Hereditary Vitreoretinopathies

- Goldmann-Favre Syndrome
 - Macula looks like XLJR, but periphery looks like RP
 - Vitreous is optically empty
 - Presents with nyctalopia
 - Is also known as enhanced S-cone dz/syndrome

- Norrie Disease
 - X-linked
 - Bilateral congenital blindness
 - Associated with MR, nonocular finding, ring loss
 - Yellowish RD appears w/in weeks of birth
 - Lenses & Ks opacify with time
 - Ends in phthisis by age 10

- X-Linked Juvenile Retinoschisis
 - Named for peripheral changes, but present in only 50% of cases
 - Foveal schisis present in 100%
 - Looks like CME, but is dry
 - Split is in RNFL
 - Abnormal cells: Müller cells
 - ERG: Selective loss of b-wave
 - If severe, peripheral changes can lead to RD, vitreous heme

- Norrie Disease
 - X-linked
 - Bilateral congenital blindness
 - Associated with MR, Hearing loss
 - Yellowish RD appears w/in weeks of birth
 - Lenses & Ks opacify with time
 - Ends in phthisis by age 10

- Familial Exudative Vitreoretinopathy
 - Looks like ROP (but FT and normal respiratory status)
 - Hallmark: Failure of temporal retina to vascularize
 - Inheritance: AD (check family)
 - Peripheral neo TRD → retinal breaks and foveal dragging

- Hereditary Hyaloideoretinopathies
 - With Optically Empty Vitreous
 - Specific disease
 - Group of diseases

- Knobloch Syndrome
 - Specific disease
Norrie Disease
--X-linked--Bilateral congenital blindness--Associated with:
--MR--Hearing loss--Yellowish RD appears w/in weeks of birth--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Goldmann-Favre Syndrome

X-Linked Juvenile Retinoschisis

Familial Exudative Vitreoretinopathy

Knobloch Syndrome

Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only % of cases

Goldmann-Favre Syndrome

Norrie Disease

--Bilateral congenital blindness

--Associated with: MR, Hearing loss

--Yellowish RD appears within weeks of birth

--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Familial Exudative Vitreoretinopathy

--Looks like...ROP (but FT and normal respiratory status)

--Hallmark: Failure of...temporal retina to vascularize

--Inheritance: AD (check family)--Peripheral neo...TRD...retinal breaks and foveal dragging

--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Norrie Disease
Norrie Disease
--X-linked--Bilateral congenital blindness--Associated with:
--MR--Hearing loss--Yellowish RD appears w/in weeks of birth--Lenses & Ks opacify with time--Ends in phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

---Macula looks like XLJR, but periphery looks like RP---Vitreous is optically empty---Presents with nyctalopia---Is also known as enhanced S-cone dz/syndrome
Hereditary Vitreoretinopathies

X-linked juvenile retinoschisis: Peripheral retinoschisis
Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --[nonocular finding] ring loss
 --Yellowish RD appears w/in... weeks of birth
 --Lenses & Ks opacify with time--Ends in... phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...[%]

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

Knobloch Syndrome

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
Norrie Disease
-- X-linked
-- Bilateral congenital blindness
-- Associated with:
 -- MR
 -- [nonocular finding] ring loss
-- Yellowish RD appears within weeks of birth
-- Lenses & Ks opacify with time
-- Ends in...phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
-- Named for peripheral changes, but present in only 50% of cases
-- Foveal schisis present in...100%

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

X-linked juvenile retinoschisis: Foveal cysts
X-linked juvenile retinoschisis: Foveal cysts
Norrie Disease
--X-linked--Bilateral congenital blindness--Associated with:
--MR--[nonocular finding ring loss
--Yellowish RD appears w/in weeks of birth--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases--Foveal schisis present in...100%--Looks like CME, but is dry dz
(CME = cystoid macular edema)

Norrie Disease

Goldmann-Favre Syndrome

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

Knobloch Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in retinal layer

Familial Exudative Vitreoretinopathy
--Looks like ROP (but FT and normal respiratory status)
--Hallmark: Failure of temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neovascularization leads to TRD, vitreous traction

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome

Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with: MR, Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--Ends in...phthisis by age 10
Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --[nonocular finding] ring loss
 --Yellowish RD appears within weeks of birth
 --Lenses & Ks opacify with time
--Ends in...phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
 (RNFL = retinal nerve fiber layer)

Goldmann-Favre Syndrome

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

X-linked juvenile retinoschisis: RNFL schisis
Norrie Disease
-- X-linked
-- Bilateral congenital blindness
-- Associated with:
-- MR
-- [nonocular finding 2] ring loss
-- Yellowish RD appears within weeks of birth
-- Lenses & Ks opacify with time—ends in... phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
-- Named for peripheral changes, but present in only 50% of cases
-- Foveal schisis present in... 100%
-- Looks like CME, but is dry
-- Split is in... RNFL

My mnemonic for recalling this fact is to remember that young (ie, ‘juvenile’) men play in the NFL.
On the other hand, the schisis commonly seen in the elderly occurs in the outer plexiform and/or outer nuclear layers of the retina.

