhances surgical planning. As the superior oblique intorts, excyclotorsion is commonly found and may be documented with Double Maddox Rod or Lancaster Red Green testing and by noting fundus torsion.

Refractive status should be included in the examination. A neurological evaluation and neuroimaging are controversial but are rarely indicated in cases of isolated unilateral SOP or bilateral cases in which trauma is the known cause. Symptomatic diplopia with poor fusional amplitudes may be an indication for brain and/or orbital MRI with contrast, because it may indicate an acquired SOP due to trochlear schwannoma. Neuroimaging should always be performed if there are additional central nervous system signs or symptoms. Occult thyroid eye disease can present as new-onset vertical diplopia with a positive three-step test and giant cell arteritis remains within the differential diagnosis.

Exaggerated forced ductions often reveal a lax superior oblique tendon in many patients with presumed congenital SOP. Forced ductions done in-office or at the time of surgery may reveal evidence of an ipsilateral limitation of downgaze due to superior rectus contracture or contralateral restriction of elevation due to inferior rectus contracture.

 MANAGEMENT

Monitor/Observe

The patient should be monitored/observed if symptoms are mild, occasional, and not bothering the patient or if the patient is opposed to treatment.

Nonsurgical

Small vertical deviations may be managed with prism glasses, although lateral incomitance, if present, often precludes successful implementation.

Surgical

Torsional surgery will be needed if torsion is a barrier to fusion (typically in bilateral cases or severe unilateral cases due to trauma or cases associated with neurosurgery). Larger and incomitant deviations most often require surgical intervention. Some patients with smaller deviations may prefer surgical repair or prism correction. The goal of surgery is to improve the vertical and torsional deviation, improve the head posture, and improve the area (field) of single binocular vision. A variety of surgical choices exist, and the
decision for which muscle(s) to operate on depends on the magnitude of deviation in primary gaze, the degree of torsion, and the field of gaze with greatest deviation. The most common procedures used include the following (in combination or alone):

- Inferior oblique weakening by recession or myectomy (ipsilateral)
- Inferior rectus weakening (contralateral)\(^256\)
- Superior oblique strengthening, for example, tuck (recommended for lax tendons in presumed congenital SOP\(^255\)), advancement for vertical and torsional deviations,\(^257\) or a version of the Harada-Ito procedure, advancing only the anterior SO fibers that affect torsion (ipsilateral)\(^258,259\)
- Superior rectus weakening (ipsilateral)\(^260\)

Many of the above procedures may be performed using adjustable suture techniques; the target angle should be a small undercorrection because overcorrection, particularly in downgaze, is extremely poorly tolerated.

PROVIDER AND SETTING

Management of SOP, specifically surgery, requires the training and clinical judgment of an experienced ophthalmologist and in some cases a neuro-ophthalmologist.\(^256\) Working under the supervision of an ophthalmologist, orthoptists can be an asset in the examination, diagnosis, and nonsurgical management of SOP.

COUNSELING AND REFERRAL

If the SOP is not isolated or is associated with other neurological signs and symptoms, neuroimaging and referral to a neurologist or neuro-ophthalmologist should be considered. Small vertical fusional amplitudes in a case of isolated SOP, absent a history of trauma, may indicate an acquired cause and should be evaluated with neuroimaging. The ophthalmologist should discuss the findings, explain the disorder, provide diagnosis, and discuss management options with the patient and, as appropriate, with a neuro-ophthalmologist, or other specialist, as indicated.
SECTION III. SKEW DEVIATION

INTRODUCTION

DISEASE DEFINITION

Skew deviation is a vertical strabismus associated with disorders of the end-organ vestibular pathways within the ear (such as acute vestibular neuronitis) or associated supranuclear utriculo-ocular pathways within the posterior fossa including both the brainstem and cerebellum. The characteristic vertical strabismus may be comitant or incomitant and results in vertical diplopia associated with ocular torsion, torticollis, and a tilt of the vertical visual field referred to as the ocular tilt reaction. The ocular tilt reaction produces a head tilt towards the shoulder of the hypotropic eye and both eyes rotate in the direction of the head tilt. If the patient experiences tilt of the vertical visual field, it will be in the same direction as the head tilt. With skew deviation, the hypertropic eye will demonstrate fundus incyclotorsion and the hypotropic eye will demonstrate fundus excyclotorsion. This characteristic helps to distinguish it from fourth nerve palsy, where the hypertropic eye is most typically excyclotorted. (In the absence of skew deviation, head tilt results in a compensatory fundus rotation opposite the direction of the head tilt.) Ocular torsion in skew may be conjugate or dysconjugate.

It is critical to distinguish skew deviation from fourth nerve palsy because causes of skew deviation demand immediate recognition and sometimes treatment (e.g., acute vestibular neuronitis, demyelination, or stroke) and urgent imaging of the brain and brainstem (MRI with and without contrast seeking evidence of demyelination, stroke, or mass lesion) may be needed. Most cases of isolated fourth nerve palsy (discussed in detail in Section IIh. Superior Oblique Palsy) are more benign in etiology. Because vertical misalignment in superior oblique nerve palsy may become comitant over time and skew may be comitant or incomitant, and because both characteristically demonstrate head tilt away from the hypertropic side, the classic three-step test may not distinguish the two. The upright-supine test (a fourth step for the three-step test) has been proposed after demonstration that hypertropia reduces by 50% in the supine position for patients with skew deviation (sensitivity 80%; specificity, 100%). Subsequent to introduction of the upright-supine test, other investigators demonstrated that this distinctive decrease in hypertropia was not reliably found in patients with acute onset skew deviation. These authors concluded that the upright-supine test was not a reliable method to distinguish acute skew deviation (onset within 2 months) from SOP, although this test might prove useful in the setting of more longstanding skew deviation.
PATIENT POPULATION

The patient population consists of adults with acute peripheral vestibulopathy (vestibular neuronitis), or demyelination, ischemia, or mass lesions affecting the vestibular supranuclear pathways within the region of the brainstem and cerebellum.

CLINICAL OBJECTIVES

- Recognition of skew deviation and institution of appropriate ancillary testing and referral to colleagues with expertise in otolaryngology or neurology, as indicated for further evaluation and management

BACKGROUND

PREVALENCE

The prevalence of skew deviation is unknown because it is associated with a variety of etiologies.

RISK FACTORS

Because there are multiple disparate causes, risk factors vary for skew deviation. Vestibular neuronitis can occur at any age. Demyelinating disease affects females more than males and both demyelination and trauma are more common in younger adults. Cardiovascular risk factors associated with stroke, such as a history of hypertension, diabetes, hyperlipidemia and smoking, have a greater impact in the aging population.

NATURAL HISTORY

Vestibular neuronitis may be self-limiting and respond to medical intervention, and transient ischemia in the posterior fossa may, likewise, cause a transient skew deviation that resolves over time. More profound ischemic damage or mass lesions often result in long-lasting symptoms of skew deviation.

RATIONALE FOR TREATMENT

Control of disabling diplopia and perceived tilt of the subjective visual vertical warrant treatment.

CARE PROCESS

PATIENT OUTCOME CRITERIA

Treatment in adult strabismus is symptom directed, and targeted outcomes may include:

- Improved binocular vision
- Improved control of diplopia
• Reduced tilt of the subjective visual vertical

DIAGNOSIS

History

Skew deviation is almost always acute to subacute in onset. However, if the etiology is demyelination or a slow-growing tumor, the onset may be more insidious. Skew associated with acute vestibular neuronitis will likely be associated with severe vertigo, dizziness, nausea, and vomiting, whereas skew in association with brainstem or cerebellar demyelination, stroke, or a mass lesion, will demonstrate associated neurologic features that may include nystagmus, INO, hemiparesis, sensory loss, ataxia, and Horner’s syndrome, to name a few, depending on the locus of the pathology, and may be acute to subacute in onset.

A history of neurological symptoms (motor or sensory changes, ataxia, headache) or symptoms of vertigo and nausea, in addition to the classic vertical diplopia and head tilt may help guide additional evaluation. Vertical diplopia and commonly torticollis and subjective tilting of the perceived visual world are characteristic.

