Inheritance?

Stargardt Disease/Fundus Flavimaculatus
Inheritance? AR (in most cases; a small % are AD)
Inheritance? AR (in most cases; a small % are AD)

As hereditary maculopathies go, where does Stargardt rank in terms of prevalence?
Inheritance? AR (in most cases; a small % are AD)

As hereditary maculopathies go, where does Stargardt rank in terms of prevalence?
Stargardt is the most common hereditary maculopathy
Inheritance? **AR (in most cases; a small % are AD)**

As hereditary maculopathies go, where does Stargardt rank in terms of prevalence?
Stargardt is the most common hereditary maculopathy
Inheritance? AR (in most cases; a small % are AD)

As hereditary maculopathies go, where does Stargardt rank in terms of prevalence?
Stargardt is the most common hereditary maculopathy

As hereditary maculopathies go, is AR inheritance the norm?
Inheritance? **AR (in most cases; a small % are AD)**

As hereditary maculopathies go, where does Stargardt rank in terms of prevalence?
Stargardt is the most common hereditary maculopathy

As hereditary maculopathies go, is AR inheritance the norm?
No--most are inherited in an AD fashion
Stargardt Disease/Fundus Flavimaculatus

Inheritance? AR (in most cases; a small % are AD)

As hereditary maculopathies go, where does Stargardt rank in terms of prevalence? Stargardt is the most common hereditary maculopathy.

As hereditary maculopathies go, is AR inheritance the norm? No--most are inherited in an AD fashion.

Huh? how can an AR disease be more prevalent than AD diseases?
Inheritance? AR (in most cases; a small % are AD)

As hereditary maculopathies go, where does Stargardt rank in terms of prevalence? Stargardt is the most common hereditary maculopathy.

As hereditary maculopathies go, is AR inheritance the norm? No—most are inherited in an AD fashion.

Huh? how can an AR disease be more prevalent than AD diseases? Because the genes that cause Stargardt are very common in the general population.
Inheritance? **AR (in most cases; a small % are AD)**

As hereditary maculopathies go, where does Stargardt rank in terms of prevalence?
Stargardt is the **most common** hereditary maculopathy

Huh? how can an AR disease be more prevalent than AD diseases?
Because **the genes that cause Stargardt are very common in the general population**

How common is ‘very common’? What percentage of the population is carrying one of the many disease-causing ABCA4 alleles?

No--**most are inherited in an AD fashion**
Inheritance? AR (in most cases; a small % are AD)

As hereditary maculopathies go, where do Stargardt rank in terms of prevalence?
Stargardt is the most common hereditary maculopathy

As hereditary maculopathies go, is AR inheritance the norm?
No--most are inherited in an AD fashion

Huh? how can an AR disease be more prevalent than AD diseases?
Because the genes that cause Stargardt are very common in the general population

How common is ‘very common’? What percentage of the population is carrying one of the many disease-causing ABCA4 alleles?
Estimates run as high as 10%!
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)

 - As hereditary maculopathies go, where do Stargardt rank in terms of prevalence?
 - Stargardt is the most common hereditary maculopathy

 - As hereditary maculopathies go, is AR inheritance the norm?
 - No--most are inherited in an AD fashion

 - Huh? how can an AR disease be more prevalent than AD diseases?
 - Because the genes that cause Stargardt are very common in the general population

 - How common is ‘very common’? What percentage of the population is carrying one of the many disease-causing ABCA4 alleles?
 - Estimates run as high as 10%!

 - How many is ‘many’? That is, how many different dz-causing variants of the ABCA4 gene have been identified?
Inheritance? **AR (in most cases; a small % are AD)**

As hereditary maculopathies go, where do they rank in terms of prevalence? Stargardt is the most common hereditary maculopathy.

As hereditary maculopathies go, is AR inheritance the norm? No--most are inherited in an AD fashion.

Huh? how can an AR disease be more prevalent than AD diseases? *Because the genes that cause Stargardt are very common in the general population.*

How common is ‘very common’? What percentage of the population is carrying one of the many disease-causing ABCA4 alleles? *Estimates run as high as 10%!*

How many is ‘many’? That is, how many different dz-causing variants of the ABCA4 gene have been identified? *As of this writing, almost 500!*
Inheritance? AR (in most cases; a small % are AD)

As hereditary maculopathies go, where do they rank in terms of prevalence? Stargardt is the most common hereditary maculopathy.

No--most are inherited in an AD fashion. Huh? how can an AR disease be more prevalent than AD diseases? Because the genes that cause Stargardt are very common in the general population.

How common is ‘very common’? What percentage of the population is carrying one of the many disease-causing ABCA4 alleles? Estimates run as high as 10%!

How many is ‘many’? That is, how many different dz-causing variants of the ABCA4 gene have been identified? As of this writing, almost 500!