Goldmann-Favre Syndrome

Norrie Disease

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Norrie Disease
-- X-linked
-- Bilateral congenital blindness
-- Associated with:
 -- MR
 -- [nonocular finding] ring loss
 -- Yellowish RD appears within weeks of birth
 -- Lenses & Ks opacify with time
 -- Ends in phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
-- Named for peripheral changes, but present in only 50% of cases
-- Foveal schisis present in...100%
-- Looks like CME, but is dry dz
-- Split is in...RNFL
-- Abnormal cells:

Familial Exudative Vitreoretinopathy
-- Looks like...ROP (but FT and normal respiratory status)
-- Hallmark: Failure of...temporal retina to vascularize
-- Inheritance: AD (check family)
-- Peripheral neo  TRD  retinal breaks and foveal dragging

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

Norrie Disease

Hereditary Hyaloideoretinopathies

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Knobloch Syndrome
Norrie Disease
---X-linked
---Bilateral congenital blindness
---Associated with:
---MR
---Hearing loss
---Yellowish RD appears within weeks of birth
---Lenses & Ks opacify with time
---Ends in...phthisis by age 10

X-Linked Juvenile Retinoschisis
---Named for peripheral changes, but present in only 50% of cases
---Foveal schisis present in...100%
---Looks like CME, but is dry dz
---Split is in...RNFL
---Abnormal cells: Müller cells

Familial Exudative Vitreoretinopathy
---Looks like...ROP (but FT and normal respiratory status)
---Hallmark: Failure of...temporal retina to vascularize
---Inheritance: AD (check family)
---Peripheral neo...TRD...retinal breaks and foveal dragging
---PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in 100%
- Looks like CME, but is dry dz
- Split is in RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of b-wave
- If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome

Norrie Disease
- X-linked
- Bilateral congenital blindness
- Associated with: MR, Hearing loss
- Yellowish RD appears w/in weeks of birth
- Lenses & Ks opacify with time—Ends in phthisis by age 10

Familial Exudative Vitreoretinopathy
- Looks like ROP (but FT and normal respiratory status)
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo  TRD  retinal breaks and foveal dragging
- PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave

Goldmann-Favre Syndrome

Norrie Disease

--Bilateral congenital blindness
--Associated with: MR, Hearing loss
--Yellowish RD appears w/in weeks of birth
--Lenses & Ks opacify with time
--Ends in phthisis by age 10

Familial Exudative Vitreoretinopathy

--Looks like ROP (but FT and normal respiratory status)
--Hallmark: Failure of temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome

Norrie Disease

--Bilateral congenital blindness
--Associated with: MR, Hearing loss
--Yellowish RD appears w/in weeks of birth
--Lenses & Ks opacify with time
--Ends in phthisis by age 10
Hereditary Vitreoretinopathies

X-linked juvenile retinoschisis: ERG

Normal

Patient

Absent b-wave

a-wave

b-wave
Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time--Ends in…phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in…100%
--Looks like CME, but is dry dz
--Split is in…RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of…b-wave
--If severe, peripheral changes can lead to…[two problems]

Goldmann-Favre Syndrome

Familial Exudative Vitreoretinopathy
--Looks like…RO (but FT and normal respiratory status)
--Hallmark: Failure of…temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo→TRD→retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Hereditary Vitreoretinopathies
Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
--MR
--[nonocular finding] ring loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time--Ends in... phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in... 100%
--Looks like CME, but is dry dz
--Split is in... RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of... b-wave
--If severe, peripheral changes can lead to... RD, vitreous heme

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like... but periphery looks like...

Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --[nonocular finding 2] ring loss
 --Yellowish RD appears w/in... weeks of birth
 --Lenses & Ks opacify with time
 --Ends in... phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in... 100%
--Looks like CME, but is dry dz
--Split is in... RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of... b-wave
--If severe, peripheral changes can lead to... RD, vitreous heme

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Familial Exudative Vitreoretinopathy
--Looks like ROP (but FT and normal respiratory status)
--Hallmark: Failure of... temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neo... TRD... peripheral changes can lead to... RD, vitreous heme
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like...XLR, but periphery looks like...RP

Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --[nonocular finding] ring loss
 --Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--Ends in...phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neo TRD...retinal breaks and foveal dragging
--PVD, vitreous traction

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
(XLJR = X-linked juvenile retinoschisis)
(RP = retinitis pigmentosa)
Hereditary Vitreoretinopathies

Goldmann-Favre syndrome
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital...blindness
--Associated with:
 --MR
 --[nonocular finding 2] ring loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo
\[\rightarrow\] TRD
\[\rightarrow\] retinal breaks and foveal dragging
--PVD, vitreous traction

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

Norrie Disease
- X-linked
- Bilateral congenital blindness
- Associated with: MR, Hearing loss
- Yellowish RD appears within weeks of birth
- Lenses & Ks opacify with time—ends in phthisis by age 10

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in 100%
- Looks like CME, but is dry dz
- Split is in RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of b-wave
- If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
- Macula looks like XLJR, but periphery looks like RP
- Vitreous is optically empty

Familial Exudative Vitreoretinopathy
- Looks like ROP (but FT and normal respiratory status)
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo → TRD → retinal breaks and foveal dragging
- PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
- Goldmann-Favre Syndrome
- Norrie Disease
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like... XLJR, but periphery looks like... RP
--Vitreous is... optically empty
Presents with... nyctalopia

Norrie Disease
--X-linked
--Bilateral congenital... blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in... weeks of birth
--Lenses & Ks opacify with time--Ends in... phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in... 100%
--Looks like CME, but is dry dz
--Split is in... RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of... b-wave
--If severe, peripheral changes can lead to... RD, vitreous heme

Familial Exudative Vitreoretinopathy
--Looks like... ROP (but FT and normal respiratory status)
--Hallmark: Failure of... temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo  TRD  retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo
  TRD
  retinal breaks and foveal dragging
 PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --[nonocular finding 2] ring loss
 --Yellowish RD appears w/in...weeks of birth
 --Lenses & Ks opacify with time--Ends in...phthisis by age 10
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
 - MR
 - Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Knobloch Syndrome

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo
 \[\text{TRD} \rightarrow \text{retinal breaks and foveal dragging}\]
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Goldmann-Favre Syndrome

- Macula looks like... XLJR, but periphery looks like... RP
- Vitreous is... optically empty
- Presents with... nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Norrie Disease

- X-linked
- Bilateral congenital... blindness
- Associated with:
 - MR
 - [nonocular finding] ring loss
 - Yellowish RD appears w/in... weeks of birth
 - Lenses & Ks opacify with time
 - Ends in... ptysis by age 10