Examination

The examination should include the following elements:

- Complete ophthalmic examination with emphasis on the sensorimotor evaluation and completion of the three-step test and consideration of the upright-supine test.
- Careful checking for other neuro-ophthalmic signs and symptoms looking for Horner’s syndrome, cranial nerve palsy, internuclear ophthalmoplegia (INO), nystagmus, and hearing loss
- Fundus examination to check for papilledema or optic atrophy
- Visual field testing, which may provide additional information on the etiology
- Abnormalities in the rostral pons and midbrain (e.g., INO) will result in contralateral hypotropia and head tilt, whereas abnormalities in the vestibular periphery, medulla, and more caudal pons will result in ipsilateral hypotropia and head tilt.

MANAGEMENT

The primary diagnostician should refer the patient for evaluation by indicated neurology or otolaryngology specialists. Initial treatment with prism may be helpful to manage diplopia while waiting for possible recovery, and botox, prism, or strabismus surgery may be considered for cases that do not resolve. The goals of surgery should be customized for the individual patient, who may be bothered to different degrees by diplopia, head tilt, and perceived tilting of the visual vertical. These interventions may help reduce both vertical and torsional diplopia, they may reduce the perceived tilting of the visual field, and in select cases they may prove successful at resolving head tilt.
PROVIDER AND SETTING

Diagnosis and management of skew deviation requires the training and clinical judgment of an experienced ophthalmologist and in some cases a neuro-ophthalmologist. Working under the supervision of an ophthalmologist, orthoptists can be an asset in the examination, diagnosis, and nonsurgical management of SOP.

COUNSELING AND REFERRAL

Referral to specialists in neurology, otolaryngology, or neuro-otology may be indicated based on the likely cause of the skew deviation.
SECTION IIj. ABDUCENS PALSY

INTRODUCTION

DISEASE DEFINITION

Abducens palsy is also known as sixth nerve palsy. It typically presents with an acute onset of horizontal double vision, worse at distance than at near and worse laterally toward the side of the affected nerve. Most often the double vision is noticed by the patients in primary position, but in partial paralysis it may only be noted on lateral gaze. Some patients present with a head turn to compensate for the diplopia caused by the paralysis. The incomitant horizontal misalignment described can result in disabling and disturbing diplopia at onset. Symptoms may be less bothersome, or even subtle, if the palsy is partial, gradual, and chronic, permitting the development of horizontal fusional amplitudes. The diplopia may become more apparent with exhaustion or systemic illness, or in extreme horizontal gaze.

The majority of acute sixth nerve palsies in the adult population are vasculopathic, associated with risk factors such as diabetes and hypertension. The onset of double vision is acute, may be accompanied by pain, and does not have any associated neurologic or ocular findings. Most palsies resolve after 6 months, and about one-third resolve within 8 weeks. If no recovery is apparent by 6 months, approximately 40% of patients demonstrate a serious underlying pathology warranting further evaluation. The elderly who present with symptoms of scalp or temporal region tenderness, or pain with chewing (jaw claudication) may have giant cell arteritis, a more serious vasculopathic disorder that can result in permanent visual loss if not promptly diagnosed and treated.

Other common causes of sixth nerve palsy are trauma and neoplasm. Traumatic etiology is usually self-evident and may include a history of head injury, typically involving a basilar skull fracture, or an acute rise in intracranial pressure from an intracranial bleed.

A sixth nerve palsy caused by an intracranial neoplasm may be either insidious or acute. Neurologic changes may include other motor deficits, depending on the topographic location detailed below. Evaluation for facial and extremity motor weakness, third- and fourth-cranial nerve involvement, visual field defect, and central acuity from optic nerve involvement, IOP, and proptosis all help in localization. Bilateral sixth-nerve involvement can be seen in the clival chordoma as well as increased intracranial pressure or a meningeal process. A sixth nerve palsy can be associated with demyelinating diseases such as multiple sclerosis. Because lesions typically involve the pons, other neurologic findings are present, most notably a facial palsy, because the seventh nerve curves over the sixth-nerve nucleus. However, isolated cranial nerve VI palsy is the most common in adults. Postviral sixth nerve palsy can occur, but it is typically a diagnosis of exclusion.
PATIENT POPULATION

The patient population is adults with strabismus caused by sixth nerve palsy.

CLINICAL OBJECTIVES

- Determine the etiology of the sixth nerve palsy
- Counsel the patient on the diagnosis and treatment options
- Provide goal-directed management of strabismus (typically to reduce symptoms of diplopia or secondary compensatory head posture diplopia)
- Inform the patient’s other health care providers of the diagnosis and treatment plan

BACKGROUND

INCIDENCE

The annual incidence of new-onset sixth nerve palsy is approximately 11 per 100,000.273

RISK FACTORS

Risk factors relate to etiology but, as vascular etiology is the most common, both hypertension and diabetes increase the risk.

RATIONALE FOR TREATMENT

Diplopia, loss of binocular vision, compensatory head position, and inability to make eye contact all warrant treatment.

CARE PROCESS

PATIENT OUTCOME CRITERIA

Treatment in adult strabismus is symptom directed, and targeted outcomes may include:

- Reduction of diplopia
- Resolution of torticollis
- Reconstruction of ocular alignment
- Improvement of binocular vision

DIAGNOSIS

Understanding the path of the sixth nerve aids localization of the lesion as well as the cause.279 The sixth nerve originates in the abducens nucleus of the pons. Thus, lesions involving the sixth nerve nucleus often are accompanied by an ipsilateral facial paralysis or a complete horizontal gaze deficit. Within the pons, it courses through the corticospinal tracts, and thus, lesions involving the sixth in this region can lead to a contralateral...
hemiparesis. The nerve then ascends in the subarachnoid space and passes underneath the petroclinoid ligament to enter into the cavernous sinus. Tethering of the nerve along this pathway make it susceptible to stretching from increased intracranial pressure, cerebrospinal fluid inflammation, infection, infiltration, or compression from clival tumors.

In the cavernous sinus, the sixth nerve is in close proximity to the intracavernous carotid artery; ocular sympathetics; and cranial nerves three, four, and the first division of the trigeminal nerve. Thus, carotid artery aneurysms, inflammatory cavernous sinus processes, or other structural lesions may include a concomitant Horner’s syndrome, third nerve palsies and fourth-nerve palsies, or facial pain. The sixth nerve then passes through the superior orbital fissure into the orbit. Orbital infections, mass lesions, or inflammation can affect the sixth nerve as well as the lateral rectus muscle itself. Associated proptosis and optic neuropathy may be present. Venous congestion from either an orbital process or back pressure from cavernous sinus lesions can cause chemosis with increased IOP.

History

A detailed medical history should include information and medical records on prior ocular surgery, a history of diabetes or hypertension, and complaints of specific additional symptoms, including facial weakness, motor weakness, headache, fever, proptosis, vision loss, scalp pain or jaw claudication that might reflect the anatomical locus and cause of sixth nerve pathology.

Examination

The examination should include the following elements:

- Complete ophthalmic evaluation with emphasis on best-corrected acuity, a check for afferent defect, and color acuity to screen for orbital and cavernous sinus pathology
- Sensorimotor examination demonstrating incomitant esotropia, typically greater at distance, and possibly associated with abduction nystagmus
- Fundus examination to look for papilledema or optic atrophy as indicators of elevated intracranial pressure

Ancillary Testing

Neuroimaging should be considered in all young patients or in any patient manifesting other cranial neuropathies, other neurologic change or elevated IOP, or if there are no compelling vasculopathic risk factors. Study should seek possible evidence of neoplasm, demyelination, stroke, vascular abnormality, or signs of infectious or inflammatory etiology. Referral to a neuro-ophthalmologist or neurologist for further evaluation may be indicated in some cases.
In an elderly patients with hypertension, hyperlipidemia or diabetes, and without temporal tenderness, jaw claudication or scalp pain, evaluation may be limited to determining blood pressure, serum glucose level, and hemoglobin A1c. Follow-up is necessary to determine if the palsy spontaneously resolves. In the absence of resolution or improvement, MRI of the brain with and without contrast may be indicated. In the elderly with a history of scalp tenderness, jaw claudication, or pain, the erythrocyte sedimentation rate and C-reactive protein should be checked immediately and a temporal artery biopsy performed if the results indicate possible giant cell arteritis. Consultation with a neuro-ophthalmologist may facilitate a biopsy and initiation of treatment.

