
Refraction: Snell’s Law
Basic Optics, Chapter 17
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A
Glass
n = 1.5

Let’s talk about the extent to which light will be refracted at a given 
interface. To get us started, consider a simple thought experiment: 

What is the most efficient way for light to get from point A to point B?

Air
n = 1.0
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A
Glass
n = 1.5

Let’s talk about the extent to which light will be refracted at a given 
interface. To get us started, consider a simple thought experiment: 

What is the most efficient way for light to get from point A to point B?

The obvious answer would seem to be ‘a straight line.’ But
remember, the optically more-viscous glass slows down the
light to a much greater extent than does the air. Because
this path includes so much glass, it is not the most efficient.

Air
n = 1.0
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…but has the longest total path

Glass
n = 1.5

Let’s talk about the extent to which light will be refracted at a given 
interface. To get us started, consider a simple thought experiment: 

What is the most efficient way for light to get from point A to point B?

Given that the glass is so much more optically viscous than air,
one might propose this path, which minimizes the glass portion.
However, in minimizing glass time, this path has maximized
total path distance. Thus, while it is perhaps more efficient than
the straight-line path, it is not the most efficient path from A to B.

Air
n = 1.0

Refraction
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A
Glass
n = 1.5

Let’s talk about the extent to which light will be refracted at a given 
interface. To get us started, consider a simple thought experiment: 

What is the most efficient way for light to get from point A to point B?

In between the minimum-length and maximum-length paths 
lies a path representing the optimal compromise between
distance and ‘viscosity’—the most-efficient path. And in
fact, this is precisely what light does in passing through a
refractive interface—it optimizes path efficiency.

Air
n = 1.0

Refraction
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A
Aqueous
n = 1.34

Let’s talk about the extent to which light will be refracted at a given 
interface. To get us started, consider a simple thought experiment: 

What is the most efficient way for light to get from point A to point B?

If the optical viscosities (i.e., the ns) of the substances are 
very similar, the optimal/most-efficient path will be very 
close to the straight-line path.

Water
n = 1.33

Refraction
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A

Let’s talk about the extent to which light will be refracted at a given 
interface. To get us started, consider a simple thought experiment: 

What is the most efficient way for light to get from point A to point B?

High-n Plastic
n = 1.90

On the other hand, if the optical viscosities (i.e., the ns) of the
substances are very different, the optimal/most-efficient path
will be very close to the maximum-length path.

Air
n = 1.0

Refraction
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B

This ‘optimization tendency’ was 
predicted by Pierre de Fermat and 

is known as
Fermat’s Principle of Least Time

A
Glass
n = 1.5

Let’s talk about the extent to which light will be refracted at a given 
interface. To get us started, consider a simple thought experiment: 

What is the most efficient way for light to get from point A to point B?

Pierre de Fermat
1601 - 1665

Air
n = 1.0
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Fermat’s principle encapsulates the challenge facing lensmakers: Fashion a lens 
such that every possible pathway from point A to point B has the same travel time.
If this is done, perfect focus will be achieved!

Long total path, short lens path Shortest total path, longest lens path

Moderate total and lens path lengths

(Object) (Image)

A B
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Long total path, short lens path Shortest total path, longest lens path

Moderate total and lens path lengths

(Object)

A

But Fermat’s principle provides only a qualitative description of the behavior of light
at a refractive interface. Precise lensmaking requires a quantitative description of
refraction--as does scoring well on the OKAPs. Now that we have an intuitive feel
for refraction, let’s delve into its quantification.