Familial Exudative Vitreoretinopathy

- Looks like... ROP (but FT and normal respiratory status)
- Hallmark: Failure of... temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo... TRD... RD, vitreous heme

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like... XLJR, but periphery looks like... RP
--Vitreous is... optically empty
Presents with... nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --[nonocular finding] ring loss
--Yellowish RD appears w/in... weeks of birth
--Lenses & Ks opacify with time--Ends in... phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like... ROP (but FT and normal respiratory status)
--Hallmark: Failure of... temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neo→ TRD→ retinal breaks and foveal dragging
--PVD, vitreous traction

Knobloch Syndrome

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods:

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in... 100%
--Looks like CME, but is dry
--Split is in... RNFL
--Abnormal cells: Müller cell
--ERG: Selective loss of... b-wave
--If severe, peripheral changes can lead to... RD, vitreous heme
Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital...blindness
--Associated with:
--MR
--[nonocular finding 2] ring loss
--Yellowish RD appears w/in... weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Knobloch Syndrome
The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods: Non-functioning

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral ne...TRD...retinal breaks and foveal dragging
--PVD, vitreous traction

Knobloch Syndrome

Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
 --Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Knobloch Syndrome
The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods: Non-functioning
--Red/green cones:

--Rods: Non-functioning
--Red/green cones:
Heredity Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital...blindness
--Associated with:
 --MR
 --[nonocular finding] ring loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry
--Split is in...RNFL
--Abnormal cells: Müller cell
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods: Non-functioning
--Red/green cones: Reduced in number

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Knobloch Syndrome
--The BCSC Retina book calls Goldmann-Favre a "diffuse photoreceptor dystrophy." In what ways are photoreceptors affected?
 --Rods: Non-functioning
 --Red/green cones: Reduced in number
 --Blue cones:

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neoTRDretinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome

- Macula looks like... XLJR, but periphery looks like... RP
- Vitreous is... optically empty
- Presents with... nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Norrie Disease

- X-linked
- Bilateral congenital... blindness
- Associated with:
 - MR
 - [nonocular finding] ring loss
- Yellowish RD appears w/in... weeks of birth
- Lenses & Ks opacify with time
- Ends in... phthisis by age 10

X-Linked Juvenile Retinoschisis

- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in... 100%
- Looks like CME, but is dry
- Split is in... RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of... b-wave
- If severe, peripheral changes can lead to... RD, vitreous heme

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?

- **Rods**: Non-functioning
- **Red/green** cones: Reduced in number
- **Blue** cones: Increased in number

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
- Macula looks like... XLJR, but periphery looks like... RP
- Vitreous is... optically empty
- Presents with... nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Norrie Disease
- X-linked
- Bilateral congenital... blindness
- Associated with:
 - MR
 - [nonocular finding 2] ring loss
 - Yellowish RD appears w/in... weeks of birth
 - Lenses & Ks opacify with time
 - Ends in... phthisis by age 10

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in... 100%
- Looks like CME, but is dry
- Split is in... RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of... b-wave
- If severe, peripheral changes lead to... RD, vitreous heme

Familial Exudative Vitreoretinopathy
- Looks like... ROP (but FT and normal respiratory status)
- Hallmark: Failure of... temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo... TRD... retinal breaks and foveal dragging
- PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
- Rods: Non-functioning
- Red/green cones: Reduced in number
- Blue cones: Increased in number

What are the ERG findings?
- Rod response:
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome

- Macula looks like... XLJR, but periphery looks like... RP
- Vitreous is... optically empty
- Presents with... nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Norrie Disease

- X-linked
- Bilateral congenital... blindness
- Associated with:
 - MR
 - [nonocular finding] ring loss
 - Yellowish RD appears w/in... weeks of birth
 - Lenses & Ks opacify with time
 - Ends in... phthisis by age 10

X-Linked Juvenile Retinoschisis

- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in... 100%
- Looks like CME, but is dry
- Split is in... RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of... b-wave
- If severe, peripheral changes can lead to... RD, vitreous heme

Familial Exudative Vitreoretinopathy

- Looks like... ROP (but FT and normal respiratory status)
- Hallmark: Failure of... temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo... TRD... peripheral neo... RD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?

- **Rods**: Non-functioning
- **Red/green** cones: Reduced in number
- **Blue** cones: Enhanced (hence the name of the syndrome)

What are the ERG findings?

- Rod response: Undetectable
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital...blindness
--Associated with:
 --MR
 --[nonocular finding] ring loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry
--Split is in...RNFL
--Abnormal cells: Müller cell
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods: Non-functioning
--Red/green cones: Reduced in number
--Blue cones: Increased in number

Familial Exudative Vitreoretinopathy
--Looks like... ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo
 TRD...retinal breaks and foveal dragging
 PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital...blindness
--Associated with:
--MR
--[nonocular finding] ring loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry
--Split is in...RNFL
--Abnormal cells: Müller cell
--ERG: Selective loss of...b-wave
--If severe, peripheral changes lead to...RD, vitreous heme

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods: Non-functioning
--Red/green cones: Reduced in number
--Blue cones: Increased in number

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo...TRD...retinal breaks and foveal dragging

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

What are the ERG findings?
--Rod response: Undetectable
--Red/green cone response: Attenuated
Goldmann-Favre Syndrome

--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease

--X-linked
--Bilateral congenital...blindness
--Associated with:
 --MR
 --[nonocular finding] ring loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Familial Exudative Vitreoretinopathy

--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neo...TRD...retinal breaks and foveal dragging
--PVD, vitreous traction

Knobloch Syndrome

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?

--Rods: Non-functioning
--Red/green cones: Reduced in number
--Blue cones: Increased in number

What are the ERG findings?

