What are the four categories of corneal dystrophies?
What are the four categories of corneal dystrophies?
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal $TGFBI$ Dystrophies

Stromal Dystrophies
1) ?
2) ?
3) ?
4) ?
5) ?
6) ?

Endothelial Dystrophies

What are the six non-$TGFBI$ stromal dystrophies?
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

What are the six non-TGFBI stromal dystrophies?
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.
Stromal Dystrophies

1. **Macular corneal dystrophy**
2. Schnyder corneal dystrophy
3. Congenital stromal corneal dystrophy
4. Fleck corneal dystrophy
5. Posterior amorphous corneal dystrophy
6. Pre-Descemet corneal dystrophy

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)??
AR

At what age does MCD begin to manifest??
Childhood (the corneas are clear at birth)

How does it present at the slit lamp??
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful??
Epithelial erosions are rare, so generally no

Does it affect vision??
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy??
Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.
Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies
Macular corneal dystrophy

1) What is the inheritance pattern for macular dystrophy (MCD)?
 AR

2) At what age does MCD begin to manifest?
 Childhood (the corneas are clear at birth)

3) How does it present at the slit lamp?
 It starts with gray-white flecks in the anterior stroma. The cornea between lesions is clear vs hazy.

4) Does it affect vision?
 Yes, severe impairment occurs in the teens to 20s.

5) What is the histologic hallmark of MCD on light microscopy?
 Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy.
Macular corneal dystrophy. Early stage with few central macular opacities.
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal *TGFBI* Dystrophies

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?

AR

At what age does MCD begin to manifest?

Childhood (the corneas are clear at birth)

How does it present at the slit lamp?

It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata).

Is it painful?

Epithelial erosions are rare, so generally no.

Does it affect vision?

Yes, severe impairment occurs in the teens to 20s.

What is the histologic hallmark of MCD on light microscopy?

Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata).

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s.

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.
Stromal Dystrophies

1) **Macular corneal dystrophy**
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?

AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend...

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.
Stromal Dystrophies

1) **Macular corneal dystrophy**
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?

AR

At what age does MCD begin to manifest?

Childhood (the corneas are clear at birth)

How does it present at the slit lamp?

It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?

Epithelial erosions are rare, so generally no

Does it affect vision?

Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?

Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.
Macular corneal dystrophy. Later, opacities are found limbus to limbus.
Macular corneal dystrophy. Later, opacities are found limbus to limbus. Note that the intervening spaces between lesions are hazy as well.
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata) and extend limbus-to-limbus.

When I hear ‘guttata,’ I think two words

Stromal Dystrophies

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies

1) **Macular corneal dystrophy**
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata) and extend limbus-to-limbus.

When I hear ‘guttata,’ I think ‘Fuchs dystrophy.’

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.

When I hear ‘guttata,’ I think ‘Fuchs dystrophy.’

No, corneal edema does not occur
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata) and extend limbus-to-limbus.

When I hear ‘guttata,’ I think ‘Fuchs dystrophy.’ And when I think Fuchs dystrophy, I think two diff words.

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.

When I hear ‘guttata,’ I think ‘Fuchs dystrophy.’ And when I think Fuchs dystrophy, I think two diff words.
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata) and extend limbus-to-limbus.

Epithelial-Stromal TGFBI Dystrophies

When I hear ‘guttata,’ I think ‘Fuchs dystrophy.’ And when I think Fuchs dystrophy, I think ‘corneal edema.’

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?

AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata) and extend limbus-to-limbus.

Is corneal edema a manifestation of MCD?

When I hear 'guttata,' I think 'Fuchs dystrophy.' And when I think Fuchs dystrophy, I think 'corneal edema.'
Stromal Dystrophies

1) **Macular corneal dystrophy**
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?

AR

At what age does MCD begin to manifest?

Childhood (the corneas are clear at birth)

How does it present at the slit lamp?

It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata) and extend limbus-to-limbus.

When I hear ‘guttata,’ I think ‘Fuchs dystrophy.’ And when I think Fuchs dystrophy, I think ‘corneal edema.’ Is corneal edema a manifestation of MCD?

No, corneal edema does not occur

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

When I hear ‘guttata,’ I think ‘Fuchs dystrophy.’ And when I think Fuchs dystrophy, I think ‘corneal edema.’ Is corneal edema a manifestation of MCD?
No, corneal edema does not occur.

When I hear ‘guttata,’ I think ‘Fuchs dystrophy.’ And when I think Fuchs dystrophy, I think ‘corneal edema.’ Is corneal edema a manifestation of MCD?
No, corneal edema does not occur.

Corneal thickness is impacted as well. Does MCD cause the cornea to thicken, or to thin?

Yes, severe impairment occurs in the teens to 20s.

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal thickness is impacted as well. Does MCD cause the cornea to thicken, or to thin?
To thin

Epithelial-Stromal TGFBI Dystrophies

When I hear ‘guttata,’ I think ‘Fuchs dystrophy.’ And when I think Fuchs dystrophy, I think ‘corneal edema.’ Is corneal edema a manifestation of MCD?
No, corneal edema does not occur

Epithelial and Subepithelial Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Children (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.
Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?

Epithelial-Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies
Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare

Epithelial-Stromal TGFBI Dystrophies

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFB1 Dystrophies

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.
<table>
<thead>
<tr>
<th>Corneal Dystrophies</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the inheritance pattern for macular dystrophy (MCD)?</td>
</tr>
<tr>
<td>AR</td>
</tr>
<tr>
<td>At what age does MCD begin to manifest?</td>
</tr>
<tr>
<td>Childhood (the corneas are clear at birth)</td>
</tr>
<tr>
<td>How does it present at the slit lamp?</td>
</tr>
<tr>
<td>It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.</td>
</tr>
<tr>
<td>Is it painful?</td>
</tr>
<tr>
<td>Epithelial erosions are rare, so generally no</td>
</tr>
<tr>
<td>Does it affect vision?</td>
</tr>
<tr>
<td>Yes, severe impairment occurs in the teens to 20s</td>
</tr>
</tbody>
</table>

Stromal Dystrophies
1) **Macular corneal dystrophy**
2) Schnyder corneal dystrophy
3) Congenital stromal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies
Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs

Epithelial-Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Corneal Dystrophies

- What is the inheritance pattern for macular dystrophy (MCD)?
 AR

- At what age does MCD begin to manifest?
 Childhood (the corneas are clear at birth)

- How does it present at the slit lamp?
 It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

- Is it painful?
 Epithelial erosions are rare, so generally no

- Does it affect vision?
 Yes, severe impairment occurs
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies
Stromal Dystrophies

1) **Macular corneal dystrophy**
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?

AR

At what age does MCD begin to manifest?

Childhood (the corneas are clear at birth)

How does it present at the slit lamp?

It starts with gray-white flecks in the anterior stroma. The cornea *between* lesions is *hazy*. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of *guttata*), and extend *limbus-to-limbus*.

Is it painful?

Epithelial erosions are *rare*, so generally no

Does it affect vision?

Yes, severe impairment occurs *in the teens to 20s*
Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans, GAGs) at all levels of the cornea; they stain with alcian blue.

Macular corneal dystrophy

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies
Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal

Stromal Dystrophies

1) **Macular corneal dystrophy**
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka another long word) at all levels of the cornea

Endothelial Dystrophies
Corneal Dystrophies

<table>
<thead>
<tr>
<th>Dystrophy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelial and Subepithelial Dystrophies</td>
<td></td>
</tr>
<tr>
<td>1) Macular corneal dystrophy</td>
<td>What is the inheritance pattern for macular dystrophy (MCD)? AR</td>
</tr>
<tr>
<td>2) Schnyder corneal dystrophy</td>
<td>At what age does MCD begin to manifest? Childhood (the corneas are clear at birth)</td>
</tr>
<tr>
<td>3) Congenital stromal corneal dystrophy</td>
<td>How does it present at the slit lamp? It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.</td>
</tr>
<tr>
<td>4) Fleck corneal dystrophy</td>
<td>Is it painful? Epithelial erosions are rare, so generally no</td>
</tr>
<tr>
<td>5) Posterior amorphous corneal dystrophy</td>
<td>Does it affect vision? Yes, severe impairment occurs in the teens to 20s</td>
</tr>
<tr>
<td>6) Pre-Descemet corneal dystrophy</td>
<td>What is the histologic hallmark of MCD on light microscopy? Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dystrophy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelial-Stromal TGFBI Dystrophies</td>
<td></td>
</tr>
<tr>
<td>1) Stromal dystrophies</td>
<td></td>
</tr>
<tr>
<td>2) Epithelial-stromal TGFBI dystrophies</td>
<td></td>
</tr>
</tbody>
</table>

Stromal Dystrophies

1) **Macular corneal dystrophy**
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies
Corneal Dystrophies

Stromal Dystrophies

1) **Macular corneal dystrophy**
2) Schnyder corneal dystrophy
3) Congenital stromal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?

AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.
Macular corneal dystrophy. Intracellular and extracellular accumulation of mucopolysaccharides (GAGs) at all levels of stroma and corneal endothelium. Subepithelial fibrous tissue also contains GAGs. Stain: Alcian blue
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

1) Macular corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

Take note of this aka! The term mucopolysaccharide is considered outdated—glycosaminoglycan is the preferred nomenclature. This is reflected in recent editions of the Cornea book, which refer to MCD as a condition of defective glycosaminoglycan production, not mucopolysaccharide production. (The import of this shift in terminology will be made clear shortly.)

Endothelial Dystrophies

(No question—proceed when ready)
Stromal Dystrophies

1. Macular corneal dystrophy
2. Schnyder corneal dystrophy
3. Congenital stromal corneal dystrophy
4. Fleck corneal dystrophy
5. Posterior amorphous corneal dystrophy
6. Pre-Descemet corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal Dystrophies

Stromal Dystrophies

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

Endothelial Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal Dystrophies

TGFBI Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?
--?
--?
--?

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.
So, if the proteoglycans contain abnormal GAGs, the cornea ain’t gonna be right, and this is the case in MCD.
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial and Subepithelial Dystrophies

Endothelial Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?
- Collagen fibers organized into lamellae;?
- ?
- Ground substance is composed of proteoglycans and water. At last, the payoff:

A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

So, if the proteoglycans contain abnormal GAGs, the cornea ain’t gonna be right, and this is the case in MCD.
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial and Subepithelial Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is the hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

Epithelial-Stromal Dystrophies

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--?
--?

A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

So, if the proteoglycans contain abnormal GAGs, the cornea ain’t gonna be right, and this is the case in MCD.
What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?

Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?

--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--?

Ground substance is composed of proteoglycans and water. At last, the payoff:

A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

So, if the proteoglycans contain abnormal GAGs, the cornea ain’t gonna be right, and this is the case in MCD.

Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

1. Macular corneal dystrophy
2. Schnyder corneal dystrophy
3. Congenital stromal corneal dystrophy
4. Fleck corneal dystrophy
5. Posterior amorphous corneal dystrophy
6. Pre-Descemet corneal dystrophy

Stromal Dystrophies

- Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

Endothelial Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?
-- Collagen fibers organized into lamellae;
-- Ground substance, the gooey material that fills the space between lamellae; and
--?

Ground substance is composed of proteoglycans and water. At last, the payoff: A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

So, if the proteoglycans contain abnormal GAGs, the cornea ain’t gonna be right, and this is the case in MCD.
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

Endothelial Dystrophies
What is the inheritance pattern for macular dystrophy (MCD)?

AR

At what age does MCD begin to manifest?

Childhood (the corneas are clear at birth)

How does it present at the slit lamp?

- It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy.
- The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?

Epithelial erosions are rare, so generally no

Does it affect vision?

Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?

Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?

Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?

- Collagen fibers organized into lamellae;
- Ground substance, the gooey material that fills the space between lamellae; and
- Keratocytes, the cells that make the collagen and ground substance

Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

Epithelial Dystrophies

Epithelial-Subepithelial Dystrophies

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?

Good question. But before we address it, let's back up a step…

The corneal stroma consists of three basic components. What are they?

--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water.

What is the histologic hallmark of MCD on light microscopy?

Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

Is it painful?

Epithelial erosions are rare, so generally no

Does it affect vision?

Yes, severe impairment occurs in the teens to 20s

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?

Good question. But before we address it, let's back up a step…

The corneal stroma consists of three basic components. What are they?

--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water.

What is the histologic hallmark of MCD on light microscopy?

Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial-Stromal Dystrophies

1) TGFBI dystrophies

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

Is there pain associated with MCD?
No

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let's back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water.
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

Epithelial-Dystrophies

Epithelial-Stromal Dystrophies

TGFBI Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

Endothelial Dystrophies

Epithelial-Stromal Dystrophies

TGFBI Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?

Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:

A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

So, if the proteoglycans contain abnormal GAGs, the cornea ain’t gonna be right, and this is the case in MCD.

Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.
Macular Corneal Dystrophy

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the inheritance pattern for macular dystrophy (MCD)?
AR

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

Three GAGs are present in the corneal stroma—what are they?
--?
--?
--?

Keratan sulfate

What’s wrong with it?
It isn’t properly sulfated

Glycosaminoglycans
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let's back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

Three GAGs are present in the corneal stroma—what are they?
--Keratan sulfate
--Chondroitin sulfate
--Dermatan sulfate

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let's back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

Three GAGs are present in the corneal stroma—what are they?
--Keratan sulfate
--Chondroitin sulfate
--Dermatan sulfate
Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff: A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

Three GAGs are present in the corneal stroma—what are they?
--Keratan sulfate?
--Chondroitin sulfate?
--Dermatan sulfate?

Which one ain’t right in MCD?

Keratan sulfate

What’s wrong with it?
It isn’t properly sulfated
What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?

Good question. But before we address it, let's back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

So, if the proteoglycans contain abnormal GAGs, the cornea ain't gonna be right, and this is the case in MCD.

Three GAGs are present in the corneal stroma—what are they?
--Keratan sulfate!
--Chondroitin sulfate
--Dermatan sulfate

Which one ain't right in MCD?
Keratan sulfate
Macular corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

Three GAGs are present in the corneal stroma—what are they?
--Keratan sulfate!
--Chondroitin sulfate
--Dermatan sulfate

Which one ain’t right in MCD?
Keratan sulfate

What’s wrong with it?
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

1. Macular corneal dystrophy
2. Schnyder corneal dystrophy
3. Congenital stromal corneal dystrophy
4. Fleck corneal dystrophy
5. Posterior amorphous corneal dystrophy
6. Pre-Descemet corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

Three GAGs are present in the corneal stroma—what are they?
--Keratan sulfate!
--Chondroitin sulfate
--Dermatan sulfate

Which one ain’t right in MCD?
Keratan sulfate

What’s wrong with it?
It isn’t properly sulfated
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial and Subepithelial Dystrophies

Corneal Dystrophies

Endothelial Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?

AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

A blood test to diagnose MCD is available. What is evaluated?

Serum levels of the abnormal keratan sulfate

How sensitive is the test?
Good, but not 100% (there are subtypes of MCD that will not test positive)

Will the test be positive prior to the onset of corneal changes?
Yes

Will it be positive in asymptomatic carriers of MCD?
Yes

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?

Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components:

--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae;
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:

A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

So, if the proteoglycans contain abnormal GAGs, the cornea ain’t gonna be right, and this is the case in MCD.

Three GAGs are present in the corneal stroma—what are they?

--Keratan sulfate!
--Chondroitin sulfate
--Dermatan sulfate

Which one ain’t right in MCD?
Keratan sulfate

What’s wrong with it?
It isn’t properly sulfated
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

Endothelial Dystrophies

Epithelial and Subepithelial Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?

Good question. But before we address it, let's back up a step…

The corneal stroma consists of three basic components:
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance.

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

So, if the proteoglycans contain abnormal GAGs, the cornea ain't gonna be right, and this is the case in MCD.

Three GAGs are present in the corneal stroma—what are they?

--Keratan sulfate
--Chondroitin sulfate
--Dermatan sulfate

Which one ain't right in MCD?
Keratan sulfate

What's wrong with it?
It isn't properly sulfated

A blood test to diagnose MCD is available. What is evaluated?
Serum levels of the abnormal keratan sulfate.

How sensitive is the test?
Good, but not 100% (there are subtypes of MCD that will not test positive)

Will the test be positive prior to the onset of corneal changes?
Yes

Will it be positive in asymptomatic carriers of MCD?
Yes
Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

A blood test to diagnose MCD is available. What is evaluated?
Serum levels of the abnormal keratan sulfate

How sensitive is the test?

The corneal stroma consists of three basic components:
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

So, if the proteoglycans contain abnormal GAGs, the cornea ain't gonna be right, and this is the case in MCD.

Three GAGs are present in the corneal stroma—
--Keratan sulfate
--Chondroitin sulfate
--Dermatan sulfate

Which one ain't right in MCD?
Keratan sulfate

What's wrong with it?
It isn't properly sulfated
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

Endothelial Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

A blood test to diagnose MCD is available. What is evaluated?
Serum levels of the abnormal keratan sulfate

How sensitive is the test?
Good, but not 100% (there are subtypes of MCD that will not test positive)

The corneal stroma consists of three basic components:
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae;
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water.

A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

So, if the proteoglycans contain abnormal GAGs, the cornea ain’t gonna be right, and this is the case in MCD.

Three GAGs are present in the corneal stroma—
--Keratan sulfate!
--Chondroitin sulfate
--Dermatan sulfate

Which one ain’t right in MCD?
Keratan sulfate

What’s wrong with it?
It isn’t properly sulfated

A good question. But before we address it, let’s back up a step…

Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?