Evidence of increased intracranial pressure with papilledema, bilateral sixth nerve palsy, or meningeal signs (stiff neck with headache) suggests a need for lumbar puncture following neuroimaging to measure intracranial pressure and look for meningitis (infectious, inflammatory, or carcinomatous) or demyelination. Systemic serology in this instance should include Lyme and syphilis testing.

MANAGEMENT

A detailed treatment of the sixth nerve palsy is initially directed to the primary cause. Neuroimaging should be considered in all young patients or in any patient manifesting other cranial neuropathies, other neurologic change or elevated IOP, or signs of elevated intracranial pressure, or if there is no compelling vasculopathic risk factor. In the aging population with vasculopathic risk factors, lack of resolution over time suggests a need for neuroimaging. At onset, a history of scalp tenderness, jaw claudication, or pain should prompt evaluation for possible giant cell arteritis. From the ocular motility standpoint, symptomatic intervention is to reduce diplopia and torticollis and to restore binocular vision.

Monitor/Observe

The patient should be monitored/observed if symptoms are mild or if the patient is opposed to treatment.

Nonsurgical

Nonsurgical treatment for abducens palsy can include occlusion (with a patch over one eye or with a Bangerter filter or satin tape applied to a lens of the glasses) unless a comfortable region of single binocular vision is achieved with minimal compensatory head posture. Prisms can also be used temporarily, and if the deviation remains stable and fusion can be achieved, a ground-in base-out prism can be incorporated into the lenses. Chemodenervation (botulinum toxin) of the medial rectus muscle may help reduce secondary contracture and the severity of compensatory head position.

Surgical

Strabismus surgical management is generally offered when the deviation persists after 6 months from onset. A small residual deviation with some residual abducting force of the lateral rectus past the midline usually responds well to a medial rectus recession and lateral rectus resection. Other options include a contralateral medial rectus recession, with or without posterior fixation, with or without ipsilateral lateral rectus resection, to balance ductions. Larger deviations with no abducting force of the lateral rectus (confirmed by
force generation testing) usually necessitate some form of transposition procedure of the vertical recti laterally (often combined with medial rectus weakening by recession or injection of botulinum toxin) either initially or subsequently.

Many techniques for vertical rectus transposition have been described, including full-tendon or partial-tendon transfer, of one or both vertical rectus muscles, with or without an augmentation suture.\(^{278,286-289}\) Partial tendon transfer, or loop myopexy, may decrease the incidence of anterior segment ischemia, since three extraocular muscles are not operated on at the same time.\(^{289,290}\) Superior rectus muscle transposition alone with simultaneous medial rectus recession has similar advantages. When performing transposition of both vertical rectus muscles, staging the procedure by performing transpositions followed months later by medial rectus recession also decreases the risk of anterior segment ischemia.\(^{291}\)

PROVIDER AND SETTING

Diagnosis and management of sixth nerve palsy requires the training and clinical judgment of an experienced ophthalmologist. Working under the supervision of an ophthalmologist, orthoptists can be an asset in the examination, diagnosis, and nonsurgical management of sixth nerve palsy.

COUNSELING AND REFERRAL

Neuroimaging should be considered in all young patients or in any patient manifesting other cranial neuropathies, other neurologic change or elevated IOP, or signs of elevated intracranial pressure, or if there are no compelling vasculopathic risk factors. In the aging population with risk factors, lack of resolution over time suggests a need for neuroimaging. Referral should also be considered to those providers who have expertise in neuro-ophthalmology and adult strabismus, if the primary diagnosis is uncertain, and for directed treatment. The ophthalmologist should discuss the findings, explain the disorder, provide diagnosis, and discuss management options with the patient and, as appropriate, with a neuro-ophthalmologist, or other subspecialist, as indicated. Despite the number of strabismus surgical options for repair, patients should be advised that the goal of treatment is to eliminate diplopia in the primary position and to create a reasonable field of single binocular vision. Patients will most likely continue to have diplopia in more extreme lateral gaze because of the difficulty in balancing ductions given the underlying neurological deficit.
SECTION IIk. OCULOMOTOR PALSY

INTRODUCTION

DISEASE DEFINITION

Oculomotor palsy is also known as a third nerve palsy and is the second most common cranial neuropathy. Patients usually present with diplopia secondary to misalignment that has both a horizontal and vertical component, and sometimes with difficulty reading secondary to accommodative deficiency. Because the eyelid can be partially or completely ptotic, the subjective complaint of diplopia may be lessened because visual axis may be occluded.

The presentation is an incomitant deviation. In addition to ptosis from levator dysfunction, paresis of the superior rectus, inferior oblique, medial rectus, and the inferior rectus muscles typically leaves the eye abducted and infraducted as a result of preserved lateral rectus and superior oblique muscle function. Variants of misalignment may be present, particularly if the location of the inciting pathology is intracavernous or intraorbital, since the nerve has already divided into an upper and lower division. The pupil may or may not be involved, and it is important to note this characteristic, because it helps direct the evaluation.

PATIENT POPULATION

The patient population is adults with strabismus caused by oculomotor palsy.

CLINICAL OBJECTIVES

- Determine the etiology of the third nerve palsy
- Counsel the patient on the diagnosis and treatment options
- Provide goal-directed management of strabismus (reconstruction, binocular vision, or reduction of diplopia)
- Inform the patient’s other health care providers of the diagnosis and treatment plan

BACKGROUND

INCIDENCE

The annual incidence of acquired third-nerve palsy is approximately 4 per 100,000.

RISK FACTORS

Patients with hyperlipidemia, hypertension, and diabetes are at greater risk of vasculopathic third nerve palsy. Elderly with symptoms of scalp or temporal tenderness or jaw claudication are at risk for third nerve palsy due to giant cell arteritis.
RATIONALE FOR TREATMENT

Diplopia, loss of binocular vision, compensatory head position, and reconstruction of alignment all warrant treatment consideration.

CARE PROCESS

PATIENT OUTCOME CRITERIA

Treatment in adult strabismus is symptom directed, and targeted outcomes may include:

- Reconstruction of ocular alignment with improved eye contact and self-image
- Improvement of binocular vision
- Reduction of diplopia
- Reduction of torticollis

DIAGNOSIS

The third nerve follows a course from its origination in the midbrain to the orbit. The third-nerve nucleus lies near the midline of the midbrain. It is composed of four paired subnuclei and one unpaired subnucleus. The unpaired central caudal nucleus innervates both ipsilateral and contralateral elevator palpebral muscles. If complete third nerve palsy is accompanied by contralateral superior rectus weakness, the lesion is nuclear. Localization of the lesion by associated findings and symptoms is important in determining further workup, establishing an etiology, and directing treatment. Lesions involving the superior cerebellar peduncle cause ipsilateral cerebellar ataxia, lesions involving the red nucleus cause ipsilateral flapping hand tremor and ataxia, and lesions involving the cerebral peduncle cause ipsilateral hemiplegia or hemiparesis.

Within the subarachnoid space, the third nerves pass close to the tentorial edge and lateral to the posterior communicating artery. Aneurysms in this location cause a pupil-involving third nerve palsy, although the pupil may appear normal at presentation. The nerve passes along the tentorial edge and adjacent to the most medial aspect of the temporal lobe (the uncus). Mass lesions or intracranial bleeding can force the uncus through the tentorial notch, causing compression.

The nerve then enters the cavernous sinus, and pathology there may be accompanied by sixth nerve and fourth nerve paralysis. Within the cavernous, sinus the third nerve separates into superior and inferior divisions. Both enter into the orbit through the superior orbital fissure. The superior division innervates the superior rectus and the levator. The inferior division sends parasympathetic fibers into the ciliary ganglion, the pupillary sphincter, the ciliary (accommodation), the inferior oblique, the medial rectus, and inferior rectus. Divisional palsy typically localizes the lesion to the orbit. If the lesion involves the orbital apex or orbit, there may be associated optic neuropathy and proptosis.
History
A detailed medical and ocular history should include specific questions about patient symptoms, speed of onset of the strabismus, and possible associated unilateral or bilateral ptosis or other neurologic symptoms (such as ataxia, tremor, hemiplegia, sixth nerve or fourth nerve palsy, and noted pupillary asymmetry, and vision loss).