--Rod response: Undetectable
--Red/green cone response: Attenuated
--Blue cones:
Goldmann-Favre Syndrome

- Macula looks like XLJR, but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Norrie Disease

- X-linked
- Bilateral congenital blindness
- Associated with:
 - MR
 - [nonocular finding] ring loss
- Yellowish RD appears w/in weeks of birth
- Lenses & Ks opacify with time
- Ends in phthisis by age 10

X-Linked Juvenile Retinoschisis

- Named for peripheral changes, but present in only 50% of cases
- Looks like CME, but is dry
- Foveal schisis present in 100%
- ERG: Selective loss of b-wave
- Abnormal cells: Müller cells
- Split in RNFL
- If severe, peripheral changes lead to RD, vitreous heme

Hereditary Hyaloideoretinopathies

Knobloch Syndrome

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?

- Rods: Non-functioning
- Red/green cones: Reduced in number
- Blue cones: Increased in number

What are the ERG findings?

- Rod response: Undetectable
- Red/green cone response: Attenuated
- Blue cones: Enhanced (hence the name of the syndrome)
Norrie Disease
--X-linked--Bilateral congenital...blindness
--Associated with:
--MR
--[nonocular finding 2] ring loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo...TRD...retinal breaks and foveal dragging
--PVD, vitreous traction

Vitreoretinal Dystrophies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

What’s up with the disease/syndrome ambiguity?

Blame the most recent (at the time of this writing) version of the Retina book--in one chapter the condition is referred to as ‘enhanced S-code syndrome,’ whereas in another the same condition is ‘enhanced S-cone disease.’ (It even has separate entries in the Index.)
Hereditary Vitreoretinopathies

Norrie Disease
- X-linked
- Bilateral congenital blindness
- Associated with: MR, Hearing loss
- Yellowish RD appears within weeks of birth
- Lenses & Ks opacify with time—ends in phthisis by age 10

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in 100%
- Looks like CME, but is dry dz
- Split is in RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of b-wave
- If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
- Macula looks like XLJR, but periphery looks like RP
- Vitreous is...optically empty
- Presents with...nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

What’s up with the disease/syndrome ambiguity?
Blame the most recent (at the time of this writing) version of the Retina book—in one chapter the condition is referred to as ‘enhanced S-cone syndrome,’ whereas in another the same condition is ‘enhanced S-cone disease.’ (It even has separate entries in the Index.)
Hereditary Vitreoretinopathies

Norrie Disease
- X-linked
- Bilateral congenital blindness
- Associated with: MR, Hearing loss
- Yellowish RD appears within weeks of birth
- Lenses & Ks opacify with time
- Ends in phthisis by age 10

Goldmann-Favre Syndrome
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in 100%
- Looks like CME, but is dry dz
- Split is in RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of b-wave
- If severe, peripheral changes can lead to RD, vitreous heme

X-Linked Juvenile Retinoschisis
- Macula looks like XLJR, but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
- Looks like ROP (but FT and normal respiratory status)
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo  TRD  retinal breaks and foveal dragging
- PVD, vitreous traction

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with: MR, Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo TRD
--PVD, vitreous traction

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Norrie Disease
--X-linked recessive
--Bilateral congenital...[VA]
--Associated with: MR, Hearing loss
--Yellowish RD appears w/in weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Present with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo
->
TRD
->
retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time--Ends in phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Knobloch Syndrome

Knobloch Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Hereditary Vitreoretinopathies

Knobloch Syndrome
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
--[nonocular finding 1]
--[nonocular finding 2]

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR (= mental retardation)
 --Hearing loss

--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Is also known as enhanced S-cone dz/syndrome

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo TRD...RD, vitreous heme

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--- Macula looks like...XLJR, but periphery looks like...RP
--- Vitreous is...optically empty
--- Presents with...nyctalopia
--- Is also known as enhanced S-cone dz/syndrome
Norrie Disease
--X-linked recessive
--Bilateral congenital…blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in…
 [time frame relative to birth]
 --Lenses & Ks opacify with time--Ends in…phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in…100%
--Looks like CME, but is dry dz
--Split is in…RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of…b-wave
--If severe, peripheral changes can lead to…RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like…XLJR, but periphery looks like…RP
--Vitreous is…optically empty
--Presents with…nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital…blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in…
 [time frame relative to birth]

Familial Exudative Vitreoretinopathy

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
 --Lenses & Ks opacify with time--Ends in…phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in…100%
--Looks like CME, but is dry dz
--Split is in…RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of…b-wave
--If severe, peripheral changes can lead to…RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like…XLJR, but periphery looks like…RP
--Vitreous is…optically empty
--Presents with…nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Knobloch Syndrome

Goldmann-Favre Syndrome

Familial Exudative Vitreoretinopathy
--Looks like…ROP (but FT and normal respiratory status)
--Hallmark: Failure of…temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo  TRD  retinal breaks and foveal dragging
--PVD, vitreous traction

Knobloch Syndrome
--Macula looks like…XLJR, but periphery looks like…RP
--Vitreous is…optically empty
--Presents with…nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Hereditary Vitreoretinopathies

Knobloch Syndrome
--Macula looks like…XLJR, but periphery looks like…RP
--Vitreous is…optically empty
--Presents with…nyctalopia
--Is also known as enhanced S-cone dz/syndrome
Hereditary Vitreoretinopathies

Fundus photograph of 34-week-old infant with Norrie Disease. A and B. Pretreatment images of the right and left eye demonstrating incomplete retinal vasculogenesis with neovascularization and hemorrhage, and incomplete foveal vascularization.