Which one ain’t right in MCD?
Keratan sulfate

What’s wrong with it?
It isn’t properly sulfated
What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

A blood test to diagnose MCD is available. What is evaluated?
Serum levels of the abnormal keratan sulfate

How sensitive is the test?
Good, but not 100% (there are subtypes of MCD that will not test positive)

Will the test be positive prior to the onset of corneal changes?
Yes

Will it be positive in asymptomatic carriers of MCD?
Yes

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let's back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

So, if the proteoglycans contain abnormal GAGs, the cornea ain’t gonna be right, and this is the case in MCD.

Three GAGs are present in the corneal stroma—what are they?
Keratan sulfate!
--Chondroitin sulfate
--Dermatan sulfate

Which one ain’t right in MCD?
Keratan sulfate

What’s wrong with it?
It isn’t properly sulfated
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

1. Macular corneal dystrophy
2. Schnyder corneal dystrophy
3. Congenital stromal corneal dystrophy
4. Fleck corneal dystrophy
5. Posterior amorphous corneal dystrophy
6. Pre-Descemet corneal dystrophy

Stromal Dystrophies

- What is the inheritance pattern for macular dystrophy (MCD)?
 - AR

- At what age does MCD begin to manifest?
 - Childhood (the corneas are clear at birth)

- What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
 - Good question. But before we address it, let's back up a step…
 - The corneal stroma consists of three basic components: collagen fibers organized into lamellae, ground substance, the gooey material that fills the space between lamellae; and keratocytes, the cells that make the collagen and ground substance.
 - Ground substance is composed of proteoglycans and water. At last, the payoff: A proteoglycan is simply a protein with a glycosaminoglycan attached to it.
 - So, if the proteoglycans contain abnormal GAGs, the cornea ain’t gonna be right, and this is the case in MCD.

- Three GAGs are present in the corneal stroma—what are they?
 - Keratan sulfate!
 - Chondroitin sulfate
 - Dermatan sulfate

- Which one ain’t right in MCD?
 - Keratan sulfate

- What’s wrong with it?
 - It isn’t properly sulfated

- A blood test to diagnose MCD is available. What is evaluated?
 - Serum levels of the abnormal keratan sulfate

- How sensitive is the test?
 - Good, but not 100% (there are subtypes of MCD that will not test positive)

- Will the test be positive prior to the onset of corneal changes?
 - Yes

- Will it be positive in asymptomatic carriers of MCD?
 - Yes
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

A blood test to diagnose MCD is available. What is evaluated?
Serum levels of the abnormal keratan sulfate

How sensitive is the test?
Good, but not 100% (there are subtypes of MCD that will not test positive)

Will the test be positive prior to the onset of corneal changes?
Yes

Will it be positive in asymptomatic carriers of MCD?
Yes

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What is a glycosaminoglycan (GAG), and what is it doing in the cornea?
Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components. What are they?
--Collagen fibers organized into lamellae;
--Ground substance, the gooey material that fills the space between lamellae; and
--Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

So, if the proteoglycans contain abnormal GAGs, the cornea ain’t gonna be right, and this is the case in MCD.

Three GAGs are present in the corneal stroma—what are they?
--Keratan sulfate!
--Chondroitin sulfate
--Dermatan sulfate

Which one ain’t right in MCD?
Keratan sulfate

What’s wrong with it?
It isn’t properly sulfated

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)? AR

At what age does MCD begin to manifest? Childhood (the corneas are clear at birth)

What is the inheritance pattern for macular dystrophy (MCD)? AR

A blood test to diagnose MCD is available. What is evaluated? Serum levels of the abnormal keratan sulfate

How sensitive is the test? Good, but not 100% (there are subtypes of MCD that will not test positive)

Will the test be positive prior to the onset of corneal changes? Yes

Will it be positive in asymptomatic carriers of MCD? Yes

What is a glycosaminoglycan (GAG), and what is it doing in the cornea? Good question. But before we address it, let’s back up a step…

The corneal stroma consists of three basic components:
---Collagen fibers organized into lamellae;
---Ground substance, the gooey material that fills the space between lamellae;
---Keratocytes, the cells that make the collagen and ground substance

Ground substance is composed of proteoglycans and water. At last, the payoff:
A proteoglycan is simply a protein with a glycosaminoglycan attached to it.

So, if the proteoglycans contain abnormal GAGs, the cornea ain’t gonna be right, and this is the case in MCD.

Three GAGs are present in the corneal stroma—what are they?
---Keratan sulfate!
---Chondroitin sulfate
---Dermatan sulfate

Which one ain’t right in MCD? Keratan sulfate

What’s wrong with it? It isn’t properly sulfated

A blood test to diagnose MCD is available. What is evaluated? Serum levels of the abnormal keratan sulfate

How sensitive is the test? Good, but not 100% (there are subtypes of MCD that will not test positive)

Will the test be positive prior to the onset of corneal changes? Yes

Will it be positive in asymptomatic carriers of MCD? Yes
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Macular corneal dystrophy
Schnyder corneal dystrophy
Congenital stromal corneal dystrophy
Fleck corneal dystrophy
Posterior amorphous corneal dystrophy
Pre-Descemet corneal dystrophy

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

The Cornea book stresses four characteristics that distinguish MCD from other stromal dystrophies:
--
--
--
--

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

Epithelial-Stromal TGFBI Dystrophies

Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

(No question yet—keep going)
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

The Cornea book stresses four characteristics that distinguish MCD from other stromal dystrophies:
-- It's inherited AR (most corneal dystrophies are AD)
--
--
--

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What is the inheritance pattern for macular dystrophy (MCD)?

AR

At what age does MCD begin to manifest?

Childhood (the corneas are clear at birth)

How does it present at the slit lamp?

It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?

Epithelial erosions are rare, so generally no

Does it affect vision?

Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?

Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

The Cornea book stresses four characteristics that distinguish MCD from other stromal dystrophies:

--It’s inherited AR (most corneal dystrophies are AD)
--It involves the entire stroma (most pick a layer and stay there)
--It can involve the endothelium (others don’t)
--It’s limbus-to-limbus (others tend to spare the corneal periphery)
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

Endothelial Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

The Cornea book stresses four characteristics that distinguish MCD from other stromal dystrophies:
--It's inherited AR (most corneal dystrophies are AD)
--It involves the entire stroma (most pick a layer and stay there)
--It can involve the endothelium (others don't)
--It's limbus-to-limbus (others tend to spare the corneal periphery)

(No question—keep going)
Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?

AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

The *Cornea* book stresses four characteristics that distinguish MCD from other stromal dystrophies:

-- It’s inherited AR (most corneal dystrophies are AD)
-- It involves the entire stroma (most pick a layer and stay there)
-- It can involve the endothelium (others don’t)
--

2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

Endothelial Dystrophies

(No question—keep going)
Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

The Cornea book stresses four characteristics that distinguish MCD from other stromal dystrophies:
-- It’s inherited AR (most corneal dystrophies are AD)
-- It involves the entire stroma (most pick a layer and stay there)
-- It can involve the endothelium (others don’t)
-- It’s limbus-to-limbus (others tend to spare the corneal periphery)

Epithelial-Stromal TGFBI Dystrophies

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

(No question—keep going)
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial and Subepithelial Dystrophies

Endothelial Dystrophies

Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

(No question—keep going)
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

Endothelial Dystrophies

You’re probably familiar with the well-known mnemonic regarding the corneal dystrophies:

Marilyn Monroe Always Gets Her Man in LA County

6) Pre-Descemet corneal dystrophy

(No question—keep going)
Corneal Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

Take note of this aka!
The term mucopolysaccharide is considered outdated—glycosaminoglycan is the preferred nomenclature. This is reflected in recent editions of the Cornea book, which refers to MCD as a condition of defective glycosaminoglycan production, not mucopolysaccharide production. (The import of this shift in terminology will be made clear shortly.)

It’s now time to address this…

You’re probably familiar with the well-known mnemonic regarding the corneal dystrophies:

Marilyn Monroe Always Gets Her Man in LA County

Which helps us remember the name, abnormal material, and stain for each of the ‘Big 3’ stromal dystrophies:

Marilyn macular dystrophy
Monroe mucopolysaccharide
Always Alcian blue
Gets granular dystrophy
Her hyaline
Man Masson trichrome
in lattice dystrophy
L amyloid
A Congo Red

(No question—keep going)
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

What is the inheritance pattern for macular dystrophy (MCD)?
AR

At what age does MCD begin to manifest?
Childhood (the corneas are clear at birth)

How does it present at the slit lamp?
It starts with gray-white flecks in the anterior stroma. The cornea between lesions is hazy. The lesions spread to involve the full thickness of the stroma (and can even involve the endothelium in the form of guttata), and extend limbus-to-limbus.