Examination
A comprehensive eye examination with particular attention to sensorimotor exam, evidence of ptosis and anisocoria, and pupillary responses in bright and dim illumination. It should also include a fundus examination to evaluate for the presence of papilledema or optic atrophy.

Evaluation of the third nerve palsy depends on the presumed location of the lesion and is based on other accompanying neurologic findings. Isolated third nerve palsy, however, is what most clinicians encounter. The important characteristics are whether the pupil is involved and the extent of the motility disorder and ptosis. A classic pupil-sparing third nerve palsy has normal pupillary function, complete ptosis, and complete (related) motility dysfunction. In this situation, the etiology is almost always secondary to microvascular disease with associated diabetes, hypertension, or hyperlipidemia. However, even if the pupil is unaffected, when there is partial extraocular muscle involvement or incomplete ptosis, one cannot be certain of a microvascular etiology; a compressive lesion, for example, might present this way. In this situation, it is recommended to proceed either with neuroimaging including an MRI with gadolinium and magnetic resonance angiography (MRA) or computed tomography angiography (CTA). In some instances of vasculopathic third nerve palsy, the pupil may be involved, although mildly.

Pupil-involving third nerve palsy is more concerning. A compressive lesion must be ruled out, urgently, especially an aneurysm involving the posterior communicating artery. Active force generation testing in the office may help identify muscles with residual function (which may be responsive to resection) vs. completely paretic muscles (where resection will not be effective and the muscle should be left intact to preserve ciliary circulation). Neuroimaging, including MRA or CTA is recommended. If there is a high suspicion of aneurysm despite a normal MRA or CTA, then a catheter angiogram should be considered after a brain MRI with and without contrast and specific attention to the third nerve is performed. Tumors, including meningioma, schwannoma, and metastatic lesions, are in the differential. Other causes include trauma, subarachnoid hemorrhage, viral illnesses, demyelinating disease, and leptomeningeal disorders. If the neuroimaging is normal, the next step would be serologic testing for infectious diseases (such as syphilis and Lyme), with consideration given to lumbar puncture that would include glucose, protein, cell count, and cytology and culture.
MANAGEMENT

Management of a third nerve palsy is directed towards the cause and then management of the diplopia.

Monitor/Obscure

With complete ptosis, many patients are not troubled by diplopia until their lid is elevated.

Nonsurgical

If the patient experiences diplopia, chemodenervation (botulinum toxin) of an opposing extraocular muscle or the levator or use of occlusion can temporize while waiting for further recovery of function. Prisms, either press-on or ground-in, are often helpful, either while waiting for further recovery or treating residual diplopia (following partial recovery or following surgical correction). Despite all efforts to alleviate diplopia in the primary position, the incomitant nature of the deficit results in diplopia with minimal shift of gaze from the primary position. Many patients wear an eye patch or occlusive contact lens or MIN lens (Fresnel, Inc.) for times when the diplopia is most bothersome. A deficit of accommodation may cause difficulty reading. Unicoic progressive lenses or bifocals in younger patients can be prescribed to aid accommodation.

Surgical

Surgical management is complicated, and success often depends on the amount of residual deficit. A residual exotropia with ability to adduct past the midline typically responds well to recession of the lateral rectus muscle combined with resection of the medial rectus muscle (with or without adjustment), with or without vertical transposition. Likewise, in partial third nerve palsy, ipsilateral weakening of the superior oblique muscle, or its anterior intorting fibers might reduce the hypotropia and intorsion as a result of inferior oblique weakness. Recession with or without posterior fixation of muscles on the contralateral eye can also be used to expand the field of binocular single vision.

For compete paralysis, many other techniques have been tried with variable success. Some form of weakening procedure of the lateral rectus muscle is typically required, whether supramaximal recession, extirpation, or suturing to the periosteum of the lateral orbital rim. Sometimes this is combined with nasal transposition of the superior oblique muscle toward the medial rectus muscle insertion or maximal medial rectus resection for its tethering effect. Recently, nasal transposition of the split lateral rectus muscle to the medial rectus muscle insertion has been performed with some success.

Post-operative prism correction may be required to allow for fusion in the primary or reading position. Ptosis surgery should be tempered if the Bell’s response is extremely impaired, increasing the risk of exposure keratopathy. Patients treated surgically often have significant diplopia awareness outside of a region of binocular fusion and may benefit from part-time occlusion or a fogging contact lens for high-risk activities like driving a motor vehicle. Patients with concomitant injury to other structures in the brain or
brainstem may have central fusion disruption and be unable to fuse despite otherwise satisfactory post-operative alignment.

PROVIDER AND SETTING

Diagnosis and management of third nerve palsy requires the training, clinical judgment, and the experience of providers with expertise in neuro-ophthalmology and adult strabismus. Working under the supervision of an ophthalmologist, orthoptists can be an asset in the examination, diagnosis, and nonsurgical management of patients with third nerve palsy.

COUNSELING AND REFERRAL

The ophthalmologist should discuss the findings, explain the disorder, provide diagnosis, and discuss management options with the patient and any caregivers.
SECTION III. MYASTHENIA GRAVIS

INTRODUCTION

The term myasthenia gravis refers to a group of B-cell mediated autoimmune disorders that profoundly affect activity at the neuromuscular junction causing variable weakness exacerbated by fatigue. Although generalized myasthenia gravis affects large motor groups and sometimes includes ocular features, ocular myasthenia gravis affects only the levator, orbicularis oculi, and the extraocular muscles. It is known as the great masquerader because presentation can mimic many types of incomitant strabismus with or without ptosis.

DISEASE DEFINITION

Acetylcholine is released at the neuromuscular junction at the onset of an action potential and migrates across the synapse to reach the associated striated muscle. Acetylcholine receptor antibodies have been demonstrated in nearly all patients with generalized myasthenia and in 40% to 77% of patients with ocular myasthenia. Twitch fibers in extraocular muscles are thought to be particularly susceptible to fatigue, and this characteristic as well as the fewer number of acetylcholine receptor antibodies in these muscles may be responsible for the common ocular manifestations.

PATIENT POPULATION

The patient population includes adults with myasthenia gravis without geographic or racial predilection, although this disorder occurs in children as well in the form of transient neonatal myasthenia (transplacental transmission), congenital myasthenia (not immune mediated), and juvenile autoimmune myasthenia. Patients are at risk for having or developing thymoma.

CLINICAL OBJECTIVES

- Recognize the disorder to initiate appropriate workup and referral to other subspecialties, including neurology
- Ensure proper medical and surgical treatment, and initiate short-term and subsequent long-term management of associated ptosis and strabismus

Thymectomy is indicated, certainly in the presence of thymoma, but also for specific age-based and immune-based characteristics for which thymectomy may substantially reduce clinical symptoms.
BACKGROUND

PREVALENCE
The incidence ranges from 0.04 to 5/100,000 per year, and prevalence estimates are 0.5 to 12.5/100,000 per year.314

RISK FACTORS
There is increased risk for myasthenia gravis in the presence of autoimmune thyroid disease and thymoma.315

NATURAL HISTORY
Onset in adults is usually in the third to fourth decade of life but sometimes much later in males. If the disorder is generalized, it may involve bulbar, limb, and respiratory muscles, which can lead to life threatening respiratory failure. Fifty percent of patients with myasthenia present with ocular symptoms only (typically ptosis and variable strabismus and diplopia), and of these 50% to 80% develop generalized systemic myasthenia within a few years.316,317

RATIONALE FOR TREATMENT
Minimizing extraocular motility impairment, diplopia, and compensatory head position that can affect visual function, quality of life, and its socioeconomic consequences warrant treatment.