Norrie disease: Yellowish RDs
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
- Macula looks like XLJR,
- but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Norrie Disease
- X-linked
- Bilateral congenital blindness
- Associated with:
 - MR
 - [nonocular finding] ring loss
 - Yellowish RD appears w/in... weeks of birth
 - Lenses & Ks opacify with time
 - Ends in phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in 100%
- Looks like CME, but is dry dz
- Split is in RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of b-wave
- If severe, peripheral changes can lead to RD, vitreous heme

Familial Exudative Vitreoretinopathy
- Looks like ROP (but FT and normal respiratory status)
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo→TRD→retinal breaks and foveal dragging
- PVD, vitreous traction

Knobloch Syndrome
- The yellowish (sometimes described as gray-yellowish) retinal mess has been mistaken for a retinal tumor. For this reason, it is sometimes referred to as a pseudoglioma.
- (This fact will become more relevant in a couple of slides.)
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks...[same change]
 (K = cornea)

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo...TRD...retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Vitreoretinopathies

Knobloch Syndrome

Goldmann-Favre Syndrome

Norrie Disease

X-Linked Juvenile Retinoschisis

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

Norrie Disease
- X-linked recessive
- Bilateral congenital blindness
- Associated with: MR, Hearing loss
- Yellowish RD appears within weeks of birth
- Lenses & Ks opacify with time
- Ends in phthisis by age 10

Goldmann-Favre Syndrome
- Macula looks like XLJR, but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia
- Is also known as enhanced S-cone dz/syndrome

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in 100%
- Looks like CME, but is dry dz
- Split is in RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of b-wave
- If severe, peripheral changes can lead to RD, vitreous heme

Familial Exudative Vitreoretinopathy
- Looks like ROP (but FT and normal respiratory status)
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo→TRD→retinal breaks and foveal dragging
- PVD, vitreous traction

Knobloch Syndrome
- Macula looks like XLJR, but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia
- Is also known as enhanced S-cone dz/syndrome
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
- X-linked recessive
- Bilateral congenital blindness
- Associated with: MR, hearing loss
- Yellowish RD appears within weeks of birth
- Lenses & Ks opacify with time
- End stage: phthisis by age 10

Norrie Disease
- X-linked recessive
- Bilateral congenital blindness
- Associated with: MR, hearing loss
- Yellowish RD appears within weeks of birth
- Lenses & Ks opacify with time
- End stage:

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in 100%
- Looks like CME, but is dry dz
- Split is in RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of b-wave
- If severe, peripheral changes can lead to RD, vitreous heme

Knobloch Syndrome

Goldmann-Favre Syndrome
- Macula looks like XLJR, but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
- Looks like ROP (but FT and normal respiratory status)
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo  TRD  retinal breaks and foveal dragging
- PVD, vitreous traction

Knobloch Syndrome

Goldmann-Favre Syndrome

Norrie Disease
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Familial Exudative Vitreoretinopathy
--Looks like…[dz]
--Normal respiratory status
--Hallmark: Failure of temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neovascularization → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in…weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
--Macula looks like…XLJR, but periphery looks like…RP
--Vitreous is…optically empty
--Presents with…nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Knobloch Syndrome

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in…100%
--Looks like CME, but is dry dz
--Split is in…RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of…b-wave
--If severe, peripheral changes can lead to…RD, vitreous heme

Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like…XLJR, but periphery looks like…RP
--Vitreous is…optically empty
--Presents with…nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital…blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in…weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like…[dz]
Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neovascularization leads to TRD, retinal breaks and foveal dragging
--PVD, vitreous traction

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in... weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies
--with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in... weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10
Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo\rightarrow TRD\rightarrow retinal breaks and foveal dragging
--PVD, vitreous traction

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

61

Hereditary Vitreoretinopathies
Hereditary Vitreoretinopathies

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like ROP but FT and w/ normal respiratory status
--Hallmark: Failure of temporal retina to vascularize

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome

Knobloch Syndrome
FEVR: Unvascularized temporal retina
A 41-year-old man with an unremarkable medical history presented for evaluation of a raised, pigmented peripheral retinal lesion. The patient was asymptomatic. VA was 20/40 OD and 20/25 OS. DFE OD showed a dragged macula (2A, double-headed arrow) with temporal fibrovascular tissue. OS (2B) had a normal fovea and infratemporal retinoschisis. FA OD demonstrated a V-shaped area of avascular/limited perfusion in the temporal retina (2C, arrow), with mild leakage. FA OS showed mild nonperfusion in the far temporal periphery (2D, arrow). After the patient received laser photocoagulation therapy to right eye, he had no further complications, no increase in fibrosis, and no new areas of neovascularization (2E, 2F).
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and with normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance:

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Hereditary Vitreoretinopathies
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as **enhanced S-cone dz/syndrome**

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

Norrie Disease
- X-linked recessive
- Bilateral congenital blindness
- Associated with:
 - MR
 - Hearing loss
- Yellowish RD appears w/in weeks of birth
- Lenses & Ks opacify with time
- End stage: Phthisis by age 10

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in 100%
- Looks like CME, but is dry dz
- Split is in RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of b-wave
- If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
- Macula looks like XLJR, but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
- Looks like ROP--but FT and w/ normal respiratory status
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD, AR, X-linked
- Peripheral neo → TRD →

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
- Macula looks like XLJR, but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome

Norrie Disease
- X-linked recessive
- Bilateral congenital blindness
- Associated with:
 - MR
 - Hearing loss
- Yellowish RD appears w/in weeks of birth
- Lenses & Ks opacify with time
- End stage: Phthisis by age 10

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in 100%
- Looks like CME, but is dry dz
- Split is in RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of b-wave
- If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
- Macula looks like XLJR, but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
- Looks like ROP--but FT and w/ normal respiratory status
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD, AR, X-linked
- Peripheral neo → TRD →

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Hereditary Vitreoretinopathies

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with: MR, Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Knobloch Syndrome

Goldmann-Favre Syndrome
--Macula looks like XLR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Knobloch Syndrome
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging

Knobloch Syndrome
Hereditary Vitreoretinopathies

FEVR: Foveal/disc dragging
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

--Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present

(PVD = posterior vitreous detachment)
Norrie disease and the X-linked version of FEVR have been traced to defects in a signaling protein called norrin. The gene responsible is the Norrie Disease – Pseudoglioma (NDP) gene. Multiple dz-causing mutations of this gene have been identified. In addition to Norrie’s and X-linked FEVR, the NDP gene has been implicated in the pathogenesis of some (not all) cases of several other retinal conditions, including:

- Persistent hyperplastic primary vitreous (PHPV)
- Retinopathy of prematurity (ROP)
- Coats disease

The precise role played by the NDP gene in PHPV, ROP and Coats disease has yet to be elucidated.