The ABCA4 gene is mission-critical to the eye, with implications extending far beyond Stargardt/FF. Given this, let’s look at it in some detail…
Q

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? **ABCA4**

What does ABCA4 stand for?
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? **ABCA4**

What does ABCA4 stand for?
ATP-Binding Cassette, sub-family A, member 4
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? **ABCA4**

What does ABCA4 stand for?
ATP-Binding Cassette, sub-family A, member 4

The ABCA4 gene codes for the ABCA4 protein. (Shocking, I know.) In general terms, what sort of protein is ABCA4? What does it do?
Q/A

Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? **ABCA4**

What does ABCA4 stand for?
ATP-Binding Cassette, sub-family A, member 4

The ABCA4 gene codes for the ABCA4 protein. (Shocking, I know.) In general terms, what sort of protein is ABCA4? What does it do?

ABCA4 is a member of the **ATP binding cassette** superfamily of transport proteins. (Collectively, they are referred to simply as **ABC** proteins.)
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? **ABCA4**

The ABCA4 gene codes for the ABCA4 protein. (Shocking, I know.) In general terms, what sort of protein is ABCA4? What does it do?

ABCA4 is a member of the **ATP binding cassette** superfamily of transporter proteins. (Collectively, they are referred to simply as **ABC transporters**.)
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? **ABCA4**

Stargardt Disease/Fundus Flavimaculatus

The ABCA4 gene codes for the ABCA4 protein. (Shocking, I know.) In general terms, what sort of protein is ABCA4? What does it do?

ABCA4 is a member of the **ATP binding cassette** superfamily of transporter proteins. (Collectively, they are referred to simply as **ABC transporters**.) They are ubiquitous—found in every phyla of organism from us down to the prokaryotes. Hundreds of different ABC transporters have been identified (is why they’re a ‘superfamily’). To date, nearly 50 different ABC transporters have been identified in humans.
Q

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases: **ABCA4**

Stargardt Disease/Fundus Flavimaculatus

What does ABCA4 stand for? ATP-Binding Cassette, sub-family A, member 4

The ABCA4 gene codes for the ABCA4 protein. (Shocking, I know.) In general terms, what sort of protein is ABCA4? What does it do? ABCA4 is a member of the ATP binding cassette superfamily of transporter proteins. (Collectively, they are referred to simply as ABC transporters.) They are ubiquitous--found in every phyla of organism from us down to the prokaryotes. Hundreds of different ABC transporters have been identified (is why they’re a ‘superfamily’). To date, nearly 50 different ABC transporters have been identified in humans.

OK, but what do they do?
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? **ABCA4**

What does ABCA4 stand for?
ATP-Binding Cassette, sub-family A, member 4

The ABCA4 gene codes for the ABCA4 protein. (Shocking, I know.) In general terms, what sort of protein is ABCA4? What does it do?

ABCA4 is a member of the ATP binding cassette superfamily of transporter proteins. (Collectively, they are referred to simply as ABC transporters.) They are ubiquitous--found in every phyla of organism from us down to the prokaryotes. Hundreds of different ABC transporters have been identified (is why they’re a ‘superfamily’). To date, nearly 50 different ABC transporters have been identified in humans.

OK, but what do they do?
In a word, they transport--substrates, into (or out of) cells. They are transmembrane channels that use ATP as an energy source to transport substances in or out of a cell against a concentration gradient.
Type I ABC importers

Type II ABC importers

ABC exporters

(Multi-)drug extrusion
Peptide/toxin export
(Glyco-)lipid flipping

ModBC-A
Hollenstein et al.,

Nutrient uptake
(sugars, ions, amino acids)

BtuCD-F
Hvorup et al.,
Science (2007)

Nutrient uptake
(vitamin B$_{12}$, heme, siderophores)

Sav1866
Dawson et al.,
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? **ABCA4**

Stargardt Disease/Fundus Flavimaculatus

What does ABCA4 stand for?
ATP-Binding Cassette, sub-family A, member 4

The ABCA4 gene codes for the ABCA4 protein. (Shocking, I know.) In general terms, what sort of protein is ABCA4? What does it do?

ABCA4 is a member of the ATP binding cassette superfamily of transporter proteins. (Collectively, they are referred to simply as ABC transporters.) They are ubiquitous—found in every phyla of organism from us down to the prokaryotes. Hundreds of different ABC transporters have been identified (is why they’re a ‘superfamily’). To date, nearly 50 different ABC transporters have been identified in humans.

OK, but what do they do?

In a word, they transport—substrates, into (or out of) cells. They are

For example…?
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? **ABCA4**

What does ABCA4 stand for?
ATP-Binding Cassette, sub-family A, member 4

The ABCA4 gene codes for the ABCA4 protein. (Shocking, I know.) In general terms, what sort of protein is ABCA4? What does it do?
ABCA4 is a member of the **ATP binding cassette** superfamily of transporter proteins. (Collectively, they are referred to simply as **ABC transporters**.) They are ubiquitous—found in every phyla of organism from us down to the prokaryotes. Hundreds of different ABC transporters have been identified (is why they’re a ‘superfamily’). To date, nearly 50 different ABC transporters have been identified in humans.