CARE PROCESS

PATIENT OUTCOME CRITERIA
Treatment is goal directed, and targeted outcomes may include:
- Recognition of disease and prevention of morbidity and mortality from generalized myasthenia gravis
- Reduction of diplopia (if present)
- Restoration of normal ocular alignment, appearance, and improved self-image
- Restoration of binocular function
- Reduction of compensatory head position (if present)

DIAGNOSIS
Variable incomitant strabismus may be accompanied by variable ptosis, both of which worsen with fatigue. Strabismus and associated diplopia may take on an entirely different pattern with fatigue or repetition of examination. Additionally, a period of rest or ice pack test in the physician’s office may temporarily reduce or
eliminate both the extraocular motility disturbances and ptosis. Ptosis worsens with fatigue (prolonged upgaze) and may have associated Cogan lid-twitch sign. Ptosis of the contralateral eye may worsen upon manual elevation of the eye, with more severe ptosis due to Hering’s law. Ocular saccades are often slow. Patients may also present with lid retraction as a result of associated TED. Pupils are typically not affected but may in rare cases show impaired or slow responses.

History

Patients may present with a history of acquired variable strabismus, diplopia and ptosis. Those with antecedent generalized disease may have variable motor weakness, respiratory fatigue, difficulty with chewing, swallowing, holding up the head and slurred speech.

Examination

Complete sensorimotor examination and external examination is critical, with attention to the presence of strabismus, which changes over the course of prolonged examination, and variable ptosis with possible Cogan lid-twitch sign, and slow saccades. The Ice Test-application of an ice pack over the closed eyes for 2 minutes in the case of ptosis and for 5 minutes in the case of strabismus may demonstrate a reduction of ptosis of about 2 mm and a reduction of misalignment. This phenomenon, thought to relate to diminished anticholinesterase activity, is highly specific to this disorder. A rest test without an ice pack can also be used to aid in diagnosis.

Tensilon (edrophonium) testing may be considered but is best performed by a practitioner experienced with proper intravenous administration, because associated muscarinic activity (excess tearing, salivation, sweating, abdominal cramping, bradycardia, bronchospasm hypotension, and syncope) can occur. The test should be performed in a monitored setting and atropine available for potential administration. It is 95% sensitive for generalized myasthenia and 86% sensitive in cases of ocular myasthenia.

The presence of antiacetylcholine receptor antibody (AChR-Ab-binding, blocking, or modulating) can confirm the diagnosis; however, about 20% of patients with generalized myasthenia and about half of those with ocular myasthenia are seronegative. About one-third of these seronegative patients will be seropositive for muscle-specific kinase (anti MuSKAb) and lipoprotein-related protein 4 (LRP4) has been associated with generalized and ocular myasthenia gravis as well.

Repetitive nerve stimulation testing (positive in only one-third of patients with ocular myasthenia) and the far more sensitive single fiber electromyography (positive in over 90% of patients with ocular myasthenia) may also assist in diagnosis. In many centers, single fiber EMG is considered the gold standard for diagnosis.
MANAGEMENT

Pyridostigmine bromide administered orally two to four times a day is the first-line treatment for myasthenia gravis, but about half of patients with strabismus-associated myasthenia show minimal response. In contrast, about 66% to 85% of patients show a positive response to corticosteroids. For some patients, various forms of immunosuppressive therapy with azathioprine, known to be effective, and other agents under current investigation may be offered by treating neurologists. Thymectomy is indicated in some cases, always in the presence of thymoma, and may substantially reduce symptoms for certain subpopulations with myasthenia gravis.

Diplopia and strabismus are highly variable and not readily remedied with prism. Remission or stabilization of the disease is often possible after 2 to 3 years of treatment, and at that point surgical intervention for strabismus may be considered if desired or if prism use is insufficient. Particular care is indicated in the use of anesthetic agents given any evidence of associated weakness of the respiratory muscles. Surgical management, with and without the use of adjustable sutures, has met with modest success in cases where there is a stabilized primary deviation, sometimes exacerbated by fatigue. More than one procedure may prove necessary.

PROVIDER AND SETTING

Diagnosis and management of myasthenia gravis requires the training and clinical judgment of an experienced ophthalmologist typically working in concert with a treating neurologist.

COUNSELING AND REFERRAL

Counselling and referral to a neurologist or neuro-ophtalmologist, and sometimes a general surgeon, is often indicated in the management of myasthenia. The ophthalmologist should discuss the findings, explain the disorder, provide a diagnosis, and discuss management options with the patient and any caregivers and be aware of any comorbidities such as respiratory distress that might present with generalization of the disease.
SECTION IIIm. FIXATION SWITCH DIPLOPIA

INTRODUCTION

DISEASE DEFINITION

In patients with childhood strabismus who have a suppression scotoma in their nondominant eye, fixation switch diplopia may occur because of a change in ocular fixation preference. Prior to their change in eye fixation preference, such patients do not perceive diplopia as the result of a suppression scotoma that was formed during childhood in the previously nondominant eye. However, when visual acuity in the previously dominant eye declines, fixation preference may switch to the previously nondominant eye. The previously dominant eye does not have a suppression scotoma, so for the first time, patients with “childhood” strabismus may experience double vision.

The largest study of fixation switch diplopia included 16 patients with a history of childhood strabismus who later presented with diplopia. The most common underlying etiologies were the use of monovision for the treatment of presbyopia in 38%, the development of myopia in the previously preferred eye in 25%, and incorrect refractive correction in 38% of patients. A trial of monovision with contact lenses is prudent prior to corneal or lenticular refractive surgery to determine whether surgically induced monovision will result in new-onset diplopia. Other published rare causes of fixation switch diplopia include a corneal ulcer and resultant scar in the dominant eye of a patient with monofixation syndrome and amblyopia and retinal detachment in the dominant eye of patients with strabismus and amblyopia.

PATIENT POPULATION

The patient population includes adults with fixation switch diplopia.

CLINICAL OBJECTIVES

- Counsel the patient on the diagnosis and treatment options
- Manage diplopia
- Inform the patient’s other health care providers of the diagnosis and treatment plan

BACKGROUND

PREVALENCE AND RISK FACTORS

Prevalence and incidence are unknown. Risk factors include any ophthalmic disorder or intervention that switches fixation to the previously nondominant eye in a patient with latent or manifest strabismus.
NATURAL HISTORY
Fixation switch diplopia is a subacute complaint of new onset diplopia after any ophthalmic disorder or intervention that switches fixation to the previously nondominant eye in a patient with latent or manifest strabismus.

RATIONALE FOR TREATMENT
Diplopia warrants treatment.

CARE PROCESS

PATIENT OUTCOME CRITERIA
- Reduction or elimination of symptomatic diplopia

DIAGNOSIS
Fixation switch diplopia is the development of new-onset diplopia when fixation preference has shifted to the previously nondominant eye.

History
A detailed medical history includes information on past ocular conditions and ocular fixation preference. Careful documentation of symptoms experienced when fixating with the previously preferred eye, and when fixing with the newly preferred eye, can confirm the diagnosis. A positive family history of strabismus is common. Kushner and Kowal recommend a minimal screening procedure consisting of obtaining a history of childhood eye disease or treatments (such as patching or eye muscle surgery), checking spectacles for prism, cycloplegic refraction, and cover testing for all patients undergoing corneal or lenticular refractive surgery, especially for those planning to induce monovision.

Common scenarios in which fixation switch diplopia occurs include:
- Monovision has been induced by optical means or by refractive surgery
- Myopia with axial elongation has developed in a previously dominant eye
- Following refractive surgery, if the outcome favors fixation with the previously nondominant eye
- An unbalanced refraction has been used that encourages fixation with the nondominant eye
- Following cataract surgery in a previously nondominant eye when the surgery results in better visual acuity of the nondominant eye compared with the dominant eye

P399
• Following asymmetric vision loss from other common diseases such as macular degeneration or diabetic retinopathy when the nondominant eye is left with better acuity

Examination

Comprehensive eye examinations of adult strabismus patients need to include:

• Detailed sensorimotor evaluation
• Assessment of refractive status
• Dilated fundus examination

Enabling fixation with the previously dominant eye can be done to confirm a history of monofixation and suppression before the change in ocular fixation preference occurred.