-- X-linked recessive
-- Bilateral congenital blindness
-- Associated with:
 -- MR
 -- Hearing loss
-- Yellowish RD appears within weeks of birth
-- Lenses & Ks opacify with time
-- End stage: Phthisis by age 10

Goldmann-Favre Syndrome

Familial Exudative Vitreoretinopathy

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis

- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in...100%
- Looks like CME, but is dry dz
- Split is in...RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of...b-wave
- If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome

- Macula looks like...XLJR, but periphery looks like...RP
- Vitreous is...optically empty
- Presents with...nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Norrie Disease

- X-linked recessive
- Bilateral congenital...blindness
- Associated with:
 - MR
 - Hearing loss
- Yellowish RD appears w/in...weeks of birth
- Lenses & Ks opacify with time
- End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

- Classic triad: predisposition to
 - location, and CNS developmental prob
 - retinal prob
 + refractive prob
 + retinal prob

Familial Exudative Vitreoretinopathy

- Looks like...ROP--but FT and w/ normal respiratory status
- Hallmark: Failure of...temporal retina to vascularize
- Inheritance: AD, AR, X-linked
- Peripheral neo → TRD → retinal breaks and foveal dragging
- PVD, vitreous traction present
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Is also known as enhanced S-cone dz/syndrome

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
Knobloch syndrome: Occipital encephalocele
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
 --Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Knobloch Syndrome
--Classic triad:
 --Occipital encephalocele
 --High myopia
 --Predisposition to retinal detachment

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
 --Peripheral neo...TRD...retinal breaks and foveal dragging
 --PVD, vitreous traction present

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch pts always have a full-blown occipital encephalocele?
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like ROP--but FT and with normal respiratory status

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment

Hereditary Hyaloideoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to RD, vitreous heme

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like ROP--but FT and with normal respiratory status

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment

Hereditary Hyaloideoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like ROP--but FT and with normal respiratory status

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
Hereditary Vitreoretinopathies

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --[nonocular finding 2] ring loss
--Yellowish RD appears w/in… weeks of birth
--Lenses & Ks opacify with time--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like…XLJR, but periphery looks like…RP
--Vitreous is…optically empty
--Presents with…nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Knobloch Syndrome
--Classic triad:
 --Occipital encephalocele + high myopia + predisposition to retinal detachment

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Familial Exudative Vitreoretinopathy
--Looks like…ROP--but FT and w/ normal respiratory status

Do Knobloch pts always have a full-blown occipital encephalocele? No, there is a spectrum of severity--some kids ‘only’ have a funky occipital scalp. Protip: If shown a photo of the back of a kid’s head, with the hair pushed out of the way to reveal the scalp, go with Knobloch syndrome.
Knobloch syndrome: Funky occipital scalp
Hereditary Vitreoretinopathies

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in... weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like... XLJR, but periphery looks like... RP
--Vitreous is... optically empty
--Presents with... nyctalopia
--Is also known as enhanced S-cone dz/syndrome

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in... 100%
--Looks like CME, but is dry dz
--Split is in... RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of... b-wave
--If severe, peripheral changes can lead to... RD, vitreous heme

Familial Exudative Vitreoretinopathy
--Looks like... ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of... temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
--RPE is atrophic

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
--RPE is atrophic

Hereditary Hyaloideoretinopathies

Hereditary Vitreoretinopathies

Norrie Disease
- X-linked recessive
- Bilateral congenital blindness
- Associated with:
 - MR
 - Hearing loss
- Yellowish RD appears within weeks of birth
- Lenses & Ks opacify with time
- End stage: Phthisis by age 10

Goldmann-Favre Syndrome
- Macula looks like... XLJR, but periphery looks like... RP
- Vitreous is... optically empty
- Presents with... nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Knobloch Syndrome
- Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
- RPE is atrophic

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in... 100%
- Looks like CME, but is dry dz
- Split is in... RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of... b-wave
- If severe, peripheral changes can lead to... RD, vitreous heme

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
- Macula looks like... XLJR, but periphery looks like... RP
- Vitreous is... optically empty
- Presents with... nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Norrie Disease
- X-linked recessive
- Bilateral congenital... blindness
- Associated with:
 - MR
 - Hearing loss
- Yellowish RD appears within weeks of birth
- Lenses & Ks opacify with time
- End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy
- Looks like... ROP--but FT and w/ normal respiratory status
- Hallmark: Failure of... temporal retina to vascularize
- Inheritance: AD, AR, X-linked
- Peripheral neo → TRD → retinal breaks and foveal dragging
- PVD, vitreous traction present

Knobloch Syndrome
- Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
- RPE is atrophic
Knobloch syndrome: Atrophic RPE
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
--RPE is atrophic
--Irids are structural issue
Hereditary Vitreoretinopathies

Norrie Disease
- X-linked recessive
- Bilateral congenital blindness
- Associated with:
 - MR
 - Hearing loss
- Yellowish RD appears within weeks of birth
- Lenses & Ks opacify with time
- End stage: Phthisis by age 10

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in 100%
- Looks like CME, but is dry dz
- Split is in RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of b-wave
- If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
- Macula looks like XLJR, but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
- Looks like ROP--but FT and w/ normal respiratory status
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD, AR, X-linked
- Peripheral neo → TRD → retinal breaks and foveal dragging
- PVD, vitreous traction present

Knobloch Syndrome
- Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
- RPE is atrophic
- Irides are cryptless

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
- Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
- RPE is atrophic
- Irides are cryptless
Hereditary Vitreoretinopathies

Knobloch syndrome: Cryptless irides
Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
--RPE is atrophic
--Irides are cryptless

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in weeks of birth
--Lenses & Ks opacify with time
--Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
The hyaloideoretinopathies get their own slides...