Is it painful?
Epithelial erosions are rare, so generally no

Does it affect vision?
Yes, severe impairment occurs in the teens to 20s

What is the histologic hallmark of MCD on light microscopy?
Abnormal mucopolysaccharides (aka glycosaminoglycans) at all levels of the cornea; they stain with alcian blue.

Take note of this aka!
The term mucopolysaccharide is considered outdated—glycosaminoglycan is the preferred nomenclature. This is reflected in recent editions of the Cornea book, which refers to MCD as a condition of defective glycosaminoglycan production, not mucopolysaccharide production. (The import of this shift in terminology will be made clear shortly.)

It’s now time to address this…

You’re probably familiar with the well-known mnemonic regarding the corneal dystrophies:

Marilyn Monroe Always Gets Her Man in LA County

Which helps us remember the name, abnormal material, and stain for each of the ‘Big 3’ stromal dystrophies:
Marilyn macular dystrophy
Monroe mucopolysaccharide
Always Alcian blue

But it’s not perfect:
The problem is readily apparent—the mnemonic only works if the abnormal material in MCD is called ‘mucopolysaccharide.’ So either modify the mnemonic to include GAGs (tweet your mods to me @EyeDentistAAO), or (gasp!) actually learn it.

A amyloid
County Congo Red

6) Pre-Descemet corneal dystrophy

(No question—keep going)
Stromal Dystrophies

1) Macular corneal dystrophy
2) **Schnyder corneal dystrophy**
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What was the former name of this condition?

Schnyder crystalline corneal dystrophy

Why was the name changed?

Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD?

It is a localized disorder of lipid metabolism

At what age does SCD begin to manifest?

In the first year of life (but it often goes undiagnosed for many years)

What is seen at the slit lamp?

Early, in the disease, the cornea displays either a central opaque 'disc,' or central crystals. Later, arcus lipoides forms, and as the disease progresses, the cornea becomes more and more opaque.

Is it painful?

Generally no

Does it affect vision?

Yes--glare eventually becomes disabling

What is the histologic hallmark of SCD on light microscopy?

Phospholipids that stain with Oil red O

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

What was the former name of this condition? Schnyder crystalline corneal dystrophy

Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) **Schnyder corneal dystrophy**
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

What was the former name of this condition?
Schnyder **crystalline** corneal dystrophy

Why was the name changed?

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal **TGFBI** Dystrophies

Stromal Dystrophies

Endothelial Dystrophies

What was the former name of this condition?
Schnyder **crystalline** corneal dystrophy

Why was the name changed?
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

What was the former name of this condition?
Schnyder crystalline corneal dystrophy

Why was the name changed?
Only ~50% manifest corneal crystals
Stromal Dystrophies

1) Macular corneal dystrophy
2) **Schnyder corneal dystrophy**
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

What was the former name of this condition? Schnyder **crystalline** corneal dystrophy

Why was the name changed? Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD?

Epithelial-Stromal **TGFBI** Dystrophies

Stromal Dystrophies

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies

1) Macular corneal dystrophy
2) **Schnyder corneal dystrophy**
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

What was the former name of this condition?
Schnyder **crystalline** corneal dystrophy

Why was the name changed?
Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD?
It is a localized disorder of lipid metabolism
Stromal Dystrophies

1) Macular corneal dystrophy
2) **Schnyder corneal dystrophy**
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What was the former name of this condition?</td>
<td>Schnyder crystalline corneal dystrophy</td>
</tr>
<tr>
<td>Why was the name changed?</td>
<td>Only ~50% manifest corneal crystals</td>
</tr>
<tr>
<td>What is the fundamental pathology in SCD?</td>
<td>It is a localized disorder of lipid metabolism</td>
</tr>
<tr>
<td>At what age does SCD begin to manifest?</td>
<td>In the first year of life (but it often goes undiagnosed for many years)</td>
</tr>
<tr>
<td>What is seen at the slit lamp?</td>
<td>Early, in the disease, the cornea displays either a central opaque 'disc,' or central crystals. Later, arcus lipoides forms, and as the disease progresses, the cornea becomes more and more opaque.</td>
</tr>
<tr>
<td>Is it painful?</td>
<td>Generally no</td>
</tr>
<tr>
<td>Does it affect vision?</td>
<td>Yes--glare eventually becomes disabling</td>
</tr>
<tr>
<td>What is the histologic hallmark of SCD on light microscopy?</td>
<td>Phospholipids that stain with Oil red O</td>
</tr>
</tbody>
</table>

Stromal Dystrophies

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) **Schnyder corneal dystrophy**
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial and Subepithelial Dystrophies

Corneal Dystrophies

What was the former name of this condition? Schnyder **crystalline** corneal dystrophy

Why was the name changed? Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD? It is a localized disorder of lipid metabolism

At what age does SCD begin to manifest? In the first year of life (but it often goes undiagnosed for many years)

Epithelial-Stromal **TGFBI** Dystrophies

Stromal Dystrophies

Endothelial Dystrophies
Epithelial and Subepithelial Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) **Schnyder corneal dystrophy**
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

Corneal Dystrophies

What was the former name of this condition?
Schnyder **crystalline** corneal dystrophy

Why was the name changed?
Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD?
It is a localized disorder of lipid metabolism

At what age does SCD begin to manifest?
In the first year of life (but it often goes undiagnosed for many years)

What is seen at the slit lamp?

Epithelial and Subepithelial Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

What was the former name of this condition? Schnyder crystalline corneal dystrophy

Why was the name changed? Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD? It is a localized disorder of lipid metabolism

At what age does SCD begin to manifest? In the first year of life (but it often goes undiagnosed for many years)

What is seen at the slit lamp? Early in the disease, the cornea displays either a central opaque ‘disc,’ or central crystals

Epithelial-Stromal TGFBI Dystrophies
Schnyder corneal dystrophy.
Early (<age 23 years):
Noncrystalline (A) and crystalline (B) forms.
Stromal Dystrophies

1) Macular corneal dystrophy
2) **Schnyder corneal dystrophy**
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Corneal Dystrophies

What was the former name of this condition?
Schnyder **crystalline** corneal dystrophy

Why was the name changed?
Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD?
It is a localized disorder of lipid metabolism

At what age does SCD begin to manifest?
In the first year of life (but it often goes undiagnosed for many years)

What is seen at the slit lamp?
Early in the disease, the cornea displays either a central opaque ‘disc,’ or central crystals. Later, arcus lipoides forms, and as the disease progresses, the corneal becomes more and more opaque.

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal **TGFBI** Dystrophies

Stromal Dystrophies

Endothelial Dystrophies
Schnyder corneal dystrophy.
D, As dz progresses, arcus lipoides develops.
F, As the dz progresses further, midperipheral haze appears, and worsens throughout life (pt in [F] is 72)
Stromal Dystrophies

1) Macular corneal dystrophy
2) **Schnyder corneal dystrophy**
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

Corneal Dystrophies

What was the former name of this condition?
Schnyder **crystalline** corneal dystrophy

Why was the name changed?
Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD?
It is a localized disorder of lipid metabolism

At what age does SCD begin to manifest?
In the first year of life (but it often goes undiagnosed for many years)

What is seen at the slit lamp?
Early in the disease, the cornea displays either a central opaque ‘disc,’ or central crystals. Later, arcus lipoides forms, and as the disease progresses, the corneal becomes more and more opaque.

Is it painful?
Generally no

Does it affect vision?
Yes--glare eventually becomes disabling
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

What was the former name of this condition?
Schnyder crystalline corneal dystrophy

Why was the name changed?
Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD?
It is a localized disorder of lipid metabolism

At what age does SCD begin to manifest?
In the first year of life (but it often goes undiagnosed for many years)

What is seen at the slit lamp?
Early in the disease, the cornea displays either a central opaque ‘disc,’ or central crystals. Later, arcus lipoides forms, and as the disease progresses, the corneal becomes more and more opaque.

Is it painful?
Generally no
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Corneal Dystrophies

What was the former name of this condition?
Schnyder crystalline corneal dystrophy

Why was the name changed?
Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD?
It is a localized disorder of lipid metabolism

At what age does SCD begin to manifest?
In the first year of life (but it often goes undiagnosed for many years)

What is seen at the slit lamp?
Early in the disease, the cornea displays either a central opaque ‘disc,’ or central crystals. Later, arcus lipoides forms, and as the disease progresses, the corneal becomes more and more opaque.

Is it painful?
Generally no

Does it affect vision?
Yes--glare eventually becomes disabling

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) **Schnyder corneal dystrophy**
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

What was the former name of this condition?
Schnyder *crystalline* corneal dystrophy

Why was the name changed?
Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD?
It is a localized disorder of lipid metabolism

At what age does SCD begin to manifest?
In the first year of life (but it often goes undiagnosed for many years)

What is seen at the slit lamp?
Early in the disease, the cornea displays either a central opaque ‘disc,’ or central crystals. Later, arcus lipoides forms, and as the disease progresses, the corneal becomes more and more opaque.

