Ray Tracing

Basic Optics, Chapter 19

Ray Tracing

- In this lecture we will discuss ray tracing in greater detail
- Ray tracing is a useful skill because it allows you to determine important properties of an optical system (and answer questions about them on the OKAP)

Ray Tracing

- In this lecture we will discuss ray tracing in greater detail
- Ray tracing is a useful skill because it allows you to determine important properties of an optical system (and answer questions about them on the OKAP)
- Specifically, we will look more closely at the rules governing the passage of rays through lensesrules that determine:
- The location of an image
- Whether an image is upright or inverted
- The real vs virtual status of objects and images
- The magnification of an image

Ray Tracing

Thin plus lens

With regard to this object and its relationship with this optical system...

Ray Tracing

Thin plus lens

--Are the object and image real or virtual?
--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracing

Consider the tip of the object: It has an infinity of light rays bouncing off of it and heading in all directions (including into and out of the screen).

Thin plus lens
--Where will the image be?
--Will it be upright or inverted?
--Are the object and image real or virtual?
--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracing

Consider the tip of the object: It has an infinity of light rays bouncing off of it and heading in all

Of all these rays, there will be some that just catch the edge of the lens, and any rays more peripheral will not pass through the lens. These 'at the edge' rays are limiting rays.
--Where will the image be?
--Will it be upright or inverted?
--Are the object and image real or virtual?
--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracing

--Are the object and image real or virtual?
--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracing

With regard to this object and its relationship with this optical system...

Ray Tracing

--Where will the image be?
--Will it be upright or inverted?
--Are the object and image real or virtual?
--Will the image be magnified or minified?

Likewise, there is a ray that will leave the object tip and pass exactly through the primary focal point.
Where will that ray go?

With regard to this object and its relationship with this optical system...

Ray Tracing

With regard to this object and its relationship with this optical system...

Ray Tracing

--Are the object and image real or virtual?
--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracing

--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracing

Putting it all together, we can see that the image of the object tip must be located at the intersection of these rays, and that this determines the location of the image completely! Thin plus lens
--Where will the image be?
--Will it be upright or inverted?
--Are the object and image real or virtual?
--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracilin fact, any two of these rays would suffice to determine location
Putting it all together, A can see that the image of the object tip must be located the intersection of these rays and that this determines the location of tive intrage completely! Thin plus lens
--Where will the image be?
--Will it be upright or inverted?
--Are the object and image real or virtual?
--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracing

Putting it all together, we can see that the image of the object tip must be located at the intersection of these rays, and that this determines the location of the image completely! Thin plus lens
--Where will the image be?
--Will it be upright or inverted?
Further, we can see that the image is pәцәлu! with respect to the object
--Are the object and image real or virtual?
--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracing
Putting it a object tip mı and that this C is inverted, even if it is 'above' the axis.

Thin plus lens
--Where will the image be?
--Will it be upright or inverted?
--Are the object and image real or virtual?
--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracing

As for whether the image and object are real vs virtual...

--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracing

What determines the real vs virtual status of an object and image is the relationship between the image/object and the rays that define it:

If an image/object and its defining rays are on the same side of the lens, the image/object is real; if they are on opposite sides, the image/object is virtual.
--Where will the image be?
--Will it be upright or inverted?
--Are the object and image real or virtual?
--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracing

What determines the real vs virtual status of an object and image is the relationship between the image/object and the rays that define it:

If an image/object and its defining rays are on the same side of the lens, the image/object is real; if they are on opposite sides, the image/object is virtual.
--Where will the image be?
--Will it be upright or inverted?
The object and its rays are on the same side of the lens; therefore, the object is real; likewise...
--Are the object and image real or virtual?
--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracing

What determines the real vs virtual status of an object and image is the relationship between the image/object and the rays that define it:

If an image/object and its defining rays are on the same side of the lens, the image/object is real; if they are on opposite sides, the image/object is virtual.

--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Pay Tracing

What determines the real vs virtual status of an object and image is the relationship between the image/object and the rays that define it:

If an image/object and its defining rays are on the same side of the lens, the image/object is real; if they are on opposite sides, the image/object is virtual.

Don't worry if this real vs virtual distinction seems confusing at the moment. We will shortly encounter both virtual objects and virtual images, and the distinction will become more apparent!
--Where will the image be?
--Will it be upright or inverted?
--Are the object and image real or virtual?
--Will the image be magnified or minified?

Ray Tracing

--Will the image be magnified or minified?
With regard to this object and its relationship with this optical system...

Ray Tracing

Thin plus lens

--Object and image real/virtual?
--Magnified/minified?
What about this object and its image?

Ray Tracing

What about this object and its image?

Ray Tracing

Thin plus lens

Trace the: Nodal ray
Secondary focal point ray
--Image location?
--Upright/inverted?
--Object and image real/virtual?
--Magnified/minified?
What about this object and its image?

Ray Tracing

(True, this ray didn't pass through the primary focal point. However, its trajectory to the lens is exactly what it would have been if it had. Therefore, it will be refracted as if it had passed through the primary focal point.)