Goldmann-Favre
Syndrome

Norrie Disease

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
--All have vitreous [finding]
--All are associated with:
--myopia
--glaucoma
--cataracts
--lattice degeneration

The hyaloideoretinopathies get their own slides...

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50%
--Foveal schisis present in 50%
--Looks like CME, but is dry
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Hereditary Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present

Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies
--All have vitreous [finding]
--All are associated with:
--myopia
--glaucoma
--cataracts
--lattice degeneration

The hyaloideoretinopathies get their own slides...
Hereditary Hyaloideoretinopathies

Hereditary Hyaloideoretinopathies
with Optically Empty Vitreous

--All have vitreous…[finding]
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous…veils
Hereditary Vitreoretinopathies

Vitreous veils
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous…veils
--All are associated with:
 --[refractive status]
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --[blinding dz]
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia --Glaucoma
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

-- All have vitreous... veils
-- All are associated with:
 -- Myopia
 -- Glaucoma
 -- [common eye prob]
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Glucoma
 --Cataracts
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:

--Myopia
--Cataracts
--Glaucoma
--[abn retinal finding]
Hereditary Vitreoretinopathies

<table>
<thead>
<tr>
<th>Hereditary Hyaloideoretinopathies with Optically Empty Vitreous</th>
</tr>
</thead>
<tbody>
<tr>
<td>--All have vitreous... veils</td>
</tr>
<tr>
<td>--All are associated with:</td>
</tr>
<tr>
<td>--Myopia</td>
</tr>
<tr>
<td>--Cataracts</td>
</tr>
<tr>
<td>--Glaucoma</td>
</tr>
<tr>
<td>--Lattice degeneration</td>
</tr>
</tbody>
</table>
Hereditary Hyaloideoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --Lattice degeneration

What is unusual about lattice in these conditions?
Hereditary Hyaloideoretinopathies

---All have vitreous…veils
---All are associated with:
---Myopia
---Cataracts
---Glaucoma
---Lattice degeneration

What is unusual about lattice in these conditions?
It has a **radial** orientation, i.e., the lattice points toward the optic nerve, as opposed to the circumferential orientation characteristic of typical lattice.
Hereditary Vitreoretinopathies

Radially-oriented lattice degeneration
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --Lattice degeneration

One way of divvying up the hereditary hyaloideoretinopathies

? ?
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --Lattice degeneration

Ocular disease only
Associated with systemic disease

One way of divvying up the hereditary hyaloideoretinopathies
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --Lattice degeneration

Ocular disease only Associated with systemic disease
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --Lattice degeneration

Ocular disease only

Wagner's disease

Associated with systemic disease
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --Lattice degeneration

Ocular disease only

Wagner's disease

Associated with systemic disease

?
Hereditary Hyaloideoretinopathies

All have vitreous...veils
All are associated with:
--Myopia
--Cataracts
--Glaucome
--Lattice degeneration

Hereditary Vitreoretinopathies

Ocular disease only
Wagner's disease

Associated with systemic disease
Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one?

Ocular disease only

- Wagner’s disease

Associated with systemic disease

- Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one? Pierre Robin sequence (PRS)

Ocular disease only

- Wagner’s disease

Associated with systemic disease

- Stickler syndrome
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies

With Optically Empty Vitreous

-- All have vitreous...veils
-- All are associated with:
 - Myopia
 - Glaucoma
 - Cataracts
 - Lattice degeneration

Hereditary Vitreoretinopathies

Ocular disease only

- Wagner’s disease

Associated with systemic disease

- **Stickler syndrome**
Hereditary Hyaloideoretinopathies

- All have vitreous veils
- Associated with:
 - Myopia
 - Glaucoma
 - Cataracts
 - Lattice degeneration

Stickler syndrome is strongly associated with a craniofacial malformation—

Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term **sequence**?

It means that a single developmental malformation initiates a 'domino effect' which leads to other malformations, which in turn lead to significant functional issues.

In PRS, what is the 'single developmental malformation' that triggers the sequence?

- Micrognathia

And what is the 'sequence,' ie, the subsequent malformations and functional issues?

- Micrognathia → glossoptosis → cleft palate → feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?

- The affected joints are enlarged and hypermobile

How do you pronounce Pierre Robin in this context?

PEA-err roe-BAHN
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a **craniofacial malformation**—which one?

Pierre Robin sequence (PRS)

The Peds book divides the craniofacial malformations into two groups—what are they?

Ocular disease only

- Wagner’s disease

Associated with systemic disease

- **Stickler syndrome**
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a *craniofacial malformation*—which one?

Pierre Robin sequence (PRS)

Craniosynostoses

Not craniosynostoses

The Peds book divides the craniofacial malformations into two groups—what are they?

Ocular disease only

- Wagner’s disease

Associated with systemic disease

- Stickler syndrome

Two categories of craniofacial syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one?

Pierre Robin sequence (PRS)

Two categories of craniofacial syndrome

Craniosynostoses

Not craniosynostoses

In which group does Pierre Robin sequence belong?

Ocular disease only

Stickler syndrome

Associated with systemic disease

Wagner’s disease

Craniosynostoses

Not craniosynostoses

In which group does Pierre Robin sequence belong?
Hereditary Vitreoretinopathies

- Hereditary Hyaloideoretinopathies
 - All have vitreous veils
 - All are associated with:
 - Myopia
 - Glaucoma
 - Cataracts
 - Lattice degeneration

Stickler syndrome is strongly associated with a craniofacial malformation—whic one?

Pierre Robin sequence (PRS)

Two categories of craniofacial syndrome

Craniosynostoses

Not craniosynostoses

--- Pierre Robin sequence

In which group does Pierre Robin sequence belong?