MANAGEMENT

Monitor/Observse

The patient should be monitored/observed if symptoms are mild or occasional or if the patient is opposed to treatment.

Nonsurgical

An attempt can be made to “switch” fixation back to the dominant eye, by pursuing refractive correction. Patients will gradually experience less diplopia if dominance is re-established in the previously dominant eye. In cases where the fixation cannot be switched back due to permanent and untreatable vision loss, vision in the newly dominant eye should be optimized with refractive correction and the use of prisms. Rarely, fixation switch diplopia cannot be alleviated, and in those cases occlusion must be contemplated as a last resort.

Surgical

In cases where the fixation cannot be switched back because of permanent and untreatable vision loss, strabismus surgery may be an option if there is a significant angle of misalignment and a demonstrated ability to relieve diplopia with prism correction by establishing a different alignment at which the patient can suppress.

PROVIDER AND SETTING

Fixation switch diplopia should be managed by an ophthalmologist with expertise in the diagnosis of longstanding childhood strabismus and abnormalities of binocular function. Working under the supervision of an ophthalmologist, orthoptists can be an asset in the examination, diagnosis, and nonsurgical management of fixation switch diplopia.
COUNSELING AND REFERRAL

Patients should be advised that they have an excellent prognosis if fixation can be switched back to the dominant eye. They should be counseled to avoid any procedures or refractive corrections that result in a switch of fixation to their nondominant eye. The ophthalmologist should discuss the findings, explain the disorder, provide diagnosis, and discuss management options with the patient and any caregivers.
SECTION IIb. RETINAL MISREGISTRATION (BINOCULAR RETINAL DIPLOPIA)

INTRODUCTION

DISEASE DEFINITION
Retinal disease that causes distortion or displacement of the fovea in one or both eyes—such as subretinal or epiretinal membranes or after retinal detachment involving the macula—can cause binocular diplopia. In these cases, binocular retinal misregistration (often manifesting as metamorphopsia, micropsia or macropsia, or foveal ectopia) renders the foveal images in the two eyes too dissimilar to fuse.340,341 When binocular retinal misregistration results in diplopia, central and peripheral fusion are in conflict, described as central-peripheral rivalry.342,343 In this situation, most often the stronger peripheral contribution to motor fusion brings the peripheral retinas into alignment and leaves the fovea of each eye misaligned.

PATIENT POPULATION
The patient population includes adults with binocular retinal diplopia.

CLINICAL OBJECTIVES
- Counsel the patient on the diagnosis and treatment options
- Manage diplopia
- Inform the patient’s other health care providers of the diagnosis and treatment plan

BACKGROUND

PREVALENCE AND RISK FACTORS
The prevalence of subretinal neovascular membranes and macular epiretinal membranes is 2% for individuals under 60 years of age and increases to as much as 12% for those over 70.344,345 Between 16% and 37% of those diagnosed with epiretinal membrane or other maculopathy have binocular retinal diplopia.343,346 With aging of the population, it is likely that retinal disease will be an increasingly important cause of diplopia.

NATURAL HISTORY
Within days to weeks of development of maculopathy or foveal abnormality, binocular retinal diplopia may develop, and this only rarely improves over time.
RATIONALE FOR TREATMENT

Diplopia warrants treatment.

CARE PROCESS

PATIENT OUTCOME CRITERIA

Treatment for binocular retinal diplopia includes diminishing diplopia.

DIAGNOSIS

Binocular diplopia develops within days to weeks of worsening maculopathy or foveal abnormality because the foveal image in the two eyes becomes too dissimilar to fuse.

History

A detailed medical history should include information on ocular conditions and specifically retinal disease involving the macula.

Examination

An examination should include any history of retinal disease affecting the macula of one or both eyes. A full orthoptic examination is warranted because a proportion of patients who have maculopathy and diplopia have other forms of treatable strabismus.347 Prism alternate cover testing demonstrates either no strabismus or a small vertical deviation. Any diplopia relief from prism correction is most often transient, although in rare patients it may be helpful. Metamorphopsia may be identified on the Amsler grid test and quantified using M-Charts, and aniseikonia (unequal images) can be documented and quantified using the Awaya test. (See Glossary)

For dragged-fovea diplopia syndrome, the lights on/off test is pathognomonic. In this test, a small white-on-black test letter is shown and, when peripheral fusion cues are eliminated by darkening the room, central fusion allows the test letter to be seen singly. When the room lights are turned on, peripheral fusion reasserts itself, the images of the test letter separate and diplopia resumes.343 This test is not effective unless the entire room is darkened with no cues to peripheral fusion such as door frames or background lighting on a computer monitor. An alternative to the lights-on lights-off test for those who are unable to eliminate all peripheral cues in their examination rooms is the optotype-frame test.347(See Glossary) For the optotype-frame test, the patient is requested to fixate an isolated (uncrowded) Snellen optotype on an illuminated
monitor and to describe whether the letter itself is single or double. Assuming it is single, the patient is asked whether the frame of the monitor is single or double. If maintaining a single frame causes diplopia of the letter, peripheral fusion has taken over and foveal diplopia syndrome is present. Stronger peripheral fusion makes it impossible to maintain central single binocular vision when foveal image disparity has become too great.

MANAGEMENT

Monitor/Observe

The patient should be monitored/observed if symptoms are mild or occasional or if the patient is opposed to treatment.

Nonsurgical

Although cover testing in patients with binocular retinal diplopia often demonstrates small-angle strabismus that is nearly always vertical, prismatic or surgical correction of this deviation is not curative because it does not resolve the mismatch of distorted macular images or the conflict between foveal and peripheral alignment. Even so, intervention can sometimes reduce symptoms. Reduced diplopia awareness has been reported with the use of prism correction or fogging in some patients.\(^{348}\) Fogging the vision in one eye, which eliminates the foveal conflict by producing a central scotoma,\(^{349}\) has been the most successful. Blenderm\(^{TM}\) surgical tape applied to the spectacle lens has been used,\(^3\) but Scotch Satin\(^{TM}\) tape\(^{343}\) or Bangerter foils\(^{349}\) are generally better tolerated, or use of an occlusive contact lenses. A small amount of prism in addition to a Bangerter foil can provide better relief from diplopia in some difficult cases.\(^{350}\)

Surgical

If superimposition of the foveal images by synoptophore or prism does not satisfactorily resolve or diminish subjective diplopia, strabismus surgery is unlikely to be successful. It may be considered if improved binocular alignment reduces symptoms incompletely addressed by fogging or optical correction alone, or if superimposition of the foveal images by synoptophore diminishes subjective diplopia. It is important to remember that some patients with retinal misregistration have treatable causes of diplopia as well\(^{347}\). There is emerging evidence that peeling of the epiretinal membrane may be effective in addressing binocular retinal diplopia in a proportion of patients,\(^{348}\) but retinal surgery for epiretinal membrane appears to be a double-edged sword because some nondiplopic patients become diplopic following this retinal procedure.\(^{351}\)
PROVIDER AND SETTING

A complaint of diplopia normally prompts referral to a pediatric ophthalmologist, orthoptist or neuro-ophthalmologist, many of whom are familiar with the diagnosis and management of this perplexing problem.

COUNSELING AND REFERRAL

Patients with binocular retinal diplopia are generally already under the care of a retina specialist, from whom they are typically referred. While the underlying retinal disease often needs ongoing care, surgical treatment such as membrane peeling improves diplopia only in a proportion of patients. The strabismus specialist may need to discuss the potential benefits of membrane peeling with the retina specialists. The potential value of prism improved refractive correction and strabismus surgery to reduce diplopia awareness in some cases should not be overlooked. The patient should be counseled, however, that this condition usually does not improve spontaneously, and fogging of one eye may be the most suitable long-term solution. The ophthalmologist should discuss the findings, explain the diagnosis, and discuss management options with the patient and any caregivers.
SECTION III. COMPLICATIONS OF PERFORMING ADULT STRABISMUS SURGERY

INTRODUCTION

Although complications can occur as a result of any surgical procedure, the risk of sight-threatening complications is particularly low with strabismus surgery. The more common complications are minor, often self-limited, or treated with topical medications. More serious complications are fortunately rare.