Is it painful?
Generally no

Does it affect vision?
Yes--glare eventually becomes disabling
Stromal Dystrophies

1) Macular corneal dystrophy
2) **Schnyder corneal dystrophy**
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial and Subepithelial Dystrophies

What was the former name of this condition?
Schnyder **crystalline** corneal dystrophy

Why was the name changed?
Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD?
It is a localized disorder of lipid metabolism

What is the histologic hallmark of SCD on light microscopy?
Phospholipids that stain with Oil red O

Endothelial Dystrophies

Epithelial-Stromal **TGFBI** Dystrophies

Stromal Dystrophies

Is it painful?
Generally no

Does it affect vision?
Yes--glare eventually becomes disabling
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Stromal Dystrophies

1) Macular corneal dystrophy
2) **Schnyder corneal dystrophy**
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

What was the former name of this condition?
Schnyder **crystalline** corneal dystrophy

Why was the name changed?
Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD?
It is a localized disorder of lipid metabolism

At what age does SCD begin to manifest?
In the first year of life (but it often goes undiagnosed for many years)

What is seen at the slit lamp?
Early in the disease, the cornea displays either a central opaque ‘disc,’ or central crystals. Later, arcus lipoides forms, and as the disease progresses, the corneal becomes more and more opaque.

Is it painful?
Generally no

Does it affect vision?
Yes--glare eventually becomes disabling

What is the histologic hallmark of SCD on light microscopy?
Phospholipids that stain with Oil red O
Stromal Dystrophies

1) Macular corneal dystrophy
2) **Schnyder corneal dystrophy**
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies

What was the former name of this condition?
Schnyder **crystalline** corneal dystrophy

Why was the name changed?
Only ~50% manifest corneal crystals

What is the fundamental pathology in SCD?
It is a localized disorder of lipid metabolism

At what age does SCD begin to manifest?
In the first year of life (but it often goes undiagnosed for many years)

What is seen at the slit lamp?
Early in the disease, the cornea displays either a central opaque ‘disc,’ or central crystals. Later, arcus lipoides forms, and as the disease progresses, the corneal becomes more and more opaque.

Is it painful?
Generally no

Does it affect vision?
Yes--glare eventually becomes disabling

What is the histologic hallmark of SCD on light microscopy?
Phospholipids that stain with **Oil red O**
Schnyder corneal dystrophy. Light microscopy—Oil Red O stains innumerable tiny lipid droplets red within the corneal stroma. Note also the spaces in the subepithelial and Bowman’s region.
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal \textit{TGFBI} Dystrophies

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) \textit{Congenital stromal corneal dystrophy}
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does CSCD begin to manifest?

Birth (duh, it's congenital)

What is seen at the slit lamp?

Limbus-to-limbus, uniformly distributed haze.

On close inspection, innumerable white flaky opacities are present.

Is it progressive?

Generally no, or only modestly so

Is it painful?

No

Does it affect vision?

Yes, it results in significant visual loss

What is the histologic hallmark of CSCD on light microscopy?

Pronounced thickening of the corneal stroma with separation of corneal lamellae
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) **Congenital stromal corneal dystrophy**
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does CSCD begin to manifest?
Birth (duh, it's congenital)
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does CSCD begin to manifest?
Birth (duh, it’s congenital)

What is seen at the slit lamp?
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal *TGFBI* Dystrophies

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) **Congenital stromal corneal dystrophy**
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does CSCD begin to manifest?
Birth (duh, it's congenital)

What is seen at the slit lamp?
Limbus-to-limbus, uniformly distributed haze. On close inspection, innumerable white flaky opacities are present.
Corneal Dystrophies

Congenital stromal corneal dystrophy. Diffuse clouding with flake-like opacities throughout the stroma in a 4-year old patient.
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFB1 Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does CSCD begin to manifest?
Birth (duh, it’s congenital)

What is seen at the slit lamp?
Limbus-to-limbus, uniformly distributed haze. On close inspection, innumerable white flaky opacities are present.

Is it progressive?
Generally no, or only modestly so

Is it painful?
No

Does it affect vision?
Yes, it results in significant visual loss

What is the histologic hallmark of CSCD on light microscopy?
Pronounced thickening of the corneal stroma with separation of corneal lamellae
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does CSCD begin to manifest?
Birth (duh, it’s congenital)

What is seen at the slit lamp?
Limbus-to-limbus, uniformly distributed haze. On close inspection, innumerable white flaky opacities are present.

Is it progressive?
Generally no, or only modestly so
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal \textit{TGFBI} Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) \textbf{Congenital stromal corneal dystrophy}
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does CSCD begin to manifest?
Birth (duh, it’s congenital)

What is seen at the slit lamp?
Limbus-to-limbus, uniformly distributed haze. On close inspection, innumerable white flaky opacities are present.

Is it progressive?
Generally no, or only modestly so

Is it painful?
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal

TGFBI Dystrophies

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) **Congenital stromal corneal dystrophy**
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

At what age does CSCD begin to manifest?
Birth (duh, it's congenital)

What is seen at the slit lamp?
Limbus-to-limbus, uniformly distributed haze. On close inspection, innumerable white flaky opacities are present.

Is it progressive?
Generally no, or only modestly so

Is it painful?
No

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does CSCD begin to manifest? Birth (duh, it’s congenital)

What is seen at the slit lamp?
Limbus-to-limbus, uniformly distributed haze. On close inspection, innumerable white flaky opacities are present.

Is it progressive?
Generally no, or only modestly so

Is it painful?
No

Does it affect vision?
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) **Congenital stromal corneal dystrophy**
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does CSCD begin to manifest?
Birth (duh, it’s congenital)

What is seen at the slit lamp?
Limbus-to-limbus, uniformly distributed haze. On close inspection, innumerable white flaky opacities are present.

Is it progressive?
Generally no, or only modestly so

Is it painful?
No

Does it affect vision?
Yes, it results in significant visual loss
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does CSCD begin to manifest?
Birth (duh, it’s congenital)

What is seen at the slit lamp?
Limbus-to-limbus, uniformly distributed haze. On close inspection, innumerable white flaky opacities are present.

Is it progressive?
Generally no, or only modestly so

Is it painful?
No

Does it affect vision?
Yes, it results in significant visual loss

What is the histologic hallmark of CSCD on light microscopy?
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal *TGFBI* Dystrophies

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) **Congenital stromal corneal dystrophy**
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does CSCD begin to manifest? Birth (duh, it’s congenital)

What is seen at the slit lamp? Limbus-to-limbus, uniformly distributed haze. On close inspection, innumerable white flaky opacities are present.

Is it progressive? Generally no, or only modestly so

Is it painful? No

Does it affect vision? Yes, it results in significant visual loss

What is the histologic hallmark of CSCD on light microscopy? Pronounced thickening of the corneal stroma with separation of corneal lamellae
Congenital stromal corneal dystrophy.
Light microscopy: the cornea is markedly thickened with stromal lamellae that are separated from each other in a regular manner.
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) **Congenital stromal corneal dystrophy**
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

The scenario of an infant with cloudy corneas should immediately bring to mind a mnemonic. Which one?

Birth (duh, it’s congenital)

What is seen at the slit lamp?
Limbus-to-limbus, uniformly distributed haze.

On close inspection, innumerable white flaky opacities are present.

Is it progressive?
Generally no, or only modestly so

Is it painful?
No

Does it affect vision?
Yes, it results in significant visual loss

What is the histologic hallmark of CSCD on light microscopy?
Pronounced thickening of the corneal stroma with separation of corneal lamellae
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) **Congenital stromal corneal dystrophy**
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

The scenario of an infant with cloudy corneas should immediately bring to mind a mnemonic. Which one? STUMPED

Birth (duh, it’s congenital)

What is seen at the slit lamp?
Limbus-to-limbus, uniformly distributed haze.

On close inspection, innumerable white flaky opacities are present.

Is it progressive?
Generally no, or only modestly so

Is it painful?
No

Does it affect vision?
Yes, it results in significant visual loss

What is the histologic hallmark of CSCD on light microscopy?
Pronounced thickening of the corneal stroma with separation of corneal lamellae

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

The scenario of an infant with cloudy corneas should immediately bring to mind a mnemonic. Which one? STUMPED

What are the elements in the STUMPED mnemonic for cloudy corneas in an infant?

Birth (duh, it’s congenital)

What is seen at the slit lamp?
Limbus-to-limbus, uniformly distributed haze.
On close inspection, innumerable white flaky opacities are present.

Is it progressive?
Generally no, or only modestly so

Is it painful?
No

Does it affect vision?
Yes, it results in significant visual loss

What is the histologic hallmark of CSCD on light microscopy?
Pronounced thickening of the corneal stroma with separation of corneal lamellae

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) **Congenital stromal corneal dystrophy**
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

The scenario of an infant with cloudy corneas should immediately bring to mind a mnemonic. Which one? **STUMPED**

What are the elements in the STUMPED mnemonic for cloudy corneas in an infant? Coming in hot…

Birth (duh, it’s congenital)

What is seen at the slit lamp?
Limbus-to-limbus, uniformly distributed haze.