OK, but what do they do?
In a word, **they transport**—substrates, into (or out of) cells. They are transmembrane channels that use ATP as an energy source to transport substances in or out of a cell against a concentration gradient.

For example…?
Name a substrate, and an ABC transporter is probably involved—most nutrients, vitamins, trace elements, etc coming in; metabolic waste, fats, sterols, and drugs going out.
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? **ABCA4**

The ABCA4 gene codes for the ABCA4 protein. (Shocking, I know.) In general terms, what sort of protein is ABCA4? What does it do?

ABCA4 is a member of the **ATP binding cassette** superfamily of transporter proteins. (Collectively, they are referred to simply as **ABC transporters**.) They are ubiquitous—found in every phyla of organism from us down to the prokaryotes. Hundreds of different ABC transporters have been identified (is why they’re a ‘superfamily’). To date, nearly 50 different ABC transporters have been identified in humans.

‘Drugs going out’—what does that mean?

‘Drugs going out’—what does that mean? ABC transporters are how cells rid themselves of therapeutic compounds. For example, bacterial drug resistance is often secondary to the development of ABC transporters. Likewise, when a previously effective cancer drug loses efficacy for an individual, it can often be attributed to the appearance in the cancer line of an ABC transporter that effluxes the drug.
A

Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? **ABCA4**

The **ABCA4** gene codes for the **ABCA4** protein. (Shocking, I know.) In general terms, what sort of protein is **ABCA4**? What does it do?

ABCA4 is a member of the **ATP binding cassette** superfamily of transporter proteins. (Collectively, they are referred to simply as **ABC transporters**.) They are ubiquitous--found in every phyla of organism from us down to the prokaryotes. Hundreds of different **ABC** transporters have been identified (is why they’re a ‘superfamily’). To date, nearly 50 different **ABC** transporters have been identified in humans.

October 2: Monday

‘**Drugs going out**’--what does that mean?
It means exactly what it says--**ABC** transporters are how cells rid themselves of therapeutic compounds. For example, bacterial drug resistance is often 2ndry to the development of **ABC** transporters. Likewise, when a previously effective cancer drug loses efficacy for an individual, it can often be attributed to the appearance in the cancer line of an **ABC** transporter that effluxes the drug.
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

So what does the ABCA4 transporter have to do with the eye?
Q/A

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? **ABCA4**

So what does the ABCA4 transporter have to do with the eye?
A great deal. This transporter is located exclusively in the retina, specifically in the membrane of the **three words**.
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? **ABCA4**

So what does the ABCA4 transporter have to do with the eye?
A great deal. This transporter is located exclusively in the retina, specifically in the membrane of the rod outer segment.
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? **ABCA4**

So what does the ABCA4 transporter have to do with the eye?
A great deal. This transporter is located exclusively in the retina, specifically in the membrane of the rod outer segment.

What role does the ABCA4 transporter play within rod outer segments?
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? **ABCA4**

So what does the ABCA4 transporter have to do with the eye?

A great deal. This transporter is located exclusively in the retina, specifically in the membrane of the rod outer segment.

What role does the ABCA4 transporter play within rod outer segments?

It is responsible for exporting a potentially toxic metabolic byproduct of the visual cycle. When ABCA4 is defective, this byproduct accumulates within the segment. Then, when the outer segments are shed and ‘swallowed’ by the underlying RPE (as part of the normal retinal renewal process), the metabolic byproduct is incorporated into the RPE cell’s wear-and-tear granule.
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? **ABCA4**

So what does the ABCA4 transporter have to do with the eye?
A great deal. This transporter is located exclusively in the retina, specifically in the membrane of the rod outer segment.

What role does the ABCA4 transporter play within rod outer segments?
It is responsible for exporting a potentially toxic metabolic byproduct of the visual cycle. When ABCA4 is defective, this byproduct accumulates within the segment. Then, when the outer segments are shed and ‘swallowed’ by the underlying RPE (as part of the normal retinal renewal process), the metabolic byproduct is incorporated into the RPE cell’s lipofuscin.
So what does the ABCA4 transporter have to do with the eye?
A great deal. This transporter is located exclusively in the retina, specifically in the membrane of the rod outer segment.

What role does the ABCA4 transporter play within rod outer segments?
It is responsible for exporting a potentially toxic metabolic byproduct of the visual cycle. When ABCA4 is defective, this byproduct accumulates within the segment. Then, when the outer segments are shed and ‘swallowed’ by the underlying RPE (as part of the normal retinal renewal process), the metabolic byproduct is incorporated into the RPE cell’s lipofuscin. Specifically, the byproduct is incorporated as A2E, a substance that damages and ultimately kills RPE cells in which it accumulates.
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? **ABCA4**

So what does the ABCA4 transporter have to do with the eye?
A great deal. This transporter is located exclusively in the retina, specifically in the membrane of the rod outer segment.

