Before you begin: This is a big topic, and big topics beget big slide-sets. There are natural breaks at slides 166, 276, 427, 482, and 654; I placed a break time! slide at those points to mark them.
How common is DES?
How common is DES?
Very. It is estimated to affect $\%$ of adults age 30-60, and $\%$ of adults age 65 and older.
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES
Dry Eye Syndrome

How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES.

Why are women more likely to have DES?
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, **women are more likely to suffer DES**

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is...
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, **women are more likely to suffer DES**

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal.
How common is DES?

Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?

It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?

Yes, women are more likely to suffer DES.

Why are women more likely to have DES?

There are a number of factors, but one of the most fundamental is hormonal—hormones are protective against DES, while tend to exacerbate it.
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, **women are more likely to suffer DES**

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal—androgens are protective against DES, while estrogens tend to exacerbate it.
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES.

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal—androgens are protective against DES, while estrogens tend to exacerbate it.

Do androgens play a direct role in tear-film health?
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes. **women are more likely to suffer DES**

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal—**androgens** are protective against DES, while estrogens tend to exacerbate it.

Do androgens play a direct role in tear-film health?
Yes—they promote secretion of IgA from the...
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES.

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal—andro gens are protective against DES, while estrogens tend to exacerbate it.

Do androgens play a direct role in tear-film health?
Yes—they promote secretion of IgA from the main lacrimal gland.
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES.

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal—androgens are protective against DES, while estrogens tend to exacerbate it.

Do androgens play a direct role in tear-film health?
Yes—they promote secretion of IgA from the main lacrimal gland, and meibum from the meibomian glands.
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES.

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal—androens are protective against DES, while estrogens tend to exacerbate it.

Do androgens play a direct role in tear-film health?
Yes—they promote secretion of IgA from the main lacrimal gland, and meibum from the meibomian glands.
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal—androgens are protective against DES, while estrogens tend to exacerbate it

Because of these hormonal effects…
…women are more likely to have DES if they are receiving estrogen replacement therapy
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES.

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal—androgens are protective against DES, while estrogens tend to exacerbate it.

Because of these hormonal effects...
...women are more likely to have DES if they are receiving estrogen replacement therapy.
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES.

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal—androgens are protective against DES, while estrogens tend to exacerbate it.

Because of these hormonal effects...
...women are more likely to have DES if they are receiving estrogen replacement therapy...
...men are more likely to have DES if they are undergoing therapy.
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES. Because of these hormonal effects…

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal—
androgens are protective against DES, while estrogens tend to exacerbate it.

Because of these hormonal effects…
…women are more likely to have DES if they are receiving estrogen replacement therapy.

…men are more likely to have DES if they are undergoing androgen antagonist therapy.
How common is DES?
Very. It is estimated to affect \(10\%\) of adults age 30-60, and \(15\%\) of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal—androgens are protective against DES, while estrogens tend to exacerbate it.

Because of these hormonal effects...
...women are more likely to have DES
...men are undergoing androgen antagonist therapy

What is the classic clinical scenario in which a man is undergoing androgen antagonist therapy?
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal—androgens are protective against DES, while estrogens tend to exacerbate it.

Because of these hormonal effects...
...women are more likely to have DES
...men are more likely to have DES if they are undergoing androgen antagonist therapy

What is the classic clinical scenario in which a man is undergoing androgen antagonist therapy?
Medical management of prostate cancer
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES.

Why are women more likely to have DES?
There are a number of factors, but one of the most fundamental is hormonal—andro gens are protective against DES, while estrogens tend to exacerbate it.

Because of these hormonal effects...
...women are more likely to have DES.
...men are more likely to have DES if they are undergoing androgen antagonist therapy.

What is the classic clinical scenario in which a man is undergoing androgen antagonist therapy?
Medical management of prostate cancer.
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES

Is there a racial/ethnic predilection?
Dry Eye Syndrome

How common is DES?
Very. It is estimated to affect **10%** of adults age 30-60, and **15%** of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES

Is there a racial/ethnic predilection?
The *Cornea* book is maddeningly inconsistent on this score. In text, it states there is “no racial or ethnic predisposition.”
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES.

Is there a racial/ethnic predilection?
The *Cornea* book is maddeningly inconsistent on this score. In text, it states there is “no racial or ethnic predisposition.” But in a Table on the same page it states there is “consistent evidence” that race is a risk factor, and “inconclusive evidence” that ethnicity is as well.
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES

Is there a racial/ethnic predilection?
The *Cornea* book is maddeningly inconsistent on this score. In text, it states there is “no racial or ethnic predisposition.” But in a Table on the same page it states there is “consistent evidence” that Asian race is a risk factor, and “inconclusive evidence” that Hispanic ethnicity is as well.
How common is DES?
Very. It is estimated to affect 10% of adults age 30-60, and 15% of adults age 65 and older.

Is it a significant health problem?
It certainly can be. Studies indicate moderate-to-severe DES impacts quality-of-life to the same degree as moderate-to-severe angina.

Is there a gender predilection?
Yes, women are more likely to suffer DES

Is there a racial/ethnic predilection?
The Cornea book is maddeningly inconsistent on this score. In text, it states there is “no racial or ethnic predisposition.” But in a Table on the same page it states there is “consistent evidence” that Asian race is a risk factor, and “inconclusive evidence” that Hispanic ethnicity is as well. So what’s the correct answer to this question? Beats me. Caveat emptor.
Dry Eye Syndrome

What roles does the tear film play in ocular health and function?
What roles does the tear film play in ocular health and function? There are three:

--?
--?
--?
What roles does the tear film play in ocular health and function? There are three:
--Facilitates diffusion of \[\text{vascular status}\] to the cornea
--?
--?
What roles does the tear film play in ocular health and function? There are three:
--Facilitates diffusion of oxygen to the avascular cornea
--?
--?
What roles does the tear film play in ocular health and function? There are three:
--Facilitates diffusion of oxygen to the avascular cornea
--Assists in clearing debris from the corneal surface
--?
What roles does the tear film play in ocular health and function?
There are three:
--Facilitates diffusion of oxygen to the avascular cornea
--Assists in clearing debris from the corneal surface
--Provides a glassy-smooth refracting surface at the air-cornea interface (or more accurately, the air-tear film interface)
What roles does the tear film play in ocular health and function?
There are three:
--Facilitates diffusion of oxygen to the avascular cornea
--Assists in clearing debris from the corneal surface
--Provides a glassy-smooth refracting surface at the air-cornea interface (or more accurately, the air-tear film interface)

Where does the tear film reside? (The answer is not ‘on the surface of the eye.’)
What roles does the tear film play in ocular health and function?
There are three:
--Facilitates diffusion of oxygen to the avascular cornea
--Assists in clearing debris from the corneal surface
--Provides a glassy-smooth refracting surface at the air-cornea interface (or more accurately, the air-tear film interface)

Where does the tear film reside? (The answer is not ‘on the surface of the eye.’)
The bulk of tear volume is in the tear strip or lake (aka the tear meniscus) resting on the lower-lid margin
What roles does the tear film play in ocular health and function?
There are three:
--Facilitates diffusion of oxygen to the avascular cornea
--Assists in clearing debris from the corneal surface
--Provides a glassy-smooth refracting surface at the air-cornea interface (or more accurately, the air-tear film interface)

Where does the tear film reside? (The answer is not ‘on the surface of the eye.’)
The bulk of tear volume is in the tear strip or lake (aka the tear meniscus) resting on the lower-lid margin
Dry Eye Syndrome

Tear lake (strip; meniscus)
What roles does the tear film play in ocular health and function?
There are three:
--Facilitates diffusion of oxygen to the avascular cornea
--Assists in clearing debris from the corneal surface
--Provides a glassy-smooth refracting surface at the air-cornea interface (or more accurately, the air-tear film interface)

Where does the tear film reside? (The answer is not ‘on the surface of the eye.’)
The bulk of tear volume is in the tear strip or lake (aka the tear meniscus) resting on the lower-lid margin

How does the tear volume get from the tear strip up onto the ocular surface where it’s needed?
What roles does the tear film play in ocular health and function? There are three:
--Facilitates diffusion of oxygen to the avascular cornea
--Assists in clearing debris from the corneal surface
--Provides a glassy-smooth refracting surface at the air-cornea interface (or more accurately, the air-tear film interface)

Where does the tear film reside? (The answer is not ‘on the surface of the eye.’)
The bulk of tear volume is in the tear strip or lake (aka the tear meniscus) resting on the lower-lid margin

How does the tear volume get from the tear strip up onto the ocular surface where it’s needed?
Courtesy of the action of the two words.

Dry Eye Syndrome
What roles does the tear film play in ocular health and function? There are three:
--Facilitates diffusion of oxygen to the avascular cornea
--Assists in clearing debris from the corneal surface
--Provides a glassy-smooth refracting surface at the air-cornea interface (or more accurately, the air-tear film interface)

Where does the tear film reside? (The answer is not ‘on the surface of the eye.’)
The bulk of tear volume is in the tear strip or lake (aka the tear meniscus) resting on the lower-lid margin

How does the tear volume get from the tear strip up onto the ocular surface where it’s needed?
Courtesy of the action of the upper lid (UL).
What roles does the tear film play in ocular health and function?
There are three:
--Facilitates diffusion of oxygen to the avascular cornea
--Assists in clearing debris from the corneal surface
--Provides a glassy-smooth refracting surface at the air-cornea interface (or more accurately, the air-tear film interface)

Where does the tear film reside? (The answer is not ‘on the surface of the eye.’)
The bulk of tear volume is in the tear strip or lake (aka the tear *meniscus*) resting on the lower-lid margin

How does the tear volume get from the tear strip up onto the ocular surface where it’s needed?
Courtesy of the action of the upper lid (UL) . During a blink, the UL travels down across most of the extent of the (the lower lid goes up a little, but not much).
What roles does the tear film play in ocular health and function?

There are three:
--Facilitates diffusion of oxygen to the avascular cornea
--Assists in clearing debris from the corneal surface
--Provides a glassy-smooth refracting surface at the air-cornea interface (or more accurately, the air-tear film interface)

Where does the tear film reside? (The answer is not ‘on the surface of the eye.’)
The bulk of tear volume is in the tear strip or lake (aka the tear meniscus) resting on the lower-lid margin

How does the tear volume get from the tear strip up onto the ocular surface where it’s needed?
Courtesy of the action of the upper lid (UL). During a blink, the UL travels down across most of the extent of the interpalpebral fissure (the lower lid goes up a little, but not much).
What roles does the tear film play in ocular health and function? There are three:
--Facilitates diffusion of oxygen to the avascular cornea
--Assists in clearing debris from the corneal surface
--Provides a glassy-smooth refracting surface at the air-cornea interface (or more accurately, the air-tear film interface)

Where does the tear film reside? (The answer is not ‘on the surface of the eye.’)
The bulk of tear volume is in the tear strip or lake (aka the tear *meniscus*) resting on the lower-lid margin

How does the tear volume get from the tear strip up onto the ocular surface where it’s needed?
Courtesy of the action of the upper lid (UL). During a blink, the UL travels down across most of the extent of the interpalpebral fissure (the lower lid goes up a little, but not much). As it goes down the UL wipes debris off the surface and into the lake. As it goes back up, the UL exerts a capillary-attraction force on the aqueous in the tear lake, thereby pulling it up across the ocular surface. (The oil layer follows along.)
Dry Eye Syndrome

The tear film is comprised of basic components.
The tear film is comprised of three basic components.
The tear film is comprised of three basic components. What are they?
--?
--?
--?
Dry Eye Syndrome

The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘
phase’), which in turn is covered by a lipid layer.
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another? The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another? The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer. This is the two-phase model of the tear film.
Two-phase model of the tear film. Schematic drawing of the structure of the tear film showing the outer lipid layer and the mucoaqueous layer.
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer. This is the two-phase model of the tear film.

As an aside: Briefly, what is the tripartite model of the tear film?
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another? The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer. This is the two-phase model of the tear film.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.
The tripartite model of the tear film
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer. This is the two-phase model of the tear film.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another? The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer. This is the two-phase model of the tear film.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?

The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?

- ?
- ?

Which gland(s) produce the lipids constituting this layer?

The meibomian glands.

Dry Eye Syndrome

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous' phase), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it's incorrect.

The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?

--Inhibit tear film evaporation, thereby keeping it on the eye longer
--?

Without a lipid layer, surface tension (along with gravity) would pull the tear film down the eye to the lake.

Which gland(s) produce the lipids constituting this layer?
The meibomian glands.

Dry Eye Syndrome
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?

- Inhibit tear film evaporation, thereby keeping it on the eye longer
- Reduce tear film surface tension, thereby keeping it on the eye longer

Which gland(s) produce the lipids constituting this layer?
The meibomian glands.

Dry Eye Syndrome
The tear film is comprised of three basic components. What are they?

--- Lipid
--- Aqueous
--- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the ‘mucogel phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?

-- Inhibit tear film evaporation, thereby keeping it on the eye longer
-- Reduce tear film surface tension, thereby keeping it on the eye longer
---- Without a lipid layer, surface tension (along with gravity) would pull the tear film down the eye to the lake
-- Facilitate visual acuity by providing a smooth surface.
The tear film is comprised of three basic components. What are they?

--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?

--Inhibit tear film evaporation, thereby keeping it on the eye longer
--Reduce tear film surface tension, thereby keeping it on the eye longer
----Without a lipid layer, surface tension (along with gravity) would pull the tear film down the eye to the lake
--Facilitate visual acuity by providing a smooth refracting surface

Which gland(s) produce the lipids constituting this layer?
The meibomian glands
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?
--Inhibit tear film evaporation, thereby keeping it on the eye longer
--Reduce tear film surface tension, thereby keeping it on the eye longer
----Without a lipid layer, surface tension (along with gravity) would pull the tear film down the eye to the lake
--Facilitate visual acuity by providing a smooth refracting surface

Which gland(s) produce the lipids constituting this layer?
The meibomian glands

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect
The tear film is comprised of three basic components. What are they?

--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucous components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucous, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it's incorrect.

The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?

--Inhibit tear film evaporation, thereby keeping it on the eye longer
--Reduce tear film surface tension, thereby keeping it on the eye longer
----Without a lipid layer, surface tension (along with gravity) would pull the tear film down the eye to the lake
--Facilitate visual acuity by providing a smooth refracting surface

Which gland(s) produce the lipids constituting this layer?
The meibomian glands are embedded within the specific structure.

The meibomian glands are embedded within the

Dry Eye Syndrome
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucous, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it's incorrect.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?

The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucous, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect.

The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?

- Inhibit tear film evaporation, thereby keeping it on the eye longer
- Reduce tear film surface tension, thereby keeping it on the eye longer
- Without a lipid layer, surface tension (along with gravity) would pull the tear film down the eye to the lake
- Facilitate visual acuity by providing a smooth refracting surface

Which gland(s) produce the lipids constituting this layer?

The meibomian glands. The meibomian glands are embedded within the tarsal plates.

Upper lid, lower lid, or both?

Both.
The tear film is comprised of three basic components. What are they?

--- Lipid
--- Aqueous
--- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucocanine phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucous, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it's incorrect.

The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?

--- Inhibit tear film evaporation, thereby keeping it on the eye longer
--- Reduce tear film surface tension, thereby keeping it on the eye longer
 ---- Without a lipid layer, surface tension (along with gravity) would pull the tear film down the eye to the lake
--- Facilitate visual acuity by providing a smooth refracting surface

Which gland(s) produce the lipids constituting this layer?
The meibomian glands.

The meibomian glands are embedded within the tarsal plates.

Upper lid, lower lid, or both?
Both.
Meibomian glands

Dry Eye Syndrome
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer. As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?

- Inhibit tear film evaporation, thereby keeping it on the eye longer
- Reduce tear film surface tension, thereby keeping it on the eye longer
 ---- Without a lipid layer, surface tension (along with gravity) would pull the tear film down the eye to the lake
- Facilitate visual acuity by providing a smooth refracting surface

Which gland(s) produce the lipids constituting this layer? The meibomian glands. The meibomian glands are embedded within the tarsal plates. The product of a meibomian gland is called meibum. There are up to twice as many meibomian glands in the upper lids. The meibomian glands are innervated primarily by the parasympathetic system.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?

The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucocellular phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect.

The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?

- Inhibit tear film evaporation, thereby keeping it on the eye longer.
- Reduce tear film surface tension, thereby keeping it on the eye longer.

 ---- Without a lipid layer, surface tension (along with gravity) would pull the tear film down the eye to the lake.
- Facilitate visual acuity by providing a smooth refracting surface.

Which gland(s) produce the lipids constituting this layer?

The meibomian glands. The meibomian glands are embedded within the tarsal plates. The product of a meibomian gland is called meibum.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?

- Inhibit tear film evaporation, thereby keeping it on the eye longer
- Reduce tear film surface tension, thereby keeping it on the eye longer
 ---- Without a lipid layer, surface tension (along with gravity) would pull the tear film down the eye to the lake
- Facilitate visual acuity by providing a smooth refracting surface

Which gland(s) produce the lipids constituting this layer?
The meibomian glands.

The meibomian glands are embedded within the tarsal plates.
The product of a meibomian gland is called meibum.
There are up to twice as many meibomian glands in the upper lids.
Dry Eye Syndrome

Upper lid

Lower lid

Meibomian glands
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?

- Inhibit tear film evaporation, thereby keeping it on the eye longer
- Reduce tear film surface tension, thereby keeping it on the eye longer
- Without a lipid layer, surface tension (along with gravity) would pull the tear film down the eye to the lake
- Facilitate visual acuity by providing a smooth refracting surface

Which gland(s) produce the lipids constituting this layer?

Meibomian glands

The meibomian glands are embedded within the tarsal plates.

The product of a meibomian gland is called meibum.

There are up to twice as many meibomian glands in the upper lids.

The meibomian glands are innervated primarily by the parasympathetic system.
The tear film is comprised of three basic components. What are they?
- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

The lipid component/layer makes key contributions to the stability and effectiveness of the tear film—what are they?
- Inhibit tear film evaporation, thereby keeping it on the eye longer
- Reduce tear film surface tension, thereby keeping it on the eye longer
 ---- Without a lipid layer, surface tension (along with gravity) would pull the tear film down the eye to the lake
- Facilitate visual acuity by providing a smooth refracting surface

Which gland(s) produce the lipids constituting this layer?
The meibomian glands.

The meibomian glands are embedded within the tarsal plates.
The product of a meibomian gland is called meibum.

There are up to twice as many meibomian glands in the upper lids.
The meibomian glands are innervated primarily by the parasympathetic system.

Dry Eye Syndrome
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

What gland-type secretes the aqueous portion of the tear film?

- Aqueous

How many lacrimal glands are there (in each orbit)?

- Lots! But we think of them as being in one of two groups:
 - The main lacrimal gland
 - The accessory lacrimal glands

Are they innervated?

- Yes, primarily by nerves of the parasympathetic system

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?
- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucocutaneous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it's incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated? Yes, primarily by nerves of the parasympathetic system.

Dry Eye Syndrome
The tear film is comprised of three basic components. What are they?
- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it's incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
- ?
- ?
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
--The main lacrimal gland
--The accessory lacrimal glands
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
--The main lacrimal gland
--The accessory lacrimal glands

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?

The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?

Lacrimal gland

How many lacrimal glands are there (in each orbit)?

Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?

Yes, primarily by nerves of the parasympathetic system.
The tear film is comprised of three basic components. What are they?

--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
--The main lacrimal gland
--The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?
- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
-The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?

The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?

Lacrimal gland

How many lacrimal glands are there (in each orbit)?

Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?

Yes, primarily by nerves of the parasympathetic system.

Where is the main lacrimal gland located?

The superotemporal orbit.
The tear film is comprised of three basic components. What are they?

--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:

--The main lacrimal gland
--The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

Where is the main lacrimal gland located?
The superotemporal orbit.

It’s divided into two lobes—what are they called?
The orbital and palpebral lobes.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

Where is the main lacrimal gland located?
The superotemporal orbit.

It’s divided into two lobes—what are they called?
The orbital and palpebral lobes.
The orbital lobe of the lacrimal gland (L_o) and the palpebral lobe of the lacrimal gland (L_p) are separated by the lateral horn of the levator aponeurosis (Ap) (FYI: LPS = levator palpebralis superioris; Wh = Whitnall’s ligament)
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
--The main lacrimal gland
--The accessory lacrimal glands

There are two eponymous accessory glands—what are they?
--Glands of Krauss, found in the fornices
--Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the eye.

Dry Eye Syndrome
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the ‘mucoaqueous’ phase), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucous, aqueous, and lipid layers.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
--The main lacrimal gland
--The accessory lacrimal glands

There are two eponymous accessory glands—what are they?
--Glands of Krauss
--Glands of Wolfring

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components: lipid, aqueous, and mucin. How are the three components physically related to one another? The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland.

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups: the main lacrimal gland and the accessory lacrimal glands.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland.

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups: the main lacrimal gland and the accessory lacrimal glands.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland.

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups: the main lacrimal gland and the accessory lacrimal glands.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland.

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups: the main lacrimal gland and the accessory lacrimal glands.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland.

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups: the main lacrimal gland and the accessory lacrimal glands.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland.

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups: the main lacrimal gland and the accessory lacrimal glands.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland.

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups: the main lacrimal gland and the accessory lacrimal glands.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland.

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups: the main lacrimal gland and the accessory lacrimal glands.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland.

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups: the main lacrimal gland and the accessory lacrimal glands.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland.

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups: the main lacrimal gland and the accessory lacrimal glands.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland.

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups: the main lacrimal gland and the accessory lacrimal glands.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components: lipid, aqueous, and mucin. How are the three components physically related to one another? The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers, each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups:

--The main lacrimal gland

--The accessory lacrimal glands

There are two eponymous accessory glands—what are they? Glands of Krauss, found in the fornices; Glands of Wolfring, found in the fornices.

What is the primary location for each?
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
--The main lacrimal gland
--The accessory lacrimal glands

There are two eponymous accessory glands—what are they?
What is the primary location for each?
--Glands of Krauss, found in the fornices
--Glands of Wolfring, found near...
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
- The main lacrimal gland
- The accessory lacrimal glands

There are two eponymous accessory glands—what are they?
- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

What is the primary location for each?
- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
--The main lacrimal gland
--The accessory lacrimal glands

Are there two eponymous accessory glands—what are they?
What is the primary location for each?
--Glands of Krauss, found in the fornices
--Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?

Dry Eye Syndrome
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

There are two eponymous accessory glands—what are they?
- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

What is the primary location for each?
- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?

The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?

Lacrimal gland

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?

-?
-?
-?

What is the primary location for each?

- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?

No, they are two sets of (much smaller) glands distributed throughout the orbit.

What is Dry Eye Syndrome?
The tear film is comprised of three basic components. What are they?

--Lipid

--Aqueous

--Mucin

How are the three components physically related to one another?

The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers, each comprised of one component, ie, separate mucus, aqueous, and lipid layers

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect

What gland-type secretes the aqueous portion of the tear film?

Lacrimal gland

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?

--Electrolytes

--Solutes

--Proteins

How many lacrimal glands are there (in each orbit)?

Lots! But we think of them as being in one of two groups:

--The main lacrimal gland

--The accessory lacrimal glands

Are they innervated?

Yes, primarily by nerves of the parasympathetic system

What is the primary location for each?

--Glands of Krauss, found in the fornices

--Glands of Wolfring, found near the tarsal plates

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers, each comprised of one component, ie, separate mucus, aqueous, and lipid layers

Are these large, singular structures a la the main lac gland?

No, they are two sets of (much smaller) glands distributed throughout the orbit
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

What are the two eponymous accessory glands?
- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?

- Electrolytes
- Solutes
- Proteins

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

Why is tear-film osmolarity important?
Because of its associated osmotic-pressure gradient. The corneal epithelial cell membranes are freely permeable to water but not solutes; ie, they are semi-permeable. Recall the rule regarding semi-permeable membranes: Solvent follows solute. What this means is, if tear-film osmolarity gets too high, water within the epithelial cells will be pulled out of them via the resulting osmotic gradient. (This is a really important concept, peeps!)

Dry Eye Syndrome
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?

The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?

-- Lacrimal gland

How many lacrimal glands are there (in each orbit)?

Lots! But we think of them as being in one of two groups:

-- The main lacrimal gland
-- The accessory lacrimal glands

Are they innervated?

Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?

- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?

No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?

- Electrolytes
- Solutes
- Proteins

What is the primary role of electrolytes in the tear film?

To regulate tear-film osmolarity.

Why is tear-film osmolarity important?

Because of its associated osmotic-pressure gradient. The corneal epithelial cell membranes are freely permeable to water but not solutes; ie, they are semi-permeable. Recall the rule regarding semi-permeable membranes: Solvent follows solute. What this means is, if tear-film osmolarity gets too high, water within the epithelial cells will be pulled out of them via the resulting osmotic gradient. (This is a really important concept, peeps!)

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?
- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?
- Electrolytes
- Solutes
- Proteins

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

Dry Eye Syndrome

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucous, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?
- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?
- Electrolytes
- Solute
- Proteins

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

Why is tear-film osmolarity important?
Because of its associated osmotic-pressure gradient. The corneal epithelial cell membranes are freely permeable to water but not solutes; i.e., they are semi-permeable. Recall the rule regarding semi-permeable membranes: Solvent follows solute. What this means is, if tear-film osmolarity gets too high, water within the epithelial cells will be pulled out of them via the resulting osmotic gradient. (This is a really important concept, peeps!)

In a sentence or two, what is osmolarity?
The concentration of solutes in a fluid—literally, the number of solute-particles in a given amount of solvent (fluid). With regard to the tear film, it is expressed in milliosmoles per liter (mOsm/L).

In DES, do you expect tear osmolarity to be higher, or lower than normal?
Higher. Think of it this way: If the tear film is inadequate—if there’s not enough fluid there—it means the solute-particles are dissolved in a smaller amount of fluid, which in turn means the concentration of the particles will be higher.
The tear film is comprised of three basic components. What are they?

--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
--Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
--The main lacrimal gland
--The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?

What is the primary location for each?
--Glands of Krauss, found in the fornices
--Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?
--Electrolytes
--Solutes

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

Why is tear-film osmolarity important?
Because of its associated osmotic-pressure gradient. The corneal epithelial cell membranes are freely permeable to water but not solutes; ie, they are semi-permeable. Recall the rule regarding semi-permeable membranes: Solvent follows solute. What this means is, if tear-film osmolarity gets too high, water within the epithelial cells will be pulled out of them via the resulting osmotic gradient. (This is a really important concept, peeps!)

In a sentence or two, what is osmolarity?
The concentration of solutes in a fluid—literally, the number of solute-particles in a given amount of solvent (fluid).

In Dry Eye Syndrome, do you expect tear osmolarity to be higher, or lower than normal?
Higher. Think of it this way: If the tear film is inadequate—if there’s not enough fluid there—it means the solute-particles are dissolved in a smaller amount of fluid, which in turn means the concentration of the particles will be higher.
The tear film is comprised of three basic components. What are they?

- **Lipid**
- **Aqueous**
- **Mucin**

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
- **Lacrimal gland**

How many lacrimal glands are there (in each orbit)?
- Lots! But we think of them as being in one of two groups:
 - The main lacrimal gland
 - The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?
- **Glands of Krauss**, found in the fornices
- **Glands of Wolfring**, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?
- **Electrolytes**
- **Solute**
- **Proteins**

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

Why is tear-film osmolarity important?
Because of its associated osmotic-pressure gradient. The corneal epithelial cell membranes are freely permeable to water but not solutes; ie, they are semi-permeable. Recall the rule regarding semi-permeable membranes: solvent follows solute. What this means is, if tear-film osmolarity gets too high, water within the epithelial cells will be pulled out of them via the resulting osmotic gradient.

In a sentence or two, what is osmolarity?
The concentration of solutes in a fluid—literally, the number of solute-particles in a given amount of solvent (fluid). With regard to the tear film, it is expressed in units.

In DES, do you expect tear osmolarity to be higher, or lower than normal?
Higher. Think of it this way: If the tear film is inadequate—if there’s not enough fluid there—it means the solute-particles are dissolved in a smaller amount of fluid, which in turn means the concentration of the particles will be higher.
The tear film is comprised of three basic components. What are they?

--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it's incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
--The main lacrimal gland
--The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?

What is the primary location for each?
--Glands of Krauss, found in the fornices
--Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important 'microconstituents' of the tear film. What are these?

--Electrolytes
--Solute
--Proteins

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

Why is tear-film osmolarity important?
Because of its associated osmotic-pressure gradient. The corneal epithelial cell membranes are freely permeable to water but not solutes; ie, they are semi-permeable. Recall the rule regarding semi-permeable membranes:

Solvent follows solute.

What this means is, if tear-film osmolarity gets too high, water within the epithelial cells will be pulled out of them via the resulting osmotic gradient. (This is a really important concept, peeps!)

In a sentence or two, what is osmolarity?
The concentration of solutes in a fluid—literally, the number of solute-particles in a given amount of solvent (fluid). With regard to the tear film, it is expressed in milliosmoles per liter (mOsm/L).
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?

What is the primary location for each?
- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?
- Electrolytes
- Solute

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

What is the primary role of solutes in the tear film?

In a sentence or two, what is osmolarity?
The concentration of solutes in a fluid—literally, the number of solute-particles in a given amount of solvent (fluid). With regard to the tear film, it is expressed in milliosmoles per liter (mOsm/L).

In DES, do you expect tear osmolarity to be higher, or lower than normal?
Higher. Think of it this way: If the tear film is inadequate—if there’s not enough fluid there—it means the solute-particles are dissolved in a smaller amount of fluid, which in turn means the concentration of the particles will be higher.
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it's incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
--The main lacrimal gland
--The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?

What is the primary location for each?
--Glands of Krauss, found in the fornices
--Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?
--Electrolytes
--Solute
--Proteins

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

Why is tear-film osmolarity important?
Because of its associated osmotic-pressure gradient. The corneal epithelial cell membranes are freely permeable to water but not solutes; ie, they are semi-permeable. Recall the rule regarding semi-permeable membranes: Solvent follows solute. What this means is, if tear-film osmolarity gets too high, water within the epithelial cells will be pulled out of them via the resulting osmotic gradient. (This is a really important concept, peeps!)

Dry Eye Syndrome

In a sentence or two, what is osmolarity?
The concentration of solutes in a fluid—literally, the number of solute-particles in a given amount of solvent (fluid). With regard to the tear film, it is expressed in milliosmoles per liter (mOsm/L).

In DES, do you expect tear osmolarity to be higher, or lower than normal?
Higher.
The tear film is comprised of three basic components. What are they?

--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it's incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
--The main lacrimal gland
--The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?
--Glands of Krauss, found in the fornices
--Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?
--Electrolytes
--Solutes
--Proteins

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

Why is tear-film osmolarity important?
Because of its associated osmotic-pressure gradient. The corneal epithelial cell membranes are freely permeable to water but not solutes; ie, they are semi-permeable. Recall the rule regarding semi-permeable membranes: Solvent follows solute. What this means is, if tear-film osmolarity gets too high, water within the epithelial cells will be pulled out of them via the resulting osmotic gradient. (This is a really important concept, peeps!)

In a sentence or two, what is osmolarity?
The concentration of solutes in a fluid—literally, the number of solute-particles in a given amount of solvent (fluid). With regard to the tear film, it is expressed in milliosmoles per liter (mOsm/L).

In DES, do you expect tear osmolarity to be higher, or lower than normal?
Higher. Think of it this way: If the tear film is inadequate—if there's not enough fluid there—it means the solute-particles are dissolved in a smaller amount of fluid, which in turn means the concentration of the particles will be higher.
The tear film is comprised of three basic components. What are they?

--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:

--The main lacrimal gland
--The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?

What is the primary location for each?

--Glands of Krauss, found in the fornices
--Glands of Wolfring, found near the tarsal plates

Are these large, singular structures ala the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?

--Electrolytes
--Solute
--Proteins

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

Why is tear-film osmolarity important?
Because of its associated osmotic-pressure gradient. The corneal epithelial cell membranes are freely permeable to water but not solutes; ie, they are semi-permeable. Recall the rule regarding semi-permeable membranes: Solvent follows solute. What this means is, if tear-film osmolarity gets too high, water within the epithelial cells will be pulled out of them via the resulting osmotic gradient. (This is a really important concept, peeps!)

In DES, do you expect tear osmolarity to be higher, or lower than normal?
Higher. Think of it this way: If the tear film is inadequate—if there’s not enough fluid there—it means the solute-particles are dissolved in a smaller amount of fluid, which in turn means the concentration of the particles will be higher.

What is normal tear osmolarity value? (It’s a range.)
296 ± 10 milliosmoles per liter (mOsm/L)

What tear-osmolarity value is widely acknowledged as indicative of at least mild DES?
308 (mOsm/L)
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?

The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?

- Lacrimal gland

How many lacrimal glands are there (in each orbit)?

Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?

Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?

- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?

No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?

- Electrolytes
- Solutes
- Proteins

What is the primary role of electrolytes in the tear film?

To regulate tear-film osmolarity.

Why is tear-film osmolarity important?

Because of its associated osmotic-pressure gradient. The corneal epithelial cell membranes are freely permeable to water but not solutes; i.e., they are semi-permeable. Recall the rule regarding semi-permeable membranes: Solvent follows solute. What this means is, if tear-film osmolarity gets too high, water within the epithelial cells will be pulled out of them via the resulting osmotic gradient. (This is a really important concept, peeps!)

Dry Eye Syndrome

In a sentence or two, what is osmolarity?

The concentration of solutes in a fluid—literally, the number of solute particles in a given amount of solvent. With regard to the tear film, it is expressed in milliosmoles per liter (mOsm/L).

In DES, do you expect tear osmolarity to be higher, or lower than normal?

Higher. Think of it this way: If the tear film is inadequate—if there’s not enough fluid there—it means the solute particles are dissolved in a smaller amount of fluid, which in turn means the concentration of the particles will be higher.

What is normal tear osmolarity value? (It’s a range.)

296 ± # milliosmoles per liter (mOsm/L)

What tear-osmolarity value is widely acknowledged as indicative of at least mild DES?

308
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?
- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

What is the primary location for each?

- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?
- Electrolytes
- Solutes
- Proteins

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

What is normal tear osmolarity value? (It’s a range.)
296 ± 10 milliosmoles per liter (mOsm/L)

In DES, do you expect tear osmolarity to be higher, or lower than normal?
Higher. Think of it this way: If the tear film is inadequate—if there’s not enough fluid there—it means the solute-particles are dissolved in a smaller amount of fluid, which in turn means the concentration of the particles will be higher.

In a sentence or two, what is osmolarity?
The concentration of solutes in a fluid—literally, the number of solute-particles in a given amount of solvent. With regard to the tear film, it is expressed in milliosmoles per liter (mOsm/L).

What tear-osmolarity value is widely acknowledged as indicative of at least mild DES?
308 (mOsm/L)
The tear film is comprised of three basic components: lipid, aqueous, and mucin. These components are physically related in that the aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these? Electrolytes and solutes.

What is the primary role of electrolytes in the tear film? To regulate tear-film osmolarity.

In a sentence or two, what is osmolarity? The concentration of solutes in a fluid—literally, the number of solute-particles in a given amount of solvent (fluid). With regard to the tear film, it is expressed in milliosmoles per liter (mOsm/L).

What is normal tear osmolarity value? (It’s a range.)
296 ± 10 mOsm/L

What tear-osmolarity value is widely acknowledged as indicative of at least mild DES? 308 mOsm/L.

In DES, do you expect tear osmolarity to be higher or lower than normal? Higher. Think of it this way: If the tear film is inadequate—if there isn’t enough fluid there—it means the solute-particles are dissolved in a smaller amount of fluid, which in turn means the concentration of the particles will be higher.

While once widely accepted, consensus now is it’s incorrect to think of the tear film as tripartite. The tripartite model suggests the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers. However, there is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?

The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?

Lacrimal gland

How many lacrimal glands are there (in each orbit)?

Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?

Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?

- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?

No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?

- Electrolytes
- Solutes
- Proteins

What is the primary role of electrolytes in the tear film?

To regulate tear-film osmolarity.

Why is tear-film osmolarity important?

Because of its associated osmotic-pressure gradient. The corneal epithelial cell membranes are freely permeable to water but not solutes; ie, they are semi-permeable. Recall the rule regarding semi-permeable membranes: Solvent follows solute. What this means is, if tear-film osmolarity gets too high, water within the epithelial cells will be pulled out of them via the resulting osmotic gradient. (This is a really important concept, peeps!)

What is normal tear osmolarity value? (It’s a range.)

296 ± 10

What tear-osmolarity value is widely acknowledged as indicative of at least mild DES?

308*

*This is from EyeWiki, not the BCSC. Caveat emptor.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another? The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? The lacrimal gland.

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated? Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they? Glands of Krauss, found in the fornices, Glands of Wolfring, found near the tarsal plates.

Are these large, singular structures a la the main lac gland? No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these? Electrolytes, Solutes, Proteins.

What is the primary role of electrolytes in the tear film? To regulate tear-film osmolarity.

Why is tear-film osmolarity important?

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

- **Lipid**
- **Aqueous**
- **Mucin**

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?

- **Lacrimal gland**

How many lacrimal glands are there (in each orbit)?

- Lots! But we think of them as being in one of two groups:
 - The main lacrimal gland
 - The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

What is the primary location for each?

- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?

- **Electrolytes**
- **Solutes**
- **Proteins**

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

Why is tear-film osmolarity important?
Because of its associated two-words gradient.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components: lipid, aqueous, and mucin.

How are the three components physically related to one another?

The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it's incorrect.

What gland-type secretes the aqueous portion of the tear film?

Lacrimal gland

How many lacrimal glands are there (in each orbit)?

Lots! But we think of them as being in one of two groups:

--The main lacrimal gland
--The accessory lacrimal glands

Are they innervated?