On close inspection, innumerable white flaky opacities are present.

Is it progressive?
Generally no, or only modestly so

Is it painful?
No

Does it affect vision?
Yes, it results in significant visual loss

What is the histologic hallmark of CSCD on light microscopy?
Pronounced thickening of the corneal stroma with separation of corneal lamellae
Corneal Dystrophies

Fill in the entities embedded in the mnemonic
(Note: There are two Ss and two Es)
Fill in the entities embedded in the mnemonic
(Note: There are two Ss and two Es)
Corneal Dystrophies

- Sclerocornea; Stromal dystrophy (CHSD)
- Trauma (endothelial; ie, from forceps)
- Ulcer
- Metabolic disorders
- Peters anomaly
- Endothelial dystrophy (CHED); Elevated IOP (ie, congenital glaucoma)
- Dermoid of the cornea

Fill in the entities embedded in the mnemonic
(Note: There are two Ss and two Es)
Next we will touch on distinguishing among CHSD, CHED and primary congenital glaucoma by highlighting key differences in their presentations.

- **Sclerocornea; Stromal dystrophy (CHSD)**
- **Trauma (endothelial; ie, from forceps)**
- **Ulcer**
- **Peters anomaly**
- **Endothelial dystrophy (CHED); Elevated IOP (ie, congenital glaucoma)**
- **Dermoid of the cornea**
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>CCT</th>
<th>Corneal diameter</th>
<th>IOP</th>
<th>Tearing/Photophobia?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHSD</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>CCT</th>
<th>Corneal diameter</th>
<th>IOP</th>
<th>Tearing/Photophobia?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>CCT</th>
<th>Corneal diameter</th>
<th>IOP</th>
<th>Tearing/Photophobia?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In CHSD, the cornea is modestly thickened by the presence of the material that causes the cloudiness.

(No question—advance when ready)
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th>Condition</th>
<th>CCT</th>
<th>Corneal diameter</th>
<th>IOP</th>
<th>Tearing/Photophobia?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The CCT is dramatically increased in CHED because of edema 2ndry to lack of adequate endothelial barrier and deturgescence function.

(No question—advance when ready)
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>CCT</th>
<th>Corneal diameter</th>
<th>IOP</th>
<th>Tearing/Photophobia?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>In congenital glaucoma, corneal thickness depends upon 1) whether the endo is healthy and 2) how high the IOP is</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(No question—advance when ready)
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>CCT</th>
<th>Corneal diameter</th>
<th>IOP</th>
<th>Tearing/Photophobia?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>?</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>?</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>?</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>CCT</th>
<th>Corneal diameter</th>
<th>IOP</th>
<th>Tearing/Photophobia?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>Corneal Diameter</th>
<th>Tearing/Photophobia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
</tr>
</tbody>
</table>

Why is corneal diameter increased in congenital glaucoma?

Simple physics—the high IOP s-t-r-e-t-c-h-e-s the eye wall

What is the formal term for eye enlargement secondary to elevated IOP in congenital glaucoma?

Buphthalmos

What does buphthalmos translate to in English?

'Ox's eye'
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th>Corneal Dystrophies</th>
<th></th>
<th>Tearing/Photophobia?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
</tr>
</tbody>
</table>

Why is corneal diameter increased in congenital glaucoma? Simple physics—the high IOP s-t-r-e-t-c-h-e-s the eye wall.
Congenital glaucoma: Increased corneal diameter
Corneal Dystrophies

CCT, corneal diameter, IOP and the *presence/absence of tearing & photophobia* are key to differentiating among *CHED, CHSD,* and *primary congenital glaucoma*. Fill in the blanks below.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Corneal Diameter</th>
<th>Tearing/Photophobia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
</tr>
</tbody>
</table>

Why is corneal diameter increased in congenital glaucoma?

Simple physics—the high IOP *s-t-r-e-t-c-h-e-s* the eye wall.

What is the formal term for eye enlargement secondary to elevated IOP in congenital glaucoma?

Buphthalmos
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>Corneal Dystrophies</th>
<th>Tearing/Photophobia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
</tr>
</tbody>
</table>

Why is corneal diameter increased in congenital glaucoma?
Simple physics—the high IOP stretches the eye wall

What is the formal term for eye enlargement secondary to elevated IOP in congenital glaucoma?
Buphthalmos

'Buphthalmos' translates to 'Ox's eye'
Congenital glaucoma: Buphthalmos OD
Corneal Dystrophies

CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Corneal Diameter</th>
<th>Tearing/Photophobia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
</tr>
</tbody>
</table>

Why is corneal diameter increased in congenital glaucoma?
Simple physics—the high IOP stretches the eye wall.

What is the formal term for eye enlargement secondary to elevated IOP in congenital glaucoma?
Buphthalmos

What does buphthalmos translate to in English?
'Vessel's eye'
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Corneal Diameter</th>
<th>IOP</th>
<th>Tearing/Photophobia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
<td>WNL</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
<td>WNL</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Why is corneal diameter increased in congenital glaucoma? Simple physics—the high IOP s-t-r-e-t-c-h-e-s the eye wall.

What is the formal term for eye enlargement secondary to elevated IOP in congenital glaucoma? Buphthalmos.

What does buphthalmos translate to in English? ‘Ox’s eye’
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Corneal Diameter</th>
<th>Tearing/Photophobia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
</tr>
</tbody>
</table>

Why is corneal diameter increased in congenital glaucoma? The high IOP in congenital glaucoma causes further mechanical damage to the cornea—what sort?

- Breaks in Descemet’s membrane (and its overlying endothelial layer)
- Horizontally
- Haab’s striae
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Corneal Diameter</th>
<th>Tearing/Photophobia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
</tr>
</tbody>
</table>

Why is corneal diameter increased in congenital glaucoma?

The high IOP in congenital glaucoma causes further mechanical damage to the cornea—what sort?

Breaks in Descemet’s membrane (and its overlying endothelial layer)

What is the formal term for eye enlargement secondary to elevated IOP in congenital glaucoma?

Buphthalmos

What does *buphthalmos* translate to in English?

‘Ox’s eye’

The high IOP in congenital glaucoma causes further mechanical damage to the cornea—what sort?

Breaks in Descemet’s membrane (and its overlying endothelial layer)

How (ie, in what direction) are these breaks oriented?

Horizontally

What is the eponymous name for these breaks?

Haab’s striae
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>Corneal Dystrophies</th>
<th>Tearing/Photophobia?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
</tr>
</tbody>
</table>

Why is corneal diameter increased in congenital glaucoma?

The high IOP in congenital glaucoma causes further mechanical damage to the cornea—what sort?

Breaks in Descemet’s membrane (and its overlying endothelial layer)

How (ie, in what direction) are these breaks oriented?

Horizontally

What does buphthalmos translate to in English?

'Ox's eye'

The high IOP in congenital glaucoma causes further mechanical damage to the cornea—what sort?

Breaks in Descemet's membrane (and its overlying endothelial layer)

How (ie, in what direction) are these breaks oriented?

Horizontally

What is the eponymous name for these breaks?

Haab's striae
Corneal Dystrophies

CCT, corneal diameter, IOP and the *presence/absence of tearing & photophobia* are key to differentiating among *CHED, CHSD,* and *primary congenital glaucoma*. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>Corneal Diameter</th>
<th>Tearing/Photophobia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
</tr>
</tbody>
</table>

Why is corneal diameter increased in congenital glaucoma?

The high IOP in congenital glaucoma causes further mechanical damage to the cornea—what sort?

Breaks in Descemet’s membrane (and its overlying endothelial layer)

How (ie, in what direction) are these breaks oriented?

Horizontally

What does buphthalmos translate to in English?

‘Ox’s eye’

The high IOP in congenital glaucoma causes further mechanical damage to the cornea—what sort?

Breaks in Descemet’s membrane (and its overlying endothelial layer)

How (ie, in what direction) are these breaks oriented?

Horizontally

What is the eponymous name for these breaks?

Haab’s striae
Corneal Dystrophies

CCT, corneal diameter, IOP and the *presence/absence of tearing & photophobia* are key to differentiating among *CHED, CHSD,* and *primary congenital glaucoma.* Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>Corneal Diameter</th>
<th>Tearing/Photophobia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
</tr>
</tbody>
</table>

Why is corneal diameter increased in congenital glaucoma?

The high IOP in congenital glaucoma causes further mechanical damage to the cornea—what sort?

Breaks in Descemet’s membrane (and its overlying endothelial layer)

How (ie, in what direction) are these breaks oriented?

Horizontally

What is the eponymous name for these breaks?