(Image)

B

Refraction

Fermat’s principle encapsulates the challenge facing lensmakers: Fashion a lens 
such that every possible pathway from point A to point B has the same travel time.
If this is done, perfect focus will be achieved!
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The ‘optimization tendency’ is quantified in the law of refraction:  Snell’s law

ni sin θi = nt sin θt

Willebrord (yes,
Willebrord!) Snell

1580 - 1626

Refraction

The Normal

11



The ‘optimization tendency’ is quantified in the law of refraction:  Snell’s law

θi

ni sin θi = nt sin θt

n = i

The Normal

Refractive index of the
material light is leaving

Angle of incidence
with respect to the Normal

Refraction
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The ‘optimization tendency’ is quantified in the law of refraction:  Snell’s law

θi

θt

ni sin θi = nt sin θt

Angle of transmission
with respect to the Normal

n = tn = i

The Normal

Refractive index of the
material light is leaving

Refractive index of the
material light is entering

Angle of incidence
with respect to the Normal

Refraction
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The ‘optimization tendency’ is quantified in the law of refraction:  Snell’s law

θi

θt

ni sin θi = nt sin θt

Angle of transmission
with respect to the Normal

n = tn = i

The Normal

Refractive index of the
material light is leaving

Refractive index of the
material light is entering

Angle of incidence
with respect to the Normal

Refraction

Snell’s law may seem inelegant in comparison 
to the intuitive simplicity of Fermat’s principle. 
However, Snell’s law makes several non-
obvious predictions concerning the behavior of 
light as it passes from a medium of higher n to 
one of lower n—predictions that have proved 
both accurate and extremely useful…
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Snell’s law may seem inelegant in comparison 
to the intuitive simplicity of Fermat’s principle. 
However, Snell’s law makes several non-
obvious predictions concerning the behavior of 
light as it passes from a medium of higher n to 
one of lower n—predictions that have proved 
both accurate and extremely useful…

θt

θi

ni sin θi = nt sin θt

Note that the direction of light
above has been reversed
and the angles renamed!

Glass
n = 1.54

Air
n = 1.0

The Normal

The ‘optimization tendency’ is quantified in the law of refraction:  Snell’s law

Refraction
15



ni sin θi = nt sin θt

At a specific angle of incidence—called the critical angle—the light will be refracted 
90o to the normal, i.e., it will skid along the interface without passing through it. And…

Snell’s law may seem inelegant in comparison 
to the intuitive simplicity of Fermat’s principle. 
However, Snell’s law makes several non-
obvious predictions concerning the behavior of 
light as it passes from a medium of higher n to 
one of lower n—predictions that have proved 
both accurate and extremely useful…

θt

θi = critical
angle

Glass
n = 1.54

Air
n = 1.0

The Normal

The ‘optimization tendency’ is quantified in the law of refraction:  Snell’s law

Refraction
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ni sin θi = nt sin θt

…at angles greater than the critical angle, the light will be reflected back into the
higher-n substance, not refracted across the interface.

At a specific angle of incidence—called the critical angle—the light will be refracted 
90o to the normal, i.e., it will skid along the interface without passing through it. And…

θt

θi > critical
angle

Glass
n = 1.54

Air
n = 1.0

The Normal

Snell’s law may seem inelegant in comparison 
to the intuitive simplicity of Fermat’s principle. 
However, Snell’s law makes several non-
obvious predictions concerning the behavior of 
light as it passes from a medium of higher n to 
one of lower n—predictions that have proved 
both accurate and extremely useful…

The ‘optimization tendency’ is quantified in the law of refraction:  Snell’s law

Refraction
17



This phenomenon—total internal reflection—allows fiber optic communications.

ni sin θi = nt sin θt

…at angles greater than the critical angle, the light will be reflected back into the
higher-n substance, not refracted across the interface.

At a specific angle of incidence—called the critical angle—the light will be refracted 
90o to the normal, i.e., it will skid along the interface without passing through it. And…

θt

θi > critical
angle

Glass
n = 1.54

Air
n = 1.0

The Normal

Snell’s law may seem inelegant in comparison 
to the intuitive simplicity of Fermat’s principle. 
However, Snell’s law makes several non-
obvious predictions concerning the behavior of 
light as it passes from a medium of higher n to 
one of lower n—predictions that have proved 
both accurate and extremely useful…

The ‘optimization tendency’ is quantified in the law of refraction:  Snell’s law

Refraction
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Total internal reflection

fiber optic cable

Light

Using total internal reflection, a tremendous amount of information
can be transmitted great distances with very little loss of fidelity.