Yes, primarily by nerves of the parasympathetic system.

What is the primary role of electrolytes in the tear film?

To regulate tear-film osmolarity.

Why is tear-film osmolarity important?

Because of its associated osmotic-pressure gradient.

What is Dry Eye Syndrome?
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?
- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?
- Electrolytes
- Solutes
- Proteins

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

Why is tear-film osmolarity important?
Because of its associated osmotic-pressure gradient. The corneal epi cell membranes are freely permeable to water but not solutes; i.e., they are semi-permeable. Recall the rule regarding semi-permeable membranes: solvent follows solute. What this means is, if tear-film osmolarity gets too high, water within the epi cells will be pulled out of them via the resulting osmotic gradient. (This is a really important concept, peeps!)

Dry Eye Syndrome
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

What are the two eponymous accessory glands?

What is the primary location for each?

- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?
No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?

- Electrolytes
- Solutes
- Proteins

What is the primary role of electrolytes in the tear film?
To regulate tear-film osmolarity.

Why is tear-film osmolarity important?
Because of its associated osmotic-pressure gradient. The corneal epi cell membranes are freely permeable to water but not solutes; i.e., they are semi-permeable. Recall the rule regarding semi-permeable membranes: Solvent follows solute.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?

The aqueous and mucin components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?

Lacrimal gland

How many lacrimal glands are there (in each orbit)?

Lots! But we think of them as being in one of two groups:

- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?

Yes, primarily by nerves of the parasympathetic system.

There are two eponymous accessory glands—what are they?

- Glands of Krauss, found in the fornices
- Glands of Wolfring, found near the tarsal plates

Are these large, singular structures a la the main lac gland?

No, they are two sets of (much smaller) glands distributed throughout the orbit.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?

- Electrolytes
- Solutes
- Proteins

What is the primary role of electrolytes in the tear film?

To regulate tear-film osmolarity.

Why is tear-film osmolarity important?

Because of its associated osmotic-pressure gradient. The corneal epi cell membranes are freely permeable to water but not solutes; ie, they are semi-permeable. Recall the rule regarding semi-permeable membranes: Solvent follows solute. What this means is, if tear-film osmolarity gets too high, water within the epi cells will be pulled out of them via the resulting osmotic gradient. (This is a really important concept, peeps!)

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?

--- Lipid
--- Aqueous
--- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?
- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the ‘mucooaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film?
- Lacrimal gland

How many lacrimal glands are there (in each orbit)?
- Lots! But we think of them as being in one of two groups:
 - The main lacrimal gland
 - The accessory lacrimal glands

Are they innervated?
- Yes, primarily by nerves of the parasympathetic system.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?
- Electrolytes
- Solutes
- Proteins

What is the primary protein on the tear film?
- Immunoglobulin, specifically IgA

Is it just hanging out in the tear film, or does it contribute to local host-defenses?
- It is an important defense component.
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

What gland-type secretes the aqueous portion of the tear film?
Lacrimal gland

How many lacrimal glands are there (in each orbit)? Lots! But we think of them as being in one of two groups:

- Main lacrimal gland
- Accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

In addition to secreting its aqueous component, the lacrimal glands contribute important ‘microconstituents’ of the tear film. What are these?

- Electrolytes
- Solutes
- Proteins

What is the primary protein on the tear film?
Immunoglobulin, specifically IgA

Is it just hanging out in the tear film, or does it contribute to local host-defenses?
It is an important defense component.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What gland-type secretes the aqueous portion of the tear film? Lacrimal gland

In addition to secreting its aqueous component, the lacrimal glands contribute important 'microconstituents' of the tear film. What are these?
--Electrolytes
--Solute
--Proteins

What is the primary protein on the tear film? Immunoglobulin, specifically IgA

Is it just hanging out in the tear film, or does it contribute to local host-defenses?

Yes, primarily IgA immunoglobulin.

Dry Eye Syndrome
The tear film is comprised of three basic components. What are they?

- Lipid
- Aqueous
- Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, i.e., separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it's incorrect.

What gland-type secretes the aqueous portion of the tear film?
- Lacrimal gland

How many lacrimal glands are there (in each orbit)?
Lots! But we think of them as being in one of two groups:
- The main lacrimal gland
- The accessory lacrimal glands

Are they innervated?
Yes, primarily by nerves of the parasympathetic system.

In addition to secreting its aqueous component, the lacrimal glands contribute important 'microconstituents' of the tear film. What are these?
- Electrolytes
- Solute
- Proteins

What is the primary protein on the tear film?
Immunoglobulin, specifically IgA.

Is it just hanging out in the tear film, or does it contribute to local host-defenses?
It is an important defense component.
The tear film is comprised of three basic components. What are they?

---Lipid
---Aqueous
---Mucin

What is the chief function of the mucin component of the mucoaqueous layer?

As an aside: Briefly, what is the tripartite model of the tear film?

The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers

There is a problem with the tripartite model—what is it?

While once widely accepted, consensus now is it’s incorrect
The tear film is comprised of three basic components. What are they? --Lipid --Aqueous --Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
The tear film is comprised of three basic components. What are they?
---Lipid
---Aqueous
---Mucin

How are the three components physically related to one another?
The aqueous and mucin components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What is the chief function of the mucin component of the mucoaqueous layer?
Facilitating surface wetting.

Dry Eye Syndrome
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.

What is the chief function of the mucin component of the mucoaqueous layer?
Facilitating surface wetting by transforming the epithelial surface from a hydrophobic to a hydrophilic state.

Dry Eye Syndrome
The tear film is comprised of three basic components. What are they? --Lipid
--Aqueous
--Mucin

How are the three components physically related to one another? The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What is the chief function of the mucin component of the mucoaqueous layer? Facilitating surface wetting by transforming the epithelial surface from a hydrophobic to a hydrophilic state.
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

How are the three components physically related to one another?
The aqueous and mucus components are intermixed into a single, gel-like layer (the 'mucoaqueous phase'), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect.

What is the chief function of the mucin component of the mucoaqueous layer? Facilitating surface wetting by transforming the epithelial surface from a hydrophobic to a hydrophilic state.

Which cells are the chief producers of mucins?
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

What is the chief function of the mucin component of the mucoaqueous layer? Facilitating surface wetting by transforming the epithelial surface from a hydrophobic to a hydrophilic state

Which cells are the chief producers of mucins? Goblet cells

As an aside: Briefly, what is the tripartite model of the tear film? The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers

There is a problem with the tripartite model—what is it? While once widely accepted, consensus now is it’s incorrect
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

What is the chief function of the mucin component of the mucoaqueous layer?
Facilitating surface wetting by transforming the epithelial surface from a hydrophobic to a hydrophilic state

Which cells are the chief producers of mucins?
Goblet cells, which are found in the epithelium

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect
The tear film is comprised of three basic components. What are they?
--Lipid
--Aqueous
--Mucin

The aqueous and mucus components are intermixed into a single, gel-like layer (the ‘mucoaqueous phase’), which in turn is covered by a lipid layer.

As an aside: Briefly, what is the tripartite model of the tear film?
The idea that the tear film is composed of three separate and distinct layers each comprised of one component, ie, separate mucus, aqueous, and lipid layers.

What is the chief function of the mucin component of the mucoaqueous layer?
Facilitating surface wetting by transforming the epithelial surface from a hydrophobic to a hydrophilic state.

Which cells are the chief producers of mucins?
Goblet cells, which are found in the conjunctival epithelium.

There is a problem with the tripartite model—what is it?
While once widely accepted, consensus now is it’s incorrect.
We saw this depiction of the two-phase model of the tear film earlier in the set… But are now ready to note the presence and location of mucin.
We saw this depiction of the *two-phase model of the tear film* earlier in the set... But are now ready to note the presence and location of mucin. Note that in addition to the ‘soluble’ mucins of the mucoaqueous layer, there are ‘membrane-bound’ mucins contributing to the structure of the corneal epithelium.
We saw this depiction of the *two-phase model of the tear film* earlier in the set… But are now ready to note the presence and location of mucin. Note that in addition to the ‘soluble’ mucins of the mucoaqueous layer, there are ‘membrane-bound’ mucins contributing to the *glycocalyx* of the corneal epithelium.
We saw this depiction of the two-phase model of the tear film earlier in the set… But are now ready to note the presence and location of mucin. Note that in addition to the ‘soluble’ mucins of the mucoaqueous layer, there are ‘membrane-bound’ mucins contributing to the glycocalyx of the corneal epithelium.

For more on the tear film, see slide-set K47
Next we will look at the **Lacrimal Functional Unit (LFU)** and its role in tear production and maintenance.

We saw this depiction of the *two-phase model of the tear film* earlier in the set… But are now ready to note the presence and location of mucin. Note that in addition to the ‘soluble’ mucins of the mucocutaneous layer, there are ‘membrane-bound’ mucins contributing to the *glycocalyx* of the corneal epithelium.
What is the lacrimal functional unit (LFU)?
What is the lacrimal functional unit (LFU)?
The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film.
What is the lacrimal functional unit (LFU)?

The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it as the reflex arc responsible for the production of the components of the tear film.
Recall that a reflex arc has three components: A sensory limb consisting of sensory receptors and afferent nerves.

What is the lacrimal functional unit (LFU)?

The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it as the reflex arc responsible for the production of the components of the tear film.
Recall that a reflex arc has three components: A sensory limb consisting of sensory receptors and afferent nerves.

What is the lacrimal functional unit (LFU)? The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it the reflex arc responsible for the production of the components of the tear film.
Recall that a reflex arc has three components: A sensory limb consisting of sensory receptors and afferent nerves, a motor limb consisting of efferent nerves and the effector end-organ.

What is the lacrimal functional unit (LFU)?
The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it as the reflex arc responsible for the production of the components of the tear film.
Recall that a reflex arc has three components: a *sensory limb* consisting of sensory receptors and afferent nerves, a *motor limb* consisting of efferent nerves and the effector end-organ.

What is the lacrimal functional unit (LFU)?

The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it as the reflex arc responsible for the production of the components of the tear film.
Recall that a reflex arc has three components: a **sensory limb** consisting of sensory receptors and afferent nerves, a **motor limb** consisting of efferent nerves and the effector end-organ, and a **CNS integration center** that connects the afferent and efferent limbs.

What is the lacrimal functional unit (LFU)? The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it as the reflex arc responsible for the production of the components of the tear film.
Recall that a reflex arc has three components: A sensory limb consisting of sensory receptors and afferent nerves, a motor limb consisting of efferent nerves and the effector end-organ, and a CNS integration center that connects the afferent and efferent limbs.

What is the lacrimal functional unit (LFU)?

The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it as the reflex arc responsible for the production of the components of the tear film.
Recall that a reflex arc has three components: A sensory limb consisting of sensory receptors and afferent nerves, a motor limb consisting of efferent nerves and the effector end-organ, and a CNS integration center that connects the afferent and efferent limbs.

In the LFU, the sensory limb consists of ocular-surface nociceptors connected to branches of two nerves.

What is the lacrimal functional unit (LFU)?
The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it the reflex arc responsible for the production of the components of the tear film.
Recall that a reflex arc has three components: A *sensory limb* consisting of sensory receptors and afferent nerves, a *motor limb* consisting of efferent nerves and the effector end-organ, and a *CNS integration center* that connects the afferent and efferent limbs.

In the LFU, the sensory limb consists of ocular-surface nociceptors connected to branches of V1 and V2.

What is the lacrimal functional unit (LFU)? The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it as the reflex arc responsible for the production of the components of the tear film.
Recall that a reflex arc has three components: A sensory limb consisting of sensory receptors and afferent nerves, a motor limb consisting of efferent nerves and the effector end-organ, and a CNS integration center that connects the afferent and efferent limbs.

In the LFU, the sensory limb consists of ocular-surface nociceptors connected to branches of V1 and V2. The motor limb consisting of the lacrimal, meibomian, and goblet glands/cells (innervated by...)

What is the lacrimal functional unit (LFU)?
The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it the reflex arc responsible for the production of the components of the tear film.
Recall that a reflex arc has three components: A sensory limb consisting of sensory receptors and afferent nerves, a motor limb consisting of efferent nerves and the effector end-organ, and a CNS integration center that connects the afferent and efferent limbs.

In the LFU, the sensory limb consists of ocular-surface nociceptors connected to branches of V1 and V2. The motor limb consisting of the lacrimal, meibomian, and goblet glands/cells (innervated by parasympathetics)

What is the lacrimal functional unit (LFU)? The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it the reflex arc responsible for the production of the components of the tear film.
Recall that a reflex arc has three components: A *sensory limb* consisting of sensory receptors and afferent nerves, a *motor limb* consisting of efferent nerves and the effector end-organ, and a *CNS integration center* that connects the afferent and efferent limbs.

In the LFU, the sensory limb consists of ocular-surface nociceptors connected to branches of V_1 and V_2. The motor limb consisting of the lacrimal, meibomian, and goblet glands/cells (innervated by parasympathetics) as well as the **Orbicularis oculi** muscle (innervated by $CN#$).

What is the lacrimal functional unit (LFU)?
The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it as **the reflex arc responsible for the production of the components of the tear film.**
Dry Eye Syndrome

The LFU

- **Sensory limb**
 - Sensory receptors: Ocular-surface nociceptors
 - Afferent nerves: Branches of V₁ and V₂

- **CNS integration center**

- **Motor limb**
 - Efferent nerves: --P’sympathetics, --CN7
 - Effectors: --Glands, ----Lacrimal, ----M’bomian, ----Goblet, --Orbicularis

Recall that a reflex arc has three components: A *sensory limb* consisting of sensory receptors and afferent nerves, a *motor limb* consisting of efferent nerves and the effector end-organ, and a *CNS integration center* that connects the afferent and efferent limbs.

In the LFU, the sensory limb consists of ocular-surface nociceptors connected to branches of V₁ and V₂. The motor limb consisting of the lacrimal, meibomian, and goblet glands/cells (innervated by parasympathetics) as well as the orbicularis oculi muscle (innervated by CN7).

What is the lacrimal functional unit (LFU)?

The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it as the reflex arc responsible for the production of the components of the tear film.
Recall that a reflex arc has three components: a **sensory limb** consisting of sensory receptors and afferent nerves, a **motor limb** consisting of efferent nerves and the effector end-organ, and a **CNS integration center** that connects the afferent and efferent limbs.

In the LFU, the sensory limb consists of ocular-surface nociceptors connected to branches of V1 and V2. The motor limb consisting of the lacrimal, meibomian, and goblet glands/cells (innervated by parasympathetics) as well as the orbicularis oculi muscle (innervated by CN7). CNS integration takes place in the brainstem.

What is the lacrimal functional unit (LFU)?

The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it as the reflex arc responsible for the production of the components of the tear film.
Recall that a reflex arc has three components: A *sensory limb* consisting of sensory receptors and afferent nerves, a *motor limb* consisting of efferent nerves and the effector end-organ, and a *CNS integration center* that connects the afferent and efferent limbs.

In the LFU, the sensory limb consists of ocular-surface nociceptors connected to branches of V1 and V2. The motor limb consisting of the lacrimal, meibomian, and goblet glands/cells (innervated by parasympathetics) as well as the orbicularis oculi muscle (innervated by CN7). CNS integration takes place in the brainstem.

What is the lacrimal functional unit (LFU)?
The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it *the reflex arc responsible for the production of the components of the tear film.*
Dry Eye Syndrome

The LFU
CNS integration center

Sensory limb
Motor limb

Sensory receptors
Afferent nerves
Brainstem
Efferent nerves

Ocular-surface nociceptors
Branches of V1 and V2
Brainstem
--P’sympathetics

Effector end-organ

Recall that a reflex arc has three components: A sensory limb consisting of sensory receptors and afferent nerves, a motor limb consisting of efferent nerves and the effector end-organ, and a CNS integration center that connects the afferent and efferent limbs.

In the LFU, the sensory limb consists of ocular-surface nociceptors connected to branches of V1 and V2. The motor limb consisting of the lacrimal, meibomian, and goblet glands/cells (innervated by parasympathetics) as well as the orbicularis oculi muscle (innervated by CN7). CNS integration takes place in the brainstem.

What is the lacrimal functional unit (LFU)?
The LFU is the complex, integrated system responsible for the regulation, production, and health of the tear film. Think of it the reflex arc responsible for the production of the components of the tear film.

For more on the LFU, see slide-set K46
(This is a good point in the set to take a break)
We are ready (finally!) to tackle the pathophysiology of DES…
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

We are ready (finally!) to tackle the pathophysiology of DES… Which commences with something the importance of which was stressed earlier in the slide-set.
The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

We are ready (finally!) to tackle the pathophysiology of DES… Which commences with something the importance of which was stressed earlier in the slide-set.
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of **Tear Hyperosmolarity**.

(Reiterating for emphasis)

What are the units of measurement for tear-film osmolarity?
The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

(Reiterating for emphasis)

What are the units of measurement for tear-film osmolarity?
milli-osmols per liter (mOsm/L)
The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

(Reiterating for emphasis)

What are the units of measurement for tear-film osmolarity? milli-osmols per liter (mOsm/L)

What is the osmolarity of the normal tear film?
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

(Reiterating for emphasis)

What are the units of measurement for tear-film osmolarity?
milli-osmols per liter (mOsm/L)

What is the osmolarity of the normal tear film?
Around 290-300 mOsm/L
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of **Tear Hyperosmolarity**.

(Reiterating for emphasis)

What are the units of measurement for tear-film osmolarity?
milli-osmols per liter (mOsm/L)

What is the osmolarity of the normal tear film?
Around 290-300 mOsm/L

How high does tear osmolarity have to get to be clinically significant?
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

(Reiterating for emphasis)

What are the units of measurement for tear-film osmolarity?
milli-osmols per liter (mOsm/L)

What is the osmolarity of the normal tear film?
Around 290-300 mOsm/L

How high does tear osmolarity have to get to be clinically significant?
308 (per EyeWiki)
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

In what two fundamental ways could the status of the aqueous component of the tear film lead to tear hyperosmolarity?

1) ?

2) ?

or...

Tear hyperosmolarity
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

In what two fundamental ways could the status of the aqueous component of the tear film lead to tear hyperosmolarity?

1) The amount of aqueous can be inadequate to maintain normal osmolarity.
2) The amount of aqueous can be too high to maintain normal osmolarity.
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

In what two fundamental ways could the status of the aqueous component of the tear film lead to tear hyperosmolarity?

1) The amount of aqueous produced can be inadequate to maintain normal osmolarity. 2) The amount of aqueous lost can be too high to maintain normal osmolarity.

Tear hyperosmolarity
The pathophysiology for DES damage starts with derangement of the tear film in the form of **Tear Hyperosmolarity**.

In what two fundamental ways could the status of the aqueous component of the tear film lead to tear hyperosmolarity?

1) The amount of aqueous produced can be inadequate to maintain normal osmolarity. This state is known as...
2) The amount of aqueous lost can be too high to maintain normal osmolarity.
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

In what two fundamental ways could the status of the aqueous component of the tear film lead to tear hyperosmolarity?

1) The amount of aqueous produced can be inadequate to maintain normal osmolarity. This state is known as...

 Aqueous Tear Deficiency

2) The amount of aqueous lost can be too high to maintain normal osmolarity.
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

In what two fundamental ways could the status of the aqueous component of the tear film lead to tear hyperosmolarity?

1) The amount of aqueous produced can be inadequate to maintain normal osmolarity. This state is known as...

Aqueous Tear Deficiency

2) The amount of aqueous lost can be too high to maintain normal osmolarity. This state is known as...

?

Tear hyperosmolarity
The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

In what two fundamental ways could the status of the aqueous component of the tear film lead to tear hyperosmolarity?

1) The amount of aqueous produced can be inadequate to maintain normal osmolarity. This state is known as Aqueous Tear Deficiency.

2) The amount of aqueous lost can be too high to maintain normal osmolarity. This state is known as Evaporative Dry Eye.

Tear hyperosmolarity
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

In what two fundamental ways could the status of the aqueous component of the tear film lead to tear hyperosmolarity?

Head’s up: Later in the set we’re gonna add a third mechanism leading to tear hyperosmolarity.

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

While it’s a bit of an oversimplification, we can associate the components of the tear film with the pathologic states underlying DES:

- Problem with the **aqueous component**
 - Aqueous Tear Deficiency

Tear hyperosmolarity
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

While it's a bit of an oversimplification, we can associate the components of the tear film with the pathologic states underlying DES:

- Problem with the aqueous component
 - Aqueous Tear Deficiency
 - Tear hyperosmolarity

Evaporative Dry Eye
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

While it’s a bit of an oversimplification, we can associate the components of the tear film with the pathologic states underlying DES:

- Problem with the **aqueous component**: Aqueous Tear Deficiency
- Problem with the **component**: Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

While it’s a bit of an oversimplification, we can associate the components of the tear film with the pathologic states underlying DES:

- **Problem with the aqueous component**
 - Aqueous Tear Deficiency

- **Problem with the lipid component**
 - Evaporative Dry Eye

Tear hyperosmolarity
The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

Let’s drill down on both, starting with ATD.

- Problem with the **aqueous component**
 - Aqueous Tear Deficiency

- Problem with the **lipid component**
 - Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

What are the three classic tests of aqueous tear production?

Wait for it…

Let’s drill down on both, starting with ATD.

- Problem with the **aqueous component**
 - Aqueous Tear Deficiency

- Problem with the **lipid component**
 - Evaporative Dry Eye

Tear hyperosmolarity
What are the three classic tests of aqueous tear production?

Wait for it…OK, now answer

<table>
<thead>
<tr>
<th>Test name</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?

<table>
<thead>
<tr>
<th>Test name</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schirmer I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schirmer II</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dry Eye Syndrome

What are the three classic tests of aqueous tear production?
What does each assess?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>?</td>
</tr>
<tr>
<td>Schirmer I</td>
<td></td>
</tr>
<tr>
<td>Schirmer II</td>
<td></td>
</tr>
</tbody>
</table>
Dry Eye Syndrome

What are the three classic tests of aqueous tear production? What does each assess?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>?</td>
</tr>
<tr>
<td>Schirmer II</td>
<td></td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?

What does each assess?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>?</td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?

What does each assess?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production? What does each assess? How is each performed?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>?</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td></td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td></td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?

What does each assess? How is each performed?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at elapsed time</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td></td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td></td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?

What does each assess? How is each performed?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td></td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td></td>
</tr>
</tbody>
</table>
Dry Eye Syndrome

What are the three classic tests of aqueous tear production?

What does each assess? How is each performed?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td></td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td></td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?

What does each assess? How is each performed?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td></td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production? What does each assess? How is each performed?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>?</td>
</tr>
</tbody>
</table>
Dry Eye Syndrome

What are the three classic tests of aqueous tear production? What does each assess? How is each performed?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate w/ a cotton-tip</td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?

What does each assess? How is each performed?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?
What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>?</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
<td></td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
<td></td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?

What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than [amount] wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
<td></td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
<td></td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?
What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 3 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
<td></td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
<td></td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?

What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 3 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
<td>?</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
<td></td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?

What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 3 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
<td>Less than amount wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
<td></td>
</tr>
</tbody>
</table>
Dry Eye Syndrome

What are the three classic tests of aqueous tear production?

What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 3 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
<td>Less than 5 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
<td></td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?
What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 3 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
<td>Less than 5 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
<td>?</td>
</tr>
</tbody>
</table>
Dry Eye Syndrome

What are the three classic tests of aqueous tear production?

What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 3 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
<td>Less than 5 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
<td>Less than amount wetting after elapse time = reflex secretion defect</td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production?

What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 3 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
<td>Less than 5 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
<td>Less than 15 mm wetting after 2 min = reflex secretion defect</td>
</tr>
</tbody>
</table>
Dry Eye Syndrome

What are the three classic tests of aqueous tear production? What does each assess? How is each performed? How is each interpreted?

(No question—summary slide)

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses…</th>
<th>Protocol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Basal secretion (duh)</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 3 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Same, but without instilling anesthetic</td>
<td>Less than 5 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
<td>Less than 15 mm wetting after 2 min = reflex secretion defect</td>
</tr>
</tbody>
</table>
What are the three classic tests of aqueous tear production? What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Basal secretion test</th>
<th>Reflex secretion only test</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schirmer I</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 5 mm wetting after 5 min = ATD</td>
<td></td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa with a cotton-tip</td>
<td>Less than 15 mm wetting after 2 min = reflex secretion defect</td>
<td></td>
</tr>
</tbody>
</table>

(No question—summary slide for review)
Dry Eye Syndrome

What are the three classic tests of aqueous tear production?

<table>
<thead>
<tr>
<th>Test name</th>
<th>What does each assess?</th>
<th>How is each performed?</th>
<th>How is each interpreted?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion</td>
<td></td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 3 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Reflex secretion only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, place strip, irritate nasal mucosa w/ a cotton-tip</td>
<td>Less than 15 mm wetting after 2 min = reflex secretion defect</td>
</tr>
</tbody>
</table>

What are the dimensions of the test strips used?

30 x 5 mm

(No question—summary slide for review)
What are the three classic tests of aqueous tear production?
What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 3 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>Less than 5 mm wetting after 5 min = ATD</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip Less than 15 mm wetting after 2 min = reflex secretion defect</td>
</tr>
</tbody>
</table>

(No question—summary slide for review)
What are the three classic tests of aqueous tear production?
What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test Name</th>
<th>What assesses?</th>
<th>Protocol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 3 mm wetting after 5 min = ATD</td>
<td></td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Same, but without instilling anesthetic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less than 5 mm wetting after 5 min = ATD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
<td>Less than 15 mm wetting after 2 min = reflex secretion defect</td>
</tr>
</tbody>
</table>

(No question—summary slide for review)

What are the dimensions of the test strips used?
30 x 5 mm

How are the strips placed?
With length hooked over the lid margin and the other length hanging over the front of the lid.
What are the three classic tests of aqueous tear production?

What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>What are the dimensions of the test strips used?</th>
<th>How are the strips placed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion</td>
<td>30 x 5 mm</td>
<td>With 5 mm hooked over the lid margin and the other 25 mm hanging over the front of the lid</td>
</tr>
<tr>
<td>Schirmer I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schirmer II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Basal secretion test:** Instill anesthetic, blot, place strip, measure saturation at 5 min. Less than 3 mm wetting after 5 min = ATD
- **Schirmer I:** Basal and reflex secretion. Same, but without instilling anesthetic. Less than 5 mm wetting after 5 min = ATD
- **Schirmer II:** Reflex secretion only. Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip. Less than 15 mm wetting after 2 min = reflex secretion defect

(No question—summary slide for review)
What are the three classic tests of aqueous tear production? What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Basal secretion test</th>
<th>Schirmer I Basal and reflex secretion</th>
<th>Schirmer II Reflex secretion only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Instill anesthetic, blot, place strip, measure saturation after 5 min =</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa with a cotton-tip, measure wetting after 2 min =</td>
<td>Less than 15 mm wetting after 2 min =</td>
</tr>
<tr>
<td>Interpretation</td>
<td>Less than 3 mm wetting after 5 min =</td>
<td>Reflex secretion defect</td>
<td>Reflex secretion defect</td>
</tr>
</tbody>
</table>

What are the dimensions of the test strips used? 30 x 5 mm

How are the strips placed? With 5 mm hooked over the lid margin and the other 25 mm hanging over the front of the lid

Where along the lid margin should the strip be placed? At the junction of the outer third and middle third of the lid
Dry Eye Syndrome

What are the three classic tests of aqueous tear production?
What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Description</th>
<th>Protocol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion</td>
<td>Test measures basal secretion only. Instill anesthetic, blot, place strip,</td>
<td></td>
<td>Less than 3 mm wetting after 5 min =</td>
</tr>
<tr>
<td></td>
<td>measure saturation at 5 min.</td>
<td></td>
<td>ATD</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Reflex secretion only. Instill anesthetic, blot, place strip, irritate nasal</td>
<td></td>
<td>Less than 5 mm wetting after 5 min =</td>
</tr>
<tr>
<td></td>
<td>mucosa w/ a cotton-tip.</td>
<td></td>
<td>ATD</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only. Instill anesthetic, blot, place strip, irritate nasal</td>
<td></td>
<td>Less than 15 mm wetting after 2 min =</td>
</tr>
<tr>
<td></td>
<td>mucosa w/ a cotton-tip.</td>
<td></td>
<td>reflex secretion defect</td>
</tr>
</tbody>
</table>

(No question—summary slide for review)
What are the three classic tests of aqueous tear production? What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Basal secretion test</th>
<th>Schirmer I</th>
<th>Schirmer II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion test</td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 3 mm wetting after 5 min = ATD</td>
<td>Reflex secretion only</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td></td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td></td>
<td>Less than 15 mm wetting after 2 min = reflex secretion defect</td>
</tr>
</tbody>
</table>

(Note question—summary slide for review)
What are the three classic tests of aqueous tear production? What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Basal secretion test</th>
<th>Schirmer I</th>
<th>Schirmer II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basal and reflex secretion</td>
<td>Reflex secretion only</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip</td>
</tr>
<tr>
<td></td>
<td>Instill anesthetic, blot, place strip, measure saturation at 5 min</td>
<td>Less than 3 mm wetting after 5 min = ATD</td>
<td>Less than 15 mm wetting after 2 min = reflex secretion defect</td>
</tr>
</tbody>
</table>

What are the dimensions of the test strips used? 30 x 5 mm

How are the strips placed? With 5 mm hooked over the lid margin and the other 25 mm hanging over the front of the lid

Where along the lid margin should the strip be placed? At the junction of the outer third and middle third of the lid

We talking upper lid, or lower?

(Dry Eye Syndrome)

(No question—summary slide for review)
What are the three classic tests of aqueous tear production? What does each assess? How is each performed? How is each interpreted?

<table>
<thead>
<tr>
<th>Test name</th>
<th>Assesses</th>
<th>Protocol Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal secretion</td>
<td>Basal and reflex secretion</td>
<td>Instill anesthetic, blot, place strip, irritate nasal mucosa w/ a cotton-tip. Less than 3 mm wetting after 5 min = ATD.</td>
</tr>
<tr>
<td>Schirmer I</td>
<td>Basal and reflex secretion</td>
<td>With 5 mm hooked over the lid margin and the other 25 mm hanging over the front of the lid. Less than 5 mm wetting after 5 min = ATD.</td>
</tr>
<tr>
<td>Schirmer II</td>
<td>Reflex secretion only</td>
<td>At the junction of the outer third and middle third of the lid. We talking upper lid, or lower? Seriously?</td>
</tr>
</tbody>
</table>

(No question—summary slide for review)
Dry Eye Syndrome

ATD is subdivided into two categories--what are they?

- eponym
- non-eponym

Aqueous Tear Deficiency

Tear hyperosmolarity

Evaporative Dry Eye
Dry Eye Syndrome

ATD is subdivided into two categories--what are they?

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity
What is Sjögren’s syndrome (SS)?
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by infiltration of exocrine glands
What is Sjögren's syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands.
What is Sjögren's syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands.

Are the infiltrating lymphocytes T-cells, or B-cells?

Aqueous Tear Deficiency
Non-Sjögren's Dry Eye
Dry Eye Syndrome

Tear
Dry Eye
Evaporative
hyperosmolarity

Sjögren's

Dry Eye Syndrome

A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands.
Dry Eye Syndrome

Are the infiltrating lymphocytes T-cells, or B-cells?
T-cells

What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands

Does SS have a gender predilection?
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands.

Does SS have a gender predilection?
Yes, the vast majority of pts are female.
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands

Does SS have a gender predilection?
Yes, the vast majority of pts are female
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands.

Does SS have a gender predilection?
Yes, the vast majority of pts are female.

SS is divided into [] and [] SS.
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands

Does SS have a gender predilection?
Yes, the vast majority of pts are female

SS is divided into primary and secondary SS.

Dry Eye Syndrome

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands.

Does SS have a gender predilection?
Yes, the vast majority of pts are female.

SS is divided into primary and secondary SS. What’s the key difference between the two?
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands

Does SS have a gender predilection?
Yes, the vast majority of pts are female

SS is divided into primary and secondary SS. What’s the key difference between the two?
In primary SS, the pt does not have a systemic connective-tissue disease, whereas such a condition is present in pts with secondary SS
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands.

Does SS have a gender predilection?
Yes, the vast majority of pts are female.

SS is divided into primary and secondary SS. What’s the key difference between the two?
In primary SS, the pt does not have a systemic connective-tissue disease, whereas such a condition is present in pts with secondary SS.

Speaking of lymphocytes: Pts with primary SS are at increased risk of non-Hodgkin’s lymphoma.

Dry Eye Syndrome

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands

Does SS have a gender predilection?
Yes, the vast majority of pts are female

SS is divided into primary and secondary SS. What’s the key difference between the two?
In primary SS, the pt does not have a systemic connective-tissue disease, whereas such a condition is present in pts with secondary SS

Speaking of lymphocytes: Pts with primary SS are at increased risk of what form of malignancy?
Hodgkins vs non-
lymphoma

lymphocytic infiltration

<table>
<thead>
<tr>
<th>Sjögren’s</th>
<th>Non-Sjögren’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous Tear Deficiency</td>
<td>Evaporative Dry Eye</td>
</tr>
</tbody>
</table>
| Tear hyperosmolarity | }
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands.

Does SS have a gender predilection?
Yes, the vast majority of pts are female.

SS is divided into primary and secondary SS. What’s the key difference between the two?
In primary SS, the pt does not have a systemic connective-tissue disease, whereas such a condition is present in pts with secondary SS.

Speaking of lymphocytes: Pts with primary SS are at increased risk of what form of malignancy?
Non-Hodgkins lymphoma.
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands

Does SS have a gender predilection?
Yes, the vast majority of pts are female

SS is divided into primary and secondary SS. What’s the key difference between the two?
In primary SS, the pt does not have a systemic connective-tissue disease, whereas such a condition is present in pts with secondary SS.

With what CTDs is SS associated?
- RA
- SLE
- Scleroderma (aka systemic sclerosis, SSc)
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands

Does SS have a gender predilection?
Yes, the vast majority of pts are female

SS is divided into primary and secondary SS. What’s the key difference between the two?
In primary SS, the pt does not have a systemic connective-tissue disease, whereas such a condition is present in pts with secondary SS.

With what CTDs is SS associated?
The list is long, but the main culprits are:
--?
--?
--?

Dry Eye Syndrome

Aqueous Tear Deficiency
Evaporative Dry Eye

Tear hyperosmolarity
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands

Does SS have a gender predilection?
Yes, the vast majority of pts are female

SS is divided into primary and secondary SS. What’s the key difference between the two?
In primary SS, the pt does not have a systemic connective-tissue disease, whereas such a condition is present in pts with secondary SS.

With what CTDs is SS associated?
The list is long, but the main culprits are:
--RA
--SLE
--Scleroderma (aka systemic sclerosis, SSc)
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands

Does SS have a gender predilection?
Yes, the vast majority of pts are female

SS is divided into primary and secondary SS. What’s the key difference between the two?
In primary SS, the pt does not have a systemic connective-tissue disease, whereas such a condition is present in pts with secondary SS.

With what CTDs is SS associated?
The list is long, but the main culprits are:
- RA
- SLE
- Scleroderma (aka systemic sclerosis, SSc)

Some pts with severe Sjögren’s develop enlargement of the lacrimal and parotid glands. What is the eponymous name for this condition?
- Mikulicz syndrome

Dry Eye Syndrome

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity
What is Sjögren’s syndrome (SS)?
A chronic autoimmune disorder characterized by lymphocytic infiltration of exocrine glands

Does SS have a gender predilection?
Yes, the vast majority of pts are female

SS is divided into primary and secondary SS. What’s the key difference between the two?
In primary SS, the pt does not have a systemic connective-tissue disease, whereas such a condition is present in pts with secondary SS.

With what CTDs is SS associated?
The list is long, but the main culprits are:
- RA
- SLE
- Scleroderma (aka systemic sclerosis, SSC)

Some pts with severe Sjögren’s develop enlargement of the lacrimal and parotid glands. What is the eponymous name for this condition? Mikulicz syndrome
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands.

(Statement of fact—not a question. Keep going.)
In SS, aqueous hyposcretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren’s ATD, four broad categories of conditions leading to lacrimal gland hyposcretion have been identified. What are they?
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren’s ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?
In SS, aqueous hyposcretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren’s ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

1. **Aqueous Tear Deficiency**
2. **Dry Eye Syndrome**
3. **Tear hyperosmolarity**
4. **Evaporative Dry Eye**

What does reflex block mean?

Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?

- The most common culprits are conditions leading to corneal hypoesthesia, including:
 - Neurotrophic cornea
 - Corneal surgery
 - Post-herpetic neuropathy
 - Contact-lens wear

What are some of the common mechanisms producing efferent limb block?

- Anything that compromises CN7
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren's ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

- Aqueous Tear Deficiency
- Dry Eye Syndrome
- Tear hyperosmolarity
- Sjögren's
- Lacrimal duct obstruction
- Reflex block
- Systemic drug effect

What does reflex block mean? Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

Reflex block

What are some of the common mechanisms producing afferent limb block?

- The most common culprits are conditions leading to corneal hypoesthesia, including:
 - Neurotrophic cornea
 - Corneal surgery
 - Post-herpetic neuropathy
 - Contact-lens wear

What are some of the common mechanisms producing efferent limb block?

- Anything that compromises CN7

Evaporative Dry Eye

Tear hyperosmolarity
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren's ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

- Aqueous Tear Deficiency
- Dry Eye Syndrome
- Tear hyperosmolarity
- Non-Sjögren's Lacrimal deficiency
- Lacrimal duct obstruction
- Reflex block
- Systemic drug effect

What does reflex block mean? Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?
- The most common culprits are conditions leading to corneal hypoesthesia, including:
 - Neurotrophic cornea
 - Corneal surgery
 - Post-herpetic neuropathy
 - Contact-lens wear

What are some of the common mechanisms producing efferent limb block?
- Anything that compromises CN7

Here's a no-frills version of the LFU for reference.
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren's ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

- Aqueous Tear Deficiency
- Dry Eye Syndrome
- Tear hyperosmolarity
- Non-Sjögren's Sjögren's Lacrimal deficiency
- Lacrimal duct obstruction

What does reflex block mean?
Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?