Haab’s striae
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>Corneal Dystrophies</th>
<th>Tearing/Photophobia</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Why is corneal diameter increased in congenital glaucoma?

The high IOP in congenital glaucoma causes further mechanical damage to the cornea—what sort?

Breaks in Descemet’s membrane (and its overlying endothelial layer)

How (ie, in what direction) are these breaks oriented?

Horizontally

What is the eponymous name for these breaks?

Haab’s striae

Increased
Horizontal Descemet’s breaks (*Haab’s striae*) in congenital glaucoma
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>CCT</th>
<th>Corneal diameter</th>
<th>IOP</th>
<th>Tearing/Photophobia?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>CCT</th>
<th>Corneal diameter</th>
<th>IOP</th>
<th>Tearing/Photophobia?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
<td>WNL</td>
<td></td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
<td>WNL</td>
<td></td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
<td>Duh</td>
<td></td>
</tr>
</tbody>
</table>
CCT, corneal diameter, IOP and the **presence/absence of tearing & photophobia** are key to differentiating among **CHED**, **CHSD**, and **primary congenital glaucoma**. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>CCT</th>
<th>Corneal diameter</th>
<th>IOP</th>
<th>Tearing/Photophobia?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
<td>WNL</td>
<td>?</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
<td>WNL</td>
<td>?</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
<td>Duh</td>
<td>?</td>
</tr>
</tbody>
</table>
CCT, corneal diameter, IOP and the presence/absence of tearing & photophobia are key to differentiating among CHED, CHSD, and primary congenital glaucoma. Fill in the blanks below.

<table>
<thead>
<tr>
<th></th>
<th>CCT</th>
<th>Corneal diameter</th>
<th>IOP</th>
<th>Tearing/Photophobia?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHED</td>
<td>Markedly increased</td>
<td>WNL</td>
<td>WNL</td>
<td>No</td>
</tr>
<tr>
<td>CHSD</td>
<td>Mildly increased</td>
<td>WNL</td>
<td>WNL</td>
<td>No</td>
</tr>
<tr>
<td>Primary congenital glaucoma</td>
<td>Variably increased (or WNL, or thin)</td>
<td>Increased</td>
<td>Duh</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

At what age does FCD begin to manifest?

Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal *TGFBI* Dystrophies

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) **Fleck corneal dystrophy**
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does FCD begin to manifest?

Very early—can even be congenital
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial-Stromal *TGFBI* Dystrophies

At what age does FCD begin to manifest?
Very early—can even be congenital

How does it present? What is seen at the slit lamp?

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

At what age does FCD begin to manifest?
Very early—can even be congenital

How does it present? What is seen at the slit lamp?
Subtle light-gray discs in the stroma that have described as

Endothelial Dystrophies
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial-Stromal TGFBI Dystrophies

At what age does FCD begin to manifest?
Very early—can even be congenital

How does it present? What is seen at the slit lamp?
Subtle light-gray discs in the stroma that have described as 'dandruff-like.'
Fleck corneal dystrophy. Dandruff-like opacities seen in 2 different patients throughout the stroma using: (A) broad oblique illumination, and (B) at varying depths in the slit-lamp photograph.
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial-Stromal TGFBI Dystrophies

Endothelial Dystrophies

At what age does FCD begin to manifest?
Very early—can even be congenital

How does it present? What is seen at the slit lamp?
Subtle light-gray discs in the stroma that have described as ‘dandruff-like.’ The intervening spaces are clear.
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Stromal Dystrophies
1. Macular corneal dystrophy
2. Schnyder corneal dystrophy
3. Congenital stromal corneal dystrophy
4. **Fleck corneal dystrophy**
5. Posterior amorphous corneal dystrophy
6. Pre-Descemet corneal dystrophy

Epithelial-Stromal TGFBI Dystrophies

At what age does FCD begin to manifest?
Very early—can even be congenital

How does it present? What is seen at the slit lamp?
Subtle light-gray discs in the stroma that have described as ‘dandruff-like.’ The intervening spaces are clear.
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) **Fleck corneal dystrophy**
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial-Stromal TGFBI Dystrophies

Endothelial Dystrophies

At what age does FCD begin to manifest?
Very early—can even be congenital

How does it present? What is seen at the slit lamp?
Subtle light-gray discs in the stroma that have described as ‘dandruff-like.’ The intervening spaces are **clear**. The lesions are never found in non-stromal portions of the cornea.
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial-Stromal TGFBI Dystrophies

At what age does FCD begin to manifest? Very early—can even be congenital

How does it present? What is seen at the slit lamp? Subtle light-gray discs in the stroma that have described as ‘dandruff-like.’ The intervening spaces are clear. The lesions are never found in non-stromal portions of the cornea.

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does FCD begin to manifest?
Very early—can even be congenital

How does it present? What is seen at the slit lamp?
Subtle light-gray discs in the stroma that have described as ‘dandruff-like.’ The intervening spaces are clear. The lesions are never found in non-stromal portions of the cornea.

Is it painful?
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial-Stromal TGFBI Dystrophies

Endothelial Dystrophies

At what age does FCD begin to manifest?
Very early—can even be congenital

How does it present? What is seen at the slit lamp?
Subtle light-gray discs in the stroma that have described as ‘dandruff-like.’ The intervening spaces are clear. The lesions are never found in non-stromal portions of the cornea.

Is it painful?
No
Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial-Stromal TGFBI Dystrophies

At what age does FCD begin to manifest?
Very early—can even be congenital

How does it present? What is seen at the slit lamp?
Subtle light-gray discs in the stroma that have described as ‘dandruff-like.’ The intervening spaces are clear. The lesions are never found in non-stromal portions of the cornea.

Is it painful?
No

Does it affect vision?
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Epithelial-Stromal TGFBI Dystrophies

Endothelial Dystrophies

At what age does FCD begin to manifest?
Very early—can even be congenital

How does it present? What is seen at the slit lamp?
Subtle light-gray discs in the stroma that have described as ‘dandruff-like.’ The intervening spaces are clear. The lesions are never found in non-stromal portions of the cornea.

Is it painful?
No

Does it affect vision?
Usually not
First: *What sound-alike, more-familiar condition must you keep separate from PACD?*

1. Fleck corneal dystrophy
2. Posterior amorphous corneal dystrophy
3. Pre-Descemet corneal dystrophy

Endothelial Dystrophies
First: What sound-alike, more-familiar condition must you keep separate from PACD?

Posterior *poly*morphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

5) *Posterior amorphous corneal dystrophy*

6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies
First: What sound-alike, more-familiar condition must you keep separate from PACD? Posterior polymorphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: At what age does PACD begin to manifest?

4) Fleck corneal dystrophy
5) **Posterior amorphous corneal dystrophy**
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies
First: What sound-alike, more-familiar condition must you keep separate from PACD? Posterior polymorphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: At what age does PACD begin to manifest? First decade. Can be present in infancy.

5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy
First: What sound-alike, more-familiar condition must you keep separate from PACD?
Posterior polymorphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: At what age does PACD begin to manifest?
First decade. Can be present in infancy.

How does it present? What is seen at the slit lamp?

1. Fleck corneal dystrophy
2. Pre-Descemet corneal dystrophy
3. Posterior amorphous corneal dystrophy
4. Pre-Descemet corneal dystrophy
Corneal Dystrophies

First: What sound-alike, more-familiar condition must you keep separate from PACD? Posterior polymeherphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: At what age does PACD begin to manifest? First decade. Can be present in infancy.

How does it present? What is seen at the slit lamp? PACD is a dystrophy of the deep corneal stroma.

Endothelial Dystrophies
First: *What sound-alike, more-familiar condition must you keep separate from PACD?*

Posterior **poly**morphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: *At what age does PACD begin to manifest?*

First decade. Can be present in infancy.

How does it present? *What is seen at the slit lamp?*

PACD is a dystrophy of the **deep** corneal stroma.
Corneal Dystrophies

First: What sound-alike, more-familiar condition must you keep separate from PACD? Posterior polymorphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: At what age does PACD begin to manifest? First decade. Can be present in infancy.

How does it present? What is seen at the slit lamp? PACD is a dystrophy of the deep corneal stroma. Sheetlike opacities are present, and can be extensive. The deepest lesions can indent Descemet’s and the endothelium.

1. Fleck corneal dystrophy
2. Posterior amorphous corneal dystrophy
3. Pre-Descemet corneal dystrophy

Endothelial Dystrophies
Posterior amorphous corneal dystrophy. Central deep stromal/pre-Descemet opacity with some degree of peripheral extension interrupted by few clear bands in the midperipheral cornea.
Corneal Dystrophies

First: What sound-alike, more-familiar condition must you keep separate from PACD?
Posterior polymorphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: At what age does PACD begin to manifest?
First decade. Can be present in infancy.