What role does the ABCA4 transporter play within rod outer segments?
It is responsible for exporting a potentially toxic metabolic byproduct of the visual cycle. When ABCA4 is defective, this byproduct accumulates within the segment. Then, when the outer segments are shed and ‘swallowed’ by the underlying RPE (as part of the normal retinal renewal process), the metabolic byproduct is incorporated into the RPE cell’s lipofuscin. Specifically, the byproduct is incorporated as A2E, a substance that damages and ultimately kills RPE cells in which it accumulates.
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? **ABCA4**

So what does the ABCA4 transporter have to do with the eye?
A great deal. This transporter is located exclusively in the retina, specifically in the membrane of the rod outer segment.

What role does the ABCA4 transporter play within rod outer segments?
It is responsible for exporting a potentially toxic metabolic byproduct of the visual cycle. When ABCA4 is defective, this byproduct accumulates within the segment. Then, when the outer segments are shed and ‘swallowed’ by the underlying RPE (as part of the normal retinal renewal process), the metabolic byproduct is incorporated into the RPE cell’s lipofuscin. Specifically, the byproduct is incorporated as A2E, a substance that damages and ultimately kills RPE cells in which it accumulates. *(Head’s up: In the interest of not making your eyes glaze over completely, I’ve [over]simplified this process a bit.)*
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

So what does the ABCA4 transporter have to do with the eye?
A great deal. This transporter is located exclusively in the retina, specifically in the membrane of the rod outer segment.

What role does the ABCA4 transporter play within rod outer segments?
It is responsible for exporting a potentially toxic metabolic byproduct of the visual cycle. When ABCA4 is defective, this byproduct accumulates within the segment. Then, when the outer segments are shed and ‘swallowed’ by the underlying RPE (as part of the normal retinal renewal process), the metabolic byproduct is incorporated into the RPE cell’s lipofuscin. Specifically, the byproduct is incorporated as A2E, a substance that damages and ultimately kills RPE cells in which it accumulates. (Head’s up: In the interest of not making your eyes glaze over completely, I’ve [over]simplified this process a bit.)

And death of the RPE leads to…?
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? **ABCA4**

Stargardt Disease/Fundus Flavimaculatus

So what does the ABCA4 transporter have to do with the eye?
A great deal. This transporter is located exclusively in the retina, specifically in the membrane of the rod outer segment.

What role does the ABCA4 transporter play within rod outer segments?
It is responsible for exporting a potentially toxic metabolic byproduct of the visual cycle. When ABCA4 is defective, this byproduct accumulates within the segment. Then, when the outer segments are shed and ‘swallowed’ by the underlying RPE (as part of the normal retinal renewal process), the metabolic byproduct is incorporated into the RPE cell’s lipofuscin. Specifically, the byproduct is incorporated as A2E, a substance that damages and ultimately kills RPE cells in which it accumulates. (Head’s up: In the interest of not making your eyes glaze over completely, I’ve [over]simplified this process a bit.)

And death of the RPE leads to…?
Changes in the appearance of the posterior pole, as well as (far more importantly) death of overlying photoreceptors, with subsequent decreased vision
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? ABCA4

So what does the ABCA4 transporter have to do with the eye?
A great deal. This transporter is located exclusively in the retina, specifically in the membrane of the rod outer segment.

The pathophysiology of Stargardt/FF tl;dr
--Defective ABCA4 alleles inherited; defective ABCA4 transporters expressed in rod outer segments
--Defective ABCA4 transporters can’t export metabolic byproducts of the visual cycle, leading to their accumulation within the segments
--As part of the normal retinal renewal process, byproduct-laden outer segments are shed, then phagocytized by RPE cells
--Within RPE cells, the byproduct is converted to A2E, which eventually kills the cell
--When the RPE cell dies, photoreceptors that depend on it die as well

And death of the RPE leads to…?
Changes in the appearance of the posterior pole, as well as (far more importantly) death of overlying photoreceptors, with subsequent decreased vision
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: fovea surrounded by flecks
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
Q

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

At what level of the retina do the flecks occur?
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

At what level of the retina do the flecks occur? The RPE
Stargardt Disease/Fundus Flavimaculatus

Stargardt: RPE-level flecks
Q

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

At what level of the retina do the flecks occur?
The RPE

Yellow-white findings in the RPE--that sounds like drusen. How do Stargardt/FF flecks differ ophthalmoscopically from drusen?
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? ABCA4
Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

At what level of the retina do the flecks occur?
The RPE

Yellow-white findings in the RPE--that sounds like drusen. How do Stargardt/FF flecks differ ophthalmoscopically from drusen?
--Drusen are round(-ish), whereas some flecks are
--The flecks often touch one another, rendering their aggregate appearance ‘net-like’
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? ABCA4
Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

At what level of the retina do the flecks occur?
The RPE

Yellow-white findings in the RPE--that sounds like drusen. How do Stargardt/FF flecks differ ophthalmoscopically from drusen?
--Drusen are round(-ish), whereas some flecks are elongated
--The flecks often touch one another, rendering their aggregate appearance ‘net-like’
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

What does pisciform mean?