- The most common culprits are conditions leading to corneal hypoesthesia, including:
 - Neurotrophic cornea
 - Corneal surgery
 - Post-herpetic neuropathy
 - Contact-lens wear

What are some of the common mechanisms producing efferent limb block?

- Anything that compromises CN7

Here’s a no-frills version of the LFU for reference

```
                     Receptors
                        |
               Ocular surface nociceptors
                        |
                     Brainstem integration
                        |
              Cranial nerve 5
                        |
                     Nucleus
                        |
              Cranial nerve 7
                        |
                     Effector
                        |
Lacrimal apparatus
```

Dry Eye
In SS, aqueous hyposcretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren's ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

- Aqueous Tear Deficiency
- Dry Eye Syndrome
- Tear hyperosmolarity
- Non-Sjögren's Sjögren's
- Lacrimal deficiency
- Lacrimal duct obstruction

What does reflex block mean?
Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?
--The most common culprits are conditions leading to:
 two words

What are some of the common mechanisms producing efferent limb block?
--Anything that compromises CN7

Here's a no-frills version of the LFU for reference
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren's ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

- Aqueous Tear Deficiency
- Dry Eye Syndrome
- Tear hyperosmolarity
- Non-Sjögren’s Sjögren’s

Lacrimal deficiency

Lacrimal duct obstruction

What does reflex block mean? Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?

-- The most common culprits are conditions leading to corneal hypoesthesia

Here’s a no-frills version of the LFU for reference

Non-Sjögren’s

Aqueous Tear

Lacrima

Dry Eye Syndrome

Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?

-- The most common culprits are conditions leading to corneal hypoesthesia

What are some of the common mechanisms producing efferent limb block?

-- Anything that compromises CN7

Here’s a no-frills version of the LFU for reference
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands.

In non-Sjögren's ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

- Aqueous Tear Deficiency
- Dry Eye Syndrome
- Tear Hyperosmolarity
- Non-Sjögren's Lacrimal Deficiency
- Lacrimal duct obstruction
- Reflex block
- Systemic drug effect

What does reflex block mean?
Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?
--The most common culprits are conditions leading to corneal hypoesthesia, including:
----?
----?
----?
----?

What are some of the common mechanisms producing efferent limb block?
--Anything that compromises CN7

Here's a no-frills version of the LFU for reference
In SS, aqueous hyposcretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren’s ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

Aqueous Tear Deficiency

Dry Eye Syndrome

Tear hyperosmolarity

Non-Sjögren’s

Lacrimal deficiency

Lacrimal duct obstruction

Sjögren’s

Reflex block

What does reflex block mean?
Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?
--The most common culprits are conditions leading to corneal hypoesthesia, including:

----Neurotrophic cornea

----?

----?

----?

What are some of the common mechanisms producing efferent limb block?
--Anything that compromises CN7

Ocular surface nociceptors

Receptors

Cranial nerve 5

Afferent limb

Brainstem integration

Nucleus

Cranial nerve 7

Efferent limb

Lacrimal apparatus

Effector

Here’s a no-frills version of the LFU for reference
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren’s ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

Aqueous Tear Deficiency

- Dry Eye Syndrome
- Tear hyperosmolarity
- Non-Sjögren’s
- Lacrimal deficiency
- Lacrimal duct obstruction
- Reflex block
- Systemic drug effect

What does reflex block mean?

Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?

-- The most common culprits are conditions leading to corneal hypoesthesia, including:
 ---- Neurotrophic cornea
 ---- ?
 ---- ?

What are some of the common mechanisms producing efferent limb block?

-- Anything that compromises CN7

Here’s a no-frills version of the LFU for reference
In SS, aqueous hyposcretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren’s ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

- Aqueous Tear Deficiency
- Dry Eye Syndrome
- Tear hyperosmolarity
- Non-Sjögren’s Lacrimal deficiency
- Lacrimal duct obstruction
- Reflex block
- Systemic drug effect

What does reflex block mean? Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?
-- The most common culprits are conditions leading to corneal hypoesthesis, including:
---- Neurotrophic cornea
---- Corneal
---- ?
---- ?

What are some of the common mechanisms producing efferent limb block?
-- Anything that compromises CN7

Here’s a no-frills version of the LFU for reference
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren's ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

- Aqueous Tear Deficiency
- Dry Eye Syndrome
- Tear hyperosmolarity
- Non-Sjögren's
- Lacrimal deficiency
- Lacrimal duct obstruction
- Reflex block
- Systemic drug effect

What does reflex block mean? Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?
-- The most common culprits are conditions leading to corneal hypoesthesia, including:
---- Neurotrophic cornea
---- Corneal surgery
---- ?
---- ?

What are some of the common mechanisms producing efferent limb block?
-- Anything that compromises CN7

Here's a no-frills version of the LFU for reference.
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren’s ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

- Aqueous Tear Deficiency
- Dry Eye Syndrome
- Tear hyperosmolarity
- Non-Sjögren’s Sjögren’s
- Lacrimal gland deficiency
- Lacrimal duct obstruction
- Reflex block
- Systemic drug effect

What does reflex block mean? Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?
-- The most common culprits are conditions leading to corneal hypoesthesia, including:
---- Neurotrophic cornea
---- Corneal surgery
---- Post-herpetic neuropathy

What are some of the common mechanisms producing efferent limb block?
-- Anything that compromises CN7

Receptors

Ocular surface nociceptors

Cranial nerve 5

Brainstem integration

Cranial nerve 7

Lacrimal apparatus

Receptors

Afferent limb

Nucleus

Efferent limb

Effector
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren's ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

- Aqueous Tear Deficiency
- Dry Eye Syndrome
- Tear hyperosmolarity
- Non-Sjögren's Lacrimal deficiency
- Lacrimal duct obstruction
- Reflex block
- Systemic drug effect

What does reflex block mean? Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?
-- The most common culprits are conditions leading to corneal hypoesthesia, including:
---- Neurotrophic cornea
---- Corneal surgery
---- Post-herpetic neuropathy
---- ?

Here's a no-frills version of the LFU for reference

- Ocular surface nociceptors
- Cranial nerve 5
- Brainstem integration
- Cranial nerve 7
- Lacrimal apparatus
- Receptors
- Afferent limb
- Nucleus
- Efferent limb
- Effector
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren’s ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

- Aqueous Tear Deficiency
- Dry Eye Syndrome
- Tear hyperosmolarity
- Non-Sjögren’s Sjögren’s
- Lacrimal deficiency
- Lacrimal duct obstruction

What does reflex block mean?
Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?
- The most common culprits are conditions leading to corneal hypoesthesia, including:
 - Neurotrophic cornea
 - Corneal surgery
 - Post-herpetic neuropathy
 - Contact-lens wear

What are some of the common mechanisms producing efferent limb block?
- Anything that compromises CN7

Here’s a no-frills version of the LFU for reference:

- **Receptors**
- **Afferent limb**
- **Nucleus**
- **Efferent limb**
- **Effector**

Ocular surface nociceptors

Cranial nerve 5

Brainstem integration

Cranial nerve 7

Lacrimal apparatus
In SS, aqueous hyposcretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren's ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous Tear Deficiency</td>
<td>Dry Eye Syndrome</td>
</tr>
<tr>
<td>Tear hyperosmolarity</td>
<td></td>
</tr>
<tr>
<td>Non-Sjögren's Sjögren's</td>
<td>Lacrimal deficiency</td>
</tr>
<tr>
<td>Lacrimal duct obstruction</td>
<td>Lacrimal duct obstruction</td>
</tr>
<tr>
<td>Reflex block</td>
<td></td>
</tr>
<tr>
<td>afferent limb block</td>
<td>The most common culprits are conditions leading to corneal hypoesthesia, including:</td>
</tr>
<tr>
<td></td>
<td>----Neurotrophic cornea</td>
</tr>
<tr>
<td></td>
<td>----Corneal surgery</td>
</tr>
<tr>
<td></td>
<td>----Post-herpetic neuropathy</td>
</tr>
<tr>
<td></td>
<td>----Contact-lens wear</td>
</tr>
</tbody>
</table>

What does reflex block mean?
Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?
--The most common culprits are conditions leading to corneal hypoesthesia, including:
----Neurotrophic cornea
----Corneal surgery
----Post-herpetic neuropathy
----Contact-lens wear

Here’s a no-frills version of the LFU for reference

```
Reflex block

- Lacrimal deficiency
- Lacrimal duct obstruction

Sjögren’s Non-Sjögren’s

Aqueous Tear

Ocular surface nociceptors

Cranial nerve 5

Brainstem integration

Cranial nerve 7

Lacrimal apparatus
```

Receptors

Afferent limb

Nucleus

Efferent limb

Effector
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren's ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

- Aqueous Tear Deficiency
- Dry Eye Syndrome
- Tear hyperosmolarity
- Non-Sjögren's Lacrimal deficiency
- Lacrimal duct obstruction
- Reflex block
- Systemic drug effect

What does reflex block mean? Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing **afferent limb block**?
-- The most common culprits are conditions leading to corneal hypoesthesia, including:
---- Neurotrophic cornea
---- Corneal surgery
---- Post-herpetic neuropathy
---- Contact-lens wear

What are some of the common mechanisms producing **efferent limb block**?
-- Anything that compromises CN7

--- Here’s a no-frills version of the LFU for reference

- Ocular surface nociceptors
- Cranial nerve 5
- Brainstem integration
- Cranial nerve 7
- Lacrimal apparatus
- Receptors
- Afferent limb
- Nucleus
- Efferent limb
- Effector
In SS, aqueous hyposecretion (and therefore ATD) results from autoimmune-mediated lymphocytic infiltration of the lacrimal glands. In non-Sjögren’s ATD, four broad categories of conditions leading to lacrimal gland hyposecretion have been identified. What are they?

What does reflex block mean?
Recall that tear production is considered largely reflexive. Thus, any break in the LFU reflex circuit will lead to ATD.

What are some of the common mechanisms producing afferent limb block?
--The most common culprits are conditions leading to corneal hypoesthesia, including:
----Neurotrophic cornea
----Corneal surgery
----Post-herpetic neuropathy
----Contact-lens wear

What are some of the common mechanisms producing efferent limb block?
--Anything that compromises CN7

Here’s a no-frills version of the LFU for reference:
Dry Eye Syndrome

- Lacrimal deficiency
- Lacrimal duct obstruction
- Reflex block

Non-Sjögren’s

- Aqueous Tear Deficiency
- Tear hyperosmolarity
- Evaporative Dry Eye

Sjögren’s

Systemic drug effect

Of the 100 best-selling drugs in the US, how many list dry eye as a side effect? Twenty-two!
Dry Eye Syndrome

- Non-Sjögren’s
 - Aqueous Tear Deficiency
 - Tear hyperosmolarity

- Sjögren’s

- Lacrimal deficiency
- Lacrimal duct obstruction
- Reflex block

Systemic drug effect

Of the 100 best-selling drugs in the US, how many list dry eye as a side effect? Twenty-two!
Dry Eye Syndrome

Three very general classes of pharmacologic effect are implicated in inducing DES—what are they?

- Anti-histamines
- Anti-depressants
- Anti-hypertensives
- Anti-emetics
- Anti-Parkinson’s
- Anti-psychotics
- Anti-adrenergics
- Oral contraceptive pills

Systemic drug effect

- Aqueous Tear Deficiency
- Evaporative Dry Eye
- Tear hyperosmolarity

Non-Sjögren’s

- Lacrimal deficiency
- Lacrimal duct obstruction
- Reflex block

Sjögren’s
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

Three very general classes of pharmacologic effect are implicated in inducing DES—what are they?

- Anti-histamine effect
- Anti-cholinergic effect
- Hormonal effect

Lacrimal deficiency Lacrimal duct obstruction Reflex block
Sjögren’s Non-Sjögren’s Systemic drug effect
Aqueous Tear Deficiency Evaporative Dry Eye
Tear hyperosmolality
Three very general classes of pharmacologic effect are implicated in inducing DES—what are they? What classes of meds are found within each of these effect-groupings?

- Anti-histamine effect
- Anti-cholinergic effect
- Hormonal effect

- Anti-hypertensives
- Anti-emetics
- Anti-Parkinson’s
- Anti-psychotics
- Anti-adrenergics
- Oral contraceptive pills

Aqueous Tear Deficiency

Evaporative Dry Eye

Systemic drug effect

Sjögren’s

Non-Sjögren’s

Lacrimal deficiency

Lacrimal duct obstruction

Reflex block

Tear hyperosmolarity
Three very general classes of pharmacologic effect are implicated in inducing DES—what are they? What classes of meds are found within each of these effect-groupings?

- Anti-histamines (duh)
- Anti-depressants
- Anti-hypertensives
- Anti-emetics
- Anti-Parkinson's
- Anti-psychotics
- Anti-adrenergics
- Oral contraceptive pills

Aqueous Tear Deficiency

Sjögren's

Evaporative Dry Eye

Tear hyperosmosmolarity

Systemic drug effect

Non-Sjögren's

Lacrimal deficiency

Lacrimal duct obstruction

Reflex block
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

Three very general classes of pharmacologic effect are implicated in inducing DES—what are they? What classes of meds are found within each of these effect-groupings?

- Anti-histamines (duh)
- Anti-depressants
- Anti-adrenergics
- Oral contraceptive pills

--- Anti-histamine effect
--- Anti-cholinergic effect
--- Hormonal effect

Systemic drug effect

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity

Lacrimal deficiency

Lacrimal duct obstruction

Reflex block
Three very general classes of pharmacologic effect are implicated in inducing DES—what are they?

What classes of meds are found within each of these effect-groupings?

- Anti-histamines (duh)
- Anti-depressants
- Anti-hypertensives
- Anti-emetics
- Anti-Parkinson’s
- Anti-psychotics

Anti-histamine effect

Anti-cholinergic effect

Hormonal effect

Dry Eye Syndrome

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity

Systemic Drug effect

Lacrimal deficiency

Lacrimal duct obstruction

Reflex block
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

Non-Sjögren's Sjögren's

Lacrimal deficiency Lacrimal duct obstruction Reflex block

Sjögren's

Aqueous Tear Deficiency Evaporative Dry Eye

Tear hyperosmolarity

Three very general classes of pharmacologic effect are implicated in inducing DES—what are they? What classes of meds are found within each of these effect-groupings?
--Anti-histamines (duh)
--Anti-depressants
--Anti-hypertensives
--Anti-emetics
--Anti-Parkinson’s
--Anti-psychotics
--?
--?

Anti-histamine effect

Anti-cholinergic effect

Hormonal effect
Three very general classes of pharmacologic effect are implicated in inducing DES—what are they?

What classes of meds are found within each of these effect-groupings?

- Anti-histamines (duh)
- Anti-depressants
- Anti-hypertensives
- Anti-emetics
- Anti-Parkinson’s
- Anti-psychotics
- Anti-adrenergics
- Oral contraceptive pills

Systemic drug effect

- Anti-histamine effect
- Anti-cholinergic effect
- Hormonal effect

Non-Sjögren’s

- Aqueous Tear Deficiency
- Evaporative Dry Eye
- Tear hyperosmolarity

Sjögren’s

- Lacrimal deficiency
- Lacrimal duct obstruction
- Reflex block

Drug Effect

- Lacrimal deficiency
- Lacrimal duct obstruction
- Reflex block
Dry Eye Syndrome

50 Ways to Take a Break

(This is a good point in the set to take a break)
Dry Eye Syndrome

Evaporative dry eye is subdivided into two categories—what are they?

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Tear hyperosmolarity

Evaporative Dry Eye

word

←that word’s antonym
Evaporative dry eye is subdivided into two categories—what are they?

- **Intrinsic**
 - Evaporative Dry Eye

- **Extrinsic**
 - Non-Sjögren’s
 - Aqueous Tear Deficiency

Dry Eye Syndrome
In this context, to what do the terms intrinsic and extrinsic refer?
In this context, to what do the terms intrinsic and extrinsic refer? *Intrinsic* evaporative dry eye refers to any cause related to the eyelids. *Extrinsic* refers to any non-eyelid factor that promoted evaporation.
In this context, to what do the terms *intrinsic* and *extrinsic* refer? *Intrinsic* evaporative dry eye refers to any cause related to the eyelids. *Extrinsic* refers to any non-eyelid factor that promoted evaporation.

What are the three main etiologies of *intrinsic* evaporative dry eye?

- Sjögren’s
- Non-Sjögren’s
- Aqueous Tear Deficiency
- Evaporative Dry Eye
- Tear hyperosmolarity
In this context, to what do the terms intrinsic and extrinsic refer? *Intrinsic* evaporative dry eye refers to any cause related to the eyelids. *Extrinsic* refers to any non-eyelid factor that promoted evaporation.

What are the three main etiologies of *intrinsic* evaporative dry eye?

- Meibomian gland dysfunction (MGD)
- Widened lid fissure
- Reduced blink rate

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Tear hyperosmolarity

Evaporative Dry Eye

Intrinsic

Extrinsic
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence?

Meibomian gland dysfunction (MGD)
- Widened lid fissure
- Reduced blink rate

Sjögren’s Non-Sjögren’s

Aqueous Tear Deficiency

Intrinsic

Evaporative Dry Eye

Tear hyperosmolarity
MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

-Meibomian gland dysfunction (MGD)
 -Widened lid fissure
 -Reduced blink rate

Intrinsic

Evaporative Dry Eye

Tear hyperosmolarity

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Tear
In one simple word, what is the underlying issue in most cases of MGD?

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence?
Asians

In one simple word, what is the underlying issue in most cases of MGD?
of gland output leading to inadequate volume of tear-film meibum

Meibomian gland dysfunction (MGD)

- Widened lid fissure
- Reduced blink rate

Intrinsic

Extrinsic

- Sjögren’s
- Non-Sjögren’s
- Aqueous Tear Deficiency
- Evaporative Dry Eye

Tear hyperosmolarity
MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD?
Obstruction of gland output leading to inadequate volume of tear-film meibum

Disease

- *Dry Eye Syndrome*
 - *Intrinsic*
 - *Extrinsic*

- *Non-Sjögren’s*
- *Sjögren’s*
- *Aqueous Tear Deficiency*

- *Evaporative Dry Eye*

Obstruction

- *Meibomian gland dysfunction (MGD)*
- *Widened lid fissure*
- *Reduced blink rate*

Factors

- *Tear hyperosmolarity*
In one simple word, what is the underlying issue in most cases of MGD? **Obstruction** of gland output leading to inadequate volume of tear-film meibum.

Obstructive MGD is divided into two subtypes—what are they?

- **Intrinsic**
 - Meibomian gland dysfunction (MGD)
 - Widened lid fissure
 - Reduced blink rate

- **Extrinsic**
 - Evaporative Dry Eye
 - Tear hyperosmolarity

MGD demonstrates a racial predilection—what group has a notably higher prevalence? **Asians**
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive *MGD is divided into two subtypes—what are they?* Cicatrising and noncicatrising

Obstructive MGD

- Widened lid fissure
- Reduced blink rate

Intrinsic

- Meibomian gland dysfunction (MGD)

Extrinsic

Aqueous Tear Deficiency

- Sjögren’s
- Non-Sjögren’s

Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? Cicatrizing and noncicatrizing

Meibomian gland dysfunction (MGD) is a cause of cicatrizing obstructive MGD owing to meibomian gland dysfunction (MGD), which leads to obstructions of gland output leading to inadequate volume of tear-film meibum.

The Cornea book highlights three causes of cicatrizing obstructive MGD—not what are they?
---?
---?
---?

The Cornea book highlights three causes of noncicatrizing obstructive MGD—what are they?
- Rosacea
- Seborrheic dermatitis
- Atopy (I know—weird that it appears on both lists)
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? **Obstruction** of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? **Cicatrizing** and noncicatrizing

Meibomian gland dysfunction (MGD)

- Widened lid fissure
- Reduced blink rate

Evaporative

- Reduced tear volume
- Tear hyperosmolarity

Tear hyperosmolarity

The Cornea book highlights three causes of cicatrizing obstructive MGD—what are they?

- Trachoma
- Mucous-membrane pemphigoid
- Atopy

Extrinsic

- Non-Sjögren's
- Sjögren's

Intrinsic

- Aqueous tear deficiency
- Meibomian gland dysfunction (MGD)

Tear deficiency

- Reduced tear volume
- Increased tear evaporation

Widened lid fissure

- Reduced blink rate
- Tear film instability

Reduction in tear osmolarity

- Tear hyperosmolarity
- Reduced tear volume
In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum.

Obstructive MGD is divided into two subtypes—what are they? Cicatrizing and noncicatrizing.

The Cornea book highlights three causes of cicatrizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

Asians

Meibomian gland dysfunction (MGD)

Widened lid fissure

Reduced blink rate

Etiology

Extrinsic

Vaporative

Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? **Obstruction** of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? **Cicatrizing** and noncicatrizing

Meibomian gland dysfunction (MGD) can present in two forms:
- Widened lid fissure
- Reduced blink rate

The Cornea book highlights three causes of cicatrizing obstructive MGD—what are they?
- Trachoma
- Mucous-membrane pemphigoid (*aka* ocular cicatricial pemphigoid)
- Atopy

Extrinsic

Dry Eye

Extrinsic

Evaporative

Tear hyperosmolarity

Intrinsic

Aqueous tear deficiency

Widened lid fissure

Meibomian gland dysfunction (MGD)

Reduced blink rate
MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? Cicatrizing and noncicatrizing

Meibomian gland dysfunction (MGD) Widened lid fissure Reduced blink rate

Extrinsic

Evaporative

Dry Eye

The Cornea book highlights three causes of cicatrizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The book highlights three causes of noncicatrizing obstructive MGD—what are they?
--?
--?
--?
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? **Obstruction** of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? **Cicatrizxing** and noncicatrizing

Meibomian gland dysfunction (MGD)

Widened lid fissure

Reduced blink rate

Extrinsic

Vaporative

Dry Eye

Tear hyperosmolarity

The Cornea book highlights three causes of cicatrizxing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The book highlights three causes of noncicatrizxing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? Cicatrizig and noncicatrizig

The Cornea book highlights three causes of cicatrizig obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The book highlights three causes of noncicatrizig obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

Not a typo (on my part)—the Cornea book lists atopy under both causes

Tear hyperosmolarity
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD?
Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they?
Cicatriz ing and noncicatriz ing

Meibomian gland Widened
Reduced

The Cornea book highlights three causes of cicatriz ing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The Cornea book highlights three causes of noncicatriz ing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

In a nutshell, what is rosacea?
A chronic skin condition often involving the eyelids

What is the cause?
It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection?
Yes, women are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?
--Midface erythema
--Pustules/papules
--Thickening of nasal skin (called rhinophyma)

What does the Cornea book call "the mainstay of therapy" for rosacea?
Oral tetracyclines
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians.

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum.

Obstructive MGD is divided into two subtypes—what are they? Cicatricizing and noncicatricizing.

The Cornea book highlights three causes of cicatrizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The Cornea book highlights three causes of noncicatricizing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

In a nutshell, what is rosacea?
A chronic skin condition often involving the eyelids.

What is the cause? It is unknown at this time.

Is there a gender predilection? A racial predilection? Age predilection? Yes, females are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?
--Midface erythema
--Pustules/papules
--Thickening of nasal skin (called rhinophyma)

What does the Cornea book call “the mainstay of therapy” for rosacea? Oral tetracyclines.

Rosacea acute vs chronic.
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence?
Asians

In one simple word, what is the underlying issue in most cases of MGD?
Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they?
Cicatriziing and noncicatriziing

Meibomian gland

Reduced blink rate

The Cornea book highlights three causes of cicatrizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The Cornea book highlights three causes of noncicatrizing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

In a nutshell, what is rosacea?
A chronic skin condition often involving the eyelids

What is the cause?
It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection?
Yes, women are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?
--Midface erythema
--Pustules/papules
--Thickening of nasal skin (called rhinophyma)

What does the Cornea book call "the mainstay of therapy" for rosacea?
Oral tetracyclines
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence?

Asians

In one simple word, what is the underlying issue in most cases of MGD?

Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they?

Cicatrizing and noncicatrizing

Meibomian gland

Widened

Reduced blink rate

Extrinsic

Evaporative

In a nutshell, what is rosacea?

A chronic skin condition often involving the eyelids

What is the cause?

It is unknown at this time

Yes, are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?

-- Midface erythema
-- Pustules/papules
-- Thickening of nasal skin (called rhinophyma)

What does the Cornea book call “the mainstay of therapy” for rosacea?

Oral tetracyclines
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD?
Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? **Cicatrizing** and noncicatrizing

In a nutshell, what is rosacea?
A chronic skin condition often involving the eyelids

What is the cause?
It is unknown at this time

The book highlights three causes of cicatrizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The book highlights three causes of noncicatrizing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

Extrinsic

Intrinsic

Non-Sjögren's

Sjögren's

Evaporative Dry Eye

Aqueous Tear Deficiency

Widened lid fissure

Meibomian gland dysfunction (MGD)

Reduced blink rate

The Cornea book highlights three causes of cicatrizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The Cornea book highlights three causes of noncicatrizing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

What **does the Cornea book call** “the mainstay of therapy” for rosacea?
Oral tetracyclines
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, *what is the underlying issue in most cases of MGD? Obstruction* of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? **Cicatrizing** and noncicatrizing

Meibomian gland Widened

Reduced blink rate

Extrinsic

In a nutshell, *what is rosacea?* A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? Yes, are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam? --Midface erythema --Pustules/papules --Thickening of nasal skin (called rhinophyma)

What does the Cornea book call "the mainstay of therapy" for rosacea? Oral tetracyclines
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence?

Asians

In one simple word, what is the underlying issue in most cases of **MGD**?

Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive **MGD** is divided into two subtypes—what are they?

Cicatrizing and noncicatrizing

Meibomian gland

Widened

Reduced

Blink rate

Extrinsic

Evaporative

Dry Eye

Aqueous Tear Deficiency

Widened lid fissure

Meibomian gland dysfunction (MGD)

Reduced blink rate

In a nutshell, what is **rosacea**?

A chronic skin condition often involving the eyelids

What is the cause?

It is unknown at this time

Is there a gender predilection?

Yes, women are more likely to be affected

The book highlights three causes of cicatrizing obstructive MGD—what are they?

-- Trachoma

-- Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)

-- Atopy

The book highlights three causes of noncicatrizing obstructive MGD—what are they?

-- Rosacea

-- Seborrheic dermatitis

-- Atopy

MVsF
MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? Cicatrizing and noncicatrizing

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? Yes, ♀ are more likely to be affected
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence?
Asians

In one simple word, what is the underlying issue in most cases of MGD?
Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they?
Cicatizing and noncicatizing

Meibomian gland

In a nutshell, what is rosacea?
A chronic skin condition often involving the eyelids

What is the cause?
It is unknown at this time

Is there a gender predilection? A racial predilection?
Yes, ♀ are more likely to be affected.

The book highlights three causes of cicatrizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The book highlights three causes of noncicatizing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

Extrinsic

Reduced blink rate

Intrinsic

Widened lid fissure

Meibomian gland dysfunction (MGD)

Tear hyperosmolarity

The Cornea book calls "the mainstay of therapy" for rosacea?
Oral tetracyclines
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? Cicatrizig and noncicatrizig

Meibomian gland

- Widened
- Reduced blink rate

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Yes, ♀ are more likely to be affected. No.

Extrinsic

- Foreign body
- Infections
- Allergies
- Trauma
- Vascular disorders
- Drugs
- Surgery

Intrinsic

- Aqueous tear deficiency
- Evaporative dry eye

Non-Sjögren’s

- Reduced tear production
- Gland dysfunction

Sjögren’s

- Reduced tear production
- Gland dysfunction
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD *is divided into two subtypes*—what are they? Cicatrizxing and noncicatrizxing

The book highlights three causes of cicatrizxing obstructive MGD—
- **Trachoma**
- **Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)**
- **Atopy**

The book highlights three causes of noncicatrizxing obstructive MGD—
- **Rosacea**
- **Seborrheic dermatitis**
- **Atopy**

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. No.

Meibomian gland Widened

Reduced blink rate

Extrinsic

Evaporative Dry Eye
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? **Obstruction** of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? **Cicatrizing** and noncicatrizing

In a nutshell, what is rosacea?
A chronic skin condition often involving the eyelids

What is the cause?
It is unknown at this time

Is there a gender predilection? A racial predilection? **Age predilection?**
Yes, ♀ are more likely to be affected. No. Middle-aged.

The Cornea book highlights three causes of cicatrizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The Cornea book highlights three causes of noncicatrizing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

Meibomian gland
Widened

Reduced blink rate

Extrinsic

Intricate

Evaporative

Dry Eye

Aqueous Tear Deficiency

Widened lid fissure

Meibomian gland dysfunction (MGD)

Reduced blink rate
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? **Obstruction** of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? **Cicatrising** and noncicatrising

Meibomian gland

Widened

Reduced blink rate

Extrinsic

The Cornea book highlights three causes of cicatrising obstructive MGD—what are they?

-- Trachoma
-- Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
-- Atopy

The Cornea book highlights three causes of noncicatrising obstructive MGD—what are they?

-- Rosacea
-- Seborrheic dermatitis
-- Atopy

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. **Tender--aged**?

Can young individuals get rosacea?
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? Cicatrizing and noncicatrizing

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. *Tender-aged?*

Can young individuals get rosacea? They can indeed
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? Cicatizing and noncicatizing

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. Not tender-aged?

Can young individuals get rosacea? They can indeed

What is the classic tipoff that a young person has rosacea?
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence?

Asians

In one simple word, what is the underlying issue in most cases of MGD?

Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive **MGD is divided into two subtypes**—what are they?

Cicatrizing and noncicatrizing

In a nutshell, what is rosacea?

A chronic skin condition often involving the eyelids

What is the cause?

It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection?

Yes, ♀ are more likely to be affected. New Tender-AGED?

Can young individuals get rosacea?

They can indeed

What is the classic tipoff that a young person has rosacea?

A hx of recurrent chalazia
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? **Obstruction** of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? **Cicatrizing** and noncicatrizing

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀️ are more likely to be affected. **Tender-aged?**

Can young individuals get rosacea? They can indeed

What is the classic tipoff that a young person has rosacea? A hx of recurrent chalazia
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? **Obstruction** of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? **Cicatrizing** and noncicatrizing

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause?
It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection?
Yes, *♀* are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?
--?
--?
--?
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence?
Asians

In one simple word, what is the underlying issue in most cases of MGD?
Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they?
Cicatrizing and noncicatrizing

In a nutshell, what is rosacea?
A chronic skin condition often involving the eyelids

What is the cause?
It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection?
Yes, ♂ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?
--Midface
--?
--?
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? Cicatrizizing and noncicatrizizing

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam? Midface erythema

The Cornea book highlights three causes of cicatrizizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The book highlights three causes of noncicatrizizing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

Meibomian gland

Reduced blink rate

Extrinsic

Aqueous Tear Deficiency

Widened lid fissure

Meibomian gland dysfunction (MGD)

Tear hyperosmolarity

Cornea

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam? Midface erythema

The book highlights three causes of cicatrizizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The book highlights three causes of noncicatrizizing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

Meibomian gland

Reduced blink rate

Extrinsic

Aqueous Tear Deficiency

Widened lid fissure

Meibomian gland dysfunction (MGD)

Tear hyperosmolarity

Cornea

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam? Midface erythema

The book highlights three causes of cicatrizizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The book highlights three causes of noncicatrizizing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

Meibomian gland

Reduced blink rate

Extrinsic

Aqueous Tear Deficiency

Widened lid fissure

Meibomian gland dysfunction (MGD)

Tear hyperosmolarity

Cornea

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam? Midface erythema

The book highlights three causes of cicatrizizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The book highlights three causes of noncicatrizizing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

Meibomian gland

Reduced blink rate

Extrinsic

Aqueous Tear Deficiency

Widened lid fissure

Meibomian gland dysfunction (MGD)

Tear hyperosmolarity

Cornea

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam? Midface erythema

The book highlights three causes of cicatrizizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The book highlights three causes of noncicatrizizing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

Meibomian gland

Reduced blink rate

Extrinsic

Aqueous Tear Deficiency

Widened lid fissure

Meibomian gland dysfunction (MGD)

Tear hyperosmolarity

Cornea

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam? Midface erythema

The book highlights three causes of cicatrizizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The book highlights three causes of noncicatrizizing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

Meibomian gland

Reduced blink rate

Extrinsic

Aqueous Tear Deficiency

Widened lid fissure

Meibomian gland dysfunction (MGD)

Tear hyperosmolarity

Cornea

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam? Midface erythema

The book highlights three causes of cicatrizizing obstructive MGD—what are they?
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The book highlights three causes of noncicatrizizing obstructive MGD—what are they?
--Rosacea
--Seborrheic dermatitis
--Atopy

Meibomian gland

Reduced blink rate

Extrinsic

Aqueous Tear Deficiency

Widened lid fissure

Meibomian gland dysfunction (MGD)

Tear hyperosmolarity

Cornea

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam? Midface erythema

The book highlights three causes of cicatraz
Dry Eye Syndrome

Rosacea: Midface erythema
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? **Obstruction** of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? **Cicatrizing** and noncicatrizing

The book highlights three causes of cicatrizing obstructive MGD—what are they?

-- Trachoma
-- Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
-- Atopy

What are the classic nonocular findings on exam?

-- Midface erythema
-- ?
-- ?

What does the Cornea book call "the mainstay of therapy" for rosacea?

Oral tetracyclines

Rosacea

What is the classic trigger for worsening facial erythema in rosacea?

Consumption of alcohol (honorable mention if you said consumption of spicy food
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD?

Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive **MGD is divided into two subtypes**—what are they?

Cicatrizing and noncicatrizing

In a nutshell, what is rosacea?

A chronic skin condition often involving the eyelids

What is the cause?

It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection?

Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?

--Midface erythema
--?
--?

What does the *Cornea* book call “the mainstay of therapy” for rosacea?

Oral tetracyclines

What is the classic trigger for worsening facial erythema in rosacea?

Consumption of [□]
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? Cicatrizating and noncicatrizating

In a nutshell, what is rosacea?
A chronic skin condition often involving the eyelids

What is the cause?
It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection?
Yes, ♀️ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?
-- Midface erythema
-- ?
-- ?

What does the Cornea book call "the mainstay of therapy" for rosacea?
Oral tetracyclines

What is the classic trigger for worsening facial erythema in rosacea?
Consumption of alcohol
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD?

Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive **MGD** is divided into two subtypes—what are they?

Cicatrizing and noncicatrizing

The Cornea book highlights three causes of cicatrizing obstructive MGD—what are they?

-- Trachoma
-- Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
-- Atopy

The book highlights three causes of noncicatrizing obstructive MGD—what are they?

-- Rosacea
-- Seborrheic dermatitis
-- Atopy

In a nutshell, what is rosacea?

A chronic skin condition often involving the eyelids

What is the cause?

It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection?

Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?

-- Midface erythema
-- ?
-- ?

What does the Cornea book call "the mainstay of therapy" for rosacea?

Oral tetracyclines

Rosacea

What is the classic trigger for worsening facial erythema in rosacea?

Consumption of alcohol (honorable mention if you said consumption of two words)
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? Cicatrizing and noncicatrizing

The book what are Cicatrizing
--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The book what are noncicatrizing
--Rosacea
--Seborrheic dermatitis
--Atopy

The Cornea book highlights three causes of cicatrizing obstructive MGD—what are they?

--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The Cornea book highlights three causes of noncicatrizing obstructive MGD—what are they?

--Rosacea
--Seborrheic dermatitis
--Atopy

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection?
Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?
--Midface erythema
--?
--?

What does the Cornea book call "the mainstay of therapy" for rosacea?
Oral tetracyclines

Rosacea

What is the classic trigger for worsening facial erythema in rosacea?
Consumption of alcohol (honorable mention if you said consumption of spicy food)
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? Cicatrizing and noncicatrizing

In a nutshell, what is rosacea?
A chronic skin condition often involving the eyelids

What is the cause?
It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection?
Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?
--Midface erythema
--?
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive *MGD is divided into two subtypes*—what are they? Cicatrizizing and noncicatrizizing

The Cornea book highlights three causes of cicatrizing obstructive MGD—what are they?

--Trachoma
--Mucous-membrane pemphigoid (aka ocular cicatricial pemphigoid)
--Atopy

The Cornea book highlights three causes of noncicatrizizing obstructive MGD—what are they?

--Rosacea
--Seborrheic dermatitis
--Atopy

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam? --Midface erythema
--Pustules/papules
--?

Next finding
Dry Eye Syndrome

Rosacea: Papules/pustules
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD?

Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they?

Cicatrizng and noncicatrizng

In a nutshell, what is rosacea?

A chronic skin condition often involving the eyelids

What is the cause?

It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection?

Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?

--Midface erythema
--Pustules/papules
--Thickening of nasal skin (called rhinophyma)
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence?
Asians

In one simple word, what is the underlying issue in most cases of MGD?
Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive **MGD is divided into two subtypes**—what are they?
Cicatrising and noncicatrising

Meibomian gland

In one simple word, what is rosacea?
A chronic skin condition often involving the eyelids

What is the cause?
It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection?
Yes, ♀️ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?
--Midface erythema
--Pustules/papules
--Thickening of nasal skin (called *rhinophyma*)

Extrinsic

Reduced blink rate

Corneal

Widened

Rosacea

--Seborrheic dermatitis

Atopy

Cicatrising

Trachoma

Mucous-membrane pemphigoid (aka *ocular cicatricial pemphigoid*)

Atopy

Non-cicatrising

Rosacea

Dry Eye Syndrome

Rosacea: Rhinophyma
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? Cicatrizng and noncicatrizng

- Meibomian gland
- Widened
- Reduced
- Blink rate
- Extrinsic
- Evaporative
- Dry Eye
- Aqueous tear deficiency
- Widened lid fissure
- Meibomian gland dysfunction (MGD)

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection?
Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?
- Midface erythema
- Pustules/papules
- Thickening of nasal skin (called rhinophyma)

What does the Cornea book call “the mainstay of therapy” for rosacea?
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence?