BACKGROUND

PREVALENCE AND RISK FACTORS

Severe complications from strabismus surgery have been estimated to be 1 in 400 (globe perforation, severe infection, slipped or lost muscle and scleritis), with 1 in 2,400 resulting in a poor or very poor outcome.

CARE PROCESS

POST OPERATIVE CONCERNS

The following postoperative concerns are common to adults as well as children after strabismus surgery. Postoperative concerns with a higher incidence in the adult population are indicated.

Mild Concerns

These are best treated with observation or a short course of common supportive therapy and include:

- Foreign body sensation
- Corneal abrasion
- Allergic reaction
- Delle (2.2%–18.9%, higher risk in reoperations and transpositions)
- Subconjunctival hemorrhage
- Chemosis
- Mydriasis
- Reduced accommodation
- Conjunctival scar
- Visible muscle insertion
- Thin visible/dark sclera
Persistent complications can occur as a result of any surgical procedure, but the risk of sight-threatening complications is particularly low with strabismus surgery. The more common complications are minor, often self-limited, or treated with topical medications. More serious complications are fortunately rare. Severe complications from strabismus surgery have been estimated to be 1 in 400 (globe perforation, severe infection, slipped or lost muscle and scleritis), with 1 in 2,400 resulting in a poor or very poor outcome.

The following postoperative concerns are common to adults as well as children after strabismus surgery. Postoperative concerns with a higher incidence in the adult population are indicated. These are best treated with observation or a short course of common supportive therapy and include:

- Foreign body sensation
- Corneal abrasion
- Allergic reaction
- Delle (2.2%–18.9%, higher risk in reoperations and transpositions)
- Subconjunctival hemorrhage
- Chemosis
- Mydriasis
- Reduced accommodation
- Conjunctival scar
- Visible muscle insertion
- Thin visible/dark sclera
- Persistent injection over the surgical site
- Postoperative nausea
- Pyogenic granuloma (2.1%)\(^3\)
- Tenon’s prolapse
- Epithelial inclusion cyst (0.25%)\(^3\)
- Advancing plica semilunaris
- Significant conjunctival scar

Persistent Tenon’s prolapse, pyogenic granuloma, epithelial inclusion cyst, advancing plica semilunaris, and conjunctival scar are sometimes addressed with minor surgical intervention.

Moderate Concerns

Ocular Misalignment

- Overcorrection or undercorrection (possibly treated with additional strabismus surgery)
- Limitation of eye ductions (possibly treated with additional strabismus surgery)
- Loss of binocular function (may benefit from additional strabismus surgery, orthoptic intervention, or use of a prism)

Globe/Eyelid/Systemic Concerns

- Globe perforation (0.08%–5.1%; although serious, most cases have no sequelae but place patient at higher risk for retinal detachment, vitreous hemorrhage, and endophthalmitis).\(^3,359-362\) Some cases are observed, others are treated with retinopexy.
- Altered eyelid position, common with surgery on the inferior or superior rectus muscles and more notable in patients with thyroid ophthalmopathy (who already may have eyelid retraction). If persistent or of concern, may be addressed with eyelid surgery.
- Oculocardiac reflex (67.9%) or asystole (0.11%) (both usually brief and of no consequence).\(^3,364\)

Major Concerns

Rare, but very serious complications include:

- Endophthalmitis (1 in 30,000–1 in 185,000)\(^3,359,365\)
- Subconjunctival abscess, preseptal/orbital cellulitis (1 in 1,100–1 in 1,900)\(^3,353,365,366\)
- Surgically induced necrotizing scleritis (1 in 4,000; more likely in adults)\(^3\)
- Slipped muscle (1 in 1,500)\(^3\)
- Lost muscle (1 in 4,500; more likely in adults)\(^3\)
- Pulled-in-two syndrome (1 in 14,000; more likely in adults)\(^3\)
- Retinal detachment (1 in 10,000–1 in 40,000)\(^3,359,367\)
- Adhesive syndrome (fat adherence syndrome)368
- Anterior segment ischemia (1 in 6,000; higher risk with age, vascular risk factors, and operating on three or more muscles)357
- Diplopia, rarely intractable (0.8%; more likely in adults)10
- Postoperative orbital hemorrhage (incidence unknown, exceedingly rare, potentially greater risk for patients on anticoagulation)369,370
- Operating on the wrong eye or muscle (1 in 2,506)371

PROVIDER AND SETTING

Diagnosis and management of complications from adult strabismus surgery requires the training, clinical judgment, and experience of a pediatric ophthalmologist or strabismologist.

COUNSELING AND REFERRAL

The ophthalmologist should discuss and explain the findings and discuss management options with the patient. In some cases, treatment may be best managed with the additional expertise of other ophthalmic colleagues with advanced retina, oculoplastics, or immunology expertise, as indicated.
SECTION IV. TECHNICAL CONSIDERATIONS OF PERFORMING ADULT STRABISMUS SURGERY

INTRODUCTION

Strabismus surgery in adults is often more challenging than in children for a variety of reasons. A well thought out surgical plan with preparation for the unexpected is important. Attention should be given to the following special considerations.

CARE PROCESS

SURGICAL PLANNING AND MANAGEMENT

Anticoagulants

Many strabismus surgeons do not routinely stop anticoagulants for strabismus surgery. Temporary discontinuation of anticoagulation medication may reduce intraoperative bleeding, but consultation with the physician prescribing anticoagulation is advised. Reasons for anticoagulation differ and, in some cases, bridging therapy is indicated. Anticoagulation should be restarted immediately or shortly after the procedure.\(^{372}\) It is possible to perform strabismus surgery on patients who are on anticoagulants.\(^{373}\) Absorbable gelatin sponges with or without thrombin may also be useful in difficult cases but are rarely required for more routine procedures.

Adjustable Sutures

Adjustable sutures are often used by strabismus surgeons, particularly for adult patients, although many surgeons achieve excellent results without the use of adjustable sutures. Advocates for adjustable sutures point to several advantages over fixed sutures, including a second chance at obtaining satisfactory alignment, and the potential to minimize risk of post-operative diplopia. A variety of techniques (bowtie, noose, semiadjustable) exist, and the timing of the adjustment varies with surgeon preference, ranging from immediately in the operation room, several hours after the surgery, and to up to several days following the procedure. This technique may be most helpful in reoperations and unpredictable cases, such as those with restrictive or paralytic strabismus.\(^{150,154,200,257,311,374,375}\)
Microtropias

Surgeons will frequently encounter microtropias in adults. Small deviations (<8 prism diopters horizontally and <3 prism diopters vertically) may prove clinically significant causing diplopia or asthenopia. Small horizontal or vertical deviations may be successfully treated using a tenotomy procedure (partial, central snip) to obviate the need for prism correction.376, 377

Chemodenervation

At present, intramuscular injection of botulinum toxin into an extraocular muscle may be used alone or in combination with strabismus surgery to treat new onset deviations, to enhance the impact of traditional surgery on large deviations, to address a residual deviation after prior strabismus surgery, and to treat small-angle deviations.61, 76, 139, 303, 378 Botulinum toxin can also be used to prevent contracture of an ipsilateral antagonist muscle in cases of paralytic strabismus while waiting the requisite period of time for spontaneous resolution before recommending strabismus surgery. A Cochrane Systematic Review found that it was difficult to assess outcomes given the limited number of RCTs.378

Anesthesia

Retrobulbar or peribulbar anesthesia and monitored sedation or pure topical anesthesia are possibilities in adults having unilateral surgery, though general anesthesia may be preferable in the case of reoperation, and complex, bilateral, and longer procedures.

Complex Strabismus

A higher percentage of adults have complex strabismus as a result of scarring from previous strabismus surgery, restriction from orbital trauma, or restriction from other ocular surgeries including glaucoma seton or scleral buckle surgery, the placement of orbital wall implants after trauma, blepharoplasty, dacryocystorhinostomy, pterygium excision or sinus surgery as well as myotoxicity from local anesthesia.201 (Many of these concerns are addressed in Section IIg. Strabismus Associated with Other Ophthalmic Surgery.) Scleromalacia may increase the complexity of both surgery and postoperative recovery.