- Drusen are round(-ish), whereas some flecks are elongated
- The flecks often touch one another, rendering their aggregate appearance ‘net-like’
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

What does pisciform mean?
It means ‘fish shaped’

Drusen. How do Stargardt/FF flecks differ ophthalmoscopically from drusen?
--Drusen are round(-ish), whereas some flecks are elongated
--The flecks often touch one another, rendering their aggregate appearance ‘net-like’
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

What does pisciform mean?
It means ‘fish shaped’

How does that come about?
--Drusen are round(-ish), whereas some flecks are elongated
--The flecks often touch one another, rendering their aggregate appearance ‘net-like’
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

What does pisciform mean?
It means ‘fish shaped’

How does that come about?
If two of these elongated flecks touch one another at just the right angle, their appearance will be reminiscent of a fish’s tail. Drusen. How do Drusen?

--Drusen are round(-ish), whereas some flecks are elongated
--**The flecks often touch one another**, rendering their aggregate appearance ‘net-like’
Stargardt Disease/Fundus Flavimaculatus

Pisciform lesions
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

Which appears first--foveal atrophy, or the flecks?
- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance:
 - Atrophic fovea surrounded by white-yellow pisciform flecks

Which appears first--foveal atrophy, or the flecks?
In most cases, the atrophy
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance:

- **Atrophic fovea**
- **pisciform flecks**

Which appears first--foveal atrophy, or the flecks? In most cases, the atrophy

The classic appearance of the fovea in Stargardt is described with a two-word alliteration. What is it?
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? ABCA4
Fundus appearance:
- Atrophic fovea
- Pisciform flecks

Which appears first--foveal atrophy, or the flecks?
In most cases, the atrophy

The classic appearance of the fovea in Stargardt is described with a two-word alliteration. What is it?

‘Beaten bronze’
Stargardt Disease/Fundus Flavimaculatus

Stargardt—beaten bronze appearance
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: **Atrophic** fovea surrounded by **white-yellow pisciform** flecks
 - If pisciform lesions are in macula only, is
 - If they are widely scattered, is
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
Stargardt Disease/Fundus Flavimaculatus

Stargardt

Fundus flavimaculatus
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in life period
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

- If pisciform lesions are in macula only, is Stargardt
- If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood
Q

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood

Which appears first--changes in the fundus, or decreased vision?
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

- If pisciform lesions are in macula only, is Stargardt
- If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Which appears first--changes in the fundus, or decreased vision?
Usually the decreased vision (especially in childhood onset cases)
Q

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood

Which appears first--changes in the fundus, or decreased vision?
Usually the decreased vision (especially in childhood onset cases)

What is the classic scenario you should be on the lookout for?
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

- If pisciform lesions are in macula only, is Stargardt
- If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Which appears first--changes in the fundus, or decreased vision?

Usually the decreased vision (especially in childhood onset cases)

What is the classic scenario you should be on the lookout for?
That of a child with a ‘normal’ eye exam who ‘refuses’ to read the Snellen chart (not uncommonly, such cases are labelled ‘functional vision loss’ until the appearance of their fundus changes)
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

If pisciform lesions are in macula only, is Stargardt
If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Which appears first—changes in the fundus, or decreased vision?
Usually the decreased vision (especially in childhood onset cases)

What is the classic scenario you should be on the lookout for?
That of a child with a ‘normal’ eye exam who ‘refuses’ to read the Snellen chart (not uncommonly, such cases are labelled ‘functional vision loss’ until the appearance of their fundus changes)

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)?
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood

Which appears first--changes in the fundus, or decreased vision?

Usually the decreased vision (especially in childhood onset cases)

What is the classic scenario you should be on the lookout for?
That of a child with a ‘normal’ eye exam who ‘refuses’ to read the Snellen chart (not uncommonly, such cases are labelled ‘functional vision loss’ until the appearance of their fundus changes)

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)?
The answer used to be ‘order an FA,’ so we’ll address that first…
Q

- Inheritance? **AR (in most cases; a small % are AD)**
- Gene responsible for most cases? **ABCA4**
- Fundus appearance: **Atrophic** fovea surrounded by **white-yellow pisciform** flecks
 - If pisciform lesions are in macula only, is **Stargardt**
 - If they are widely scattered, is **fundus flavimaculatus**
- Pts present with c/o **decreased vision**, usually in **childhood**
- Classic FA appearance: **two words**
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid
Stargardt Disease/Fundus Flavimaculatus

Stargardt—*dark choroid* appearance on FA
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid

'Dark choroid'--what does that mean?
Q/A

Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid

‘Dark choroid’--what does that mean?
It means the normal FA ‘glow’ of the choroid is absent
(in FA parlance, the choroid is hypofluorescent)
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Classic FA appearance: dark choroid

