Astigmatic Refractive Error: The Conoid of Sturm

Basic Optics, Chapter 11

Spherocylindrical Lenses

In Chapter 10, we saw that a spherocylindrical lens focuses parallel rays not to a single secondary focal point, but rather to a pair of secondary focal lines separated by a circle.

Spherocylindrical Lenses

 describing some random spherocylindrical lens...

Astigmatic Eye Error

Wait a minute-a +1D lens focuses at 1 m , and a +2D at 50 cm . Shouldn't the focal lines

Astigm be 50 cm and 1 m behind the cornea--not in the vitreous as shown?
No, because we're talking about eye error here. Recall that 'eye error' refers to the amount of excess (not absolute) power in a given meridian. In the example shown, the power in the vertical meridian (i.e., with axis 180) has 1D of converging power more than is needed to put parallel rays on the retina. Likewise, the horizontal meridian (axis 090) has 2D of excess convergence.

Astigm

Wait a minute-a +1D lens focuses at 1 m , and $\mathrm{a}+2 \mathrm{D}$ at 50 cm . Shouldn't the focal lines be 50 cm and 1 m behind the cornea--not in the vitreous as shown?
No, because we're talking about eye error here. Recall that 'eye error' refers to the amount of excess (not absolute) power in a given meridian. In the example shown, the power in the vertical meridian (i.e., with axis 180) has 1D of converging power more than is needed to put parallel rays on the retina. Likewise, the horizontal meridian (axis 090) has 2D of excess convergence.

So where would the focal lines be, exactly?

No, because we're talking about eye error here. Recall that 'eye error' refers to the amount of excess (not absolute) power in a given meridian. In the example shown, the power in the vertical meridian (i.e., with axis 180) has 1D of converging power more than is needed to put parallel rays on the retina. Likewise, the horizontal meridian (axis 090) has 2D of excess convergence.

So where would the focal lines be, exactly?
That depends on the total power of the eye in question. In Güllstrand's reduced schematic
 be 50 cm and 1 m behind the cornea--not in the vitreous as shown?
No, because we're talking about eye error here. Recall that 'eye error' refers to the amount of excess (not absolute) power in a given meridian. In the example shown, the power in the vertical meridian (i.e., with axis 180) has 1D of converging power more than is needed to put parallel rays on the retina. Likewise, the horizontal meridian (axis 090) has 2D of excess convergence.

So where would the focal lines be, exactly?
That depends on the total power of the eye in question. In Güllstrand's reduced schematic
 be 50 cm and 1 m behind the cornea--not in the vitreous as shown? No, because we're talking about eye error here. Recall that 'eye error' refers to the amount of excess (not absolute) power in a given meridian. In the example shown, the power in the vertical meridian (i.e., with axis 180) has 1D of converging power more than is needed to put parallel rays on the retina. Likewise, the horizontal meridian (axis 090) has 2D of excess convergence.

So where would the focal lines be, exactly?
That depends on the total power of the eye in question. In Güllstrand's reduced schematic

Astigmatic Eye Error

Astigmatic Eye Error

But first: What is the spherical equivalent of the eye error?

Eye error S.E. = ?

Eye Error

Astigmatic Eye Error

But first: What is the spherical equivalent of the eye error?
Eye error S.E. = +1.50

Eye Error

Astigmatic Eye Error

Eye error S.E. = +1.50

Now--the eye error is +1 x 180
+2 $\times 090$
Ignoring vertex distance, what is the refractive correction, and what is the S.E. of that correction?

Astigmatic Eye Error

Eye error S.E. = +1.50

Now--the eye error is
+1 x 180
+2 x 090
Ignoring vertex distance, the corrective lenses needed are:
-1×180 (to offset the $+1 \times 180$)
-2×090 (to offset the $+2 \times 090$)

Astigmatic Eye Error

Astigmatic Eye Error

Astigmatic Eye Error

Eye error S.E. $=+1.50$

Now--the eye error is
$+1 \times 180$
$+2 \times 090$
Ignoring vertex distance, the
corrective lenses needed are:
-1×180 (to offset the $+1 \times 180$)
-2×090 (to offset the $+2 \times 090$)
Or, when written like an Rx for glasses:
You may not know how to do this yet.
$-1-1 \times 090$ (or -2 +1 x 180).

Astigmatic Eye Error

Eye error S.E. = +1.50

Now--the eye error is
$+1 \times 180$
+2 $\mathbf{x} 090$
Ignoring vertex distance, the
corrective lenses needed are:
-1×180 (to offset the $+1 \times 180$)
-2 x 090 (to offset the +2 x 090)
Or, when written like an $R x$ for glasses:
$-1-1 \times 090$ (or $-2+1 \times 180$).
The S.E. of either $R x$ is the same: -1.50.

Astigmatic Eye Error

Astigmatic Eye Error

Eye error S.E. = +1.50

What would happen to the conoid if we put the corrective S.E. in front of this eye?

Astigmatic Eye Error

Astigmatic Eye Error

Eye error S.E. = +1.50

Astigmatic Eye Error

Eye error S.E. = +1.50

Astigmatic Eye Error

Astigmatic Eye Error

Astigmatic Eye Error

Astigmatic Eye Error

Astigmatic Eye Error

How are we going
If we wish to optimize vision, we must COLLAPSE the conoid of Sturm onto the retina! to collapse the conoid?

Astigmatic Eye Error

Astigmatic Eye Error

Astigmatic Eye Error

Astigmatic Eye Error

Astigmatic Eye Error

For example...

Error lenses:
-2D x 090
$+1 \mathrm{D} \times 180$

Astigmatic Eye Error

For example...

(Note: These corrective lenses do not account for vertex distance)

Astigmatic Eye Error

For example...

(Note: These corrective lenses do not account for vertex distance)

Astigmatic Eye Error

For example...

(Note: These corrective lenses do not account for vertex distance)

Astigmatic Eye Error

For example...

Error lenses:
-2D x 090
+1D x 180
Corrective Lenses:
+2D x 090
-1D x 180
(Note: These corrective lenses do not account for vertex distance)

Error Lenses:
+4 x 090
-1.5×180
Corrective Lenses:
-4×090
$+1.5 \times 180$

We will take up the topic of how one refracts an astigmatic eye in the next chapter