Asians

In one simple word, what is the underlying issue in most cases of MGD?

Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they?

Cicatrizing and noncicatrizing

Meibomian gland

- Widened
- Reduced blink rate

Extrinsic

Non-Sjögren's

Sjögren's

In a nutshell, what is rosacea?

A chronic skin condition often involving the eyelids

What is the cause?

It is unknown at this time

Is there a gender predilection? *A racial predilection? Age predilection?*

Yes, ♀️ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam?

- Midface erythema
- Pustules/papules
- Thickening of nasal skin (called *rhinophyma*)

What does the Cornea book call “the mainstay of therapy” for rosacea?

Oral
Dry Eye Syndrome

MGD demonstrates a racial predilection—what group has a notably higher prevalence? Asians

In one simple word, what is the underlying issue in most cases of MGD? Obstruction of gland output leading to inadequate volume of tear-film meibum

Obstructive MGD is divided into two subtypes—what are they? Cicatrizing and noncicatrizing

In a nutshell, what is rosacea? A chronic skin condition often involving the eyelids

What is the cause? It is unknown at this time

Is there a gender predilection? A racial predilection? Age predilection? Yes, ♀ are more likely to be affected. No. Middle-aged.

What are the classic nonocular findings on exam? --Midface erythema --Pustules/papules --Thickening of nasal skin (called rhinophyma)

What does the Cornea book call “the mainstay of therapy” for rosacea? Oral tetracyclines
What are the causes of a widened lid fissure?
--?
--?
--?

- Meibomian gland dysfunction (MGD)
- Reduced blink rate

- Sjögren’s
- Non-Sjögren’s

- Aqueous Tear Deficiency
- Evaporative Dry Eye

- Tear hyperosmolarity
What are the causes of a widened lid fissure?
--Forward displacement of the globe (ie, proptosis/exophthalmos)
--?
--?

Dry Eye Syndrome

Aqueous Tear Deficiency
Sjögren’s
Non-Sjögren’s

Tear hyperosmolarity

Evaporative Dry Eye

Reduced blink rate

Extrinsic

Meibomian gland dysfunction (MGD)

Intrinsic

Widened lid fissure
What are the causes of a widened lid fissure?
--Forward displacement of the globe (i.e., proptosis/exophthalmos)
--Increased innervation to the lid retractors such as occurs in [three words]
--?
Dry Eye Syndrome

What are the causes of a widened lid fissure?
--Forward displacement of the globe (ie, proptosis/exophthalmos)
--Increased innervation to the lid retractors such as occurs in thyroid eye disease
--?

Meibomian gland dysfunction (MGD)

Reduced blink rate

Intrinsic

Extrinsic

Widened lid fissure

Evaporative Dry Eye

Tear hyperosmolarity

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency
What are the causes of a widened lid fissure?
-- Forward displacement of the globe (i.e., proptosis/exophthalmos)
-- Increased innervation to the lid retractors such as occurs in thyroid eye disease
-- Congenital craniofacial malformations resulting in shallow orbits

Dry Eye Syndrome

- Meibomian gland dysfunction (MGD)
- Reduced blink rate

Widened lid fissure

Intrinsic

- Sjögren’s
 - Aqueous Tear Deficiency
 - Tear hyperosmolarity

Extrinsic

- Non-Sjögren’s
- Evaporative Dry Eye
What are the causes of a widened lid fissure?
--Forward displacement of the globe (i.e., proptosis/exophthalmos)
--Increased innervation to the lid retractors such as occurs in thyroid eye disease
--Congenital craniofacial malformations resulting in shallow orbits
Dry Eye Syndrome

What group of congenital craniofacial malformations are strongly associated with shallow orbits?

- Increased innervation to the lid retractors such as occurs in thyroid eye disease
- Congenital craniofacial malformations resulting in shallow orbits

What are the causes of a widened lid fissure?

- Forward displacement of the globe (i.e., proptosis/exophthalmos)
- Congenital craniofacial malformations resulting in shallow orbits

Meibomian gland dysfunction (MGD)

Reduced blink rate

Sjögren’s Non-Sjögren’s

Aqueous Tear Deficiency

Intrinsic Extrinsic

Widened lid fissure

Evaporative Dry Eye

Tear hyperosmolarity
What group of congenital craniofacial malformations are strongly associated with shallow orbits? The craniosynostoses.
What group of congenital craniofacial malformations are strongly associated with shallow orbits?
The craniosynostoses

In a nutshell, what is the causal mechanism of the craniosynostoses?
Premature closure of one or more cranial sutures

What are the four craniosynostoses discussed in detail in the BCSC?

- Sjögren’s
- Non-Sjögren’s
- Aqueous Tear Deficiency
- Evaporative Dry Eye

What are the causes of a widened lid fissure?
- Forward displacement of the globe (ie, proptosis/exophthalmos)
- Increased innervation to the lid retractors such as occurs in thyroid eye disease
- Congenital craniofacial malformations resulting in shallow orbits

Tear hyperosmolarity

Reduced blink rate

Widened lid fissure

Meibomian gland dysfunction (MGD)
What group of congenital craniofacial malformations are strongly associated with shallow orbits?

The craniosynostoses

In a nutshell, what is the causal mechanism of the craniosynostoses?

Premature closure of one or more cranial sutures

does not apply

What are the causes of a widened lid fissure?

- Forward displacement of the globe (ie, proptosis/exophthalmos)
- Increased innervation to the lid retractors such as occurs in thyroid eye disease
- Congenital craniofacial malformations resulting in shallow orbits

Tear hyperosmolarity

What are the four craniosynostoses discussed in detail in the BCSC? two words

- The craniosynostoses
- Sjögren’s
- Non-Sjögren’s
- Aqueous Tear Deficiency

Evaporative Dry Eye

Intrinsic

Reduced blink rate

Widened lid fissure

Meibomian gland dysfunction (MGD)
What are the causes of a widened lid fissure?

- Forward displacement of the globe (i.e., proptosis/exophthalmos)
- Increased innervation to the lid retractors such as occurs in thyroid eye disease
- Congenital craniofacial malformations resulting in shallow orbits

What group of congenital craniofacial malformations are strongly associated with shallow orbits? The craniosynostoses

In a nutshell, what is the causal mechanism of the craniosynostoses? Premature closure of one or more cranial sutures

Dry Eye Syndrome

Meibomian gland dysfunction (MGD)

Widened lid fissure

Reduced blink rate

Intrinsic

Extrinsic

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity
What group of congenital craniofacial malformations are strongly associated with shallow orbits?

The craniosynostoses

- ?
- ?
- ?
- ?

What are the four craniosynostoses discussed in detail in the BCSC?

In a nutshell, what is the causal mechanism of the craniosynostoses?

Premature closure of one or more cranial sutures

What are the causes of a widened lid fissure?

- Forward displacement of the globe (i.e., proptosis/exophthalmos)
- Increased innervation to the lid retractors such as occurs in thyroid eye disease
- Congenital craniofacial malformations resulting in shallow orbits

Tear hyperosmolarity

Intrinsic

Extrinsic

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Evaporative Dry Eye

Reduced blink rate

Meibomian gland dysfunction (MGD)
What group of congenital craniofacial malformations are strongly associated with shallow orbits?

The craniosynostoses

- Crouzon
- Apert
- Pfeiffer
- Saethre-Chotzen

What are the four craniosynostoses discussed in detail in the BCSC?

In a nutshell, what is the causal mechanism of the craniosynostoses?

Premature closure of one or more cranial sutures

What causes a widened lid fissure?

- Forward displacement of the globe (i.e., proptosis/exophthalmos)
- Increased innervation to the lid retractors such as occurs in thyroid eye disease
- Congenital craniofacial malformations resulting in shallow orbits

What is the causal mechanism of tear hyperosmolarity?

What are the causes of a widened lid fissure?

- Forward displacement of the globe (i.e., proptosis/exophthalmos)
- Increased innervation to the lid retractors such as occurs in thyroid eye disease
- Congenital craniofacial malformations resulting in shallow orbits

Intrinsic

Extrinsic

Dry Eye Syndrome

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity
What group of congenital craniofacial malformations are strongly associated with shallow orbits?
The craniosynostoses

- Crouzon
- Apert
- Pfeiffer
- Saethre-Chotzen

In a nutshell, what is the causal mechanism of the craniosynostoses?
Premature closure of one or more cranial sutures

What are the four craniosynostoses discussed in detail in the BCSC?
- Crouzon
- Apert
- Pfeiffer
- Saethre-Chotzen

Of these, is/are associated with shallow orbits

Sjögren’s
Non-Sjögren’s
Aqueous Tear Deficiency

Intrinsic
Extrinsic
Evaporative Dry Eye
Tear hyperosmolarity

Reduced blink rate
Dry Eye syndrome
Intrinsic
Extrinsic
Non-Sjögren’s
Sjögren’s
Meibomian gland dysfunction (MGD)
What group of congenital craniofacial malformations are strongly associated with shallow orbits?

The craniosynostoses

- Crouzon
- Apert
- Pfeiffer
- Saethre-Chotzen

In a nutshell, what is the causal mechanism of the craniosynostoses?

Premature closure of one or more cranial sutures

What are the four craniosynostoses discussed in detail in the BCSC?

Of these, three is/are associated with shallow orbits

Which one?

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Intrinsic

Evaporative Dry Eye

Reduced blink rate

Tear hyperosmolarity
Dry Eye Syndrome

Meibomian gland dysfunction (MGD)
Reduced blink rate
Dry Eye Syndrome
Intrinsic
Extrinsic
Non-Sjögren’s
Sjögren’s
Evaporative
Dry Eye
Aqueous Tear Deficiency

What are the causes of a widened lid fissure?
- Forward displacement of the globe (ie, proptosis/exophthalmos)
- Increased innervation to the lid retractors such as occurs in thyroid eye disease
- Congenital craniofacial malformations resulting in shallow orbits

Tear hyperosmolarity

What group of congenital craniofacial malformations are strongly associated with shallow orbits?
The craniosynostoses
- Crouzon?
- Apert?
- Pfeiffer?
- Saethre-Chotzen?

In a nutshell, what is the causal mechanism of the craniosynostoses?
Premature closure of one or more cranial sutures

What are the four craniosynostoses discussed in detail in the BCSC?
Of these, three is/are associated with shallow orbits and the other isn’t. Which one?
Dry Eye Syndrome

Meibomian gland dysfunction (MGD)
Reduced blink rate

Dry Eye Syndrome

Intrinsic
Extrinsic
Non-Sjögren's
Sjögren's

Evaporative
Dry Eye

Aqueous Tear Deficiency

Tear hyperosmolarity

What are the causes of a widened lid fissure?
- Forward displacement of the globe (ie, proptosis/exophthalmos)
- Increased innervation to the lid retractors such as occurs in thyroid eye disease
- Congenital craniofacial malformations resulting in shallow orbits

What group of congenital craniofacial malformations are strongly associated with shallow orbits?
The craniosynostoses
- Crouzon
- Apert
- Pfeiffer
- Saethre-Chotzen

In a nutshell, what is the causal mechanism of the craniosynostoses?
Premature closure of one or more cranial sutures

What are the four craniosynostoses discussed in detail in the BCSC?
Of these, three is/are associated with shallow orbits and the other isn’t. Which one?
For more on the craniosynostoses, see slide-set P22
Dry Eye Syndrome

Causes of reduced blink rate can be divided into two categories--what are they?

Reduced blink rate

Intrinsic
- Meibomian gland dysfunction (MGD)
- Widened lid fissure

Extrinsic

Sjögren’s
- Aqueous Tear Deficiency

Non-Sjögren’s

Dry Eye
- Tear hyperosmolarity
Dry Eye Syndrome

Causes of reduced blink rate can be divided into two categories--what are they?
Physiological (ie, a normal phenomenon), and pathological

Reduced blink rate

Intrinsic

Meibomian gland dysfunction (MGD)
Widened lid fissure

Extrinsic

Sjögren’s
Non-Sjögren’s

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

Causes of reduced blink rate can be divided into two categories--what are they?
Physiological (ie, a normal phenomenon), and pathological

What is the most common physiological cause of reduced blink rate?

Reduced blink rate

Intrinsic

Evaporative Dry Eye

Sjögren’s

Non-Sjögren’s

Aqueous Tear Deficiency

Reduced blink rate

Meibomian gland dysfunction (MGD)

Widened lid fissure

Tear hyperosmolarity
Dry Eye Syndrome

Causes of reduced blink rate can be divided into two categories--what are they? Physiological (ie, a normal phenomenon), and pathological

What is the most common physiological cause of reduced blink rate? Sustained participation in a visually intensive task (eg, reading; computer work)
Dry Eye Syndrome

Causes of reduced blink rate can be divided into two categories—what are they? Physiological (ie, a normal phenomenon), and pathological

What is the most common physiological cause of reduced blink rate? Sustained participation in a visually intensive task (eg, reading; computer work)

What is the most common pathological cause of reduced blink rate?
Dry Eye Syndrome

Causes of reduced blink rate can be divided into two categories--what are they? Physiological (ie, a normal phenomenon), and pathological

What is the most common physiological cause of reduced blink rate? Sustained participation in a visually intensive task (eg, reading; computer work)

What is the most common pathological cause of reduced blink rate? Parkinson’s dz

- **Meibomian gland dysfunction (MGD)**
- **Reduced blink rate**
- **Intrinsic**
- **Evaporative Dry Eye**
- **Extrinsic**
- **Tear hyperosmolarity**

- **Sjögren’s**
- **Non-Sjögren’s**

- **Aqueous Tear Deficiency**
The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

Recall that earlier in the set we alluded to a *third* means by which tear-film status could produce hyperosmolarity and dry eye. The time to address this has arrived!

Head’s up: Later in the set we’re gonna add a *third* mechanism leading to tear hyperosmolarity.

In what two fundamental ways could the status of the aqueous component of the tear film lead to tear hyperosmolarity?

- Aqueous Tear Deficiency
- Evaporative Dry Eye

Tear hyperosmolarity
The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

In what other fundamental way could the status of the tear film lead to tear hyperosmolarity?
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

In what other fundamental way could the status of the tear film lead to tear hyperosmolarity?

--The tear film can too quickly, exposing the ocular surface.

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity
The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

In what other fundamental way could the status of the tear film lead to tear hyperosmolarity?

--The tear film can break up too quickly, exposing the ocular surface.

Aqueous Tear Deficiency Evaporative Dry Eye

Tear hyperosmolarity
The pathophysiology for DES damage starts with derangement of the tear film in the form of **Tear Hyperosmolarity**.

In what other fundamental way could the status of the tear film lead to tear hyperosmolarity?

--The tear film can break up too quickly, exposing the ocular surface. This state is known as one of...

```
Aqueous Tear Deficiency ? Evaporative Dry Eye

Tear hyperosmolarity
```
The pathophysiology for DES damage starts with derangement of the tear film in the form of **Tear Hyperosmolarity**.

In what other fundamental way could the status of the tear film lead to tear hyperosmolarity?

--The tear film can break up too quickly, exposing the ocular surface. This state is known as one of...

Aqueous Tear Deficiency
Tear Film Instability
Evaporative Dry Eye

Tear hyperosmolarity
The pathophysiology for DES damage starts with derangement of the tear film in the form of **Tear Hyperosmolarity**.

Recalling our answers to this issue previously:

While it’s a bit of an oversimplification, we can associate the components of the tear film with the pathologic states underlying DES:

- **Problem with the aqueous component**
 - Aqueous Tear Deficiency

- **Problem with the lipid component**
 - Evaporative Dry Eye

Tear hyperosmolality
The pathophysiology for DES damage starts with derangement of the tear film in the form of **Tear Hyperosmolarity**.

Recalling our answers to **this** issue previously:

What is the answer vis a vis tear-film instability?

While it’s a bit of an oversimplification, we can associate the components of the tear film with the pathologic states underlying DES:

- **Problem with the aqueous component**: Aqueous Tear Deficiency
- **Problem with the mucin component**: Tear Film Instability
- **Problem with the lipid component**: Evaporative Dry Eye

→ Tear hyperosmolarity
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of **Tear Hyperosmolarity**.

Recalling our answers to **this** issue previously:

What is the answer vis a vis tear-film instability?

While it’s a bit of an oversimplification, we can associate the components of the tear film with the pathologic states underlying DES:

- **Problem with the aqueous component**
 - Aqueous Tear Deficiency
- **Problem with the mucin component**
 - Tear Film Instability
- **Problem with the lipid component**
 - Evaporative Dry Eye

Tear hyperosmolarity
While it’s a bit of an oversimplification, we can associate the components of the tear film with the pathologic states underlying DES:

- **Problem with the aqueous component**
 - Aqueous Tear Deficiency

- **Problem with the mucin component**
 - Tear Film Instability

- **Problem with the lipid component**
 - Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

The pathophysiology for DES damage starts with derangement of the tear film in the form of Tear Hyperosmolarity.

One important oversimplification to note is the implication below that tear-film instability is a function only of the mucin component, when in fact the status of the lipid component makes a significant contribution to tear-film (in)stability as well.

While it’s a bit of an oversimplification, we can associate the components of the tear film with the pathologic states underlying DES:

- **Problem with the aqueous component**: Aqueous Tear Deficiency
- **Problem with the mucin component (l lipid too)**: Tear Film Instability
- **Problem with the lipid component**: Evaporative Dry Eye

Tear hyperosmolarity
How is tear-film instability quantified, ie, what clinical exam maneuver is used to measure it?

The tear-film break-up time (TBUT or TFBUT) assessment

How is TBUT assessed, ie, what are the steps involved?

A little fluorescein is instilled, and the pt is asked to hold their eyes open after blinking a couple of times. The tear film is observed with the cobalt-blue filter in place, and the length of time that passes until a dry spot appears is noted.

A TBUT of less than how long is considered abnormal?

10 seconds
How is tear-film instability quantified, ie, what clinical exam maneuver is used to measure it?
The tear-film break-up time (TBUT or TFBUT) assessment

Aqueous Tear Deficiency

Tear Film Instability

Tear hyperosmolarity
How is tear-film instability quantified, ie, what clinical exam maneuver is used to measure it?
The tear-film break-up time (TBUT or TFBUT) assessment

How is TBUT assessed, ie, what are the steps involved?

A little fluorescein is instilled, and the pt is asked to hold their eyes open after blinking a couple of times. The tear film is observed with the cobalt-blue filter in place, and the length of time that passes until a dry spot appears is noted.

A TBUT of less than how long is considered abnormal?

10 seconds
How is tear-film instability quantified, ie, what clinical exam maneuver is used to measure it?
The tear-film break-up time (TBUT or TFBUT) assessment

How is TBUT assessed, ie, what are the steps involved?
A little fluorescein is instilled, and the pt is asked to hold their eyes open after blinking a couple of times

Aqueous Tear Deficiency Tear Film Instability Evaporative Dry Eye

Tear hyperosmolarity
How is tear-film instability quantified, ie, what clinical exam maneuver is used to measure it?
The tear-film break-up time (TBUT or TFBUT) assessment

How is TBUT assessed, ie, what are the steps involved?
A little fluorescein is instilled, and the pt is asked to hold their eyes open after blinking a couple of times. The tear film is observed with the cobalt-blue filter in place, and the length of time that passes until a dry spot appears is noted.

- Aqueous Tear Deficiency
- Tear Film Instability
- Evaporative Dry Eye
- Tear hyperosmolarity
How is tear-film instability quantified, ie, what clinical exam maneuver is used to measure it?
The tear-film break-up time (TBUT or TFBUT) assessment

How is TBUT assessed, ie, what are the steps involved?
A little fluorescein is instilled, and the pt is asked to hold their eyes open after blinking a couple of times. The tear film is observed with the cobalt-blue filter in place, and the length of time that passes until a dry spot appears is noted.

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity
How is tear-film instability quantified, ie, what clinical exam maneuver is used to measure it?
The tear-film break-up time (TBUT or TFBUT) assessment.

How is TBUT assessed, ie, what are the steps involved?
A little fluorescein is instilled, and the pt is asked to hold their eyes open after blinking a couple of times. The tear film is observed with the cobalt-blue filter in place, and the length of time that passes until a dry spot appears is noted.

A TBUT of less than how long is considered abnormal?

10 seconds
How is tear-film instability quantified, ie, what clinical exam maneuver is used to measure it?
The tear-film break-up time (TBUT or TFBUT) assessment

How is TBUT assessed, ie, what are the steps involved?
A little fluorescein is instilled, and the pt is asked to hold their eyes open after blinking a couple of times. The tear film is observed with the cobalt-blue filter in place, and the length of time that passes until a dry spot appears is noted.

A TBUT of less than how long is considered abnormal?
10 seconds
How is tear-film instability quantified, ie, what clinical exam maneuver is used to measure it? The tear-film break-up time (TBUT or TFBUT) assessment.

How is TBUT assessed, ie, what are the steps involved? A little fluorescein is instilled, and the pt is asked to hold their eyes open after blinking a couple of times. The tear film is observed with the cobalt-blue filter in place, and the length of time that passes until a dry spot appears is noted.

A TBUT of less than how long is considered abnormal? 10 seconds.

I assume Fluress drops are the way to go? No. The Cornea book states such is "not recommended" because 1) too much fluorescein gets instilled; and 2) they contain an anesthetic, which could influence the results. (In fact, TBUT assessment should occur prior to instillation of any drops.)
How is tear-film instability quantified, ie, what clinical exam maneuver is used to measure it?
The tear-film break-up time (TBUT or TFBUT) assessment

How is TBUT assessed, ie, what are the steps involved?
A little fluorescein is instilled, and the pt is asked to hold their eyes open after blinking a couple of times. The tear film is observed with the cobalt-blue filter in place, and the length of time that passes until a dry spot appears is noted.

I assume Fluress drops are the way to go?
You’d think so, but no. The Cornea book states using them is “not recommended” because 1) too much or little fluorescein gets instilled.
How is tear-film instability quantified, ie, what clinical exam maneuver is used to measure it?
The tear-film break-up time (TBUT or TFBUT) assessment.

How is TBUT assessed, ie, what are the steps involved?
A little fluorescein is instilled, and the pt is asked to hold their eyes open after blinking a couple of times. The tear film is observed with the cobalt-blue filter in place, and the length of time that passes until a dry spot appears is noted.

I assume Fluress drops are the way to go?
You’d think so, but no. The Cornea book states using them is “not recommended” because 1) too much fluorescein gets instilled.
How is tear-film instability quantified, ie, what clinical exam maneuver is used to measure it?

The tear-film break-up time (TBUT or TFBUT) assessment.

How is TBUT assessed, ie, what are the steps involved?

A little fluorescein is instilled, and the pt is asked to hold their eyes open after blinking a couple of times. The tear film is observed with the cobalt-blue filter in place, and the length of time that passes until a dry spot appears is noted.

A little fluorescein is instilled

I assume Fluress drops are the way to go?

You’d think so, but no. The Cornea book states using them is “not recommended” because 1) too much fluorescein gets instilled; and 2) they contain an anesthetic, which could influence the results.

Dry Eye Syndrome

- Aqueous Tear Deficiency
- Tear Film Instability
- Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

How is tear-film instability quantified, ie, what clinical exam maneuver is used to measure it?
The tear-film break-up time (TBUT or TFBUT) assessment

How is TBUT assessed, ie, what are the steps involved?
A little fluorescein is instilled, and the pt is asked to hold their eyes open after blinking a couple of times. The tear film is observed with the cobalt-blue filter in place, and the length of time that passes until a dry spot appears is noted.

I assume Fluress drops are the way to go?
You’d think so, but no. The Cornea book states using them is “not recommended” because 1) too much fluorescein gets instilled; and 2) they contain an anesthetic, which could influence the results.
How is tear-film instability quantified, i.e., what clinical exam maneuver is used to measure it?
The tear-film break-up time (TBUT or TFBUT) assessment.

How is TBUT assessed, i.e., what are the steps involved?
A little fluorescein is instilled, and the pt is asked to hold their eyes open after blinking a couple of times. The tear film is observed with the cobalt-blue filter in place, and the length of time that passes until a dry spot appears is noted.

I assume Fluress drops are the way to go? You’d think so, but no. The Cornea book states using them is “not recommended” because 1) too much fluorescein gets instilled; and 2) they contain an anesthetic, which could influence the results. (In fact, TBUT assessment should occur prior to instillation of any drops.)
Three categories of conditions leading to TFI have been identified—what are they?
Three categories of conditions leading to TFI have been identified—what are they?
What nutritional deficiency is the leading cause of xerophthalmia worldwide?

Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign?

Bitôt spot — a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation?

Corynebacterium xerosis

With what conditions is xerophthalmia associated in the US?

-- Dietary deficiencies
-- Chronic alcoholism
What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

Xerophthalmia

- Aqueous Tear Deficiency
- Tear Film Instability
 - Topical preservatives
 - Ocular allergy
 - Evaporative Dry Eye

Tear hyperosmolarity

Dietary deficiencies
Chronic alcoholism
What nutritional deficiency is the leading cause of xerophthalmia worldwide?

Hypovitaminosis A

How is hypovitaminosis A diagnosed?

Via serum vitamin A levels

Is hypovitaminosis A a serious condition?

Yes! The mortality rate is about 50%
What nutritional deficiency is the leading cause of xerophthalmia worldwide? **Hypovitaminosis A**

How is hypovitaminosis A diagnosed? Via serum vitamin A levels

What bacteria is implicated in Bitôt spot formation? **Corynebacterium xerosis**

With what conditions is xerophthalmia associated in the US? -- Dietary deficiencies -- Chronic alcoholism

How is hypovitaminosis A diagnosed? **Via serum vitamin A levels**

Is hypovitaminosis A a serious condition? Yes! The mortality rate is about 50%
What nutritional deficiency is the leading cause of xerophthalmia worldwide?

Hypovitaminosis A

How is hypovitaminosis A diagnosed?
Via serum vitamin A levels

Is hypovitaminosis A a serious condition?
Yes! The mortality rate is about 50%

Xerophthalmia

Aqueous Tear Deficiency

Tear Film Instability

Tear hyperosmolarity

Dry Eye Syndrome

Evaporative Dry Eye

Topical preservatives

Ocular allergy
What nutritional deficiency is the leading cause of xerophthalmia worldwide?

Hypovitaminosis A

How is hypovitaminosis A diagnosed?
Via serum vitamin A levels

Is hypovitaminosis A a serious condition?
Yes! The mortality rate is about 50%

Tear Film Instability

- Aqueous Tear Deficiency
- Evaporative Dry Eye
- Topical preservatives
- Ocular allergy

Xerophthalmia

- Bitôt spot — a foamy, white/gray area on the interpalpebral conjunctiva

Tear hyperosmolarity

What bacteria is implicated in Bitôt spot formation?

Corynebacterium xerosis

With what conditions is xerophthalmia associated in the US?

- Dietary deficiencies
- Chronic alcoholism

How is hypovitaminosis A diagnosed?

Via serum vitamin A levels

Is hypovitaminosis A a serious condition?

Yes! The mortality rate is about 50%
Dry Eye Syndrome

Xerophthalmia is typically not the first ocular manifestation of hypovitaminosis A. What is?

Hypovitaminosis A

What nutritional deficiency is the leading cause of xerophthalmia worldwide?

How is hypovitaminosis A diagnosed?
Via serum vitamin A levels

Is hypovitaminosis A a serious condition?
Yes! The mortality rate is about 50%

Xerophthalmia

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Topical preservatives

Ocular allergy

Tear hyperosmolarity
What nutritional deficiency is the leading cause of xerophthalmia worldwide?

Hypovitaminosis A

How is hypovitaminosis A diagnosed?
Via serum vitamin A levels

Is hypovitaminosis A a serious condition?
Yes! The mortality rate is about 50%

Xerophthalmia is typically not the first ocular manifestation of hypovitaminosis A. What is?
Nyctalopia

With what conditions is xerophthalmia associated in the US?
--Dietary deficiencies
--Chronic alcoholism

How is hypovitaminosis A diagnosed?
Via serum vitamin A levels

Is hypovitaminosis A a serious condition?
Yes! The mortality rate is about 50%
What nutritional deficiency is the leading cause of xerophthalmia worldwide?
Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign?
Bitôt spot—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation?
Corynebacterium xerosis

What conditions is xerophthalmia associated in the US?
--Dietary deficiencies
--Chronic alcoholism
What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign? Bitot spot—a foamy, white/gray area on the interpalpebral conjunctiva
Bitôt spots: Conj lesion temporal to the cornea, shows typical dry/foamy appearance
Dry Eye Syndrome

What nutritional deficiency is the leading cause of xerophthalmia worldwide?
Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign?
Bitot spot—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitot spot formation?

What bacteria is implicated in Bitot spot formation?
Corynebacterium xerosis

What conditions is xerophthalmia associated in the US?
-- Dietary deficiencies
-- Chronic alcoholism
What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign? **Bitot spot**—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitot spot formation? **Corynebacterium xerosis**
What nutritional deficiency is the leading cause of xerophthalmia worldwide?
Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign?
Bitôt spot—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation?
Corynebacterium xerosis

With what conditions is xerophthalmia associated in the US?
--?
--?

Dry Eye Syndrome

- **Aqueous Tear Deficiency**
- **Tear Film Instability**
- **Tear Hyperosmolarity**
- **Evaporative Dry Eye**
- **Topical preservatives**
- **Ocular allergy**
What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign?
Bitôt spot—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation?
Corynebacterium xerosis

With what conditions is xerophthalmia associated in the US?
--Dietary deficiencies
--?

Aqueous Tear Deficiency

Tear Film Instability

Tear hyperosmolarity

Dry Eye Syndrome

Topical preservatives

Ocular allergy

Evaporative Dry Eye
What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign? **Bitôt spot**—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation? **Corynebacterium xerosis**

With what conditions is xerophthalmia associated in the US? --Dietary deficiencies --Chronic
What nutritional deficiency is the leading cause of xerophthalmia worldwide?
Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign?
Bitôt spot—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation?
Corynebacterium xerosis

With what conditions is xerophthalmia associated in the US?
--Dietary deficiencies
--Chronic alcoholism

Dry Eye Syndrome

- Aqueous Tear Deficiency
- Tear Film Instability
- Tear hyperosmolarity
- Evaporative Dry Eye
- Ocular allergy
- Topical preservatives

Dry Eye Syndrome

- Xerophthalmia
- Aqueous Tear Deficiency
- Tear Film Instability
- Tear hyperosmolarity
- Evaporative Dry Eye
- Ocular allergy
- Topical preservatives

<table>
<thead>
<tr>
<th>What nutritional deficiency is the leading cause of xerophthalmia worldwide?</th>
<th>Hypovitaminosis A</th>
</tr>
</thead>
</table>

Hypovitaminosis A xerosis of the ocular surface produces what classic sign?

Bitôt spot—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation?
Corynebacterium xerosis

With what conditions is xerophthalmia associated in the US?
--Dietary deficiencies
--Chronic alcoholism

Press your xerosis pts on these issues!
What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

With what genetic disease manifesting in childhood is xerophthalmia associated? Cystic fibrosis

With what conditions is xerophthalmia associated in the US? -- Dietary deficiencies -- Chronic alcoholism

Tear Film Instability

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity

Ocular allergy

Dry Eye Syndrome
Dry Eye Syndrome

What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

With what genetic disease manifesting in childhood is xerophthalmia associated? Cystic fibrosis

With what conditions is xerophthalmia associated in the US? -- Dietary deficiencies -- Chronic alcoholism

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity

Ocular allergy

Topical preservatives
What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

With what genetic disease manifesting in childhood is xerophthalmia associated? Cystic fibrosis

Wiggity what? Why would pts with a disease hallmarked by lung abnormalities be at risk for hypovitaminosis A?

With what conditions is xerophthalmia associated in the US? --Dietary deficiencies --Chronic alcoholism

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear Film Instability

Tear hyperosmolarity

Evaporative Dry Eye

Topical preservatives

Ocular allergy
What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

With what genetic disease manifesting in childhood is xerophthalmia associated? Cystic fibrosis

Wiggity what? Why would pts with a disease hallmarked by lung abnormalities be at risk for hypovitaminosis A? Recall that CF is also associated with pancreatic insufficiency, and thereby with Vit A malabsorption

With what conditions is xerophthalmia associated in the US? --Dietary deficiencies --Chronic alcoholism

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear Film Instability

Tear hyperosmolarity

Evaporative Dry Eye

Ocular allergy

preservatives
Dry Eye Syndrome

What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

With what genetic disease manifesting in childhood is xerophthalmia associated? Cystic fibrosis

Wiggity what? Why would pts with a disease hallmarked by lung abnormalities be at risk for hypovitaminosis A? Recall that CF is also associated with pancreatic insufficiency, and thereby with Vit A malabsorption

With what conditions is xerophthalmia associated in the US? --Dietary deficiencies --Chronic alcoholism

Aqueous Tear Deficiency

Tear Film Instability

Tear hyperosmolarity

Evaporative Dry Eye

Ocular allergy
Dry Eye Syndrome

What nutritional deficiency is the leading cause of xerophthalmia worldwide?
Hypovitaminosis A

With what genetic disease manifesting in childhood is xerophthalmia associated?
Cystic fibrosis

Wiggity what? Why would pts with a disease hallmarked by lung abnormalities be at risk for hypovitaminosis A?
Recall that CF is also associated with pancreatic insufficiency, and thereby with Vit A malabsorption. Undiagnosed CF infants may present with xerophthalmia severe enough to produce a PUK-like picture with associated hypopyon!

With what conditions is xerophthalmia associated in the US?
--- Dietary deficiencies
--- Chronic alcoholism

Aqueous Tear Deficiency

Tear Film Instability

Tear hyperosmolarity

Evaporative Dry Eye

Ocular allergy
What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A.

Hypovitaminosis A xerosis of the ocular surface produces what classic sign? **Bitôt spot**—a foamy, white/gray area on the interpalpebral conjunctiva.

What bacteria is implicated in Bitôt spot formation? *Corynebacterium xerosis*.

With what conditions is xerophthalmia associated in the US? --- **Dietary deficiencies** --- Chronic alcoholism.

What foods are rich in vitamin A? --? --? --? --?
What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign? **Bitôt spot**—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation? *Corynebacterium xerosis*

With what conditions is xerophthalmia associated in the US? **Dietary deficiencies**

What foods are rich in vitamin A? -- Organ meat -- Oily fish -- Carrots -- Dark green leafy veggies

Dry Eye Syndrome

Tear Film Instability

- Tear hyperosmolarity

Xerophthalmia

Topical preservatives

Ocular allergy

Evaporative Dry Eye
What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign? **Bitot spot**—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitot spot formation? *Corynebacterium xerosis*

With what conditions is xerophthalmia associated in the US? **Dietary deficiencies**

-- Dietary deficiencies
-- Chronic alcoholism

What foods are rich in vitamin A?

-- Organ meat, especially liver
-- Oily fish
-- Carrots
-- Dark green leafy veggies

Dry Eye Syndrome

Xerophthalmia

- Tear Film Instability
- Topical preservatives
- Ocular allergy

Evaporative Dry Eye

Tear hyperosmolarity
What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign? **Bitôt spot**—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation? **Corynebacterium xerosis**

What conditions is xerophthalmia associated in the US? -- **Dietary deficiencies** -- Chronic alcoholism

What foods are rich in vitamin A? -- Organ meat, especially liver -- Oily fish -- Carrots -- Dark green leafy veggies
Dry Eye Syndrome

What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign? Bitôt spot—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation? Corynebacterium xerosis

With what conditions is xerophthalmia associated in the US? -- Dietary deficiencies -- Chronic alcoholism

What foods are rich in vitamin A? -- Organ meat, especially liver -- Oily fish -- Carrots -- Dark green leafy veggies

Is hypervitaminosis A a thing, ie, a clinically important condition? It is indeed. There is a condition of significant ophthalmic consequence—one with which you are likely familiar—that has a strong association with hypervitaminosis A. What is it? Idiopathic* intracranial hypertension (aka pseudotumor cerebri)

There is a classic (albeit far-fetched) dietary scenario associated with the development of pseudotumor cerebri—what is it? Consumption of polar bear liver
What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A.

Hypovitaminosis A xerosis of the ocular surface produces what classic sign? Bitôt spot—a foamy, white/gray area on the interpalpebral conjunctiva.

What bacteria is implicated in Bitôt spot formation? Corynebacterium xerosis.

With what conditions is xerophthalmia associated in the US?

--Dietary deficiencies
--Chronic alcoholism

Is hypervitaminosis A a thing, ie, a clinically important condition? It is indeed.

There is a condition of significant ophthalmic consequence—one with which you are likely familiar—that has a strong association with hypervitaminosis A. What is it? Idiopathic intracranial hypertension (aka pseudotumor cerebri).

There is a classic (albeit far-fetched) dietary scenario associated with the development of pseudotumor cerebri—what is it? Consumption of polar bear liver.

What foods are rich in vitamin A?

--Organ meat, especially liver
--Oily fish
--Carrots
--Dark green leafy veggies

Dry Eye Syndrome

Tear Film Instability

Tear hyperosmosmolarity
Dry Eye Syndrome

What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign? Bitôt spot—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation? Corynebacterium xerosis

With what conditions is xerophthalmia associated in the US? -- Dietary deficiencies -- Chronic alcoholism

What foods are rich in vitamin A? -- Organ meat, especially liver -- Oily fish -- Carrots -- Dark green leafy veggies

Is hypervitaminosis A a thing, ie, a clinically important condition? It is indeed

There is a condition of significant ophthalmic consequence—one with which you are likely familiar—that has a strong association with hypervitaminosis A. What is it?