Thin plus lens
Trace the: Nodal ray
Secondary focal point ray Primary focal point ray
--Image location?
--Upright/inverted?
--Object and image real/virtual?
--Magnified/minified?
What about this object and its image?

Ray Tracing

But these rays don't intersectwhere's the image?

Thin plus lens

Trace the:

Nodal ray
Secondary focal point ray Primary focal point ray
--Image location?
--Upright/inverted?
--Object and image real/virtual?
--Magnified/minified?
What about this object and its image?

Ray Tracing

But these rays don't intersectwhere's the image?

--Object and image real/virtual?
--Magnified/minified?
What about this object and its image?

Ray Tracing

What about this object and its image?

Ray Tracing

Extend the rays to find the point of intersection... Here is the image location
Thin plus lens
The image is upright
--Image location?
--Upright/inverted?
--Object and image real/virtual?
--Magnified/minified?
What about this object and its image?

Ray Tracing

Extend the rays to find the point of intersection... Here is the image location
Thin plus lens The image is upright The image is magnified
--Magnified/minified?
What about this object and its image?

Ray Tracing

The object and its rays are on
Thin plus lens the same side of the lens, therefore the object is real
--Image location?
--Upright/inverted?
F_{2}
--Object and image real/virtual?
--Magnified/minified?
What about this object and its image?

Ray Tracing

However, the image and its rays
 are on opposite sides of the lens, therefore the image is virtual
--Image location?
--Upright/inverted?
--Object and image real/virtual?
--Magnified/minified?
What about this object and its image?

Pay Fracing

Rule of thumb: If you have to use dashed lines to define an object or image, it's probably virtual

However, the image and its rays are on opposite sides of the lens, therefore the image is virtual
--Image location?
--Upright/inverted?

Ray Tracing

Now try this one...

Remember: In Optics problems, the light is always going in this direction!
Thin plus lens

--Upright/inverted?
--Object and image real/virtual?
--Magnified/minified?
What about this object and its image?

Ray Tracing

Now try this one...

Trace the:

Thin plus lens

Ray Tracing

Now try this one...

Trace the:
 Nodal ray

Thin plus lens
--Image location?
--Upright/inverted?

Ray Tracing

Now try this one...

Thin plus lens

> Trace the: Nodal ray
> Secondary focal point ray
--Image location?
--Upright/inverted?
--Object and image real/virtual?
--Magnified/minified?
What about this object and its image?

Ray Tracing

Now try this one...

Thin plus lens

> Trace the: Nodal ray
> Secondary focal point ray Primary focal point ray
--Image location?
--Upright/inverted?

--Object and image real/virtual?
--Magnified/minified?
What about this object and its image?

Ray Tracing

Now try this one...

What about this object and its image?

Ray Tracing

Now try this one...

Ray Tracing

Now try this one...

What about this object and its image?

Ray Tracing

Now try this one...

However, the image and its rays
Thin plus lens are on the same side of the lens, therefore the image is real

--Object and image real/virtual?
--Magnified/minified?
What about this object and its image?

Ray Tracing

Note: Minus lens!

Thin minus lens

Ray Tracing

Thin minus lens

--Image location?
--Upright/inverted?
--Object and image real/virtual?
--Magnified/minified?

Ray Tracing

--Image location?
--Upright/inverted?
--Object and image real/virtual?
--Magnified/minified?

Ray Tracing

--Image location?
--Upright/inverted?
--Object and image real/virtual?
--Magnified/minified?

Ray Tracing

 pegged the image with the other two raysExtend the rays to find the point of intersection...

--Image location?
--Upright/inverted?
--Object and image real/virtual?
--Magnified/minified?

Pay Fracing

Extend the rays to find the point of intersection... Here is the image location The image is upright The image is minified

--Image location?
--Upright/inverted?
Thin minus lens

Ray Tracing

The object and its rays are on the same sides of the lens, therefore the object is real

Thin minus lens

--Image location?
--Upright/inverted?
--Object and image real/virtual?
--Magnified/minified?

Pay Fracing

The image and its rays are on opposite sides of the lens, therefore the image is virtual

Thin minus lens

--Image location?
--Upright/inverted?
--Object and image real/virtual?
--Magnified/minified?

Ray Tracing

Thin plus lens

Note: In the discussion thus far, we have assumed the refractive index on either side of the lens is the same.

Ray Tracing

Thin plus lens

Note: In the discussion thus far, we have assumed the refractive index on either side of the lens is the same. What if it's not?

Ray Tracing

Thin plus lens

Air $(n=1.0)$

Water ($n=1.33$)

When n is not the same on both sides of the lens, the nodal point is pulled to the side with the higher n, and the focal length on that side becomes / onger

Ray Tracing

Given this lens-object system...

Pay Tracing

WATER

Ray Tracing

At this juncture, you should assess your Optics knowledge by taking Quiz 4 (slide-set BO30). After that, resume the tutorial with slide-set BO20.