A “stretched scar” (weak attachment between muscle and globe) is a common occurrence in adults who have undergone horizontal rectus muscle surgery in childhood. Suggestive clinical findings include increased deviation in the field of action of the previously operated muscle. It is important to distinguish weak, non-muscular attachments from more robust muscle tissue intraoperatively, as placement of sutures in this non-muscular tissue will lead to early recurrence of the strabismus and further loss of muscle force. Slipped or tenuously attached muscle (which sometimes appears like a stretched scar), and lost muscles are more common in adults and make surgical outcomes less predictable.379 They should be approached with
great care. A meticulous technique is often required to ensure a successful outcome. An experienced assistant can be very helpful. Sometimes a slipped or lost muscle is readily retrieved by tracing its natural path or by taking advantage of fine attachments, if not yet severed, to adjacent extraocular muscles. For example, a slipped inferior rectus muscle may still retain its attachments to the adjacent inferior oblique muscle. If the lost muscle cannot be found, waiting a month until likely adhesion to the globe may facilitate recovery of the previously lost segment, as the muscle can now be hooked. High-resolution orbital imaging may facilitate surgical planning. If this proves technically impossible, a transposition procedure may be considered to replace missing function. 352,353,380,381

Intraoperative Issues

The surgeon should also pay careful attention to specific intraoperative issues that are far more common in adults. A second strabismus surgeon or skilled assistant may be needed and ample time allotted. Conjunctiva and Tenon’s are frail in the older population. Thin and delicate conjunctiva may make wound closure difficult. Amniotic membrane grafts may sometimes be used in extreme cases. Likewise, careful technique is necessary to prevent pulled-in-two syndrome, in which the muscle belly is torn in two fragments from too vigorous traction on weakened extraocular muscles. 146

Retrobulbar, intramuscular, and intraocular hemorrhage may occur in adult strabismus surgery as a result of the surgery or periorbital anesthesia. 369,370,382 Although rare, they are potentially vision-threatening complications, and the surgeon should be knowledgeable in their management.

Whereas children will have formed vitreous, liquefied vitreous is common in adults. Consequently, adults have higher risk for retinal detachment following inadvertent scleral perforation of the needle. Various techniques such as short scleral passes may reduce this risk.

PROVIDER AND SETTING

Diagnosis and management of adult strabismus requires the training, clinical judgment, and experience of a pediatric ophthalmologist or strabismologist.

COUNSELING AND REFERRAL

The ophthalmologist should discuss the findings, explain the disorder, provide diagnosis, and discuss management options with the patient and any caregivers.
APPENDIX 1.
Glossary

Awaya Test: A test of aniseikonia that has the patient compare adjacent calibrated halfmoons—one red and one green—to determine the degree of difference in image size and appearance. The images can be presented in any meridian enabling quantification of vertical, horizontal, and oblique aniseikonia.

Bagolini Lenses: Striated lenses used to test for suppression, and normal or abnormal retinal correspondence.

Kushner Semi-Adjustable Technique: A modification of the adjustable suture technique that limits undesired excess recession over time by allowing only a modest degree of secondary adjustment to an otherwise fixed recession. (See reference.150)

Loop Myopexy: A strabismus surgical procedure wherein suture (typically nonabsorbable) is used to create an adhesion between two adjacent muscles without additional adhesion to sclera. Examples of common use of the loop myopexy technique include loop myopexy between the superior and lateral recti to treat myopic strabismus fixus, and between the superior or inferior rectus muscles and the lateral rectus muscle to improve abduction in the treatment of 6th nerve palsy or Duane syndrome.

SR-LR (Superior Rectus-Lateral Rectus) Band: This band maintains a soft tissue connection between the superior rectus and the lateral rectus muscles as they course posteriorly. Age or staphylomatous growth of the globe can result in a medial shift of the superior rectus and an inferior shift of the lateral rectus as this band of connective tissue fails.

Optotype Frame Test: This is a test of central versus peripheral fusion. The patient is requested to fixate an isolated (uncrowded) Snellen optotype on an illuminated monitor and to describe whether the letter itself is single or double. Assuming it is single, the patient is asked whether the frame of the monitor is single or double. If maintaining a single frame causes diplopia of the letter, peripheral fusion has taken over and foveal diplopia syndrome is present. This is a disorder wherein stronger peripheral fusion makes it impossible to maintain single binocular vision centrally and occurs when foveal image disparity is sufficient to disrupt central fusion.

Sagging Eye Syndrome: Some cases of divergence insufficiency may be seen in association with an age-related degeneration of the superior rectus–lateral rectus (SR-LR) connective tissue band. The strabismus is often accompanied by mild ptosis (or a history of treated ptosis) and deep superior lid sulcus defect associated with aging. Divergence insufficiency is common and sometimes there is associated, modest, vertical misalignment of the eyes.

Synoptophore: An instrument that measures the manifest strabismus angle in all planes and allows stimuli to be presented to both eyes at once. The misalignment can be “fixed” by the device and the ability of the patient to fuse the superimposed images can be tested. This device can also be used for orthoptic training, exercising fusional vergences and for predicting whether strabismus surgery may result in binocular fusion.
APPENDIX 2

Algorithm for approaching adult strabismus based on presentation of deviation
APPENDIX 3.

LITERATURE SEARCHES FOR THIS PPP

Literature searches of the PubMed and Cochrane databases were conducted in February 2017; the search strategies were as follows. Specific limited update searches were conducted after June 2019.

"divergence insufficiency" OR "divergence insufficiency esotropia" OR "divergence insufficiency pattern" OR "divergence insufficiency pattern esotropia" OR “divergence insufficiency” (convergence[tw] and insufficiency[tw]) OR ("convergence insufficiency" OR "convergence insufficiency and excess" OR "convergence insufficiency and reading study cirs group" OR "convergence insufficiency and symptom survey" OR "convergence insufficiency symptom survey ciss" OR "convergence insufficiency symptom survey questionnaire" OR "convergence insufficiency symptom survey score" OR "convergence insufficiency symptoms" OR "convergence insufficiency treatment" OR "convergence insufficiency treatment trial" OR "convergence insufficiency treatment trial citt investigator group" OR "convergence insufficiency treatment trial citt study group" OR "convergence insufficiency treatment trial executive committee" OR "convergence insufficiency treatment trial group" OR "convergence insufficiency treatment trial study group" OR "convergence insufficiency type" OR "convergence insufficiency type intermittent exotropia") (superior oblique palsy) OR ("fourth nerve"[tw] OR "trochlear"[tw] OR "fourth cranial nerve"[tw] OR "cranial nerve iv"[tw]) AND palsy[tw]) OR ("superior oblique palsy"[tw] OR "superior oblique paralysis"[tw] OR "fourth nerve palsy"[tw] OR "fourth nerve paralysis"[tw] OR "trochlear palsy"[tw] OR "trochlear paralysis"[tw] OR "cranial nerve iv palsy"[tw]
APPENDIX 4

RELATED ACADEMY MATERIALS

Basic and Clinical Science Course
External Disease and Cornea (Section 8, 2019–2020)

Focal Points 2018
Module: Adult Strabismus

Adult Strabismus Surgery - 2017

Amblyopia (2017)
Esotropia and Exotropia (2017)

To order any of these products, except for the free materials, please contact the Academy’s Customer Service at 866.561.8558 (U.S. only) or 415.561.8540 or www.aao.org/store.

Complex Strabismus Simulator
Oct 24, 2018 by Faruk H. Orge, MD; K. David Epley, MD
This simulator expands on the basic Strabismus Simulator, allowing the exploration of more complex eye deviations such as the alphabet patterns, cranial nerve...
Interactive / Tool
REFERENCES

70. Pediatric Eye Disease Investigator G. Home-Based Therapy for Symptomatic Convergence Insufficiency in Children: A Randomized Clinical Trial. *Optometry and

P423

155. Holmes JM, Hatt SR, Bradley EA. Identifying masked superior oblique involvement in thyroid eye disease to avoid postoperative A-pattern exotropia and intorsion. *Journal of*