Idiopathic* intracranial hypertension (aka pseudotumor cerebri)

There is a classic (albeit far-fetched) dietary scenario associated with the development of pseudotumor cerebri—what is it? Consumption of polar bear liver
What nutritional deficiency is the leading cause of xerophthalmia worldwide?
Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign?
Bitot spot—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitot spot formation?
Corynebacterium xerosis

With what conditions is xerophthalmia associated in the US?
--Dietary deficiencies
--Chronic alcoholism

What foods are rich in vitamin A?
--Organ meat, especially liver
--Oily fish
--Carrots
--Dark green leafy veggies

Is hypervitaminosis A a thing, ie, a clinically important condition?
It is indeed

There is a condition of significant ophthalmic consequence—one with which you are likely familiar—that has a strong association with hypervitaminosis A. What is it?
Idiopathic* intracranial hypertension

*It is not clear to me whether expert consensus would hold that Vit A-induced intracranial hypertension would be considered idiopathic, or secondary
What nutritional deficiency is the leading cause of xerophthalmia worldwide?
Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign?
Bitot spot—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitot spot formation?
Corynebacterium xerosis

With what conditions is xerophthalmia associated in the US?
Dietary deficiencies—chronic alcoholism

What foods are rich in vitamin A?
Organ meat, especially liver
-- Oily fish
-- Carrots
-- Dark green leafy veggies
-- Dark green leafy veggies

Is hypervitaminosis A, ie, a clinically important condition?

It is indeed

There is a condition of significant ophthalmic consequence—one with which you are likely familiar—that has a strong association with hypervitaminosis A. What is it?
Idiopathic intracranial hypertension (aka pseudotumor cerebri)

There is a classic (albeit far-fetched) dietary scenario associated with the development of pseudotumor cerebri—what is it?
Consumption of polar bear liver
What nutritional deficiency is the leading cause of xerophthalmia worldwide?
Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign?
Bitot spot—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitot spot formation?
Corynebacterium xerosis

With what conditions is xerophthalmia associated in the US?
--Dietary deficiencies
--Chronic alcoholism

What foods are rich in vitamin A?
--Organ meat, especially liver
--Oily fish
--Carrots
--Dark green leafy veggies

Is hypervitaminosis A a thing, ie, a clinically important condition?
It is indeed

There is a condition of significant ophthalmic consequence—one with which you are likely familiar—that has a strong association with hypervitaminosis A. What is it?
Idiopathic* intracranial hypertension (aka pseudotumor cerebri)
What nutritional deficiency is the leading cause of xerophthalmia worldwide?
Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign?
Bitôt spot—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation?
Corynebacterium xerosis

With what conditions is xerophthalmia associated in the US?
--Dietary deficiencies
--Chronic alcoholism

What foods are rich in vitamin A?
--Organ meat, especially liver
--Oily fish
--Carrots
--Dark green leafy veggies

Is hypervitaminosis A a thing, ie, a clinically important condition?
It is indeed

There is a condition of significant opthalmic consequence—one with which you are likely familiar—that has a strong association with hypervitaminosis A. What is it?
Idiopathic* intracranial hypertension (aka pseudotumor cerebri)

There is a classic (albeit far-fetched) dietary scenario associated with the development of pseudotumor cerebri—what is it?
Consumption of polar bear liver
What nutritional deficiency is the leading cause of xerophthalmia worldwide?
Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign?
Bitôt spot—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation?
Corynebacterium xerosis

What conditions is xerophthalmia associated in the US?
--Dietary deficiencies
--Chronic alcoholism

What foods are rich in vitamin A?
--Organ meat, especially liver
--Oily fish
--Carrots
--Dark green leafy veggies

Is hypervitaminosis A a thing, ie, a clinically important condition? It is indeed

There is a condition of significant ophthalmic consequence—one with which you are likely familiar—that has a strong association with hypervitaminosis A. What is it?
Idiopathic* intracranial hypertension (aka *pseudotumor cerebri*)

There is a classic (albeit far-fetched) dietary scenario associated with the development of pseudotumor cerebri—what is it?
Consumption of three words

Tear Film Instability

Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

What nutritional deficiency is the leading cause of xerophthalmia worldwide? Hypovitaminosis A

Hypovitaminosis A xerosis of the ocular surface produces what classic sign? **Bitôt spot**—a foamy, white/gray area on the interpalpebral conjunctiva

What bacteria is implicated in Bitôt spot formation? Corynebacterium xerosis

With what conditions is xerophthalmia associated in the US? --Dietary deficiencies --Chronic alcoholism

Is hypervitaminosis A a thing, ie, a clinically important condition? It is indeed

There is a condition of significant ophthalmic consequence—one with which you are likely familiar—that has a strong association with hypervitaminosis A. What is it? Idiopathic* intracranial hypertension (**aka** pseudotumor cerebri)

There is a classic (albeit far-fetched) dietary scenario associated with the development of pseudotumor cerebri—what is it? Consumption of polar bear liver

What foods are rich in vitamin A? --Organ meat, especially liver --Oily fish --Carrots --Dark green leafy veggies

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

How do preservatives in ophthalmic preparations lead to TFI?

Sjögren’s → Aqueous Tear Deficiency
Non-Sjögren’s → Evaporative Dry Eye

Tear Film Instability

Topical preservatives

Ocular allergy

Tear hyperosmolarity
How do preservatives in ophthalmic preparations lead to TFI? By provoking an inflammatory response in the conj epithelium, which in turn promotes cell apoptosis.

Dry Eye Syndrome

Sjögren’s
Non-Sjögren’s
Aqueous Tear Deficiency

Tear Film Instability
Tear hyperosmolarity
Evaporative Dry Eye
Ocular allergy
Xerophthalmia

Topical preservatives
How do preservatives in ophthalmic preparations lead to TFI?
By provoking an inflammatory response in the conj epithelium, which in turn promotes goblet cell apoptosis.
Dry Eye Syndrome

How do preservatives in ophthalmic preparations lead to TFI?
By provoking an inflammatory response in the conj epithelium, which in turn promotes goblet cell apoptosis.

Is there a preservative that is especially notorious for doing this?

Tear Film Instability

Topical preservatives

Sjögren’s
Non-Sjögren’s
Aqueous Tear Deficiency
Tear hyperosmolarity
Evaporative Dry Eye
Ocular allergy

Xerophthalmia
How do preservatives in ophthalmic preparations lead to TFI? By provoking an inflammatory response in the conj epithelium, which in turn promotes goblet cell apoptosis.

Is there a preservative that is especially notorious for doing this? Benzalkonium chloride (aka BAK or BAC)
How does an ocular allergic condition produce TFI?

- Sjögren’s
- Non-Sjögren’s
 - Aqueous Tear Deficiency
 - Xerophthalmia
 - Topical preservatives

Tear Film Instability

- Evaporative Dry Eye
- Tear hyperosmolarity
How does an ocular allergic condition produce TFI?

Allergen antigens on the ocular surface initiate an IgE-mediated inflammatory cascade, leading to goblet-cell loss.
Dry Eye Syndrome

50 Ways to Take a Break

(This is a good point in the set to take a break)
Now that we understand how ATD, TFI and EDE lead to tear hyperosmolarity...

Aqueous Tear Deficiency \(\rightarrow\) Tear Film Instability \(\rightarrow\) Evaporative Dry Eye \(\rightarrow\) Tear hyperosmolarity
Now that we understand how ATD, TFI and EDE lead to tear hyperosmolarity…
Let’s examine how tear hyperosmolarity leads to DES
What effect does tear-film hyperosmolarity produce that starts the cascade of events resulting in DES?
What effect does tear-film hyperosmolarity produce that starts the cascade of events resulting in DES?
Hyperosmolar stress of surface epithelium
What effect does tear-film hyperosmolarity produce that starts the cascade of events resulting in DES?

Hyperosmolar stress of surface epithelium, which significantly damages it.
What effect does tear-film hyperosmolarity produce that starts the cascade of events resulting in DES?

Hyperosmolar stress of surface epithelium, which significantly damages it.

Are we talking corneal epi, or conj epi?
What effect does tear-film hyperosmolarity produce that starts the cascade of events resulting in DES?

Hyperosmolar stress of surface epithelium, which significantly damages it.

Are we talking corneal epi, or conj epi?

Both Surface epithelium damage

→ Hyperosmolary stress

→ Aqueous Tear Deficiency

→ Tear Film Instability

→ Evaporative Dry Eye

→ Tear hyperosmolarity
Dry Eye Syndrome

What effect does tear-film hyperosmolarity produce that starts the cascade of events resulting in DES?

Hyperosmolar stress of surface epithelium, which significantly damages it.

Are we talking corneal epi, or conj epi? Both.

How might conj-epi damage directly impact TFI (and thus DES)?

DES feedback loop!

Surface epithelium damage

Hyperosmolar stress

Tear Film Instability

Tear hyperosmolality

Aqueous Tear Deficiency

Evaporative Dry Eye
What effect does tear-film hyperosmolarity produce that starts the cascade of events resulting in Dry Eye Syndrome (DES)?

Hyperosmolar stress of surface epithelium, which significantly damages it:

Are we talking corneal epi, or conjunctival epi? Both could be involved.

How might conjunctival epi (conj-epi) damage directly impact Tear Film Instability (TFI) (and thus DES)?

Recall that conjunctival goblet cells are the source of mucin, a deficit of which contributes to TFI and thus DES.

DES feedback loop!

Aqueous Tear Deficiency

Hyperosmolar stress

Tear Film Instability

Tear hyperosmolarity

Evaporative Dry Eye
What effect does tear-film hyperosmolarity produce that starts the cascade of events resulting in DES?

Hyperosmolar stress of surface epithelium, which significantly damages it

Are we talking corneal epi, or conj epi?
Both

Surface epithelium damage

Hyperosmolar stress

How might conj-epi damage directly impact TFI (and thus DES)?
Recall that conj goblet cells are the source of mucin, a deficit of which contributes to TFI and thus DES

DES feedback loop!
Evaporative Dry Eye

Dry Eye Syndrome

Surface epithelium damage

Tear Film Instability

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear hyperosmolarity

What do damaged epi cells do that directly contributes to promoting DES?
Dry Eye Syndrome

What do damaged epi cells do that directly contributes to promoting DES?
They release [] that promote and/or facilitate inflammation

Inflammatory release

Surface epithelium damage

Hyperosmolar stress

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity
What do damaged epi cells do that directly contributes to promoting DES?
They release cytokines that promote and/or facilitate inflammation.
What do damaged epi cells do that directly contributes to promoting DES?

They release cytokines that promote and/or facilitate inflammation.

While a number of cytokines are released, the BCSC emphasizes three.

-- TNF
-- MMP-9
-- IL-1

Evaporative Dry Eye

Dry Eye Syndrome

What do damaged epi cells do that directly contributes to promoting DES?

They release cytokines that promote and/or facilitate inflammation.

While a number of cytokines are released, the BCSC emphasizes three.

While a number of cytokines are released, the BCSC emphasizes three.

- TNF
- MMP-9
- IL-1

Inflammatory cytokine release

Surface epithelium damage

Hyperosmolar stress

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

While a number of cytokines are released, the BCSC emphasizes three. What are they? --? --? --?

- Inflammatory cytokine release
- Surface epithelium damage
- Hyperosmolar stress

- Aqueous Tear Deficiency
- Tear Film Instability
- Evaporative Dry Eye

What do damaged epi cells do that directly contributes to promoting DES? They release cytokines that promote and/or facilitate inflammation.
What do damaged epi cells do that directly contributes to promoting DES?

They release cytokines that promote and/or facilitate inflammation.

While a number of cytokines are released, the BCSC emphasizes three. What are they?

- TNF
- MMP
- IL

Inflammatory cytokine release

Surface epithelium damage

Hyperosmolar stress

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity
What do damaged epi cells do that directly contributes to promoting DES?

They release cytokines that promote and/or facilitate inflammation.

While a number of cytokines are released, the BCSC emphasizes three. What are they?

-- TNF
-- MMP-9
-- IL-1

Inflammatory cytokine release

Surface epithelium damage

Hyperosmolar stress

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

What do damaged epi cells do that directly contributes to promoting DES?
They release cytokines that promote and/or facilitate inflammation

What negative effects does MMP-9 have on the ocular surface?
It cleaves epi cells from their BM, and from one another, by disrupting junctional elements

How do these effects manifest clinically, ie, at the slit lamp?
As increased fluorescein staining in the form of punctate epithelial erosions
What do damaged epi cells do that directly contributes to promoting DES?
They release cytokines that promote and/or facilitate inflammation.

While a number of cytokines are released, the BCSC emphasizes three.
- TNF
- MMP-9
- IL-1

What negative effects does MMP-9 have on the ocular surface?
It cleaves epi cells from their BM, and from one another, by disrupting junctional elements.

If these effects manifest clinically, i.e., at the slit lamp?
As increased fluorescein staining in the form of punctate epithelial erosions.

Dry Eye Syndrome

Inflammation

Surface epithelium damage

Hyperosmolar stress

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

Evaporative Dry Eye

Aqueous Tear Deficiency

Tear Film Instability

Surface epithelium damage

Hyperosmolar stress

Tear hyperosmolarity

What do damaged epi cells do that directly contributes to promoting DES?

They release cytokines that promote and/or facilitate inflammation.

While a number of cytokines are released, the BCSC emphasizes three:

--TNF
--MMP-9
--IL-1

What negative effects does MMP-9 have on the ocular surface?

It cleaves epi cells from their BM, and from one another, by disrupting junctional elements.

How do these effects manifest clinically, i.e., at the slit lamp?

As increased fluorescein staining in the form of punctate epithelial erosions.
What do damaged epi cells do that directly contributes to promoting DES?
They release cytokines that promote and/or facilitate inflammation.

While a number of cytokines are released, the BCSC emphasizes three:
- TNF
- MMP-9
- IL-1

What negative effects does MMP-9 have on the ocular surface?
It cleaves epi cells from their BM, and from one another, by disrupting junctional elements.

How do these effects manifest clinically, i.e., at the slit lamp?
As increased fluorescein staining in the form of punctate epithelial erosions.

Surface epithelium damage

Hyperosmolar stress

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Dry Eye Syndrome

Tear hyperosmolarity
What do damaged epi cells do that directly contributes to promoting DES?

They release cytokines that promote and/or facilitate inflammation.

While a number of cytokines are released, the BCSC emphasizes three:
- TNF
- MMP
- IL-1

TNF and IL-1 have a variety of effects, but the BCSC dwells on one in particular—which is it?

Promotion of apoptosis among surface epi cells (which also leads to PEE)
What do damaged epi cells do that directly contributes to promoting DES?
They release cytokines that promote and/or facilitate inflammation.

While a number of cytokines are released, the BCSC emphasizes three:
- TNF
- MMP
- IL-1

TNF and IL-1 have a variety of effects, but the BCSC dwells on one in particular—which is it?
Promotion of apoptosis among surface epi cells (which also leads to PEE)
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity

What do damaged epi cells do that directly contributes to promoting DES?
They release cytokines that promote and/or facilitate inflammation.

While a number of cytokines are released, the BCSC emphasizes three:
- TNF
- MMP
- IL-1

TNF and IL-1 have a variety of effects, but the BCSC dwells on one in particular—which is it?
Promotion of apoptosis among surface epi cells (which also leads to PEE)
Evaporative Dry Eye Syndrome

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity

What do damaged epi cells do that directly contributes to promoting DES? They release **cytokines** that promote and/or facilitate inflammation.

While a number of cytokines are released, the BCSC emphasizes three. What are they? --TNF --MMP-9 --IL-1

Note that surface epi damage induces cytokine release... While a number of cytokines are released, the BCSC emphasizes three. What are they? --TNF --MMP-9 --IL-1

Inflammatory cytokine release

Surface epithelium damage

Note that surface epi damage induces cytokine release...
What do damaged epi cells do that directly contributes to promoting DES? They release **cytokines** that promote and/or facilitate inflammation.

While a number of cytokines are released, the BCSC emphasizes three. What are they?
- TNF: Promotes apoptosis
- MMP-9: Cleaves epi cells
- IL-1: Promotes apoptosis

Note that surface epi damage induces cytokine release… **And cytokine release induces surface epi damage.**

Aqueous Tear Deficiency
Tear Film Instability
Evaporative Dry Eye
Tear hyperosmolarity
What do damaged epi cells do that contributes to promoting DES?
They release **cytokines** that promote and/or facilitate inflammation.

While a number of cytokines are released, the BCSC emphasizes three. What are they?
- TNF: Promotes apoptosis
- MMP-9: Cleaves epi cells
- IL-1: Promotes apoptosis

Note that surface epi damage induces cytokine release... And cytokine release induces surface epi damage. Thus, a vicious cycle/circle develops in which epi damage leads directly to further epi damage.
Dry Eye Syndrome

Inflammatory cytokine release

While a number of cytokines are released, the BCSC emphasizes three. What are they?
- TNF: Promotes apoptosis
- MMP-9: Cleaves epi cells
- IL-1: Promotes apoptosis

as well as...

Note: Cytokines play another role in DES pathogenesis, one so important that we’re going to discuss it separately. Stay tuned.

While a number of cytokines are released, the BCSC emphasizes three. What are they?
- TNF: Promotes apoptosis
- MMP-9: Cleaves epi cells
- IL-1: Promotes apoptosis

Note that surface epi damage induces cytokine release... Thus, a vicious cycle/circle develops in which epi damage leads directly to further epi damage.

And cytokine release induces surface epi damage.

What do damaged epi cells do that directly contributes to promoting DES?
They release cytokines that and/or facilitate inflammation.

Note: Cytokines play another role in DES pathogenesis, one so important that we’re going to discuss it separately. Stay tuned.

While a number of cytokines are released, the BCSC emphasizes three. What are they?
- TNF: Promotes apoptosis
- MMP-9: Cleaves epi cells
- IL-1: Promotes apoptosis

as well as...

Note: Cytokines play another role in DES pathogenesis, one so important that we’re going to discuss it separately. Stay tuned.

While a number of cytokines are released, the BCSC emphasizes three. What are they?
- TNF: Promotes apoptosis
- MMP-9: Cleaves epi cells
- IL-1: Promotes apoptosis

as well as...

Note: Cytokines play another role in DES pathogenesis, one so important that we’re going to discuss it separately. Stay tuned.
Evaporative Dry Eye Syndrome

In addition to cytokine production, surface-epi damage promotes the expression of a particular ‘adhesion’ molecule—which one?

Inflammatory adhesion molecule?

Surface epithelium damage

Hyperosmolar stress

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity
In addition to cytokine production, surface-epi damage promotes the expression of a particular ‘adhesion’ molecule—which one?

Intercellular adhesion molecule 1 (ICAM-1)
In addition to cytokine production, surface-epi damage promotes the expression of a particular ‘adhesion’ molecule—which one? Intercellular adhesion molecule 1 (ICAM-1)

Increased ICAM-1 expression on two cell types are of particular importance vis a vis DES—which cell types?

Vascular endothelial cells and T-lymphocytes

Because they promote and facilitate T-cell migration to the ocular surface (and lacrimal glands)
In addition to cytokine production, surface-epi damage promotes the expression of a particular ‘adhesion’ molecule—which one? Intercellular adhesion molecule 1 (ICAM-1)

Increased ICAM-1 expression on two cell types are of particular importance vis a vis DES—which cell types? Vascular endothelial cells and T-lymphocytes
In addition to cytokine production, surface-epi damage promotes the expression of a particular ‘adhesion’ molecule—which one? Intercellular adhesion molecule 1 (ICAM-1)

Increased ICAM-1 expression on two cell types are of particular importance vis a vis DES—which cell types? Vascular endothelial cells and T-lymphocytes

Why is ICAM-1 expression on these cells particularly important in the pathophysiology of DES?
In addition to cytokine production, surface-epi damage promotes the expression of a particular ‘adhesion’ molecule—which one?
Intercellular adhesion molecule 1 (ICAM-1)

Increased ICAM-1 expression on two cell types are of particular importance vis a vis DES—which cell types?
Vascular endothelial cells and T-lymphocytes

Why is ICAM-1 expression on these cells particularly important in the pathophysiology of DES?
Because it promotes/facilitates T-cell migration to the ocular surface and lacrimal glands, where they play a central role in the inflammatory response
Now to address that other cytokine effect—what is it?

Dry Eye Syndrome

Inflammatory cytokine release

Surface epithelium damage

Hyperosmolar stress

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

Now to address that other cytokine effect—what is it?
Impedance of the afferent arm of the LFU reflex arc

Neural reflex arc disruption

Inflammatory cytokine release

Surface epithelium damage

Hyperosmolar stress

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity
Now to address that other cytokine effect—what is it? Impedance of the afferent arm of the LFU reflex arc.

How does this come about?

The **BCSC** is vague on this score, stating simply that 'inflammatory cytokines block neural signals for tear secretion.'

Graphical Representation:

- **Dry Eye Syndrome**
 - **Aqueous Tear Deficiency**
 - **Tear Film Instability**
 - **Evaporative Dry Eye**
 - **Tear hyperosmolarity**
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity

How does this come about?
The BCSC is vague on this score, stating simply that ‘inflammatory cytokines block neural signals for tear secretion’

Impedance of the afferent arm of the LFU reflex arc

Neural reflex arc disruption

Inflammatory cytokine release

Surface epithelium damage

Hyperosmolar stress

Now to address that other cytokine effect—what is it?
Dry Eye Syndrome

Diminution of input on the afferent side of the LFU arc leads to what change on the efferent side?

- Neural reflex arc disruption
- Inflammatory cytokine release
- Surface epithelium damage
- Hyperosmolar stress

Aqueous Tear Deficiency → Tear Film Instability → Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

- Decreased aqueous production
- Neural reflex arc disruption
- Inflammatory cytokine release
- Surface epithelium damage
- Hyperosmolar stress

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolality

Diminution of input on the afferent side of the LFU arc leads to what change on the efferent side? Decrease in aqueous production by the lac glands.
Diminution of input on the afferent side of the LFU arc leads to what change on the efferent side? **Decrease** in aqueous production by the lac glands.

Hol up—if aqueous production is suppressed, how come so many DES pts present with excessive tearing?

- **Decreased aqueous production**
 - Diminution of input on the afferent side of the LFU arc

Hyperosmolar stress
- **Aqueous Tear Deficiency**
- **Tear Film Instability**
- **Evaporative Dry Eye**

Tear hyperosmolarity
Evaporative Dry Eye Syndrome

Decreased aqueous production

Diminution of input on the afferent side of the LFU arc leads to what change on the efferent side?

Decrease in aqueous production by the lac glands

Hol up—if aqueous production is suppressed, how come so many DES pts present with excessive tearing?

Early in the DES course there is an inflammation-driven uptick in corneal-nerve activity that increases reflex-driven lacrimal gland stimulation, which produces the oft-observed DES pt c/o of tearing (tl;dr irritated eyes often run water).

Hyperosmolar stress

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity
Dry Eye Syndrome

Decreased aqueous production

Diminution of input on the afferent side of the LFU arc leads to what change on the efferent side?

Decrease in aqueous production by the lac glands

Hol up—if aqueous production is suppressed, how come so many DES pts present with excessive tearing?

Early in the DES course there is an inflammation-driven uptick in corneal-nerve activity that increases reflex-driven lacrimal gland stimulation, which produces the oft-observed DES pt c/o of tearing (tl;dr irritated eyes often run water).

Later in the dz process, cumulative nerve damage leads to a diminution in afferent input and thus a decrease in lac gland stimulation, resulting in the decrease in aqueous production as described here.
Evaporative Dry Eye

Dry Eye Syndrome

Decreased aqueous production

Neural reflex arc disruption

Note that neural reflex arc disruption decreases aqueous production…

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity
Evaporative Dry Eye

Dry Eye Syndrome

Decreased aqueous production

Neural reflex arc disruption

Note that neural reflex arc disruption decreases aqueous production… And decreased aqueous production worsens tear hyperosmolarity, which in turn starts the entire process over again.

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmosmolarity

DES feedback loop!
Dry Eye Syndrome

Decreased aqueous production

Neural reflex arc disruption

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity

Note that neural reflex arc disruption decreases aqueous production... \textit{And decreased aqueous production worsens tear hyperosmolarity, which in turn starts the entire process over again.} Thus, a vicious cycle/circle develops in which \textit{decreased aqueous production leads directly to further decreases in aqueous production.}
You may have heard previously of the ‘vicious circle’ of DES. But we have IDed two such locations in the process. So which of these represents the vicious circle?
You may have heard previously of the ‘vicious circle’ of DES. But we have IDed two such locations in the process. So which of these represents the vicious circle? That depends on who you ask, and making you aware of this dependency is the point of this question.
You may have heard previously of the ‘vicious circle’ of DES. But we have IDed two such locations in the process. So which of these represents the vicious circle? That depends on who you ask, and making you aware of this dependency is the point of this question.
You may have heard previously of the ‘vicious circle’ of DES. But we have IDed two such locations in the process. So which of these represents the vicious circle? That depends on who you ask, and making you aware of this dependency is the point of this question.
You may have heard previously of the ‘vicious circle’ of DES. *But we have IDed two such locations in the process. So which of these represents the vicious circle? That depends on who you ask, and making you aware of this dependency is the point of this question.*

So when getting pimped re the DES vicious circle concept, be aware your attending might have one or the other in mind, and so be prepared to modify your response accordingly!

Some *Academy* sources refer to this as ‘the’ vicious cycle of DES…

DES feedback loop!
Dry Eye Syndrome

Decreased aqueous production

Hol up—we also identified this (increased TFI \rightarrow hyperosmolar epi damage \rightarrow decreased number of goblet cells \rightarrow increased TFI) vicious circle. What about it?

Conj

$^\wedge$Surface epithelium damage

Tear Film

Hyperosmolar stress

Aqueous Tear Deficiency

Evaporative Dry Eye

Tear Film Instability

Tear hyperosmosmolarity

DES feedback loop!
Hol up—we also identified this (increased TFI → hyperosmolar epi damage → decreased number of goblet cells → increased TFI) vicious circle. What about it? That one seems to get no love from anyone, so I doubt your attending will have it in mind if/when she mentions the ‘vicious circle of DES’.
(This is a good point in the set to take a break)
Dry Eye Syndrome

- Decreased aqueous production
- Neural reflex arc disruption
- Inflammatory cytokine release
- Surface epithelium damage
- Hyperosmolar stress

Aqueous Tear Deficiency
Tear Film Instability
Evaporative Dry Eye

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

- Decreased aqueous production
- Neural reflex arc disruption
- Inflammatory cytokine release
- Surface epithelium damage
- Hyperosmolar stress

1) Increase tear volume

Tear volume

Aqueous Tear

Tear Film

Instability

Evaporative Dry Eye

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Evaporative Dry Eye

Dry Eye Syndrome

Decreased aqueous production

Neural reflex arc disruption

Inflammatory cytokine release

Surface epithelium damage

Hyperosmolar stress

1) Increase tear volume
2) Decrease tear evaporation

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume

2) Decrease tear evaporation

3) Prevent cytokine release and/or mitigate their effects
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume?

1) Increase tear volume

2) Decrease tear evaporation

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

Tear Film Instability

Evaporative Tear evaporation

Dry Eye
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume? Supplementing the tear lake with artificial tears.

1) Increase tear volume

2) Decrease tear evaporation

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears

1) Increase tear volume

2) Decrease tear evaporation

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume? Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

1) Increase tear volume

Tear volume

Tear Film Instability

Evaporative Dry Eye

2) Decrease tear evaporation

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume? Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

Artificial tears

What is the formal name for artificial tears?

What is the most straightforward means of increasing aqueous volume?

1) Increase tear volume

Aqueous Tear

Tear Film Instability

Evaporative Dry Eye

Tear evaporation

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
 - Tear Film Instability
 - Tear evaporation
 - Evaporative Dry Eye

Tear volume

What is the formal name for artificial tears? They are ophthalmic demulcents.

What is the most straightforward means of increasing aqueous volume? Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

mitigate their effects

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is a demulcent? A substance that, when applied, soothes inflamed mucous membranes.

The word demulcent can also refer to the specific molecule that conveys the soothing effect; e.g., ‘ATs contain a demulcent that…’

What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives.
Evaporative Dry Eye

Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume? Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

1) Increase tear volume

Tear Film Instability

Artificial tears

Mitigate their effects

What is the formal name for artificial tears? They are ophthalmic demulcents

What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume

What is the most straightforward means of increasing aqueous volume? Supplanting the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

What is the formal name for artificial tears? They are ophthalmic demulcents.

In general terms, what is a demulcent?

What are the two most common molecules used as demulcents in ATs?

Polyvinyl alcohol, and cellulose derivatives.
Dry Eye Syndrome

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume

2) Decrease tear evaporation

3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

What is the formal name for artificial tears?
They are ophthalmic demulcents

In general terms, what is a demulcent?
A substance that, when applied, soothes inflamed mucous membranes

What are the two most common molecules used as demulcents in ATs?
Polyvinyl alcohol, and cellulose derivatives
Dry Eye Syndrome

- Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume? Supplemetning the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

What is the formal name for artificial tears? They are ophthalmic demulcents.

In general terms, what is a demulcent? A substance that, when applied, soothes inflamed mucous membranes.

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’ What are the two most common molecules used as demulcents in ATs?

- Polyvinyl alcohol
- Cellulose derivatives
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume?
Artificial tears

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

1) Increase tear volume
Tear volume

In general terms, what is a demulcent?
A substance that, when applied, soothes inflamed mucous membranes

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’

What are the two most common molecules used as demulcents in ATs?
Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

- Tear volume
- Tear evaporation
- Neural reflex arc disruption

Tear Film Instability

Surface epithelium damage

Inflammatory cytokine release

Decreased aqueous production
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume? Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

What is the formal name for artificial tears? Tear substitutes are “the mainstay of treatment for ATD.”

What is the less-formal name for the active ingredient in an AT preparation? Artificial tears

The word ‘demulcent’ can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’

What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose

The word ‘demulcent’ can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’

What is the less-formal name for the active ingredient in an AT preparation? Artificial tears

The word ‘demulcent’ can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’

What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume

Artificial tears

2) Decrease tear evaporation

3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume? Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

What is the formal name for artificial tears? Tear substitutes are “the mainstay of treatment for ATD.”

What is the less-formal name for the active ingredient in an AT preparation? Artificial tears

The word ‘demulcent’ can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’

What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose

The word ‘demulcent’ can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’

What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume? Supplemented by artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

1) Increase tear volume

Mitigate their effects

What is the formal name for artificial tears? They are ophthalmic demulcents.

What is the less-formal name for the active ingredient in an AT preparation? A wetting agent; eg, “Carboxymethylcellulose is the wetting agent in a number of AT formulations.”

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, “ATs contain a demulcent that…” What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

Evaporative

Dry Eye

Aqueous Tear Deficiency

Tear Hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume? Supplementation the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

What is the formal name for artificial tears? They are ophthalmic demulcents.

In general terms, what is a demulcent? A substance that, when applied, soothes inflamed mucous membranes.

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’ What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose.

What is the less-formal name for the active ingredient in an AT preparation? A wetting agent.

The term wetting agent refers to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’ What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose.
Dry Eye Syndrome

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume? Supplemeting the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

What is the formal name for artificial tears? Tear substitutes are “the mainstay of treatment for ATD.”

What is the less-formal name for the active ingredient in an AT preparation? A wetting agent; eg, ‘Carboxymethylcellulose is the wetting agent in a number of AT formulations’

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’ What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose

What is the less-formal name for the active ingredient in an AT preparation? A wetting agent; eg, ‘Carboxymethylcellulose is the wetting agent in a number of AT formulations’

Term wetting agent refers to the specific molecule that conveys the soothing effect: eg, ‘ATs contain a demulcent that…’ What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume? Supplemented the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

1) Increase tear volume

Artificial tears

What is the formal name for artificial tears? They are ophthalmic emollients.

How does an emollient differ from a demulcent?

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’ What are the two most common molecules used as demulcents in ATs?

Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume? Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

1) Increase tear volume

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

- Tear volume
- Tear evaporation
- Tear evaporation

What is the formal name for artificial tears? They are ophthalmic emollients.

How does an emollient differ from a demulcent? An emollient is an ointment, not a liquid.

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…” What are the two most common molecules used as demulcends in ATs? Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose.
Dry Eye Syndrome

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume

What is the most straightforward means of increasing aqueous volume? Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

What is the formal name for artificial tears? They are ophthalmic emollients.

How does an emollient differ from a demulcent? An emollient is an ointment, not a liquid.

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’ What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose.

What is the most straightforward means of increasing aqueous volume?

artificial tears

mitigate their effects

In general terms, what is a demulcent?

A substance that, when applied, soothes inflamed mucous membranes.

Inflammatory cytokine release

Surface epithelium damage

Tear Film Instability

Decompressed Tear Evaporation

Decreased aqueous production

Tear volume

Aqueous Tear Production

Tear Film Hyperosmolarity

Hyperosmolar stress

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume? Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

What is the formal name for artificial tears? They are ophthalmic emollients.

How does an emollient differ from a demulcent? An emollient is an ointment, not a liquid. Emollients are best suited to overnight use.

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’ What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives, eg, methylcellulose.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume

2) Decrease tear evaporation

3) Prevent cytokine release and/or mitigate their effects
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume?

- **artificial tears**

Are preserved ATs OK, or should PFATs alone be used?

The latest (at the time of this writing) version of the *Cornea* book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the formal name for artificial tears?

They are **ophthalmic demulcents**

In general terms, what is a demulcent?

A substance that, when applied, soothes inflamed mucous membranes

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, 'ATs contain a demulcent that…'

What are the two most common molecules used as demulcents in ATs?

Polyvinyl alcohol, and cellulose derivatives

Are preserved ATs OK, or should PFATs alone be used?
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume? Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

Are preserved ATs OK, or should PFATs alone be used? The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states ‘PFATs are recommended for all pts.’ Caveat emptor.

1) Increase tear volume

Artificial tears

Tear film

Instability

Tear evaporation

Dry Eye

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

- Increase tear volume
- Decrease tear evaporation
- Prevent cytokine release and/or mitigate their effects
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume? Supplemening the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

Are preserved ATs OK, or should PFATs alone be used? The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states ‘PFATs are recommended for all pts.’ Caveat emptor.

Are preservatives the reason some ATs sting? Generally no—rather, it’s a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Artificial tears

Dermulcent

A substance that, when applied, soothes inflamed mucous membranes

Polyvinyl alcohol, and cellulose derivatives
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume? Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the formal name for artificial tears? They are ophthalmic demulcents. In general terms, what is a demulcent? A substance that, when applied, soothes inflamed mucous membranes. The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, “ATs contain a demulcent that...”

What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used? The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states ‘PFATs are recommended for all pts.’ Caveat emptor.

Are preservatives the reason some ATs sting? Generally no—rather, it’s a mismatch in pH between that of the drop and that of the ocular surface.
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Are preserved ATs OK, or should PFATs alone be used?
The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states ‘PFATs are recommended for all pts.’ Caveat emptor.

Are preservatives the reason some ATs sting?
Generally no—rather, it’s a mismatch in pH between that of the drop and that of the ocular surface.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

Are preserved ATs OK, or should PFATs alone be used?
The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states ‘PFATs are recommended for all pts.’ Caveat emptor.

Are preservatives the reason some ATs sting?
Generally no—rather, it’s a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

1) Increase tear volume

Artificial tears

Polyvinyl alcohol, and cellulose derivatives

Are preserved ATs OK, or should PFATs alone be used?

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

Are preserved ATs OK, or should PFATs alone be used?
The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states ‘PFATs are recommended for all pts.’ Caveat emptor.

Are preservatives the reason some ATs sting?
Generally no—rather, it’s a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Is there a role for **surgical** intervention in increasing tear volume?

What is the most straightforward means of increasing aqueous volume?

Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

What is artificial tears?

They are ophthalmic demulcents. In general terms, what is a demulcent?

A substance that, when applied, soothes inflamed mucous membranes.

The word demulcent can also refer to the specific molecule that conveys the soothing effect; e.g., "ATs contain a demulcent that…"

What are the two most common molecules used as demulcents in ATs?

Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used?

The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?

Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?

There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD. There are two general ways to occlude the puncta—what are they?

Briefly, what is involved in each?

Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.
Dry Eye Syndrome

Decreased aqueous production

Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume

2) Decrease tear evaporation

3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume?

Supplementing the tear lake with artificial tears.

The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

What is the formal name for artificial tears?

They are ophthalmic demulcents.

In general terms, what is a demulcent?

A substance that, when applied, soothes inflamed mucous membranes.

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, 'ATs contain a demulcent that…'

What are the two most common molecules used as demulcents in ATs?

Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used?

The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?

Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to try a different formulation.

Is there a role for surgical intervention in increasing tear volume?

There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they?

Briefly, what is involved in each?

Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

Is there a role for surgical intervention in increasing tear volume?
There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

What is the formal name for artificial tears?
They are ophthalmic demulcents.

In general terms, what is a demulcent?
A substance that, when applied, soothes inflamed mucous membranes. The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’ What are the two most common molecules used as demulcents in ATs?
Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used?
The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states ‘PFATs are recommended for all pts.’ Caveat emptor.

Are preservatives the reason some ATs sting?
Generally no—rather, it’s a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?
There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they?
Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume?

Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

Is there a role for surgical intervention in increasing tear volume?

There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume?

Supplementing the tear lake with artificial tears...

What is the formal name for artificial tears?

They are ophthalmic demulcents.

In general terms, what is a demulcent?

A substance that, when applied, soothes inflamed mucous membranes. The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’

What are the two most common molecules used as demulcents in ATs?

Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used?

The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?

Generally no—rather, it’s a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?

There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they?

Briefly, what is involved in each?

Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

What is the formal name for artificial tears?
They are ophthalmic demulcents.