Refraction
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θi

θt

Glass
n = 1.54

Air
n = 1.0

The Normal

Refraction
Thus far we’ve discussed refraction at a flat surface…but what about at a curved one?
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θi

θt

Glass
n = 1.54

Air
n = 1.0

The Normal

Refraction
Thus far we’ve discussed refraction at a flat surface…but what about at a curved one?
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Thus far we’ve discussed refraction at a flat surface…but what about at a curved one?

θi

θt

Glass
n = 1.54

Air
n = 1.0

The Normal

Snell’s law still rules: light rays will be transmitted as a function of the normal, the 
relative ns of the materials, and the angle of incidence. But this begs the question:

Refraction
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Thus far we’ve discussed refraction at a flat surface…but what about at a curved one?

θi

θt

Glass
n = 1.54

Air
n = 1.0

The Normal

Snell’s law still rules: light rays will be transmitted as a function of the normal, the 
relative ns of the materials, and the angle of incidence. But this begs the question:

Where’s the normal?

The Normal?

The Normal?

Refraction
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ni = 1.0                   nt = 1.34

The optics of curved surfaces are ferociously complex (identifying the normal is one 
of many technically thorny problems). To render curved-surface optics manageable, 
several limitations and assumptions are in place, the most important of which is this:

Refraction
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Optical
axis

ni = 1.0                   nt = 1.34

The optics of curved surfaces are ferociously complex (identifying the normal is one 
of many technically thorny problems). To render curved-surface optics manageable, 
several limitations and assumptions are in place, the most important of which is this:

When dealing with refraction at a curved surface, we work only with the paraxial rays: 
Those that are both close to the optical axis and nearly parallel to it.

(We will define the term optical axis in Chapter 18. Suffice to 
say for the moment that it is not the same thing as the normal.)

Paraxial rays

Refraction
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Optical
axisParaxial rays

ni = 1.0                   nt = 1.34

When dealing with refraction at a curved surface, we work only with the paraxial rays: 
Those that are both close to the optical axis and nearly parallel to it.

Refraction
Not paraxial (close to optical axis, but not parallel to it)
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Not paraxial (nearly parallel to optical axis, but not close to it)

Optical
axisParaxial rays

ni = 1.0                   nt = 1.34

When dealing with refraction at a curved surface, we work only with the paraxial rays: 
Those that are both close to the optical axis and nearly parallel to it.

Refraction
Not paraxial (close to optical axis, but not parallel to it)
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Not paraxial (nearly parallel to optical axis, but not close to it)

Optical
axisParaxial rays

ni = 1.0                   nt = 1.34

When dealing with refraction at a curved surface, we work only with the paraxial rays: 
Those that are both close to the optical axis and nearly parallel to it.

This so-called paraxial assumption is extremely important, because it allows us to
treat all of the relevant light rays as an aggregate, rather than individually. That is…

Refraction
Not paraxial (close to optical axis, but not parallel to it)
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Refraction
For paraxial rays,

Snell’s law reduces to: ni sin θi = nt sin θt

29

Power (in diopters, D)  = 



n’ – n
rPower (in diopters, D)  = 

Radius of curvature of the interface

n where the rays are going
n where the rays are coming from

Refraction
For paraxial rays,

Snell’s law reduces to: ni sin θi = nt sin θt
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n’ – n
rPower (in diopters, D)  = 

Note:
1) The power goes up as the difference in n increases, or as the radius decreases
2) Given that radius of curvature is in the power formula, it follows that the refracting
interface must be spherical in shape (only spherical surfaces have a single radius 
of curvature). 

Radius of curvature of the interface

Refraction

n where the rays are going
n where the rays are coming from

For paraxial rays,
Snell’s law reduces to: ni sin θi = nt sin θt
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n’ – n
rPower (in diopters, D)  = 

Note:
1) The power goes up as the difference in n increases, or as the radius decreases
2) Given that radius of curvature is in the power formula, it follows that the refracting
interface must be spherical in shape (only spherical surfaces have a single radius 
of curvature). 

An important but oft-ignored assumption!

Radius of curvature of the interface

Refraction

n where the rays are going
n where the rays are coming from

For paraxial rays,
Snell’s law reduces to: ni sin θi = nt sin θt
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