‘Dark choroid’--what does that mean?
It means the normal FA ‘glow’ of the choroid is absent
(in FA parlance, the choroid is hypofluorescent)
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
- If pisciform lesions are in macula only, is Stargardt
- If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Classic FA appearance: dark choroid

‘Dark choroid’--what does that mean?
It means the normal FA ‘glow’ of the choroid is absent
(in FA parlance, the choroid is hypofluorescent)

Again, in FA parlance--is the choroidal hypofluorescence secondary to blocking, or to a filling defect?
A

Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid

‘Dark choroid’--what does that mean?
It means the normal FA ‘glow’ of the choroid is absent (in FA parlance, the choroid is hypofluorescent)

Again, in FA parlance--is the choroidal hypofluorescence secondary to blocking, or to a filling defect?
Blocking
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Classic FA appearance: dark choroid

‘Dark choroid’--what does that mean?
It means the normal FA ‘glow’ of the choroid is absent
(in FA parlance, the choroid is hypofluorescent)

Again, in FA parlance--is the choroidal hypofluorescence secondary to blocking, or to a filling defect?
Blocking

At what level of the retina is blocking occurring?
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? ABCA4
Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
Pts present with c/o decreased vision, usually in childhood
Classic FA appearance: dark choroid

‘Dark choroid’--what does that mean? It means the normal FA ‘glow’ of the choroid is absent (in FA parlance, the choroid is hypofluorescent)

Again, in FA parlance--is the choroidal hypofluorescence secondary to blocking, or to a filling defect? Blocking

At what level of the retina is blocking occurring? The RPE
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? ABCA4
Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
Pts present with c/o decreased vision, usually in childhood
Classic FA appearance: dark choroid

‘Dark choroid’--what does that mean?
It means the normal FA ‘glow’ of the choroid is absent
(in FA parlance, the choroid is hypofluorescent)

In Stargardt, what causes the RPE to block choroidal FA fluorescence?

Again, in FA parlance--is the choroidal hypofluorescence secondary to blocking, or to a filling defect?
Blocking

In what level of the retina is blocking occurring?

The RPE
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? ABCA4
Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
Pts present with c/o decreased vision, usually in childhood
Classic FA appearance: dark choroid

‘Dark choroid’--what does that mean?
It means the normal FA ‘glow’ of the choroid is absent
(in FA parlance, the choroid is hypofluorescent)

In Stargardt, what causes the RPE to block choroidal FA fluorescence?
The accumulation of abnormal lipofuscin/A2E within RPE cells

Again, in FA parlance--is the choroidal hypofluorescence secondary to blocking, or to a filling defect?
Blocking

In what level of the retina is blocking occurring?
The RPE
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid

What test has supplanted FA for working up suspected Stargardt?

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)? The answer used to be 'order an FA,' so we'll address that first...
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid

What test has supplanted FA for working up suspected Stargardt?
Fundus autofluorescence (FAF)

Why is FAF preferred?
It is more reliable (not all Stargardt eyes manifest the dark choroid phenomenon)

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)?
The answer used to be ‘order an FA,’ so we’ll address that first…
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Classic FA appearance: dark choroid

What test has supplanted FA for working up suspected Stargardt? Fundus autofluorescence (FAF)

Why is FAF preferred?
- Much more reliable (not all Stargardt eyes manifest the dark choroid phenomenon)

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)?
- The answer used to be ‘order an FA,’ so we’ll address that first…
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid

What test has supplanted FA for working up suspected Stargardt?
Fundus autofluorescence (FAF)

Why is FAF preferred?
It is more reliable (not all Stargardt eyes manifest the dark choroid phenomenon)

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)?
The answer used to be ‘order an FA,’ so we’ll address that first…
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? ABCA4
Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
- If pisciform lesions are in macula only, is Stargardt
- If they are widely scattered, is fundus flavimaculatus
Pts present with c/o decreased vision, usually in childhood
Classic FA appearance: dark choroid?

What is the classic FAF appearance of Stargardt?

Why is FAF preferred?
- It is more reliable (not all Stargardt eyes manifest the dark choroid phenomenon)

What test has supplanted FA for working up suspected Stargardt?
Fundus autofluorescence (FAF)

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)?
The answer used to be 'order an FA,' so we'll address that first…
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

- If pisciform lesions are in macula only, is Stargardt
- If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Classic FA appearance: dark choroid Bull’s eye

What is the classic FAF appearance of Stargardt?
A bull’s eye maculopathy--a ring of perifoveal hyperfluorescence surrounding a central foveal area of hypo-fluorescence

Why is FAF preferred?
It is more reliable (not all Stargardt eyes manifest the dark choroid phenomenon)

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)?
The answer used to be ‘order an FA,’ so we’ll address that first…
A

Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid Bull’s eye

What is the classic FAF appearance of Stargardt?
A bull’s eye maculopathy--a ring of perifoveal hyperfluorescence surrounding a central foveal area of hypofluorescence

Why is FAF preferred?
It is more reliable (not all Stargardt eyes manifest the dark choroid phenomenon)

What test has supplanted FA for working up suspected Stargardt?
Fundus autofluorescence (FAF)

Why is FAF preferred?
It is more reliable (not all Stargardt eyes manifest the dark choroid phenomenon)

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)?
The answer used to be ‘order an FA,’ so we’ll address that first…

Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid Bull’s eye

What is the classic FAF appearance of Stargardt?
A bull’s eye maculopathy--a ring of perifoveal hyperfluorescence surrounding a central foveal area of hypofluorescence

Why is FAF preferred?
It is more reliable (not all Stargardt eyes manifest the dark choroid phenomenon)

What test has supplanted FA for working up suspected Stargardt?
Fundus autofluorescence (FAF)

Why is FAF preferred?
It is more reliable (not all Stargardt eyes manifest the dark choroid phenomenon)

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)?
The answer used to be ‘order an FA,’ so we’ll address that first…
Stargardt Disease/Fundus Flavimaculatus

Stargardt—hyper/hypopigmentation on FAF
Q

Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid Bull’s eye

What is the classic FAF appearance of Stargardt?
A bull’s eye maculopathy—a ring of perifoveal hyperfluorescence surrounding a central foveal area of hypofluorescence

Why is FAF preferred?
It is more reliable (not all Stargardt eyes manifest the dark choroid phenomenon)

What test has supplanted FA for working up suspected Stargardt?
Fundus autofluorescence (FAF)

Why does the perifoveal macula hyperfluoresce?
Because its RPE cells are stuffed with lipofuscin containing A2E, a substance that autofluoresces particularly well

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)?
The answer used to be ‘order an FA,’ so we’ll address that first…
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? ABCA4
Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
- If pisciform lesions are in macula only, is Stargardt
- If they are widely scattered, is fundus flavimaculatus
Pts present with c/o decreased vision, usually in childhood
Classic FA appearance: dark choroid Bull’s eye

Stargardt Disease/Fundus Flavimaculatus

What is the classic FA appearance of Stargardt?
A bull’s eye maculopathy—a ring of perifoveal hyperfluorescence surrounding a central foveal area of hypofluorescence

Why does the perifoveal macula hyperfluoresce?
Because its RPE cells are stuffed with lipofuscin-containing A2E, a substance that autofluoresces particularly well

What test has supplanted FA for working up suspected Stargardt?
Fundus autofluorescence (FAF)
Why is FAF preferred?
It is more reliable (not all Stargardt eyes manifest the dark choroid phenomenon)

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)?
The answer used to be ‘order an FA,’ so we’ll address that first…
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid, Bull’s eye

What is the classic FA appearance of Stargardt?
A bull’s eye maculopathy, a ring of perifoveal hyperfluorescence surrounding a central foveal area of hypofluorescence

Why is FAF preferred?
It is more reliable (not all Stargardt eyes manifest the dark choroid phenomenon)

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)?
The answer used to be 'order an FA,' so we'll address that first…

OK, but then why does the central foveal area hypofluoresce?
Because its RPE cells are dead and gone, leaving little lipofuscin in that area
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid Bull’s eye

What is the classic FAF appearance of Stargardt? A bull’s eye maculopathy—a ring of perifoveal hyperfluorescence surrounding a central foveal area of hypofluorescence

Why is FAF preferred? It is more reliable (not uncommonly, such cases are labelled ‘functional vision loss’ until the appearance of their fundus changes)

OK, but then why does the central foveal area hypofluoresce? Because its RPE cells are dead and gone, leaving little lipofuscin in that area to fluoresce

What is the classic scenario you should be on the lookout for? That of a child with a ‘normal’ eye exam who ‘refuses’ to read the Snellen chart (not uncommonly, such cases are labelled ‘functional vision loss’ until the appearance of their fundus changes)

What should you do if/when encountering such a child (either on the OKAP/Boards or IRL)? The answer used to be ‘order an FA,’ so we’ll address that first…
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
- If pisciform lesions are in macula only, is Stargardt
- If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision , usually in childhood

Classic FA appearance: dark choroid

Ultimate vision is usually in the 20/50 – 20/200 range
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

- If pisciform lesions are in macula only, is Stargardt
- If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Classic FA appearance: dark choroid

Ultimate vision is usually in the 20/50 – 20/200 range
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks

- If pisciform lesions are in macula only, is Stargardt
- If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Classic FA appearance: dark choroid

Ultimate vision is usually in the 20/50 – 20/200 range

Other diseases associated with ABCA4 dysfunction include cone dystrophy, cone-rod dystrophy and RP
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
-Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid
- Ultimate vision is usually in the 20/50 – 20/200 range
- Other diseases associated with ABCA4 dysfunction include cone dystrophy, cone-rod dystrophy and RP
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Classic FA appearance: dark choroid