How does it present? What is seen at the slit lamp?
PACD is a dystrophy of the deep corneal stroma. Sheetlike opacities are present, and can be extensive. The deepest lesions can indent Descemet's and the endothelium. Further, the cornea tends to be both thinner and flatter than normal.
Corneal Dystrophies

First: *What sound-alike, more-familiar condition must you keep separate from PACD?*
Posterior polymorphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: At what age does PACD begin to manifest?
First decade. Can be present in infancy.

How does it present? What is seen at the slit lamp?
PACD is a dystrophy of the deep corneal stroma. Sheetlike opacities are present, and can be extensive. The deepest lesions can indent Descemet’s and the endothelium. Further, the cornea tends to be both thinner and flatter than normal.
First: What sound-alike, more-familiar condition must you keep separate from PACD?
Posterior polymorphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: At what age does PACD begin to manifest?
First decade. Can be present in infancy.

How does it present? What is seen at the slit lamp?
PACD is a dystrophy of the deep corneal stroma. Sheetlike opacities are present, and can be extensive. The deepest lesions can indent Descemet’s and the endothelium. Further, the cornea tends to be both thinner and flatter than normal; as a result of the flatness, PACD pts are usually hyperopes.
Corneal Dystrophies

First: What sound-alike, more-familiar condition must you keep separate from PACD?
Posterior polymorphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: At what age does PACD begin to manifest?
First decade. Can be present in infancy.

How does it present? What is seen at the slit lamp?
PACD is a dystrophy of the **deep** corneal stroma. Sheetlike opacities are present, and can be extensive. The deepest lesions can indent Descemet’s and the endothelium. **Further, the cornea tends to be both thinner and flatter than normal;** as a result of the flatness, PACD pts are usually **hyperopes**.
First: *What sound-alike, more-familiar condition must you keep separate from PACD?*
Posterior polymorphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: *At what age does PACD begin to manifest?*
First decade. Can be present in infancy.

How does it present? What is seen at the slit lamp?
PACD is a dystrophy of the deep corneal stroma. Sheetlike opacities are present, and can be extensive. The deepest lesions can indent Descemet’s and the endothelium. Further, the cornea tends to be both thinner and flatter than normal; as a result of the flatness, PACD pts are usually hyperopes.

Is it painful?

5) **Posterior amorphous corneal dystrophy**
6) Pre-Descemet corneal dystrophy
First: What sound-alike, more-familiar condition must you keep separate from PACD?
Posterior polymorphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: At what age does PACD begin to manifest?
First decade. Can be present in infancy.

How does it present? What is seen at the slit lamp?
PACD is a dystrophy of the deep corneal stroma. Sheetlike opacities are present, and can be extensive. The deepest lesions can indent Descemet’s and the endothelium. Further, the cornea tends to be both thinner and flatter than normal; as a result of the flatness, PACD pts are usually hyperopes.

Is it painful?
No

5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy
Corneal Dystrophies

First: What sound-alike, more-familiar condition must you keep separate from PACD? Posterior poly morphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: At what age does PACD begin to manifest? First decade. Can be present in infancy.

How does it present? What is seen at the slit lamp? PACD is a dystrophy of the deep corneal stroma. Sheetlike opacities are present, and can be extensive. The deepest lesions can indent Descemet’s and the endothelium. Further, the cornea tends to be both thinner and flatter than normal; as a result of the flatness, PACD pts are usually hyperopes.

Is it painful? No

Does it affect vision?

5) Poster-choral dystrophy
5) **Posterior amorphous corneal dystrophy**
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies
Corneal Dystrophies

First: *What sound-alike, more-familiar condition must you keep separate from PACD?*
Posterior polymorphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: *At what age does PACD begin to manifest?*
First decade. Can be present in infancy.

How does it present? What is seen at the slit lamp?
PACD is a dystrophy of the **deep** corneal stroma. Sheetlike opacities are present, and can be extensive. The deepest lesions can indent Descemet’s and the endothelium. **Further, the cornea tends to be both thinner and flatter than normal;** as a result of the flatness, PACD pts are usually **hyperopes.**

Is it painful?
No

Does it affect vision?
Only mildly

4) Fleck corneal dystrophy
5) **Posterior amorphous corneal dystrophy**
6) Pre-Descemetary corneal dystrophy

Endothelial Dystrophies
First: What sound-alike, more-familiar condition must you keep separate from PACD?

Posterior polymorphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: At what age does PACD begin to manifest?

First decade. Can be present in infancy.

How does it present? What is seen at the slit lamp?

PACD is a dystrophy of the *deep* corneal stroma. Sheetlike opacities are present, and can be extensive. The deepest lesions can indent Descemet’s and the endothelium. Further, the cornea tends to be both *thinner* and *flatter* than normal; as a result of the flatness, PACD pts are usually *hyperopes*.

Is it painful?

No

Does it affect vision?

Only mildly

What is the histologic hallmark of PACD on light microscopy?

1. Fleck corneal dystrophy
2. Posterior amorphous corneal dystrophy
3. Pre-Descemet corneal dystrophy

Endothelial Dystrophies
Corneal Dystrophies

First: What sound-alike, more-familiar condition must you keep separate from PACD?
Posterior polyvorphous corneal dystrophy. PPMD is an endothelial dystrophy, whereas PACD is a stromal (although it can affect the endothelium indirectly).

Now then: At what age does PACD begin to manifest?
First decade. Can be present in infancy.

How does it present? What is seen at the slit lamp?
PACD is a dystrophy of the **deep** corneal stroma. Sheetlike opacities are present, and can be extensive. The deepest lesions can indent Descemet’s and the endothelium. Further, the cornea tends to be both **thinner** and **flatter** than normal; as a result of the flatness, PACD pts are usually **hyperopes**.

Is it painful?
No

Does it affect vision?
Only mildly

What is the histologic hallmark of PACD on light microscopy?
Irregularities to the pre-Descemet’s deep stroma

Epithelial and Subepithelial Dystrophies

1) Epithelial basement membrane dystrophy
2) Meesmann epithelial corneal dystrophy
3) Lisch epithelial corneal dystrophy
4) Gelatinous droplike corneal dystrophy
5) Epithelial recurrent erosion dystrophies
6) Subepithelial mucinous corneal dystrophy

Epithelial-Stromal

TGFBI

Dystrophies

1) Reis-Bücklers corneal dystrophy
2) Thiel-Behnke corneal dystrophy
3) Lattice, type 1
4) Lattice, variant types (III, IIIA, I/IIIA, IV)
5) Granular type 1
6) Granular type 2

Stromal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies
Posterior amorphous corneal dystrophy. Light microscopy—extracellular colloidal iron stains positive material (arrowheads) in the deep stroma
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

At what age does PDCD begin to manifest?

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Endothelial Dystrophies

At what age does PDCD begin to manifest?
Usually after age 30 years; rarely in childhood
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal \textit{TGFBI} Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

At what age does PDCD begin to manifest?
Usually after age 30 years; rarely in childhood

What is seen at the slit lamp?

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

At what age does PDCD begin to manifest?
Usually after age 30 years; rarely in childhood

What is seen at the slit lamp?
Fine punctate opacities just anterior to Descemet's

Endothelial Dystrophies
Pre-Descemet’s corneal dystrophy. A, With broadbeam illumination, punctate opacities anterior to Descemet membrane are apparent. B, Slit beam illumination of the same eye demonstrating punctate opacities anterior to Descemet membrane.
Corneal Dystrophies

1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

Stromal Dystrophies

At what age does PDCD begin to manifest?
Usually after age 30 years; rarely in childhood

What is seen at the slit lamp?
Fine punctate opacities just anterior to Descemet’s

Is it painful?

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Epithelial-Stromal TGFBI Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

At what age does PDCD begin to manifest?
Usually after age 30 years; rarely in childhood

What is seen at the slit lamp?
Fine punctate opacities just anterior to Descemet's

Is it painful?
No

Endothelial Dystrophies
Corneal Dystrophies

Epithelial and Subepithelial Dystrophies

Stromal Dystrophies
1) Macular corneal dystrophy
2) Schnyder corneal dystrophy
3) Congenital stromal corneal dystrophy
4) Fleck corneal dystrophy
5) Posterior amorphous corneal dystrophy
6) Pre-Descemet corneal dystrophy

At what age does PDCD begin to manifest?
Usually after age 30 years; rarely in childhood

What is seen at the slit lamp?
Fine punctate opacities just anterior to Descemet's

Is it painful?
No

Does it affect vision?
Stromal Dystrophies

1. Macular corneal dystrophy
2. Schnyder corneal dystrophy
3. Congenital stromal corneal dystrophy
4. Fleck corneal dystrophy
5. Posterior amorphous corneal dystrophy
6. **Pre-Descemet corneal dystrophy**

At what age does PDCD begin to manifest?
Usually after age 30 years; rarely in childhood

What is seen at the slit lamp?
Fine punctate opacities just anterior to Descemet’s

Is it painful?
No

Does it affect vision?
No