In general terms, what is a demulcent?
A substance that, when applied, soothes inflamed mucous membranes. The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’

What are the two most common molecules used as demulcents in ATs?
Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used?
The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states ‘PFATs are recommended for all pts.’ Caveat emptor.

Are preservatives the reason some ATs sting?
Generally no—rather, it’s a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?
There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they?
Reversible and permanent.

1) Increase tear volume

Tear evaporation

Tear Film

Instability

Dry Eye

Aquous Tear

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume?

Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

What is the formal name for artificial tears?

They are ophthalmic demulcents.

In general terms, what is a demulcent?

A substance that, when applied, soothes inflamed mucous membranes. The word demulcent can also refer to the specific molecule that conveys the soothing effect; e.g., "ATs contain a demulcent that…"

What are the two most common molecules used as demulcents in ATs?

Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used?

The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?

Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?

There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they?

Briefly, what is involved in each?

Reversible and permanent.

1) Increase tear volume

2) Decrease tear evaporation

3) Prevent cytokine release and/or mitigate their effects

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. Increase tear volume
2. Decrease tear evaporation
3. Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

What is the formal name for artificial tears?
They are ophthalmic demulcents.

In general terms, what is a demulcent?
A substance that, when applied, soothes inflamed mucous membranes. The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, "ATs contain a demulcent that…"

What are the two most common molecules used as demulcents in ATs?
Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used?
The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?
Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?
There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they?

Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of , usually) is stuffed into the punctum, blocking it.

In permanent occlusion, involves applying heat to the inner aspect of the punctum, scarring it closed.
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume?

Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

What is the formal name for artificial tears?

They are ophthalmic demulcents.

In general terms, what is a demulcent?

A substance that, when applied, soothes inflamed mucous membranes.

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, 'ATs contain a demulcent that…'

What are the two most common molecules used as demulcents in ATs?

Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used?

The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?

Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?

There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they?

Briefly, what is involved in each?

Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it.

Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Is there a role for surgical intervention in increasing tear volume? There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they?

Briefly, what is involved in each?

Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying [] to the inner aspect of the punctum, scarring it closed.
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. Increase tear volume
2. Decrease tear evaporation
3. Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

What is the formal name for artificial tears?
They are ophthalmic demulcents.

In general terms, what is a demulcent?
A substance that, when applied, soothes inflamed mucous membranes.
The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, 'ATs contain a demulcent that…'

What are the two most common molecules used as demulcents in ATs?
Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used?
The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?
Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to try a different formulation.

Is there a role for surgical intervention in increasing tear volume?
There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they?
Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.
1) Increase tear volume

What complications are associated with punctal occlusion?

There are indeed—**punctal occlusion** is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they?

Briefly, what is involved in each?

Reversible and permanent. In **reversible occlusion**, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. **Permanent occlusion** involves applying heat to the inner aspect of the punctum, scarring it closed.

What is the name of the procedure that increases aqueous production?

What is the procedure that decreases tear evaporation?

What is the procedure that mitigates the release of inflammatory cytokines?

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

- **Tear Volume**
- **Tear Film Instability**
- **Dry Eye**
Dry Eye Syndrome

Decreased aqueous production

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--?

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

What is the formal name for artificial tears?
They are ophthalmic demulcents

In general terms, what is a demulcent?
A substance that, when applied, soothes inflamed mucous membranes
The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’

What are the two most common molecules used as demulcents in ATs?
Polyvinyl alcohol, and cellulose derivatives

Are preserved ATs OK, or should PFATs alone be used?
The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states ‘PFATs are recommended for all pts.’ Caveat emptor.

Are preservatives the reason some ATs sting?
Generally no—rather, it’s a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?
There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD

There are two general ways to occlude the puncta—what are they?
Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--?

available drops, so if a pt c/o stinging tell them to dry a different formulation.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production →

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the

What is the mainstay of treatment for ATD? Tear substitutes (artificial tears). The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

What is a demulcent? A substance that, when applied, soothes inflamed mucous membranes. The word "demulcent" can also refer to the specific molecule that conveys the soothing effect; eg, "ATs contain a demulcent that..."

What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used? The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting? Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume? There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they? Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus, which means surgical removal will be required if inflammation or infections develops.

Is there a role for surgical intervention in increasing tear volume? There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they? Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume? Suplementing the tear lake with artificial tears. The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

Are preserved ATs OK, or should PFATs alone be used? The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting? Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume? There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they? Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus, which means surgical removal will be required if inflammation or infections develops.

What are the two most common molecules used as demulcents in ATs? Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used? The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting? Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume? There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they? Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus, which means surgical removal will be required if inflammation or infections develops.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume? Suplementing the tear lake with artificial tears. The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

Are preserved ATs OK, or should PFATs alone be used? The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.
Dry Eye Syndrome

Decreased aqueous production

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

What is the formal name for artificial tears?
They are ophthalmic demulcents.

In general terms, what is a demulcent?
A substance that, when applied, soothes inflamed mucous membranes. The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, 'ATs contain a demulcent that…'

What are the two most common molecules used as demulcents in ATs?
Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used?
The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?
Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?
There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they?
Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus

Available drops, so if a pt c/o stinging tell them to dry a different formulation.
Dry Eye Syndrome

Decreased aqueous production

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus, which means surgical removal will be required if inflammation or infection develops

There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD

There are two general ways to occlude the puncta—what are they?
Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

What are the most obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

What is the formal name for artificial tears?
They are ophthalmic demulcents.

In general terms, what is a demulcent?
A substance that, when applied, soothes inflamed mucous membranes. The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, 'ATs contain a demulcent that…'

What are the two most common molecules used as demulcents in ATs?
Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used?
The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?
Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to try a different formulation.

Is there a role for surgical intervention in increasing tear volume?
There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they? Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus, which means surgical removal will be required if inflammation or infection develops.

There are two general ways to occlude the puncta—what are they? Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus, which means surgical removal will be required if inflammation or infection develops.

What are the most obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

What is the formal name for artificial tears?
They are ophthalmic demulcents.

In general terms, what is a demulcent?
A substance that, when applied, soothes inflamed mucous membranes. The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, 'ATs contain a demulcent that…'

What are the two most common molecules used as demulcents in ATs?
Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used?
The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?
Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to try a different formulation.

Is there a role for surgical intervention in increasing tear volume?
There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they? Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus, which means surgical removal will be required if inflammation or infection develops.
Dry Eye Syndrome

Decreased aqueous production

What complications are associated with punctal occlusion?

--- They can fail: Inserts can be dislodged; adhesions can open up
--- Inserts can be over inserted, i.e., into the canaliculus, which means surgical removal will be required if inflammation or infection develops

Supplementing the tear lake with artificial tears

There is indeed—**punctal occlusion** is a commonly-performed procedure in moderate to severe ATD.

Note: There is another complication induced by the use of **punctal occlusion** that we will cover later in the slide-set.

--- They can fail: Inserts can be dislodged; adhesions can open up
--- Inserts can be over inserted, i.e., into the canaliculus, which means surgical removal will be required if inflammation or infection develops

1) Increase tear volume

- Aqueous tear film

2) Decrease tear evaporation

3) Prevent cytokine release and/or mitigate their effects

What is the most straightforward means of increasing aqueous volume?

- Supplementing the tear lake with artificial tears

The Cornea book says tear substitutes are "the mainstay of treatment for ATD.

What is the formal name for artificial tears?

They are ophthalmic demulcents.

In general terms, what is a demulcent?

A substance that, when applied, soothes inflamed mucous membranes.

The word demulcent can also refer to the specific molecule that conveys the soothing effect; e.g., "ATs contain a demulcent that…"

What are the two most common molecules used as demulcents in ATs?

Polyvinyl alcohol, and cellulose derivatives.

Are preserved ATs OK, or should PFATs alone be used?

The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?

Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?

There is indeed—**punctal occlusion** is a commonly-performed procedure in moderate to severe ATD.

There are two general ways to occlude the puncta—what are they?

- Briefly, what is involved in each?

 - Reversible and permanent. In **reversible occlusion**, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it.
 - **Permanent occlusion** involves applying heat to the inner aspect of the punctum, scarring it closed.

What complications are associated with punctal occlusion?

--- They can fail: Inserts can be dislodged; adhesions can open up
--- Inserts can be over inserted, i.e., into the canaliculus, which means surgical removal will be required if inflammation or infection develops

--- Insert can be over inserted, i.e., into the canaliculus, which means surgical removal will be required if inflammation or infection develops

--- Insert can be over inserted, i.e., into the canaliculus, which means surgical removal will be required if inflammation or infection develops

--- Insert can be over inserted, i.e., into the canaliculus, which means surgical removal will be required if inflammation or infection develops

--- Insert can be over inserted, i.e., into the canaliculus, which means surgical removal will be required if inflammation or infection develops

Note: There is another complication induced by the use of **punctal occlusion** that we will cover later in the slide-set.
Dry Eye Syndrome

Decreased aqueous production

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus, which means surgical removal will be required if inflammation or infection develops

There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD

The Cornea book mentions two other surgical interventions—vastly less common than punctal plugging—that are occasionally indicated. What are they?
--?
--?

What is the most straightforward means of increasing aqueous volume?
Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are “the mainstay of treatment for ATD.”

What is the formal name for artificial tears?
They are ophthalmic demulcents

In general terms, what is a demulcent?
A substance that, when applied, soothes inflamed mucous membranes
The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, ‘ATs contain a demulcent that…’

What are the two most common molecules used as demulcents in ATs?
Polyvinyl alcohol, and cellulose derivatives

Are preserved ATs OK, or should PFATs alone be used?
The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states ‘PFATs are recommended for all pts.’ Caveat emptor.

Are preservatives the reason some ATs sting?
Generally no—rather, it’s a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?
There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD

There are two general ways to occlude the puncta—what are they?
Briefly, what is involved in each?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

The Cornea book mentions two other surgical interventions—vastly less common than punctal plugging—that are occasionally indicated. What are they?
--?
--?

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus, which means surgical removal will be required if inflammation or infection develops

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Evaporative Dry Eye

Dry Eye Syndrome

Decreased aqueous production

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, i.e., into the canaliculus, which means surgical removal will be required if inflammation or infection develops

What is the most straightforward means of increasing aqueous volume?
1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

Tear Film Instability
Surface epithelium damage
Neural reflex arc disruption

Inflammatory cytokine release
Decreased aqueous production
Tear hyperosmolarity

What is the formal name for artificial tears?
They are ophthalmic demulcents

In general terms, what is a demulcent?
A substance that, when applied, soothes inflamed mucous membranes

The word demulcent can also refer to the specific molecule that conveys the soothing effect; e.g., "ATs contain a demulcent that…"

What are the two most common molecules used as demulcents in ATs?
Polyvinyl alcohol, and cellulose derivatives

Are preserved ATs OK, or should PFATs alone be used?
The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?
Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?
There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD

The Cornea book mentions two other surgical interventions—vastly less common than punctal plugging—that are occasionally indicated. What are they?
--Correction of eyelid malposition
--?

What are the two general ways to occlude the puncta—what are they?
Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

The Cornea book mentions two other surgical interventions—vastly less common than punctal plugging—that are occasionally indicated. What are they?

What complications are associated with punctal occlusion?
--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, i.e., into the canaliculus, which means surgical removal will be required if inflammation or infection develops
Dry Eye Syndrome

Decreased aqueous production

What is the most straightforward means of increasing aqueous volume?

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

Evaporative Dry Eye

What is the formal name for artificial tears?

They are ophthalmic demulcents

In general terms, what is a demulcent?

A substance that, when applied, soothes inflamed mucous membranes

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, 'ATs contain a demulcent that…'

What are the two most common molecules used as demulcents in ATs?

Polyvinyl alcohol, and cellulose derivatives

Are preserved ATs OK, or should PFATs alone be used?

The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?

Generally no—rather, it’s a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?

There is indeed—punctal occlusion is a commonly-performed procedure in moderate to severe ATD

The Cornea book mentions two other surgical interventions—vastly less common than punctal plugging—that are occasionally indicated. What are they?

--Correction of eyelid malposition

What complications are associated with punctal occlusion?

--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus, which means surgical removal will be required if inflammation or infection develops

Two general ways to occlude the puncta—what are they?

Briefly, what is involved in each?

Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

The Cornea book mentions two other surgical interventions—vastly less common than punctal plugging—that are occasionally indicated. What are they?

--Correction of eyelid malposition
Dry Eye Syndrome

Decreased aqueous production

What are the three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

Evaporative Dry Eye

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

There is indeed—**punctal occlusion** is a commonly-performed procedure in moderate to severe ATD

The Cornea book mentions two other surgical interventions—vastly less common than punctal plugging—that are occasionally indicated. What are they?

--Correction of eyelid malposition
--Tarsorrhaphy

What is the most straightforward means of increasing aqueous volume?

Supplementing the tear lake with artificial tears. The Cornea book says tear substitutes are "the mainstay of treatment for ATD."

What is the formal name for artificial tears?

They are ophthalmic demulcents. In general terms, what is a demulcent?

A substance that, when applied, soothes inflamed mucous membranes.

The word demulcent can also refer to the specific molecule that conveys the soothing effect; eg, 'ATs contain a demulcent that…'

What are the two most common molecules used as demulcents in ATs?

Polyvinyl alcohol, and cellulose derivatives

Are preserved ATs OK, or should PFATs alone be used?

The latest (at the time of this writing) version of the Cornea book is conflicting on this. One page recommends preserved ATs up to 4x/d for mild dry eyes, whereas the next page states 'PFATs are recommended for all pts.' Caveat emptor.

Are preservatives the reason some ATs sting?

Generally no—rather, it's a mismatch in pH between that of the drop and that of the ocular surface. The pH varies widely among available drops, so if a pt c/o stinging tell them to dry a different formulation.

Is there a role for surgical intervention in increasing tear volume?

There is indeed—**punctal occlusion** is a commonly-performed procedure in moderate to severe ATD

There are two general ways to occlude the puncta—what are they?

Briefly, what is involved in each?

Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

The Cornea book mentions two other surgical interventions—vastly less common than punctal plugging—that are occasionally indicated. What are they?

--Correction of eyelid malposition
--Tarsorrhaphy

What complications are associated with punctal occlusion?

--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus, which means surgical removal will be required if inflammation or infection develops

Is there a role for surgical intervention in increasing tear volume?

There is indeed—**punctal occlusion** is a commonly-performed procedure in moderate to severe ATD

There are two general ways to occlude the puncta—what are they?

Briefly, what is involved in each?

Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

The Cornea book mentions two other surgical interventions—vastly less common than punctal plugging—that are occasionally indicated. What are they?

--Correction of eyelid malposition
--Tarsorrhaphy

What complications are associated with punctal occlusion?

--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus, which means surgical removal will be required if inflammation or infection develops

There is indeed—**punctal occlusion** is a commonly-performed procedure in moderate to severe ATD

There are two general ways to occlude the puncta—what are they?

Briefly, what is involved in each?

Reversible and permanent. In reversible occlusion, a plug (composed of silicone, usually) is stuffed into the punctum, blocking it. Permanent occlusion involves applying heat to the inner aspect of the punctum, scarring it closed.

The Cornea book mentions two other surgical interventions—vastly less common than punctal plugging—that are occasionally indicated. What are they?

--Correction of eyelid malposition
--Tarsorrhaphy

What complications are associated with punctal occlusion?

--They can fail: Inserts can be dislodged; adhesions can open up
--Inserts can be over inserted, ie, into the canaliculus, which means surgical removal will be required if inflammation or infection develops
Dry Eye Syndrome

- Decreased aqueous production
- Neural reflex arc disruption
- Inflammatory cytokine release

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?

Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

Neural reflex arc disruption

1) Increase tear volume

2) Decrease tear evaporation

3) Prevent cytokine release and/or mitigate their effects

Inflammatory cytokine release

Hyperosmolar stress

Tear Film Instability

Evaporative Dry Eye

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?

Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Dry Eye Syndrome

Decreased aqueous production

Neural reflex arc disruption

Hyperosmolar stress

Inflammatory cytokine release

Surface epithelium damage

Neural reflex arc disruption

Hyperosmolar stress

Inflammatory cytokine release

Tear Film Instability

Decreased aqueous production

Tear evaporation

Tear volume

Aqueous Tear Film

Evaporative Dry Eye

Lid hygiene

What two fundamental steps are involved in lid hygiene?

1) ?

2) ?

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?

Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1) ?

2) ?
Dry Eye Syndrome

- Decreased aqueous production
- Neural reflex arc disruption
- Inflammatory cytokine release

3) Prevent cytokine release and/or mitigate their effects

- Hyperosmolar stress
- Surface epithelium damage
- Neural reflex arc disruption
- Inflammatory cytokine release

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Lid hygiene

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?

- Lid hygiene

The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1) Application of [] to the eyelids to [] the abnormal meibum
2) ?

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Aqueous Tear

Tear Film

Instability

Evaporative Dry Eye

Tear evaporation

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Hyperosmolar stress

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

1) Increase tear volume

2) Decrease tear evaporation

3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay tx of ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) ???

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

3) Prevent cytokine release and/or mitigate their effects

Increased aqueous production

Neural reflex arc disruption

Inflammatory cytokine release

Hyperosmolar stress

Surface epithelium damage

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

Two fundamental steps involved in lid hygiene:

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum
Dry Eye Syndrome

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Tear Volume
Tear Film Instability
Evaporative Dry Eye

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

- Increased aqueous production
- Neural reflex arc disruption
- Inflammatory cytokine release

Hyperosmolar stress

Just as ATs are the mainstay tx of ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.
Dry Eye Syndrome

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?
Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.
Dry Eye Syndrome

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?
Lid hygiene. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.
Dry Eye Syndrome

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Lid hygiene

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Evaporative Dry Eye Syndrome

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better).

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?
Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum.
Evaporative Dry Eye

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, i.e., the temperature at which the normally liquid meibum solidifies.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. **Increase tear volume**
2. **Decrease tear evaporation**
3. **Prevent cytokine release and/or mitigate their effects**

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? **Lid hygiene.** The book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What are the two fundamental steps involved in lid hygiene?
1. Application of heat to the eyelids to soften the abnormal meibum
2. Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, i.e., the temperature at which the normally liquid meibum solidifies.

Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume

2) Decrease tear evaporation

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature

Lid hygiene

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature
Evaporative Dry Eye

Dry Eye Syndrome

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?
Lid hygiene

The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.
Dry Eye Syndrome

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) **Increase tear volume**
2) **Decrease tear evaporation**
3) **Prevent or mitigate the hyperosmolar stress**

Lid hygiene
- Application of heat to the eyelids to soften the abnormal meibum
- Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil.

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil.

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil.

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) **Increase tear volume**
2) **Decrease tear evaporation**
3) **Prevent or mitigate the hyperosmolar stress**

Lid hygiene
- Application of heat to the eyelids to soften the abnormal meibum
- Compression/massage of the lid margin to express the abnormal meibum

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Normal meibum
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Lid hygiene

Mainstay tx of EDE?

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a solid at body temperature.

Application of heat to the eyelids to soften the abnormal meibum
Compress/massage of the lid margin to express the abnormal meibum

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a solid at body temperature.
Evaporative Dry Eye

Dry Eye Syndrome

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, i.e., the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?
Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, i.e., the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Lid hygiene

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better).

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, i.e., the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste.
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume

2) Decrease tear evaporation

3) Prevent or mitigate the impact of

Lid hygiene

Tear volume

Tear Film Instability

Tear evaporation

Aqueous Tear

Evaporative Dry Eye

Hyperosmolar stress

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

What does it mean to say meibum is 'abnormal'?

What are the knock-on effects of this chemical abnormality?

Lid hygiene

1) Application of heat to the eyelids to soften the abnormal meibum

2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.
Dry Eye Syndrome

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better).

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, i.e., the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

What does it mean to say meibum is abnormal?
It means its chemical composition has been altered (and not for the better).

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, i.e., the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

Lid hygiene

So the logic underpinning lid hygiene is:
--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off?

So the logic underpinning lid hygiene is:

1) Increase volume
 --Step 1: Liquify the semisolid abnormal meibum clogging the glands
 --Step 2: Express the now-liquefied abnormal meibum from the glands

2) Decrease tear evaporation

3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition

What steps/interventions can be taken in this regard?

--Topical abx
--Topical steroids
--PO tetracyclines changes
--O3FA supplementation

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’? It means its chemical composition has been altered (and not for the better).

What are the knock-on effects of this chemical abnormality? There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

---Step 1: Liquify the semisolid abnormal meibum clogging the glands
---Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions can be taken in this regard?

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What are the two fundamental steps involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?

It means its chemical composition has been altered (and not for the better).

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, i.e., the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

1) Step 1: Liquify the semisolid abnormal meibum clogging the glands
2) Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions can be taken in this regard?
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions can be taken in this regard?
--Topical
--Topical
--?
--?

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

1) Step 1: Liquify the semisolid abnormal meibum clogging the glands
2) Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions can be taken in this regard?
--Topical
--Topical
--?
--?

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions can be taken in this regard?

--- Topical abx
--- Topical steroids
--- PO
--- PO

Lid hygiene

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

So the logic underpinning lid hygiene is:
--- Step 1: Liquify the semisolid abnormal meibum clogging the glands
--- Step 2: Express the now-liquefied abnormal meibum from the glands

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition

What steps/interventions can be taken in this regard?
--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA

So the logic underpinning lid hygiene is:

1) Increase tear volume
--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just get the remaining meibum clogging for the lid to cool off? Indeed it will—the point of hyperosmolar stress & dry eye syndrome is that it's a semisolid means it can't even get out and onto the tear film.

What steps/interventions can be taken to normalize the chemical composition of meibum?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

Why is bacterial load diminution helpful?

Bacterial lipases play an important role in altering meibum's chemical composition. Reduce the bacterial load → reduce the lipase load → reduce the rate and degree of meibum alteration.

Which topical abx is preferred for this?

Azithromycin

Lid hygiene is an essential part of tx at all stages of the disease.

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. **Decrease tear evaporation**
2. **Increase tear volume**
3. **Prevent cytokine release and/or mitigate their effects**

Lid hygiene

What two fundamental steps are involved in lid hygiene?

1. Application of heat to the eyelids to soften the abnormal meibum
2. Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, which makes it look like toothpaste. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

1. **Step 1**: Liquify the semisolid abnormal meibum clogging the glands
2. **Step 2**: Express the now-liquefied abnormal meibum from the glands

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

---Step 1: Liquify the semisolid abnormal meibum clogging the glands
---Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

Why is bacterial load diminution helpful?

Bacterial lipases play an important role in altering meibum’s chemical composition.

Topical abx

Why is topical abx preferred for this?

Bacterial lipases play an important role in altering meibum’s chemical composition. Reduce the bacterial load → reduce the lipase load → reduce the rate and degree of meibum alteration.
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

Why is bacterial load diminution helpful?

Bacterial lipases play an important role in altering meibum's chemical composition. Reduce the bacterial load → reduce the lipase load → reduce the rate and degree of meibum alteration.

Topical abx

Why is bacterial load diminution helpful?

Bacterial lipases play an important role in altering meibum’s chemical composition. Reduce the bacterial load → reduce the lipase load → reduce the rate and degree of meibum alteration.

What steps/interventions can be taken in this regard?

--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA
--Bacterial load diminution is helpful because bacterial lipases play an important role in altering meibum’s chemical composition. Reduce the bacterial load → reduce the lipase load → reduce the rate and degree of meibum alteration.

Why is bacterial load diminution helpful?

Bacterial lipases play an important role in altering meibum’s chemical composition. Reduce the bacterial load → reduce the lipase load → reduce the rate and degree of meibum alteration.

What steps/interventions can be taken in this regard?

--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA

Why is bacterial load diminution helpful?

Bacterial lipases play an important role in altering meibum’s chemical composition. Reduce the bacterial load → reduce the lipase load → reduce the rate and degree of meibum alteration.

What steps/interventions can be taken in this regard?

--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA

Why is bacterial load diminution helpful?

Bacterial lipases play an important role in altering meibum’s chemical composition. Reduce the bacterial load → reduce the lipase load → reduce the rate and degree of meibum alteration.

What steps/interventions can be taken in this regard?

--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA

Why is bacterial load diminution helpful?

Bacterial lipases play an important role in altering meibum’s chemical composition. Reduce the bacterial load → reduce the lipase load → reduce the rate and degree of meibum alteration.

What steps/interventions can be taken in this regard?

--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA

Why is bacterial load diminution helpful?

Bacterial lipases play an important role in altering meibum’s chemical composition. Reduce the bacterial load → reduce the lipase load → reduce the rate and degree of meibum alteration.

What steps/interventions can be taken in this regard?

--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA
Dry Eye Syndrome

Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?

Lid hygiene. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

Step 1: Liquify the semisolid abnormal meibum clogging the glands
Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off? Indeed it will—unless steps are taken to normalize its chemical composition

Why is bacterial load diminution helpful?

Bacterial lipases play an important role in altering meibum’s chemical composition. Reduce the bacterial load → reduce the lipase load → reduce the rate and degree of meibum alteration.

Which topical abx is preferred for this?

Topical abx: Azithromycin

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just be reabsorbed by the glands, just like before? Indeed it will—unless steps are taken to normalize its chemical composition.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?

Lid hygiene. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

Why is bacterial load diminution helpful?

Bacterial lipases play an important role in altering meibum’s chemical composition. Reduce the bacterial load→reduce the lipase load→reduce the rate and degree of meibum alteration.

Which topical abx is preferred for this?

Azithromycin

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions can be taken in this regard?

-- Topical abx
-- Topical steroids
-- PO tetracyclines
-- PO O3FA

Why is bacterial load diminution helpful?

Bacterial lipases play an important role in altering meibum’s chemical composition. Reduce the bacterial load→reduce the lipase load→reduce the rate and degree of meibum alteration.

Topical abx

Which topical abx is preferred for this?

Azithromycin
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions are possible?
- Topical abx
- Topical steroids
- PO tetracyclines
- PO O3FA

Topical abx in the pt is already on topical azithromycin—isn't that redundant?

PO tetracyclines in the pt is already on topical azithromycin—isn’t that redundant?

Topical abx
Topical steroids
PO tetracyclines
PO O3FA

So the logic underpinning lid hygiene is:

1) Increase tear volume
 --Step 1: Liquify the semisolid abnormal meibum clogging the glands
 --Step 2: Express the now-liquefied abnormal meibum from the glands

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition. What steps/interventions do this?

- Topical abx
- PO tetracyclines
- PO O3FA

What does it mean to say meibum is ‘abnormal’? It means its chemical composition has been altered (and not for the better). What are the knock-on effects of this chemical abnormality? There are several, but chief among them is they induce a change in the melting point of meibum, i.e., the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film. So the logic underpinning lid hygiene is:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’? It means its chemical composition has been altered (and not for the better). What are the knock-on effects of this chemical abnormality? There are several, but chief among them is they induce a change in the melting point of meibum, i.e., the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

1) Increase tear volume
 --Step 1: Liquify the semisolid abnormal meibum clogging the glands
 --Step 2: Express the now-liquefied abnormal meibum from the glands

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition. What steps/interventions?

- **Topical abx**
- **PO tetracyclines**
- **PO O3FA**

PO tetracyclines in the pt is already on topical azithromycin— isn’t that redundant? You’d think so, but no—in MGD management, tetracyclines act primarily as an anti-inflammatory.

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?

It means its chemical composition has been altered (and not for the better). What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

---Step 1: Liquify the semisolid abnormal meibum clogging the glands
---Step 2: Express the now-liquefied abnormal meibum from the glands

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions?
- **PO tetracyclines**
- **Topical abx**
- **Topical steroids**
- **PO O3FA**

PO tetracyclines in the pt is already on topical azithromycin—isn’t that redundant?
You’d think so, but no—in MGD management, tetracyclines act primarily as an anti-inflammatory.

What two anti-inflammatory properties do they possess?
-?
-?

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? **Lid hygiene.** The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better).

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:
---**Step 1**: Liquify the semisolid abnormal meibum clogging the glands
---**Step 2**: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions?
- **PO tetracyclines**

You’d think so, but no—in MGD management, tetracyclines act primarily as an anti-inflammatory.

What two anti-inflammatory properties do they possess?
-?
-?

Topical abx
Topical steroids
PO tetracyclines
PO O3FA

PO tetracyclines in the pt is already on topical azithromycin—isn’t that redundant?
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interactions:
- Topical abx
- PO tetracyclines
- Topical steroids
- PO O3FA

PO tetracyclines in the pt is already on topical azithromycin—
isn’t that redundant?
You’d think so, but no—in MGD management, tetracyclines act primarily as an anti-inflammatory.

What two anti-inflammatory properties do they possess?
- They reduce cytokine release
- ?

So the logic underpinning lid hygiene is:

1) Increase tear volume
- Step 1: Liquify the semisolid abnormal meibum clogging the glands
- Step 2: Express the now-liquefied abnormal meibum from the glands

2) Decrease tear evaporation

3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better).

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions?
- Topical abx
- Topical steroids
- PO tetracyclines
- PO O3FA

PO tetracyclines in the pt is already on topical azithromycin—isn’t that redundant?
You’d think so, but no—in MGD management, tetracyclines act primarily as an anti-inflammatory.

What two anti-inflammatory properties do they possess?
--They reduce cytokine release
--They reduce inflammation.

So the logic underpinning lid hygiene is:

1) Increase tear volume
--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better).

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. **Tear Volume**
 - **Step 1**: Increase tear volume
 - **Step 2**: Decrease tear evaporation
 - **Step 3**: Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? **Lid hygiene**. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1. **Application of heat to the eyelids to soften the abnormal meibum**
2. **Compression/massage of the lid margin to express the abnormal meibum**

What does it mean to say meibum is ‘abnormal’?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

- **Step 1**: Liquify the semisolid abnormal meibum clogging the glands
- **Step 2**: Express the now-liquefied abnormal meibum from the glands

PO tetracyclines in the pt is already on topical azithromycin— isn’t that redundant?

You’d think so, but no—in MGD management, tetracyclines act primarily as an anti-inflammatory

What two anti-inflammatory properties do they possess?

--They reduce cytokine release
--They inhibit MMP-9 activity

PO tetracyclines

Topical abx

Topical steroids

PO O3FA

PO tetracyclines

Topical abx

Topical steroids

PO O3FA

PO tetracyclines

Topical abx

Topical steroids

PO O3FA

Topical abx

Topical steroids

PO O3FA
Dry Eye Syndrome

Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'? It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality? There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

1) Step 1: Liquify the semisolid abnormal meibum clogging the glands
2) Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition

PO tetracyclines in the pt is already on topical azithromycin—isn’t that redundant?

You’d think so, but no—in MGD management, tetracyclines act primarily as an anti-inflammatory

What two anti-inflammatory properties do they possess?

--They reduce cytokine release
--They inhibit MMP-9 activity
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—but that is where the logic underpinning lid hygiene comes in:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

1) Increase tear volume
 --Step 1: Liquify the semisolid abnormal meibum clogging the glands
 --Step 2: Express the now-liquefied abnormal meibum from the glands

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

What steps/interventions can be taken in this regard?

PO tetracyclines
--Topical abx
--Topical steroids
--PO O3FA

What two anti-inflammatory properties do they possess?

--They reduce cytokine release
--They inhibit MMP-9 activity

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach

What are the two alternatives that lack these limitations?

Minocycline and doxycycline

How long is a typical course of tx?
4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?
Yes
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?

Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition

What steps/interventions can be taken in this regard?

--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently

What are the two alternatives that lack these limitations?

Minocycline and doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions can be taken in this regard?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better).

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

Step 1: Liquify the semisolid abnormal meibum clogging the glands
Step 2: Express the now-liquefied abnormal meibum from the glands

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion hydrolyze back to its original semisolid state? Indeed it will—that is why lid hygiene must be repeated regularly. Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?

Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Increase tear volume</td>
<td>-</td>
</tr>
<tr>
<td>2) Decrease tear evaporation</td>
<td>-</td>
</tr>
<tr>
<td>3) Prevent cytokine release and/or mitigate their effects</td>
<td>-</td>
</tr>
</tbody>
</table>

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?

Lid hygiene. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Liquify the semisolid abnormal meibum clogging the glands</td>
<td>-</td>
</tr>
<tr>
<td>2) Express the now-liquefied abnormal meibum from the glands</td>
<td>-</td>
</tr>
</tbody>
</table>

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off?

Indeed it will—that is, unless steps are taken to normalize its chemical composition

What steps/interventions can be taken in this regard?

- Topical abx
- Topical steroids
- PO tetracyclines
- PO O3FA

PO tetracyclines

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach

What are the two alternatives that lack these limitations?

- Topical abx
- Topical steroids
- PO tetracyclines
- PO O3FA

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach

What are the two alternatives that lack these limitations?

- Topical abx
- Topical steroids
- PO tetracyclines
- PO O3FA

Minocycline and doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion solidify again? Indeed it will—that is why lid hygiene is an ongoing treatment.

What steps/interventions are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

---Step 1: Liquify the semisolid abnormal meibum clogging the glands
---Step 2: Express the now-liquefied abnormal meibum from the glands

PO tetracyclines

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach

What are the two alternatives that lack these limitations?

Minocycline and doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is why the logic underpinning lid hygiene is:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What steps/interventions?
--Topical abx
--Topical steroids
--PO tetracyclines

PO tetracyclines

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations? It must be dosed frequently, and it must be taken on an empty stomach.

What are the two alternatives that lack these limitations? Minocycline and doxycycline

How long is a typical course of tx? 4-6 weeks, maybe a little longer

So the logic underpinning lid hygiene is:

--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just solidify again? Indeed it will—that is why prepping the gaze before lid hygiene is important.

What steps/interventions are involved in lid hygiene?
- Topical abx
- Topical steroids
- PO tetracyclines

PO tetracyclines

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?
- It must be dosed frequently, and it must be taken on an empty stomach

What are the two alternatives that lack these limitations?
- Minocycline and doxycycline

How long is a typical course of tx?
4-6 weeks, maybe a little longer

So the logic underpinning lid hygiene is:
- Step 1: Liquify the semisolid abnormal meibum clogging the glands
- Step 2: Express the now-liquefied abnormal meibum from the glands

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

1) Increase tear volume

2) Decrease tear evaporation

3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?

Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What are the two most important steps involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum

2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?

It means its chemical composition has been altered (and not for the better).

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

---Step 1: Liquify the semisolid abnormal meibum clogging the glands

---Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach.

What are the two alternatives that lack these limitations?

Minocycline and doxycycline.

How long is a typical course of tx?

4-6 weeks, maybe a little longer.

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes.

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach.

What are the two alternatives that lack these limitations?

Minocycline and doxycycline.

How long is a typical course of tx?

4-6 weeks, maybe a little longer.

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes.

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach.

What are the two alternatives that lack these limitations?

Minocycline and doxycycline.

How long is a typical course of tx?

4-6 weeks, maybe a little longer.

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes.

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach.

What are the two alternatives that lack these limitations?

Minocycline and doxycycline.

How long is a typical course of tx?

4-6 weeks, maybe a little longer.

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes.
Dry Eye Syndrome

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion solidify and clog the glands? Indeed it will—that is the point of the heat and massage.

What steps/interventions might be considered?

- Topical abx
- Topical steroids
- PO tetracyclines
- PO tetracyclines

PO tetracyclines

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach

What are the two alternatives that lack these limitations?

Minocycline and doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

So the logic underpinning lid hygiene is:

- Step 1: Liquify the semisolid abnormal meibum clogging the glands
- Step 2: Express the now-liquefied abnormal meibum from the glands

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

- Topical abx
- Topical steroids
- PO tetracyclines
- PO O3FA

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

So the logic underpinning lid hygiene is:

1) Increase tear volume
 --Step 1: Liquify the semisolid abnormal meibum clogging the glands
 --Step 2: Express the now-liquefied abnormal meibum from the glands

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Lid hygiene is the mainstay tx of EDE. What is it?

Lid hygiene is an essential part of tx at all stages of the disease.

What are the two fundamental steps involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition

What steps/interventions can be taken in this regard?

--Topical abx
--Topical steroids
--PO tetracyclines

PO tetracyclines

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization

What are the two alternatives that lack these limitations?

Minocycline and doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization

--?

--?

--?

--?

--?

Can the tetracyclines be used during pregnancy? Breastfeeding?

No. No.
Dry Eye Syndrome

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)

What steps/interventions can be taken to normalize the chemical composition of meibum?

--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

So the logic underpinning lid hygiene is:

--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. **Increase tear volume**
2. **Decrease tear evaporation**
3. **Prevent cytokine release and/or mitigate their effects**

The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1. Application of heat to the eyelids to soften the abnormal meibum
2. Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, meaning the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

Is it considered appropriate to repeat the course if the initial response was less than hoped-for? Yes

PO tetracyclines

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--?
--?

Topical abx
Topical steroids
PO O3FA
PO tetracyclines

What are some of the significant side effects of tetracyclines?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--?
--?

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach

What are the two alternatives that lack these limitations?

Minocycline and doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Can the tetracyclines be used during pregnancy? Breastfeeding?

No. No.
Evaporative Dry Eye

Aqueous Tear Deficiency

Tear hyperosmolarity

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?

Lid hygiene.

The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, i.e., the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

1) Step 1: Liquify the semisolid abnormal meibum clogging the glands
2) Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off?

Indeed it will—that is, unless steps are taken to normalize its chemical composition

What steps/interventions can be taken in this regard?

--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA

PO tetracyclines

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain med

Topical abx

Topical steroids

PO tetracyclines in the pt is already on topical azithromycin—isn't that redundant?

You'd think so, but no—in MGD management, tetracyclines act primarily as an anti-inflammatory

What two anti-inflammatory properties do they possess?

--They reduce cytokine release
--They inhibit MMP-9 activity

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach

What are the two alternatives that lack these limitations?

Minocycline and doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain med

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain med

Can the tetracyclines be used during pregnancy? Breastfeeding?

No. No.
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition

What steps/interventions can be taken in this regard?

--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA

PO tetracyclines

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds

It must be dosed frequently, and it must be taken on an empty stomach

What are the two alternatives that lack these limitations?