Ultimate vision is usually in the 20/50 – 20/200 range

Other diseases associated with ABCA4 dysfunction include cone dystrophy, cone-rod dystrophy and RP

How can one dysfunction of a single protein cause such a variety of pathology?
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Classic FA appearance: dark choroid

Ultimate vision is usually in the 20/50 – 20/200 range

Other diseases associated with ABCA4 dysfunction include cone dystrophy, cone-rod dystrophy and RP

How can one dysfunction of a single protein cause such a variety of pathology? Because it is not the case that the ABCA4 transporter is either fully functional or completely dysfunctional.
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 If pisciform lesions are in macula only, is Stargardt
 If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Classic FA appearance: dark choroid

Ultimate vision is usually in the 20/50 – 20/200 range

Other diseases associated with ABCA4 dysfunction include cone dystrophy, cone-rod dystrophy and RP

How can one dysfunction of a single protein cause such a variety of pathology? Because it is not the case that the ABCA4 transporter is either fully functional or completely dysfunctional. Rather, ABCA4 function exists on a continuum, from completely intact (= normal/non-diseased) to mildly impaired (= mild Stargardt) to moderately impaired (= worse Stargardt) to severely impaired (= cone-rod dystrophy) to completely nonfunctional (= RP).
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? ABCA4
Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
Pts present with c/o decreased vision, usually in childhood
Classic FA appearance: dark choroid
Ultimate vision is usually in the 20/50 – 20/200 range
Other diseases associated with ABCA4 dysfunction include cone dystrophy, cone-rod dystrophy and RP

How can one dysfunction of a single protein cause such a variety of pathology? Because it is not the case that the ABCA4 transporter is either fully functional or completely dysfunctional. Rather, ABCA4 function exists on a continuum, from completely intact (= normal/non-diseased) to mildly impaired (= mild Stargardt) to moderately impaired (= worse Stargardt) to severely impaired (= cone-rod dystrophy) to completely nonfunctional (= RP).

So, all of these conditions are caused by mutations on ABCA4?
Inheritance? AR (in most cases; a small % are AD)
Gene responsible for most cases? ABCA4
Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is **Stargardt**
 - If they are widely scattered, is **fundus flavimaculatus**
Pts present with c/o decreased vision, usually in childhood
Classic FA appearance: **dark choroid**
Ultimate vision is usually in the 20/50 – 20/200 range
Other diseases associated with ABCA4 dysfunction include **cone dystrophy**, **cone-rod dystrophy** and **RP**

So, all of these conditions are caused by mutations on ABCA4? Yes and no. All of these conditions can be caused by ABCA4 mutations. But all of them can be caused by mutations to other genes as well.
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid
- Ultimate vision is usually in the 20/50 – 20/200 range
- Other diseases associated with ABCA4 dysfunction include cone dystrophy, cone-rod dystrophy and RP

For each condition, what percent of cases are caused by ABCA4 mutation?

--Stargardt:
--Cone dystrophy:
--Cone-rod dystrophy:
--RP:

So, all of these conditions (except RP) can be caused by ABCA4 mutations (Stargardt to cone-rod dystrophy) but RP can be caused by ABCA4 mutations or mutations to other genes.
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid
- Ultimate vision is usually in the 20/50 – 20/200 range
- Other diseases associated with ABCA4 dysfunction include cone dystrophy, cone-rod dystrophy and RP

For each condition, what percent of cases are caused by ABCA4 mutation?
- Stargardt: >95
- Cone dystrophy: don’t have a number for this
- Cone-rod dystrophy: 30-50
- RP: 5-10

So, all of these diseases are the same? No.
Yes and no.
But all of these conditions are caused by mutations on ABCA4.
Stargardt disease is essentially a manifesting phenotype of ABCA4 dysfunction ranging from completely normal (= cone-rod dystrophy) to completely nonfunctional (= RP).
Inheritance? AR (in most cases; a small % are AD)

Gene responsible for most cases? ABCA4

Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus

Pts present with c/o decreased vision, usually in childhood

Classic FA appearance: dark choroid

Ultimate vision is usually in the 20/50 – 20/200 range

Other diseases associated with ABCA4 dysfunction include cone dystrophy, cone-rod dystrophy and RP

Treatment?
Stargardt Disease/Fundus Flavimaculatus

- Inheritance? AR (in most cases; a small % are AD)
- Gene responsible for most cases? ABCA4
- Fundus appearance: Atrophic fovea surrounded by white-yellow pisciform flecks
 - If pisciform lesions are in macula only, is Stargardt
 - If they are widely scattered, is fundus flavimaculatus
- Pts present with c/o decreased vision, usually in childhood
- Classic FA appearance: dark choroid
- Ultimate vision is usually in the 20/50 – 20/200 range
- Other diseases associated with ABCA4 dysfunction include cone dystrophy, cone-rod dystrophy, and RP
- Treatment? No effective treatments are available