Minocycline and doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds

What are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach

What are the two alternatives that lack these limitations?

Minocycline and doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds

What are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds

Can the tetracyclines be used during pregnancy? Breastfeeding?

No. No.
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. **Increase Tear Volume**
 - Step 1: Liquify the semisolid abnormal meibum clogging the glands
 - Step 2: Express the now-liquefied abnormal meibum from the glands

2. **Decrease Tear Evaporation**

3. **Prevent cytokine release and/or mitigate their effects**

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? **Lid hygiene**. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?
1. Application of heat to the eyelids to soften the abnormal meibum
2. Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

1) **Increase Tear Volume**
2) **Decrease Tear Evaporation**
3) **Prevent cytokine release and/or mitigate their effects**

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off?
Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions can be taken in this regard?

- **PO tetracyclines**
- **Topical abx**
- **Topical steroids**
- **PO O3FA**

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?
- Photosensitization (pts should be instructed to avoid sun exposure)
- GI upset
- Potentiation of effect in certain anticoagulant meds (classic example: ?)

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?
Yes

What are some of the significant side effects of tetracyclines?
- Photosensitization (pts should be instructed to avoid sun exposure)
- GI upset
- Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
- Photosensitivity

Can the tetracyclines be used during pregnancy? Breastfeeding?
No. No.
Ok, so heat and massage of the remaining portion of the abnormal meibum—indeed it will—that is the remaining portion of the abnormal meibum.

What steps/interventions can be used to normalize the remaining portion of the abnormal meibum?

- Topical abx
- Topical steroids
- PO tetracyclines
- PO O3FA

PO tetracyclines

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

- Photosensitization (pts should be instructed to avoid sun exposure)
- GI upset
- Potentiation of effect in certain anticoagulant meds (classic example: warfarin)

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

So the logic underpinning lid hygiene is:

1) Increase tear volume
 - Step 1: Liquify the semisolid abnormal meibum clogging the glands
 - Step 2: Express the now-liquefied abnormal meibum from the glands

2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?

Lid hygiene. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

1) Increase tear volume
 - Step 1: Liquify the semisolid abnormal meibum clogging the glands
 - Step 2: Express the now-liquefied abnormal meibum from the glands

2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off?

Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions can be taken in this regard?

- Topical abx
- Topical steroids
- PO tetracyclines
- PO O3FA

PO tetracyclines

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

- Photosensitization (pts should be instructed to avoid sun exposure)
- GI upset
- Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
- ?
- ?
- ?
- ?

Can the tetracyclines be used during pregnancy? Breastfeeding?

No. No.
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. **Tear Volume**
 - **Step 1**: Increase tear production
 - **Step 2**: Decrease tear evaporation

2. **Tear Instability**
 - Prevent cytokine release and/or mitigate their effects

3. **Tear Film**
 - Prevent surface epithelium damage
 - Neural reflex arc disruption
 - Inflammatory cytokine release

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? **Lid hygiene**. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?

1. Application of heat to the eyelids to soften the abnormal meibum
2. Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:

1. **Step 1**: Liquify the semisolid abnormal meibum clogging the glands
2. **Step 2**: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions can be taken in this regard?

- **Topical abx**
- **Topical steroids**
- **PO tetracyclines**
- **PO O3FA**

PO tetracyclines

Is it considered appropriate to repeat the course if the initial response was less than hoped-for? Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

- Photosensitization (pts should be instructed to avoid sun exposure)
- GI upset
- Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
- Reduction in effectiveness of oral contraceptives
- Photosensitization

Topical abx

It must be dosed frequently, and it must be taken on an empty stomach.

What are the two alternatives that lack these limitations?

- Minocycline
- Doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

- Photosensitization (pts should be instructed to avoid sun exposure)
- GI upset
- Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
- Reduction in effectiveness of oral contraceptives
- Photosensitization
- GI upset
- Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
- Reduction in effectiveness of oral contraceptives
- Photosensitization
- GI upset
- Potentiation of effect in certain anticoagulant meds (classic example: warfarin)

Can the tetracyclines be used during pregnancy? Breastfeeding?

No. No.
Evaporative Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What are the knock-on effects of the chemical abnormality in meibum?
- There are several, but chief among them is a change in the melting point of meibum. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

What steps/interventions can be taken in this regard?
- Topical anti-inflammatory agents
- Topical steroids
- PO tetracyclines
- PO O3FA

PO tetracyclines

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?
Yes

Why is lid hygiene important?
- The cornea book says lid hygiene is “an essential part of tx at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
- It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
- There are several, but chief among them is a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies.

1) Increase tear volume

Why are topical anti-inflammatory agents, particularly tetracyclines, important in the treatment of DES?
- They reduce cytokine release
- They inhibit MMP-9 activity

What are the limitations of tetracycline use?
- It must be dosed frequently
- It must be taken on an empty stomach

What are the two alternatives that lack these limitations?
- Minocycline
- Doxycycline

How long is a typical course of tx?
4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?
Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?
- Photosensitization (pts should be instructed to avoid sun exposure)
- GI upset
- Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
- Reduction in effectiveness of oral contraceptives

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?
- It must be dosed frequently
- It must be taken on an empty stomach

What are some of the significant side effects of tetracyclines?
- Photosensitization (pts should be instructed to avoid sun exposure)
- GI upset
- Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
- Reduction in effectiveness of oral contraceptives

Can the tetracyclines be used during pregnancy? Breastfeeding?
No. No.
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it?

Lid hygiene. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off?

Indeed it will—that is, unless steps are taken to normalize its chemical composition

What steps/interventions can be taken in this regard?

--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA
--PO tetracyclines in the pt is already on topical azithromycin—isn't that redundant?

You'd think so, but no—in MGD management, tetracyclines act primarily as an anti-inflammatory

What two anti-inflammatory properties do they possess?

--They reduce cytokine release
--They inhibit MMP-9 activity

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach

What are the two alternatives that lack these limitations?

Minocycline and doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
--Reduction in effectiveness of oral contraceptives
--Teeth discoloration in children

Can the tetracyclines be used during pregnancy? Breastfeeding?

No. No.

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
--Reduction in effectiveness of oral contraceptives
--Teeth discoloration in children

Can the tetracyclines be used during pregnancy? Breastfeeding?

No. No.
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What steps/interventions?

- **PO tetracyclines**
- Topical abx
- Topical steroids
- PO O3FA
- Lid hygiene

What does it mean to say meibum is 'abnormal'?

It means its chemical composition has been altered (and not for the better).

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

Step 1: Liquify the semisolid abnormal meibum clogging the glands
Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition.

What steps/interventions can be taken in this regard?

- Topical abx
- Topical steroids
- PO tetracyclines
- PO O3FA

Topical tetracyclines are already on topical azithromycin—isn't that redundant? You’d think so, but no—in MGD management, tetracyclines act primarily as an anti-inflammatory.

What two anti-inflammatory properties do they possess?

- They reduce cytokine release
- They inhibit MMP-9 activity

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach.

What are the two alternatives that lack these limitations?

- Minocycline and doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

- Photosensitization (pts should be instructed to avoid sun exposure)
- GI upset
- Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
- Reduction in effectiveness of oral contraceptives
- Teeth discoloration in children

Can the tetracyclines be used during pregnancy? Breastfeeding?

No. No.
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?

It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?

There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

---Step 1: Liquify the semisolid abnormal meibum clogging the glands
---Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off?

Indeed it will—that is, unless steps are taken to normalize its chemical composition

What steps/interventions can be taken in this regard?

--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA

PO tetracyclines

Can the tetracyclines be used during pregnancy?

No.

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes.

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
--Reduction in effectiveness of oral contraceptives
--Teeth discoloration in children

What are the two alternatives that lack these limitations?

Minocycline and doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
--Reduction in effectiveness of oral contraceptives
--Teeth discoloration in children

What are the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
--Reduction in effectiveness of oral contraceptives
--Teeth discoloration in children

Can the tetracyclines be used during pregnancy?

No.
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?

1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'? It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality? There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:

Step 1: Liquify the semisolid abnormal meibum clogging the glands

Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won't the remaining portion just become semisolid again after the lid cools off? Indeed it will—that is, unless steps are taken to normalize its chemical composition

What steps/interventions can be taken in this regard?

Topical abx

Topical steroids

PO tetracyclines

PO O3FA

Can the tetracyclines be used during pregnancy? No

Is it considered appropriate to repeat the course if the initial response was less than hoped-for? Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)

--GI upset

--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)

--Reduction in effectiveness of oral contraceptives

--Teeth discoloration in children

Tetracycline use has limitations that make alternative cyclines easier to use. What are these limitations?

It must be dosed frequently, and it must be taken on an empty stomach

What are the two alternatives that lack these limitations?

Minocycline and doxycycline

How long is a typical course of tx?

4-6 weeks, maybe a little longer

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)

--GI upset

--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)

--Reduction in effectiveness of oral contraceptives

--Teeth discoloration in children

Can the tetracyclines be used during pregnancy?

No

What are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)

--GI upset

--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)

--Reduction in effectiveness of oral contraceptives

--Teeth discoloration in children

Can the tetracyclines be used during pregnancy?

No

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)

--GI upset

--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)

--Reduction in effectiveness of oral contraceptives

--Teeth discoloration in children

Can the tetracyclines be used during pregnancy?

No

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)

--GI upset

--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)

--Reduction in effectiveness of oral contraceptives

--Teeth discoloration in children

Can the tetracyclines be used during pregnancy?

No

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)

--GI upset

--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)

--Reduction in effectiveness of oral contraceptives

--Teeth discoloration in children

Can the tetracyclines be used during pregnancy?

No

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)

--GI upset

--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)

--Reduction in effectiveness of oral contraceptives

--Teeth discoloration in children

Can the tetracyclines be used during pregnancy?

No

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)

--GI upset

--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)

--Reduction in effectiveness of oral contraceptives

--Teeth discoloration in children

Can the tetracyclines be used during pregnancy?

No

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?

--Photosensitization (pts should be instructed to avoid sun exposure)

--GI upset

--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)

--Reduction in effectiveness of oral contraceptives

--Teeth discoloration in children

Can the tetracyclines be used during pregnancy?

No

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?

Yes
Dry Eye Syndrome

1) Increase tear volume
 --Step 1: Liquify the semisolid abnormal meibum clogging the glands
 --Step 2: Express the now-liquefied abnormal meibum from the glands

2) Decrease tear evaporation
 --Topical abx
 --Topical steroids
 --PO tetracyclines (PO O3FA)

3) Prevent cytokine release and/or mitigate their effects
 --Topical abx
 --Topical steroids
 --PO tetracyclines

Just as ABTs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is "an essential part [of tx] at all stages of the disease."

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is 'abnormal'?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it's a semisolid means it can't even get out and onto the tear film.

So the logic underpinning lid hygiene is:
--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. Tear volume
2. Tear evaporation
3. Tear film instability
Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Just as ATs are the mainstay of treating ATD, so too is there a mainstay tx of EDE. What is it? Lid hygiene. The Cornea book says lid hygiene is “an essential part [of tx] at all stages of the disease.”

What two fundamental steps are involved in lid hygiene?
1) Application of heat to the eyelids to soften the abnormal meibum
2) Compression/massage of the lid margin to express the abnormal meibum

What does it mean to say meibum is ‘abnormal’?
It means its chemical composition has been altered (and not for the better)

What are the knock-on effects of this chemical abnormality?
There are several, but chief among them is they induce a change in the melting point of meibum, ie, the temperature at which the normally liquid meibum solidifies. Normal meibum is a liquid at body temperature, which is why expressed normal meibum looks like tiny drops of vegetable oil. In contrast, the chemically-altered meibum in MGD is a semisolid at body temperature, which is why expressed abnormal meibum looks like toothpaste. So not only is the meibum in MGD altered (and thus less effective), the fact that it’s a semisolid means it can’t even get out and onto the tear film.

So the logic underpinning lid hygiene is:
--Step 1: Liquify the semisolid abnormal meibum clogging the glands
--Step 2: Express the now-liquefied abnormal meibum from the glands

OK, so heat and massage get the abnormal meibum flowing—then what? Won’t the remaining portion just become semisolid again after the lid cools off?
Indeed it will—that is, unless steps are taken to normalize its chemical composition

What steps/interventions can be taken in this regard?
--Topical abx
--Topical steroids
--PO tetracyclines
--PO O3FA

PO tetracyclines

Can the tetracyclines be used during pregnancy? Breastfeeding?
No. No.

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?
Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?
--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
--Reduction in effectiveness of oral contraceptives
--Teeth discoloration in children

Can the tetracyclines be used during pregnancy? Breastfeeding?
No. No.

Can the tetracyclines be used during pregnancy? Breastfeeding?
No. No.

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?
Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?
--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
--Reduction in effectiveness of oral contraceptives
--Teeth discoloration in children

Can the tetracyclines be used during pregnancy? Breastfeeding?
No. No.

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?
Yes

Unlike the limitations above, there are a number of other side effects that are common to all tetracyclines—what are some of the significant ones?
--Photosensitization (pts should be instructed to avoid sun exposure)
--GI upset
--Potentiation of effect in certain anticoagulant meds (classic example: warfarin)
--Reduction in effectiveness of oral contraceptives
--Teeth discoloration in children

Can the tetracyclines be used during pregnancy? Breastfeeding?
No. No.

Is it considered appropriate to repeat the course if the initial response was less than hoped-for?
Yes
Dry Eye Syndrome

Decreased aqueous production

Neural reflex arc disruption

3) Prevent cytokine release and/or mitigate their effects

Inflammatory cytokine release

What class of topical med is most effective in controlling ocular-surface inflammation?

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

- Decreased aqueous production
- Neural reflex arc disruption

3) **Prevent cytokine release and/or mitigate their effects**

Inflammatory cytokine release

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

Dry Eye Syndrome

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. Increased aqueous production
2. Decreased tear evaporation
3. Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?
Not at all—it’s just that they must be used judiciously (more shortly)
Dry Eye Syndrome

3) Prevent cytokine release and/or mitigate their effects

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

So why don’t we keep all DES pts on them?
Because of their terrible side-effect profile

Tear

Decreased aqueous production

Neural reflex arc disruption

Tear film instability

Surface epithelium damage

Inflammatory cytokine release

Hyperosmolar stress

Tear hyperosmolarity

Aqueous tear deficiency
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation? Steroids

So why don’t we keep all DES pts on them? Because of their terrible side-effect profile, ie, development of...
Dry Eye Syndrome

Deprased aqueous production

Neural reflex arc disruption

3) Prevent cytokine release and/or mitigate their effects

Inflammatory cytokine release

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

So why don’t we keep all DES pts on them?
Because of their terrible side-effect profile, ie, development of cataracts
Dry Eye Syndrome

- Decreased aqueous production
- Neural reflex arc disruption

3) **Prevent cytokine release and/or mitigate their effects**

- Inflammatory cytokine release

What class of topical med is most effective in controlling ocular-surface inflammation? Steroids

So why don’t we keep all DES pts on them? Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

Neural reflex arc disruption

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

So why don’t we keep all DES pts on them?
Because of their terrible side-effect profile, ie, development of cataracts, increased IOP

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation? Steroids

So why don’t we keep all DES pts on them? Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES? Not at all—it’s just that they must be used judiciously (more shortly)
Dry Eye Syndrome

Decreased aqueous production

Neural reflex arc disruption

3) **Prevent cytokine release and/or mitigate their effects**

Inflammatory cytokine release

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

Neural reflex arc disruption

3) Prevent cytokine release and/or mitigate their effects

Inflammatory cytokine release

What class of topical med is most effective in controlling ocular-surface inflammation? Steroids

So why don’t we keep all DES pts on them? Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Dry Eye Syndrome

Decreased aqueous production

Neural reflex arc disruption

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation? Steroids

So why don’t we keep all DES pts on them? Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES? Not at all—it’s just that they must be used judiciously (more shortly)

Inflammatory cytokine release

Tear Film Instability

Surface epithelium damage

Hyperosmolar stress

Tear hyperosmolarity

Aqueous Tear Deficiency

Evaporative Dry Eye
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation? Steroids

So why don’t we keep all DES pts on them? Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES? Not at all—it’s just that they must be used judiciously (more shortly)
Two steroid-sparing topical anti-inflammatory agents are used (in the US). What are they?
--Cyclosporine
--Lifitegrast

3) Prevent cytokine release and/or mitigate their effects

Inflammatory cytokine release

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

So why don’t we keep all DES pts on them?
Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?
Not at all—it’s just that they must be used judiciously (more shortly)

Two steroid-sparing topical anti-inflammatory agents are used (in the US). What are they?
--Cyclosporine
--Lifitegrast

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

So why don’t we keep all DES pts on them?
Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES? Not at all—it’s just that they must be used judiciously (more shortly)
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

Two steroid-sparing topical anti-inflammatories are used (in the US). What are they?
--Cyclosporine
--Lifitegrast

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

So why don’t we keep all DES pts on them?
Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?
Not at all—it’s just that they must be used judiciously (more shortly)

3) **Prevent cytokine release and/or mitigate their effects**

How do they work (in broad terms—not specific mechanisms of action)?
They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)

What’s the main drawback to their use?
It can take a l-o-n-g time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical). During the ramp-up period, compliance may become an issue as the pt gives up in frustration.
Two steroid-sparing topical anti-inflammatories are used (in the US). What are they?
--Cyclosporine
--Lifitegrast

How do they work (in broad terms—not specific mechanisms of action)?
They interfere with the action of T-cells

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

So why don’t we keep all DES pts on them?
Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?
Not at all—it’s just that they must be used judiciously (more shortly)
Two steroid-sparing topical anti-inflammatories are used (in the US). What are they?
-- Cyclosporine
-- Lifitegrast

How do they work (in broad terms—not specific mechanisms of action)?
They interfere with the action of T-cells (the recruitment of which is an important cytokine effect).

3) **Prevent cytokine release and/or mitigate their effects**

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

So why don’t we keep all DES pts on them?
Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?
Not at all—it’s just that they must be used judiciously (more shortly)

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Two steroid-sparing topical anti-inflammatories are used (in the US). What are they?
--Cyclosporine
--Lifitegrast

How do they work (in broad terms—not specific mechanisms of action)?
They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)

What’s the main drawback to their use?

3) **Prevent cytokine release and/or mitigate their effects**

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

So why don’t we keep all DES pts on them?
Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?
Not at all—it’s just that they must be used judiciously (more shortly)

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What is the main drawback to their use? It can take a long time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical).

What class of topical med is most effective in controlling ocular-surface inflammation? Steroids

So why don’t we keep all DES pts on them? Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity.

So steroids are verboten in the management of DES? Not at all—it’s just that they must be used judiciously (more shortly).

Two steroid-sparing topical anti-inflammatories are used (in the US). What are they?
--Cyclosporine
--Lifitegrast

How do they work (in broad terms—not specific mechanisms of action)? They interfere with the action of T-cells (the recruitment of which is an important cytokine effect).

What's the main drawback to their use?
It can take a l-o-n-g time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical).
Two steroid-sparing topical anti-inflammatories are used (in the US). What are they?
--Cyclosporine
--Lifitegrast

How do they work (in broad terms—not specific mechanisms of action)?
They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)

What’s the main drawback to their use?
It can take a l-o-n-g time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical). During the ramp-up period, compliance may become an issue as the pt gives up in frustration.

3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

So why don’t we keep all DES pts on them?
Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?
Not at all—it’s just that they must be used judiciously (more shortly)

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:
Two steroid-sparing topical anti-inflammatories are used (in the US). What are they?
--Cyclosporine
--Lifitegrast

How do they work (in broad terms—not specific mechanisms of action)?
They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)

What’s the main drawback to their use?
It can take a l-o-n-g time for their effects to kick in—weeks (if you’re lucky) to months (probably more realistic). During this ramp-up period, the pt may experience worse symptoms as the pt gives up in frustration.

Why does it take so long for these drugs to reach full effect?
It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?
A short course of topical steroids is ideal for this

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

So why don’t we keep all DES pts on them?
Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?
Not at all—it’s just that they must be used judiciously (more shortly)
Dry Eye Syndrome (DES) is characterized by aqueous tear deficiency, which leads to tear film instability and surface epithelium damage. Hyperosmolarity results from evaporation, which disrupts the neural reflex arc and triggers an inflammatory cytokine release.

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. **Tear volume**
2. **Tear evaporation**
3. **Prevent cytokine release and/or mitigate their effects**

Two steroid-sparing topical anti-inflammatories are used (in the US). What are they?
- Cyclosporine
- Lifitegrast

How do they work (in broad terms—not specific mechanisms of action)?
They interfere with the action of T-cells (the recruitment of which is an important cytokine effect).

What’s the main drawback to their use?

It can take a l-o-n-g time for their effects to kick in—weeks (if you’re lucky) to months (probably more typically). Ensuring the patient remains in the treatment is key, as they may give up before the effects are evident.

Why does it take so long for these drugs to reach full effect? It’s probably related to the length of the T-cell life cycle (~120 days).

What can be done to bridge the gap between commencement of therapy and onset of symptom relief? A short course of topical steroids is ideal for this.

So why don’t we keep all DES pts on them? Because of their terrible side-effect profile, i.e., development of cataracts, increased IOP, and compromised ocular-surface immunity.

So steroids are verboten in the management of DES? Not at all—it’s just that they must be used judiciously (more shortly).
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

Two steroid-sparing topical anti-inflammatories are used (in the US). What are they?

--Cyclosporine
--Lifitegrast

How do they work (in broad terms—not specific mechanisms of action)?

They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)

What’s the main drawback to their use?

It can take a l-o-n-g time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical). Even then, treatment is incomplete, with the pt giving up in frustration as the effects wane.

Why does it take so long for these drugs to reach full effect?

It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?

A short course of topical steroids is ideal for this

What is the role of a�er-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

Two steroid-sparing topical anti-inflammatories are used (in the US). What are they?

--Cyclosporine
--Lifitegrast

How do they work (in broad terms—not specific mechanisms of action)?

They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)

What’s the main drawback to their use?

It can take a l-o-n-g time for their effects to kick in—weeks (if you’re lucky) to months (probably more typically).

Frustration can run high; patients may be more likely to discontinue treatment due to the lag between initiation of therapy and symptom relief as the pt gives up in frustration.

Why does it take so long for these drugs to reach full effect?

It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?

A short course of topical steroids is ideal for this

So why don’t we keep all DES pts on them?
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

Two steroid sparing--

Cyclosporine

Lifitegrast

How do they work

They interfere with

What’s the main drawback to their use?

It can take a l-o-n-g time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical). Early adherence is critically important, or the pt may give up in frustration.

Why does it take so long for these drugs to reach full effect?

It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?

A short course of topical steroids is ideal for this

Cyclosporine has three measurable effects on the ocular surface—what are they?

--?

--?

--?

aqueous-tear production

What potential ocular side effects are concerning? Systemic?

It has none (other than stinging). It has no systemic side effects.
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

1. Increase tear volume
2. Decrease tear evaporation
3. Prevent cytokine release and/or mitigate their effects

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

Cyclosporine has three measurable effects on the ocular surface—what are they?

- Reduced T-cell numbers

What's the main drawback to their use?

It can take a long time for their effects to kick in—weeks (if you're lucky) to months (probably more realistic). For this reason, patients may become frustrated as the pt gives up in frustration.

So steroids are verboten in the management of DES?

Not at all—it's just that they must be used judiciously (more shortly)

Two steroid-sparing topical anti-inflammatories are used (in the US). What are they?

- Cyclosporine
- Lifitegrast

How do they work (in broad terms—not specific mechanisms of action)?

They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)

What's the main drawback to their use?

It can take a long time for their effects to kick in—weeks (if you're lucky) to months (probably more typical). During the ramp-up period, compliance may become an issue as the pt gives up in frustration.

Why does it take so long for these drugs to reach full effect?

It's probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?

A short course of topical steroids is ideal for this

Steroids

So why don't we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it's just that they must be used judiciously (more shortly)
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

Two steroid-sparing anti-inflammatories are used (in the US):

-- Cyclosporine
-- Lifitegrast

How do they work?

They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)

What’s the main drawback to their use?

It can take a l-o-n-g time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical). During the ramp-up period, compliance may become an issue as the pt gives up in frustration.

Why does it take so long for these drugs to reach full effect?

It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?

A short course of topical steroids is ideal for this

Cyclosporine has three measurable effects on the ocular surface—what are they?

-- Reduced T-cell numbers
-- ?
-- ?
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

Two steroid-sparing topical anti-inflammatories are used (in the US). What are they?

-- Cyclosporine
-- Lifitegrast

How do they work (in broad terms—not specific mechanisms of action)?

They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)

What’s the main drawback to their use?

It can take a long time for these drugs to reach full effect—weeks (if you’re lucky) to months (probably more typical). During the ramp-up period, compliance may become an issue as the pt gives up in frustration.

Why does it take so long for these drugs to reach full effect?

It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?

A short course of topical steroids is ideal for this

Cyclosporine has three measurable effects on the ocular surface—what are they?

- Reduced T-cell numbers
- Increased conjunctival goblet cell numbers
- (two words)

What potential ocular side effects are concerning? Systemic?

It has none (other than stinging). It has no systemic side effects.
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

Cyclosporine has three measurable effects on the ocular surface—what are they?

--Reduced T-cell numbers
--Increased conj. goblet cell numbers
--?

What’s the main drawback to their use?

It can take a long time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical). For a situation in which instant gratification is expected, it can be frustrating to the pt as the pt gives up in frustration.

Why does it take so long for these drugs to reach full effect?

It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?

A short course of topical steroids is ideal for this

Steroids

Cyclosporine has three measurable effects on the ocular surface—what are they?

--Reduced T-cell numbers
--Increased conj. goblet cell numbers
--?

What potential ocular side effects are concerning? Systemic?

It has none (other than stinging). It has no systemic side effects.

Two steroid-sparing topical anti-inflammatories are used (in the US). What are they?

--Cyclosporine
--Lifitegrast

How do they work?

They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. Increase tear volume
2. Decrease tear evaporation
3. Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

Two steroid-sparing options are used (in the US). What are they?

--Cyclosporine
--Lifitegrast

How do they work?

They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)

What’s the main drawback to their use?

It can take a lo-n-g time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical). For instance, it might take 3-6 months for the patient to feel some beneficial effect as the pt gives up in frustration.

2-3 weeks

So why does it take so long for these drugs to reach full effect?

It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?

A short course of topical steroids is ideal for this

Cyclosporine has three measurable effects on the ocular surface—what are they?

--Reduced T-cell numbers
--Increased conj goblet cell numbers
--Increased aqueous-tear production

What potential ocular side effects are concerning? Systemic?

It has none (other than stinging). It has no systemic side effects.
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?
Steroids

So why don’t we keep all DES pts on them?
Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?
Not at all—it’s just that they must be used judiciously (more shortly)

Two steroid sparing:

-- Cyclosporine
-- Lifitegrast

How do they work?
They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)

What’s the main drawback to their use?
It can take a l-o-n-g time for their effects to kick in: weeks (if you’re lucky) to months (probably more typical). During this time, compliance may become an issue as the pt gives up in frustration.

Why does it take so long for these drugs to reach full effect?
It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?
A short course of topical steroids is ideal for this

Cyclosporine has three measurable effects on the ocular surface—what are they?
-- Reduced T-cell numbers
-- Increased conj goblet cell numbers
-- Increased aqueous-tear production

What potential ocular side effects are concerning? Systemic?
It has none (other than stinging). It has no systemic side effects.
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

Two steroid-sparing

-- **Cyclosporine**
-- Lifitegrast

How do they work

They interfere with

What’s the main drawback to their use?

It can take a l-o-n-g time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical). Even then, compliance can be an issue as the pt gives up in frustration.

What are they?

-- Cyclosporine
-- Lifitegrast

Cyclosporine has three measurable effects on the ocular surface—what are they?

-- Reduced T-cell numbers
-- Increased conj goblet cell numbers
-- Increased aqueous-tear production

What potential ocular side effects are concerning?

It has none (other than stinging). It has no systemic side effects.

Why does it take so long for these drugs to reach full effect?

It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?

A short course of topical steroids is ideal for this

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)
Evaporative Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

 Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

Cyclosporine has three measurable effects on the ocular surface—what are they?

--Reduced T-cell numbers
--Increased conj goblet cell numbers
--Increased aqueous-tear production

What potential ocular side effects are concerning?

It has none (other than stinging)

Why does it take so long for these drugs to reach full effect?

It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?

A short course of topical steroids is ideal for this

Cyclosporine has three measurable effects on the ocular surface—what are they?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation? Steroids

So why don’t we keep all DES pts on them? Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES? Not at all—it’s just that they must be used judiciously (more shortly)

Cyclosporine has three measurable effects on the ocular surface—what are they?

--Reduced T-cell numbers
--Increased conj goblet cell numbers
--Increased aqueous-tear production

What potential ocular side effects are concerning? Systemic?
It has none (other than stinging)

Why does it take so long for these drugs to reach full effect? It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief? A short course of topical steroids is ideal for this

Cyclosporine has three measurable effects on the ocular surface—what are they?

--Reduced T-cell numbers
--Increased conj goblet cell numbers
--Increased aqueous-tear production

Two steroid sparing—

--Cyclosporine
--Lifitegrast

How do they work They interfere with

What’s the main drawback to their use? It can take a l-o-n-g time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical). During this time of inaction, the pt may lose hope as the pt gives up in frustration.

So why don’t we keep all DES pts on them? Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES? Not at all—it’s just that they must be used judiciously (more shortly)
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. Increase tear volume
2. Decrease tear evaporation
3. Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation? Steroids

So why don’t we keep all DES pts on them? Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES? Not at all—it’s just that they must be used judiciously (more shortly)

Cyclosporine has three measurable effects on the ocular surface—what are they?

- Reduced T-cell numbers
- Increased conj. goblet cell numbers
- Increased aqueous-tear production

What potential ocular side effects are concerning? Systemic? It has none (other than stinging). It has no systemic side effects.

Why does it take so long for these drugs to reach full effect? It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief? A short course of topical steroids is ideal for this

Two steroid sparing anti-inflammatories are used in the US:

- Cyclosporine
- Lifitegrast

How do they work? They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)

So why don’t we keep all DES pts on them?
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

Two steroid-sparing

Cyclosporine has three measurable effects on the ocular surface—

Lifitegrast

How does lifitegrast reduce T-cell activity?

Cyclosporine has three measurable effects on the ocular surface—

--Reduced T-cell numbers
--Increased conjunctival goblet cell numbers
--Increased aqueous-tear production

What potential ocular side effects are concerning? Systemic?

It has none (other than stinging). It has no systemic side effects.

How does lifitegrast reduce T-cell activity?

By inhibiting ICAM-1 binding

We covered it earlier in the slide-set, but remind me:

What role does ICAM-1 play in the pathophysiology of DES?

It promotes/facilitates T-cell migration to the ocular surface and lacrimal gland
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

Two steroid-sparing...
Evaporative Dry Eye

Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

Two steroid-sparing—Cyclosporine has three measurable effects on the ocular surface—

Lifitegrast

How does lifitegrast reduce T-cell activity?

By inhibiting ICAM-1 binding

What’s the main drawback to their use?

It can take a looooong time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical). During the ramp-up period, compliance may become an issue as the pt gives up in frustration.

Why does it take so long for these drugs to reach full effect?

It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?

A short course of topical steroids is ideal for this

Steroids

What potential ocular side effects are concerning? Systemic?

It has none (other than stinging). It has no systemic side effects.

How does lifitegrast reduce T-cell activity?

By inhibiting ICAM-1 binding

We covered it earlier in the slide-set, but remind me:

What role does ICAM-1 play in the pathophysiology of DES?

It promotes/facilitates T-cell migration to the ocular surface and lacrimal gland
Evaporative Dry Eye Syndrome

Aqueous Tear Deficiency

Tear hyperosmolarity

Hyperosmolar stress

Tear Film Instability

Surface epithelium damage

Neural reflex arc disruption

Inflammatory cytokine release

Decreased aqueous production

With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1) Increase tear volume
2) Decrease tear evaporation
3) Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

How do they work (in broad terms—not specific mechanisms of action)?

They interfere with the action of T-cells (the recruitment of which is an important cytokine effect)

What’s the main drawback to their use?

It can take a long time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical). During the ramp-up period, compliance may become an issue as the pt gives up in frustration.

Why does it take so long for these drugs to reach full effect?

It’s probably related to the length of the T-cell life cycle (~120 days)

What role does ICAM-1 play in the pathophysiology of DES?

It promotes/facilitates T-cell migration to the ocular surface and lacrimal gland

How does lifitegrast reduce T-cell activity?

By inhibiting ICAM-1 binding

We covered it earlier in the slide-set, but remind me:

Cyclosporine has three measurable effects on the ocular surface—

--Reduced T-cell numbers
--Increased conjunctival goblet cell numbers
--Increased aqueous-tear production

What potential ocular side effects are concerning? Systemic?

It has none (other than stinging). It has no systemic side effects.

How does lifitegrast reduce T-cell activity?

By inhibiting ICAM-1 binding

We covered it earlier in the slide-set, but remind me:

What role does ICAM-1 play in the pathophysiology of DES?
With regards to treating DES—there are three obvious interdiction points in its pathogenesis:

1. Increase tear volume
2. Decrease tear evaporation
3. Prevent cytokine release and/or mitigate their effects

What class of topical med is most effective in controlling ocular-surface inflammation?

Steroids

So why don’t we keep all DES pts on them?

Because of their terrible side-effect profile, ie, development of cataracts, increased IOP, and compromised ocular-surface immunity

So steroids are verboten in the management of DES?

Not at all—it’s just that they must be used judiciously (more shortly)

Cyclosporine has three measurable effects on the ocular surface—

Reduced T-cell numbers
Increased conjunctival goblet cell numbers
Increased aqueous-tear production

What’s the main drawback to their use?

It can take a long time for their effects to kick in—weeks (if you’re lucky) to months (probably more typical). During the ramp-up period, compliance may become an issue as the pt gives up in frustration.

Why does it take so long for these drugs to reach full effect?

It’s probably related to the length of the T-cell life cycle (~120 days)

What can be done to bridge the gap between commencement of therapy and onset of symptom relief?

A short course of topical steroids is ideal for this

What role does ICAM-1 play in the pathophysiology of DES?

It promotes/facilitates T-cell migration to the ocular surface and lacrimal gland

How does lifitegrast reduce T-cell activity?

By inhibiting ICAM-1 binding

We covered it earlier in the slide-set, but remind me:

How does lifitegrast reduce T-cell activity?

By inhibiting ICAM-1 binding

Cyclosporine has three measurable effects on the ocular surface—

Reduced T-cell numbers
Increased conjunctival goblet cell numbers
Increased aqueous-tear production

What potential ocular side effects are concerning? Systemic?

It has none (other than stinging). It has no systemic side effects.

How does lifitegrast reduce T-cell activity?

By inhibiting ICAM-1 binding

We covered it earlier in the slide-set, but remind me:

What role does ICAM-1 play in the pathophysiology of DES?

It promotes/facilitates T-cell migration to the ocular surface and lacrimal gland
To this point we’ve discussed treatment strategies for ATD and EDE as distinct entities (which they are). By the same token, ticks and fleas are separate entities, but a dog can have both at the same time. How common is it for DES pts to have both ATD and EDE?

- Aqueous Tear Deficiency
- Tear Film Instability
- Evaporative Dry Eye

Tear

hyperosmolarity
To this point we’ve discussed treatment strategies for ATD and EDE as distinct entities (which they are). By the same token, ticks and fleas are separate entities, but a dog can have both at the same time. How common is it for DES pts to have both ATD and EDE? The Cornea book says they “frequently coexist”.

Dry Eye Syndrome

- Aqueous Tear Deficiency
- Tear Film Instability
- Evaporative Dry Eye

Tear hyperosmolarity
To this point we’ve discussed treatment strategies for ATD and EDE as distinct entities (which they are). By the same token, ticks and fleas are separate entities, but a dog can have both at the same time. How common is it for DES pts to have both ATD and EDE? The Cornea book says they “frequently coexist”

If a pt has both, what are the implications for management?

Aqueous Tear Deficiency

Tear Film Instability

Evaporative Dry Eye

Tear hyperosmolarity
To this point we’ve discussed treatment strategies for ATD and EDE as distinct entities (which they are). By the same token, ticks and fleas are separate entities, but a dog can have both at the same time. How common is it for DES pts to have both ATD and EDE? The Cornea book says they “frequently coexist”

If a pt has both, what are the implications for management?
Most interventions (ATs, anti-inflammatory meds, O3FA) are useful in both conditions. However, there is one relatively common ATD intervention that must be used with caution in pts who also have MGD.

Aqueous Tear Deficiency Tear Film Instability Evaporative Dry Eye

Tear

hyperosmolarity
To this point we’ve discussed treatment strategies for ATD and EDE as distinct entities (which they are). By the same token, ticks and fleas are separate entities, but a dog can have both at the same time. How common is it for DES pts to have both ATD and EDE? The Cornea book says they “frequently coexist”

If a pt has both, what are the implications for management? Most interventions (ATs, anti-inflammatory meds, O3FA) are useful in both conditions. However, there is one relatively common ATD intervention that must be used with caution in pts who also have MGD. What is it?
To this point we’ve discussed treatment strategies for ATD and EDE as distinct entities (which they are). By the same token, ticks and fleas are separate entities, but a dog can have both at the same time. How common is it for DES pts to have both ATD and EDE? The Cornea book says they “frequently coexist”

If a pt has both, what are the implications for management?
Most interventions (ATs, anti-inflammatory meds, O3FA) are useful in both conditions. However, there is one relatively common ATD intervention that must be used with caution in pts who also have MGD. What is it?
Punctal occlusion
To this point we’ve discussed treatment strategies for ATD and EDE as distinct entities (which they are). By the same token, ticks and fleas are separate entities, but a dog can have both at the same time. How common is it for DES pts to have both ATD and EDE? The Cornea book says they “frequently coexist”

If a pt has both, what are the implications for management? Most interventions (ATs, anti-inflammatory meds, O3FA) are useful in both conditions. However, there is one relatively common ATD intervention that must be used with caution in pts who also have MGD. What is it? Punctal occlusion

Why must punctal occlusion be used with caution in ATD pts with concurrent MGD?
To this point we’ve discussed treatment strategies for ATD and EDE as distinct entities (which they are). By the same token, ticks and fleas are separate entities, but a dog can have both at the same time. How common is it for DES pts to have both ATD and EDE? The Cornea book says they “frequently coexist”

If a pt has both, what are the implications for management? Most interventions (ATs, anti-inflammatory meds, O3FA) are useful in both conditions. However, there is one relatively common ATD intervention that must be used with caution in pts who also have MGD. What is it?

Punctal occlusion

Why must punctal occlusion be used with caution in ATD pts with concurrent MGD? Because in addition to increasing the amount of aqueous on the ocular surface (good), occlusion will also increase/maintain the proinflammatory abnormal meibum on the ocular surface (bad).
To this point we’ve discussed treatment strategies for ATD and EDE as distinct entities (which they are). By the same token, ticks and fleas are separate entities, but a dog can have both at the same time. How common is it for DES pts to have both ATD and EDE? The Cornea book says they “frequently coexist”.

If a pt has both, what are the implications for management? Most interventions (ATs, anti-inflammatory meds, O3FA) are useful in both conditions. However, there is one relatively common ATD intervention that must be used with caution in pts who also have MGD.

What is it? Punctal occlusion.

Why must punctal occlusion be used with caution in ATD pts with concurrent MGD? Because in addition to increasing the amount of aqueous on the ocular surface (good), occlusion will also increase/maintain the proinflammatory abnormal meibum on the ocular surface (bad). In general, you want to control the inflammatory component of a pt’s DES before you occlude their puncta.

Note: There is another complication induced by the use of punctal occlusion that we will cover later in the slide-set.
To this point we’ve discussed treatment strategies for ATD and EDE as distinct entities (which they are). By the same token, ticks and fleas are separate entities, but a dog can have both at the same time. How common is it for DES pts to have both ATD and EDE? The Cornea book says they “frequently coexist.” If a pt has both, what are the implications for management?

Most interventions (ATs, anti-inflammatory meds, O3FA) are useful in both conditions. However, there is one relatively common ATD intervention that must be used with caution in pts who also have MGD. What is it? Punctal occlusion.

Why must punctal occlusion be used with caution in ATD pts with concurrent MGD? Because in addition to increasing the amount of aqueous on the ocular surface (good), occlusion will also increase/maintain the proinflammatory abnormal meibum on the ocular surface (bad).

Remember when we said this? This is what we were referring to.

Note: There is another complication induced by the use of punctal occlusion that we will cover later in the slide-set.
Dry Eye Syndrome

50 Ways to Take a Break

(This is a good point in the set to take a break)
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--?
--?
--?
--?
--?
Finally: *The Cornea* book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK
--Floppy eyelid syndrome
--Nighttime lagophthalmos
--Parkinson’s
--Mucous-membrane pemphigoid/OCP
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--- Conjunctivochalasis
--- SLK

Briefly, what is conj’chalasis?

Loose, redundant, nonedematous conj. It usually manifests as a ‘fold’ of conj. draping on the lower-lid margin.

What is the cause?

Probably the mechanical trauma of the lids rubbing against the bulbar conj. during blinking.

What do conj’chalasis pts c/o about?

The same things DES pts do: FBS, red eyes, and tearing.

What is going on, ie, what happens that produces their discomfort?

The redundant conj. chafes against itself during blinking/eye movements.
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--- Conjunctivochalasis

Briefly, what is conj’chalasis?
Loose, redundant, nonedematous conj

--- SLK

--- Parkinson’s

--- Mucous-membrane pemphigoid/OCP
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

---Conjunctivochalasis

Briefly, what is conj’chalasis?

Loose, redundant, nonedematous conj. It usually manifests as a ‘fold’ of conj draping on the lower-lid margin.
Dry Eye Syndrome

Conjunctivochalasis
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

-- Conjunctivochalasis
-- SLK
-- Floppy eye
-- Nighttime lagophthalmos
-- Parkinson’s
-- Mucous-membrane pemphigoid/OCP

Briefly, what is conj’chalasis?

Loose, redundant, nonedematous conj. It usually manifests as a ‘fold’ of conj draping on the lower-lid margin.

What is the cause?
Finally: *The Cornea* book discusses several conditions that mimic DES in their presentation—what are they?

--- *Conjunctivochalasis*

--- SLK

- *Briefly, what is conj’chalasis?*
 - Loose, redundant, nonedematous conj. It usually manifests as a ‘fold’ of conj draping on the lower-lid margin.

- *What is the cause?*
 - Probably the mechanical trauma of the lids rubbing against the bulbar conj during blinking
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--- **Conjunctivochalasis**

--- **SLK**

--- **Floppy eye**

--- **Nighttime lagophthalmos**

--- **Parkinson’s**

--- **Mucous-membrane pemphigoid/OCP**

Briefly, what is conj’chalasis?

Loose, redundant, nonedematous conj. *It usually manifests as a ‘fold’ of conj draping on the lower-lid margin.*

What is the cause?

Probably the mechanical trauma of the lids rubbing against the bulbar conj during blinking

What do conj’chalasis pts c/o about?
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--- Conjunctivochalasis
--- SLK

Briefly, what is conj’chalasis?
Loose, redundant, nonedematous conj. *It usually manifests as a ‘fold’ of conj draping on the lower-lid margin.*

What is the cause?
Probably the mechanical trauma of the lids rubbing against the bulbar conj during blinking

What do conj’chalasis pts c/o about?
The same things DES pts do: FBS, red eyes, and tearing
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--- Conjunctivochalasis

Briefly, what is conj’chalasis?
Loose, redundant, nonedematous conj. It usually manifests as a ‘fold’ of conj draping on the lower-lid margin.

What is the cause?
Probably the mechanical trauma of the lids rubbing against the bulbar conj during blinking

What do conj’chalasis pts c/o about?
The same things DES pts do: FBS, red eyes, and tearing

What is going on, ie, what happens that produces their discomfort?
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--- Conjunctivochalasis

- Briefly, what is conj’chalasis?
 Loose, redundant, nonedematous conj. It usually manifests as a ‘fold’ of conj draping on the lower-lid margin.

- What is the cause?
 Probably the mechanical trauma of the lids rubbing against the bulbar conj during blinking

- What do conj’chalasis pts c/o about?
 The same things DES pts do: FBS, red eyes, and tearing

- What is going on, ie, what happens that produces their discomfort?
 The redundant conj chafes against itself during blinking/eye movements
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--- Conjunctivochalasis

Briefly, what is conj’chalasis? Loose, redundant, nonedematous conj. It usually manifests as a ‘fold’ of conj. draping on the lower-lid margin.

What is the cause? Probably the mechanical trauma of the lids rubbing against the bulbar conj during blinking.

What do conj’chalasis pts c/o about? The same things DES pts do: FBS, red eyes, and tearing

What is going on, ie, what happens that produces their discomfort? The redundant conj chafes against itself during blinking/eye movements.

How is conj’chalasis managed? It’s reasonable to start with ATs, antihistamines, steroids etc (although one of the characteristics of conj’chalasis is that it doesn’t respond well to DES-tx maneuvers). Often, surgical intervention (in the form of thermal cicatrization or excision) to remove the redundant conj is required for resolution.
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--- Conjunctivochalasis

Briefly, what is conj’chalasis?
Loose, redundant, nonedematous conj. It usually manifests as a ‘fold’ of conj. draping on the lower-lid margin.

What is the cause?
Probably the mechanical trauma of the lids rubbing against the bulbar conj during blinking.

What do conj’chalasis pts c/o about?
The same things DES pts do: FBS, red eyes, and tearing.

What is going on, ie, what happens that produces their discomfort?
The redundant conj chafes against itself during blinking/eye movements.

How is conj’chalasis managed?
It’s reasonable to start with ATs, antihistamines, steroids etc (although one of the characteristics of conj’chalasis is that it doesn’t respond well to DES-tx maneuvers).
Finally: *The Cornea* book discusses several conditions that mimic DES in their presentation—what are they?

--- **Conjunctivochalasis**

Briefly, what is conj’chalasis?

Loose, redundant, nonedematous conj. It usually manifests as a ‘fold’ of conj. draping on the lower-lid margin.

What is the cause?

Probably the mechanical trauma of the lids rubbing against the bulbar conj during blinking.

How is conj’chalasis managed?

It’s reasonable to start with ATs, antihistamines, steroids etc (although one of the characteristics of conj’chalasis is that it doesn’t respond well to DES-tx maneuvers). **Often, surgical intervention (in the form of thermal cicatization or excision)** to remove the redundant conj is required for resolution.

What do conj’chalasis pts c/o about?

The same things DES pts do: FBS, red eyes, and tearing.

What is going on, ie, what happens that produces their discomfort?

The redundant conj chafes against itself during blinking/eye movements.
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?
Finally: *The Cornea* book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis

--SLK

In a nutshell, what is SLK?

-- A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conjunctiva.
Finally: *The Cornea* book discusses several conditions that mimic DES in their presentation—what are they?

--- Conjunctivochalasis

--- SLK

 In a nutshell, what is SLK?

 A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

 Is it common, or rare?
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis

--SLK

 In a nutshell, what is SLK?
 A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

Is it common, or rare?
Rare
Finally: *The Cornea* book discusses several conditions that mimic DES in their presentation—what are they?

-- Conjunctivochalasis

-- SLK

In a nutshell, what is SLK?

A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

Is it common, or rare?

Rare

Is there a gender predilection?
Dry Eye Syndrome

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

-- Conjunctivochalasis

-- SLK

* In a nutshell, what is SLK?
 A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

* Is it common, or rare?
 Rare

* Is there a gender predilection?
 Yes, M v F are far more likely to be affected
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?
- A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

Is it common, or rare?
Rare

Is there a gender predilection?
Yes, ♂ are far more likely to be affected
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis

--SLK

In a nutshell, what is SLK?

A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

Is it common, or rare?

Rare

Is there a gender predilection?

Yes, females are far more likely to be affected

What do SLK pts c/o?

The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?

--Injection

--It is redundant/loose

--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?

Papillary reaction

SLK has two classic cornea findings—what are they?

--Superior PEE/K

--Superior filaments
Finally: *The Cornea* book discusses several conditions that mimic DES in their presentation—what are they?

-- Conjunctivochalasis

-- SLK

In a nutshell, what is SLK?

What do SLK pts c/o?

The same things DES pts do: FBS, red eyes, and tearing
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has # classic findings associated with the superior bulbar conj.
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

-- Conjunctivochalasis
-- SLK

In a nutshell, what is SLK?

What do SLK pts c/o?

The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

-- Conjunctivochalasis

-- SLK

In a nutshell, what is SLK?

--- A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

What do SLK pts c/o?

The same things DES pts do: FBS, red eyes, and tearing

--- SLK has three classic findings associated with the superior bulbar conj.

What are they?

--- Rose bengal, lissamine green, and/or fluorescein

--- Papillary reaction

--- Superior PEE/K

--- Superior filaments

--- SLK also has a classic tarsal conj finding—what is it?

--- Papillary reaction
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis

--SLK

In a nutshell, what is SLK?

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj. What are they?

--Injection

--??

--??

--??
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?
--Injection
--?
--?

SLK has two classic cornea findings—what are they?
--Superior PEE/K
--Superior filaments
Dry Eye Syndrome

SLK: Superior conj injection
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis

--SLK

In a nutshell, what is SLK?

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.
What are they?

--Injection
--It is tautness

--?
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?

--Injection
--It is redundant/loose
--?
Dry Eye Syndrome

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis

--SLK

In a nutshell, what is SLK?

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?

--Injection

--It is redundant/loose

--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?
Papillary reaction

SLK has two classic cornea findings—what are they?

--Superior PEE/K

--Superior filaments
Dry Eye Syndrome

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj. What are they?

--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein
Dry Eye Syndrome

Superior rose bengal staining

Superior lissamine green staining

SLK staining
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
- Conjunctivochalasis
- SLK
- Floppy eyelid syndrome
- Nighttime lagophthalmos
- Parkinson’s
- Mucous-membrane pemphigoid/OCP

In a nutshell, what is SLK?
A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj.

Is it common, or rare?
Rare

Is there a gender predilection?
Yes, females are far more likely to be affected

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj. What are they?
- Injection
- It is redundant/loose
- It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?
--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?
Papillary reaction
Dry Eye Syndrome

SLK: Superior tarsal conj papillary rxn
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj. What are they?
--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?
Papillary reaction

SLK has # classic cornea findings.
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis

--SLK

In a nutshell, what is SLK?

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

Is it common, or rare?
Rare

Is there a gender predilection?
Yes, females are far more likely to be affected

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?

--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?
Papillary reaction

SLK has two classic cornea findings.
Dry Eye Syndrome

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.
What are they?
--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?
Papillary reaction

SLK has two classic cornea findings. What are they?
--?
--?
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj. What are they?
--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?
Papillary reaction

SLK has two classic cornea findings. What are they?
--Superior PEE/K
--Superior filaments
Finally: *The Cornea* book discusses several conditions that mimic DES in their presentation—what are they?

--- Conjunctivochalasis

--- SLK

--- In a nutshell, what is SLK?

--- A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

--- Is it common, or rare?

--- Rare

--- Is there a gender predilection?

--- Yes, females are far more likely to be affected

--- What do SLK pts c/o?

--- The same things DES pts do: FBS, red eyes, and tearing

--- SLK has three classic findings associated with the superior bulbar conj.

--- What are they?

--- Injection

--- It is redundant/loose

--- It stains with rose bengal, lissamine green, and/or fluorescein

--- SLK also has a classic tarsal conj finding—what is it?

--- Papillary reaction

--- SLK has two classic cornea findings. What are they?

--- Superior PEE/K

--- Superior filaments
Dry Eye Syndrome

K staining pattern in SLK
SLK: Superior corneal filaments
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--- Conjunctivochalasis

--- SLK

In a nutshell, what is SLK?

A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

Is it common, or rare?

Rare

Is there a gender predilection?

Yes, women are far more likely to be affected

What do SLK pts c/o?

The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?

-- Injection
-- It is redundant/loose
-- It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?

Papillary reaction

SLK has two classic cornea findings—what are they?

--- Superior PEE/K
--- Superior filaments

So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conj, and superior corneal abnormalities. What’s the mechanism for all this?

The mechanical theory is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.

Why do SLK pts have overly tight superior lids?

In many cases, because of concomitant thyroid dz producing orbital congestion that forces the globes forward against the lids. Check thyroid labs on all SLK pts!
Dry Eye Syndrome

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?

A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

Is it common, or rare?

Rare

Is there a gender predilection?

Yes, women are far more likely to be affected

What do SLK pts c/o?

The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj. What are they?

--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?

Papillary reaction

SLK has two classic cornea findings—what are they?
--Superior PEE/K
--Superior filaments

So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conj, and superior corneal abnormalities. What’s the mechanism for all this? The **theory** is the most widely accepted
Dry Eye Syndrome

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?

What do SLK pts c/o?

Is it common, or rare?

Yes,

Is there a gender predilection?

What do SLK pts c/o?

The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?

--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?

Papillary reaction

SLK has two classic cornea findings—what are they?

--Superior PEE/K
--Superior filaments
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis

--SLK

In a nutshell, what is SLK?

A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

Is it common, or rare?

Rare

Is there a gender predilection?

Yes, females are far more likely to be affected

What do SLK pts c/o?

The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?

--Injection

--It is redundant/loose

--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?

Papillary reaction

SLK has two classic cornea findings—what are they?

--Superior PEE/K

--Superior filaments

So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conj, and superior corneal abnormalities. What’s the mechanism for all this?

The mechanical theory is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
---Conjunctivochalasis
---SLK

In a nutshell, what is SLK?

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?
--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?
Papillary reaction

SLK has two classic cornea findings—what are they?
--Superior PEE/K
--Superior filaments

So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conj, and superior corneal abnormalities. What’s the mechanism for all this?
The mechanical theory is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.

Why do SLK pts have overly tight superior lids?

In many cases, because of concomitant thyroid dz producing orbital congestion that forces the globes forward against the lids. Check thyroid labs on all SLK pts!
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?
A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conjunctiva.

Is it common, or rare?
Rare.

Is there a gender predilection?
Yes, females are far more likely to be affected.

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing.

SLK has three classic findings associated with the superior bulbar conjunctiva.

What are they?
--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein.

SLK also has a classic tarsal conjunctival finding—what is it?
Papillary reaction.

SLK has two classic corneal findings—what are they?
--Superior PEE/K
--Superior filaments

So, SLK pts have irritated and redundant superior bulbar conjunctiva, irritated superior tarsal conjunctiva, and superior corneal abnormalities. What’s the mechanism for all this?
The mechanical theory is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.

Why do SLK pts have overly tight superior lids?
In many cases, because of concomitant classic systemic assn. producing orbital congestion that forces the globes forward against the lids.
Dry Eye Syndrome

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis

--SLK

--- In a nutshell, what is SLK?

--- What do SLK pts c/o?

--- Is it common, or rare?

--- Rare

--- Is there a gender predilection?

--- Yes, females are far more likely to be affected

--- What do SLK pts c/o?

--- The same things DES pts do: FBS, red eyes, and tearing

--- SLK has three classic findings associated with the superior bulbar conj.

--- What are they?

--- Injection

--- It is redundant/loose

--- It stains with rose bengal, lissamine green, and/or fluorescein

--- SLK also has a classic tarsal conj finding—what is it?

--- Papillary reaction

--- SLK has two classic cornea findings—what are they?

--- Superior PEE/K

--- Superior filaments

--- So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conj, and superior corneal abnormalities. *What’s the mechanism for all this?*

--- The **mechanical theory** is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.

--- Why do SLK pts have overly tight superior lids?

--- In many cases, because of concomitant thyroid dz producing orbital congestion that forces the globes forward against the lids.
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--- Conjunctivochalasis

--- SLK

In a nutshell, what is SLK?

A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

Is it common, or rare?

Rare

Is there a gender predilection?

Yes, are far more likely to be affected

What do SLK pts c/o?

The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?

-- Injection
-- It is redundant/loose
-- It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?

Papillary reaction

SLK has two classic cornea findings—what are they?

-- Superior PEE/K
-- Superior filaments

So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conj, and superior corneal abnormalities. What’s the mechanism for all this? The mechanical theory is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.

Why do SLK pts have overly tight superior lids?

In many cases, because of concomitant thyroid dz producing orbital congestion that forces the globes forward against the lids. Check thyroid labs on all SLK pts!
Dry Eye Syndrome

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?
A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

Is it common, or rare?
Rare

Is there a gender predilection?
Yes,

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?
--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?
Papillary reaction

SLK has two classic cornea findings—what are they?
--Superior PEE/K
--Superior filaments

So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conj, and superior corneal abnormalities. What's the mechanism for all this?
The mechanical theory is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.

Why do SLK pts have overly tight superior lids?
In many cases, because of concomitant thyroid dz producing orbital congestion that forces the globes forward against the lids. Check thyroid labs on all SLK pts!

What are the two overarching goals in treating SLK?
--?
--?

There are a number of medical treatment options. These include:
--Preservative-free ATs
--Topical anti-inflammatory meds
--Large (enough to cover the involved conj) diameter BCL

Is surgery ever indicated to resolve the redundant conj?
It is indeed
Finally: *The Cornea* book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis

--SLK

---In a nutshell, what is SLK?

---What do SLK pts c/o?

---So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conj, and papillary reaction

---Is there a gender predilection?

---Yes, far more likely to be affected

---What do SLK pts c/o?

 The same things DES pts do: FBS, red eyes, and tearing

---SLK has three classic findings associated with the superior bulbar conj.

---What are they?

 --Injection

 --It is redundant/loose

 --It stains with rose bengal, lissamine green, and/or fluorescein

---SLK also has a classic tarsal conj finding—what is it?

 Papillary reaction

---SLK has two classic cornea findings—what are they?

 --Superior PEE/K

 --Superior filaments

So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conj, and papillary reaction. What’s the mechanism for all this?

The mechanical theory is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.

Why do SLK pts have overly tight superior lids?

In many cases, because of concomitant thyroid dz producing orbital congestion that forces the globes forward against the lids. Check thyroid labs on all SLK pts!

What are the two overarching goals in treating SLK?

---Reduce…

---Reduce…

There are a number of medical treatment options. These include:

---Preservative-free ATs

---Topical anti-inflammatory meds

---Large (enough to cover the involved conj) diameter BCL

Is surgery ever indicated to resolve the redundant conj?

It is indeed
Finally: *The Cornea* book discusses several conditions that mimic DES in their presentation—what are they?

-- Conjunctivochalasis

-- SLK

In a nutshell, what is SLK?

A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conjunctiva.

Is it common, or rare?

Rare

Is there a gender predilection?

Yes, females are far more likely to be affected.

What do SLK pts c/o?

The same things DES pts do: FBS, red eyes, and tearing.

SLK has three classic findings associated with the superior bulbar conjunctiva. What are they?

-- Injection
-- It is redundant/loose
-- It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conjunctival finding—what is it?

Papillary reaction

SLK has two classic cornea findings—what are they?

-- Superior PEE/K
-- Superior filaments

So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conjunctiva, and superior corneal abnormalities. What’s the mechanism for all this?

The mechanical theory is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.

Why do SLK pts have overly tight superior lids?

In many cases, because of concomitant thyroid dz producing orbital congestion that forces the globes forward against the lids. Check thyroid labs on all SLK pts!

What are the two overarching goals in treating SLK?

-- Reduce…surface inflammation
-- Reduce…friction between the superior bulbar conj and superior tarsal conjunctiva

There are a number of medical treatment options. These include:

-- Preservative-free artificial tears
-- Topical anti-inflammatory medications
-- Large (enough to cover the involved conjunctiva) diameter bandage contact lenses
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?
A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conjunctiva.

Is it common, or rare?
Rare

Is there a gender predilection?
Yes, women are far more likely to be affected.

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing.

SLK has three classic findings associated with the superior bulbar conjunctiva. What are they?
--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conjunctival finding—what is it?
Papillary reaction

SLK has two classic cornea findings—what are they?
--Superior PEE/K
--Superior filaments

So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conjunctiva, and superior corneal abnormalities. What's the mechanism for all this?
The mechanical theory is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.

Why do SLK pts have overly tight superior lids?
In many cases, because of concomitant thyroid dz producing orbital congestion that forces the globes forward against the lids. Check thyroid labs on all SLK pts!

What are the two overarching goals in treating SLK?
--Reduce…surface inflammation
--Reduce…friction between the superior bulbar conj and superior tarsal conjunctiva

There are a number of medical treatment options. These include:
--?
--?
--?

Is surgery ever indicated to resolve the redundant conjunctiva?
It is indeed...
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis

--SLK

In a nutshell, what is SLK?

A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

Is it common, or rare?

Rare

Is there a gender predilection?

Yes, are far more likely to be affected

What do SLK pts c/o?

The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?

--Injection

--It is redundant/loose

--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?

Papillary reaction

SLK has two classic cornea findings—what are they?

--Superior PEE/K

--Superior filaments

So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conj, and superior corneal abnormalities. What's the mechanism for all this?

The mechanical theory is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.

Why do SLK pts have overly tight superior lids?

In many cases, because of concomitant thyroid dz producing orbital congestion that forces the globes forward against the lids. Check thyroid labs on all SLK pts!

What are the two overarching goals in treating SLK?

--Reduce...surface inflammation

--Reduce...friction between the superior bulbar conj and superior tarsal conj

There are a number of medical treatment options. These include:

--Preservative-free ATs

--Topical anti-inflammatory meds

--Large (enough to cover the involved conj) diameter BCL

Is surgery ever indicated to resolve the redundant conj?

It is indeed
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?
- A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

Is it common, or rare?
- Rare

Is there a gender predilection?
- Yes, females are far more likely to be affected

What do SLK pts c/o?
- The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?
- Injection
- It is redundant/loose
- It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?
- Papillary reaction

SLK has two classic cornea findings—what are they?
- Superior PEE/K
- Superior filaments

So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conj, and superior corneal abnormalities. What’s the mechanism for all this?
- The mechanical theory is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.

Why do SLK pts have overly tight superior lids?
- In many cases, because of concomitant thyroid dz producing orbital congestion that forces the globes forward against the lids. Check thyroid labs on all SLK pts!

What are the two overarching goals in treating SLK?
- Reduce…surface inflammation
- Reduce…friction between the superior bulbar conj and superior tarsal conj

There are a number of medical treatment options. These include:
- Preservative-free ATs
- Topical anti-inflammatory meds
- Large (enough to cover the involved conj) diameter BCL

Is surgery ever indicated to resolve the redundant conj?
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?
A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

Is it common, or rare?
Rare

Is there a gender predilection?
Yes, females are far more likely to be affected

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?
--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?
Papillary reaction

SLK has two classic cornea findings—what are they?
--Superior PEE/K
--Superior filaments

So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conj, and superior corneal abnormalities. What’s the mechanism for all this?
The mechanical theory is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.

Why do SLK pts have overly tight superior lids?
In many cases, because of concomitant thyroid dz producing orbital congestion that forces the globes forward against the lids. Check thyroid labs on all SLK pts!

What are the two overarching goals in treating SLK?
--Reduce…surface inflammation
--Reduce…friction between the superior bulbar conj and superior tarsal conj

There are a number of medical treatment options. These include:
--Preservative-free ATs
--Topical anti-inflammatory meds
--Large (enough to cover the involved conj) diameter BCL

Is surgery ever indicated to resolve the redundant conj?
It is indeed
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK

In a nutshell, what is SLK?
A chronic/recurrent inflammatory condition of the superior limbal cornea and adjacent conj

Is it common, or rare?
Rare

Is there a gender predilection?
Yes, females are far more likely to be affected

What do SLK pts c/o?
The same things DES pts do: FBS, red eyes, and tearing

SLK has three classic findings associated with the superior bulbar conj.

What are they?
--Injection
--It is redundant/loose
--It stains with rose bengal, lissamine green, and/or fluorescein

SLK also has a classic tarsal conj finding—what is it?
Papillary reaction

SLK has two classic cornea findings—what are they?
--Superior PEE/K
--Superior filaments

So, SLK pts have irritated and redundant superior bulbar conj, irritated superior tarsal conj, and superior corneal abnormalities. What's the mechanism for all this?
The mechanical theory is the most widely accepted. According to this theory, the superior lid is too tightly apposed to the globe, and the resulting excessive contact and rubbing produces the signs/symptoms of SLK.

Why do SLK pts have overly tight superior lids?
In many cases, because of concomitant thyroid dz producing orbital congestion that forces the globes forward against the lids. Check thyroid labs on all SLK pts!

What are the two overarching goals in treating SLK?
--Reduce…surface inflammation
--Reduce…friction between the superior bulbar conj and superior tarsal conj

There are a number of medical treatment options. These include:
--Preservative-free ATs
--Topical anti-inflammatory meds
--Large (enough to cover the involved conj) diameter BCL

Is surgery ever indicated to resolve the redundant conj?
It is indeed

For more on SLK, see slide-set K7
Finally: The Cornerstone book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis
--SLK
--Floppy eyelid syndrome
--Nighttime lagophthalmos
--Parkinson’s
--Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?

A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface.

What do FES pts complain of?

FBs and mucous discharge that are worse in the morning.

What is the presumed pathogenic process in FES?

During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It's systemic, not ocular.)

Obesity

How is FES managed initially?

--Apply ointment to the involved eye(s) at qHS,
--Prevent eversion by either shielding the eye(s) or taping it/them shut

If FES fails to respond to the above, what's next?

Surgical tightening of the lax upper lid(s)

With what potentially lethal systemic condition is FES strongly associated?

Obstructive sleep apnea. The BCSC states that all FES pts should be evaluated for OSA.
Finally: The Cornerstone Book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis
--SLK
--Floppy eyelid syndrome
--Nighttime lagophthalmos
--Parkinson’s
--Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?

A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface.

What do FES pts complain of?

FBS and mucous discharge that are worse in the morning.

What is the presumed pathogenic process in FES?

During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)

Obesity

How is FES managed initially?

--Apply ointment to the involved eye(s) at qHS, and
--Prevent eversion by either shielding the eye(s) or taping it/them shut

If FES fails to respond to the above, what’s next?

Surgical tightening of the lax upper lid(s)

With what potentially lethal systemic condition is FES strongly associated?

Obstructive sleep apnea. The BCSC states that all FES pts should be evaluated for OSA.
In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface.

Finally: The Cornea Book discusses several conditions that mimic DES in their presentation—what are they?
-- Conjunctivochalasis
-- SLK
-- Floppy eyelid syndrome
-- Nighttime lagophthalmos
-- Parkinson’s
-- Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface.
Finally: The Cornea

Dry Eye Syndrome

What are some conditions that mimic DES in their presentation?

-- Conjunctivochalasis
-- SLK
-- Floppy eyelid syndrome
-- Nighttime lagophthalmos
-- Parkinson’s
-- Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?

A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

How can you tell if the UL is lax?

Floppy eyelid syndrome

How can you tell if the UL is lax?
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis
--SLK
--Floppy eyelid syndrome
--Nighttime lagophthalmos
--Parkinson’s
--Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) **upper-lid laxity** and 2) chronic inflammation of the ocular surface

How can you tell if the UL is lax?
It will evert easily and dramatically with traction

Floppy eyelid syndrome

How can you tell if the UL is lax?
It will evert easily and dramatically with traction
Dry Eye Syndrome

FES. Wow.
If you can’t tell, that’s an upper lid so lax it can be pinched like this.
Dry Eye Syndrome

FES. Note the fine papillary reaction (another common finding)
FES. Note the fine papillary rxn (another common finding)
This image demonstrates lash ptosis, another classic sign of FES.
This image demonstrates lash ptosis, another classic sign of FES.
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis
--SLK
--Floppy eyelid syndrome
--Nighttime lagophthalmos
--Parkinson’s
--Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?

What do FES pts complain of?

FBS and mucous discharge that are worse in the morning

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It's systemic, not ocular.)
Obesity

How is FES managed initially?
--Apply ointment to the involved eye(s) at qHS, and
--Prevent eversion by either shielding the eye(s) or taping it/them shut

If FES fails to respond to the above, what's next?
Surgical tightening of the lax upper lid(s)

With what potentially lethal systemic condition is FES strongly associated?
Obstructive sleep apnea. The BCSC states that all FES pts should be evaluated for OSA.
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

-- Conjunctivochalasis
-- SLK
-- Floppy eyelid syndrome
-- Nighttime lagophthalmos
-- Parkinson’s
-- Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning vs evening

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)
Obesity

How is FES managed initially?
-- Apply ointment to the involved eye(s) at qHS, and
-- Prevent eversion by either shielding the eye(s) or taping it/them shut

If FES fails to respond to the above, what’s next?
Surgical tightening of the lax upper lid(s)

With what potentially lethal systemic condition is FES strongly associated?
Obstructive sleep apnea. The BCSC states that all FES pts should be evaluated for OSA.
In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK
--Floppy eyelid syndrome
--Nighttime lagophthalmos
--Parkinson’s
--Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK
--Floppy eyelid syndrome
--Nighttime lagophthalmos
--Parkinson’s
--Mucous-membrane pemphigoid/OCP
In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface.

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning.

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It's systemic, not ocular.)
Obesity.

How is FES managed initially?
--Apply ointment to the involved eye(s) at qHS, and
--Prevent eversion by either shielding the eye(s) or taping it/them shut.

If FES fails to respond to the above, what's next?
Surgical tightening of the lax upper lid(s).

With what potentially lethal systemic condition is FES strongly associated?
Obstructive sleep apnea. The BCSC states that all FES pts should be evaluated for OSA.

Floppy eyelid syndrome
Finally: The Cornea

- Conjunctivochalasis
- SLK
- Floppy eyelid syndrome
- Nighttime lagophthalmos
- Parkinson’s
- Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position

What is the main risk factor for FES? (It’s systemic, not ocular.)
Obesity

How is FES managed initially?
- Apply ointment to the involved eye(s) at qHS, and
- Prevent eversion by either shielding the eye(s) or taping it/them shut

If FES fails to respond to the above, what’s next?
Surgical tightening of the lax upper lid(s)

With what potentially lethal systemic condition is FES strongly associated?
Obstructive sleep apnea. The BCSC states that all FES pts should be evaluated for OSA.
Finally: The Cornea

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface.

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning.

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

Floppy eyelid syndrome
Dry Eye Syndrome

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK
--Floppy eyelid syndrome
--Nighttime lagophthalmos
--Parkinson’s
--Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)

Obesity

How is FES managed initially?
--Apply ointment to the involved eye(s) at qHS, and
--Prevent eversion by either shielding the eye(s) or taping it/them shut

If FES fails to respond to the above, what’s next?
Surgical tightening of the lax upper lid(s)

With what potentially lethal systemic condition is FES strongly associated?
Obstructive sleep apnea. The BCSC states that all FES pts should be evaluated for OSA.
Dry Eye Syndrome

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

--Conjunctivochalasis
--SLK
--Floppy eyelid syndrome
--Nighttime lagophthalmos
--Parkinson’s
--Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)
Obesity

With what potentially lethal systemic condition is FES strongly associated?
Obstructive sleep apnea. The BCSC states that all FES pts should be evaluated for OSA.
Dry Eye Syndrome

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

-- Conjunctivochalasis
-- SLK
-- Floppy eyelid syndrome
-- Nighttime lagophthalmos
-- Parkinson’s
-- Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)
Obesity

How is FES managed initially?
--?
--?
Dry Eye Syndrome

Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

- Conjunctivochalasis
- SLK
- Floppy eyelid syndrome
- Nighttime lagophthalmos
- Parkinson’s
- Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface.

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning.

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)
Obesity.

How is FES managed initially?
- Apply ointment to the involved eye(s) at qHS
- ?

With what potentially lethal systemic condition is FES strongly associated?
Obstructive sleep apnea. The BCSC states that all FES pts should be evaluated for OSA.
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?
--Conjunctivochalasis
--SLK
--Floppy eyelid syndrome
--Nighttime lagophthalmos
--Parkinson’s
--Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)
Obesity

How is FES managed initially?
--Apply ointment to the involved eye(s) at qHS
--?
In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)
Obesity

How is FES managed initially?
--Apply ointment to the involved eye(s) at qHS, and
--Prevent eversion by either the eye(s) or...
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

-- Conjunctivochalasis
-- SLK
-- Floppy eyelid syndrome
-- Nighttime lagophthalmos
-- Parkinson’s
-- Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)
Obesity

How is FES managed initially?
-- Apply ointment to the involved eye(s) at qHS, and
-- Prevent eversion by either shielding the eye(s) or taping it/them shut

With what potentially lethal systemic condition is FES strongly associated?
Obstructive sleep apnea. The BCSC states that all FES pts should be evaluated for OSA.
Finally: The Cornea book discusses several conditions that mimic DES in their presentation—what are they?

- Conjunctivochalasis
- SLK
- Floppy eyelid syndrome
- Nighttime lagophthalmos
- Parkinson’s
- Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)
Obesity

How is FES managed initially?

- Apply ointment to the involved eye(s) at qHS, and
- Prevent eversion by either shielding the eye(s) or taping it/them shut

If FES fails to respond to the above, what’s next?

With what potentially lethal systemic condition is FES strongly associated?
Obstructive sleep apnea. The BCSC states that all FES pts should be evaluated for OSA.
In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)
Obesity

How is FES managed initially?
--Apply ointment to the involved eye(s) at qHS, and
--Prevent eversion by either shielding the eye(s) or taping it/them shut

If FES fails to respond to the above, what’s next?
Surgical tightening of the lax upper lid(s)
In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface.

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning.

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)
Obesity.

How is FES managed initially?
--Apply ointment to the involved eye(s) at qHS, and
--Prevent eversion by either shielding the eye(s) or taping it/them shut.

If FES fails to respond to the above, what’s next?
Surgical tightening of the lax upper lid(s).

With what potentially lethal systemic condition is FES strongly associated?
Obstructive sleep apnea. The BCSC states that all FES pts should be evaluated for OSA.
Finally: The Cornea

Dry Eye Syndrome

Several conditions mimic DES in their presentation—what are they?

- Conjunctivochalasis
- SLK
- Floppy eyelid syndrome
- Nighttime lagophthalmos
- Parkinson’s
- Mucous-membrane pemphigoid/OCP

In a nutshell, what is floppy eyelid syndrome (FES)?

A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface.

What do FES pts complain of?

FBS and mucous discharge that are worse in the morning.

What is the presumed pathogenic process in FES?

During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)

Obesity

How is FES managed initially?

- Apply ointment to the involved eye(s) at qHS, and
- Prevent eversion by either shielding the eye(s) or taping it/them shut.

If FES fails to respond to the above, what’s next?

Surgical tightening of the lax upper lid(s)

With what potentially lethal systemic condition is FES strongly associated?

Obstructive sleep apnea
In a nutshell, what is floppy eyelid syndrome (FES)?
A condition characterized by 1) upper-lid laxity and 2) chronic inflammation of the ocular surface

What do FES pts complain of?
FBS and mucous discharge that are worse in the morning

What is the presumed pathogenic process in FES?
During sleep, the upper lids evert in response to face-rubbing against a pillow while sleeping in the prone position. Lid eversion results in contact between the eye and the bedding, and this contact traumatizes the ocular epithelia.

What is the main risk factor for FES? (It’s systemic, not ocular.)
Obesity

How is FES managed initially?
--Apply ointment to the involved eye(s) at qHS, and
--Prevent eversion by either shielding the eye(s) or taping it/them shut

If FES fails to respond to the above, what’s next?
Surgical tightening of the lax upper lid(s)

With what potentially lethal systemic condition is FES strongly associated?
Obstructive sleep apnea. The BCSC states that all FES pts should be evaluated for OSA.