Ocular disease only

- Wagner's disease

Associated with systemic disease

- Stickler syndrome

Stickler syndrome is also associated with arthropathy. How does this manifest?

The affected joints are enlarged and hypermobile.

Craniosynostoses

Not craniosynostoses

--- Pierre Robin sequence
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one? Pierre Robin sequence (PRS)

Two categories of craniofacial syndrome

Craniosynostoses Not craniosynostoses

---?

---?

---Pierre Robin sequence

---?

What are the other three 'not craniosynostosis' craniofacial malformations?

Ocular disease only

Wagner’s disease

Associated with systemic disease

Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one? Pierre Robin sequence (PRS)

Craniosynostoses

Not craniosynostoses

Two categories of craniofacial syndrome

--Goldenhar
--Treacher Collins
--Pierre Robin sequence
--Fetal alcohol syndrome

What are the other three ‘not craniosynostosis’ craniofacial malformations?

Ocular disease only

Wagner’s disease

Associated with systemic disease

Stickler syndrome

Stickler syndrome is strongly associated with a craniofacial malformation—which one? Pierre Robin sequence (PRS)

Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?

It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues.

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?

Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues?

Micrognathia

→

glossoptosis

→
cleft palate

→
feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?

The affected joints are enlarged, and hypermobile.

Craniosynostoses

Not craniosynostoses

Two categories of craniofacial syndrome

--Goldenhar
--Treacher Collins
--Pierre Robin sequence
--Fetal alcohol syndrome

What are the other three ‘not craniosynostosis’ craniofacial malformations?
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one? Pierre Robin sequence (PRS)

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- Stickler syndrome

Two categories of craniofacial syndrome

Craniosynostoses
-?
-?
-?
-?

Not craniosynostoses
-Goldenhar
-Treacher Collins
-Pierre Robin sequence
-Fetal alcohol syndrome

What are the four craniosynostoses?
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a **craniofacial malformation**—which one?

Pierre Robin sequence (PRS)

- **Crouzon**
- **Apert**
- **Pfeiffer**
- **Saethre-Chotzen**

Ocular disease only

- Wagner’s disease

Associated with systemic disease

- **Stickler syndrome**

Two categories of craniofacial syndrome

Craniosynostoses

- **Crouzon**
- **Apert**
- **Pfeiffer**
- **Saethre-Chotzen**

Not craniosynostoses

- **Goldenhar**
- **Treacher Collins**
- **Pierre Robin sequence**
- **Fetal alcohol syndrome**

What are the four craniosynostoses?

With regard to congenital anomalies, what is meant by the term **sequence**?

It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues.

In **PRS**, what is the ‘single developmental malformation’ that triggers the sequence?

- **Micrognathia**

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues?

- **Micrognathia**
 - **Glossoptosis**
 - **Cleft palate**
 - **Feeding difficulties**

Stickler syndrome is also associated with **arthropathy**. How does this manifest?

The affected joints are enlarged and hypermobile.

Craniosynostoses

- **Goldenhar**
- **Treacher Collins**
- **Pierre Robin sequence**
- **Fetal alcohol syndrome**

Two categories of craniofacial syndrome

- **Goldenhar**
- **Treacher Collins**
- **Pierre Robin sequence**
- **Fetal alcohol syndrome**

Craniosynostoses

- **Crouzon**
- **Apert**
- **Pfeiffer**
- **Saethre-Chotzen**

Not craniosynostoses

- **Goldenhar**
- **Treacher Collins**
- **Pierre Robin sequence**
- **Fetal alcohol syndrome**

What are the four craniosynostoses?
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one? Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?

Ocular disease only

- Wagner’s disease

Associated with systemic disease

- Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- **Stickler syndrome**
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- **Stickler syndrome**
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?

Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?

It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?

Micrognathia

Ocular disease only

- Wagner’s disease

Associated with systemic disease

- **Stickler syndrome**
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one? Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence? It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues.

InPRS, what is the ‘single developmental malformation’ that triggers the sequence? Micrognathia

What does micrognathia mean? It means ‘severe hypoplasia of the mandible’

Ocular disease only

- Wagner’s disease

Associated with systemic disease

- Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one? Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence? It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues.

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?

Micrognathia

What does micrognathia mean? It means ‘severe hypoplasia of the mandible’

Ocular disease only

Wagner’s disease

Associated with systemic disease

Stickler syndrome
Pierre Robin sequence: Micrognathia
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—*which one?*
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

InPRS, what is the ‘single developmental malformation’ that triggers the sequence?
Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues?
- Micrognathia ➔ Glossoptosis ➔ Cleft palate ➔ Feeding difficulties

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- **Stickler syndrome**
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one? Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence? Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues? Micrognathia → glossoptosis → cleft palate → feeding difficulties

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- **Stickler syndrome**
Hereditary Hyaloideoretinopathies

Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues.

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?
Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues?
Micrognathia ➔ glossoptosis ➔ cleft palate ➔ feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?
The affected joints are enlarged and hypermobile

What does glossoptosis refer to?
The position of the tongue being too posterior.

Ocular disease only

Wagner’s disease

Associated with systemic disease

Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one? Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence? It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues.

In PRS, what is the ‘single developmental malformation’ that triggers the sequence? Micrognathia

And what is the ‘sequence’ ie, the subsequent malformations and functional issues?

glossoptosis

What does glossoptosis refer to? The position of the organ being too

Ocular disease only

Wagner’s disease

Associated with systemic disease

Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one? Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence? It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues.

In PRS, what is the ‘single developmental malformation’ that triggers the sequence? Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues?

- Micrognathia → glossoptosis
- glossoptosis → micrognathia → cleft palate
- cleft palate → feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?

The affected joints are enlarged and hypermobile

What does glossoptosis refer to? The position of the tongue being too posterior.
Hereditary Vitreoretinopathies

Pierre Robin sequence: Glossoptosis

Micrognathia - a small jaw with a receding chin
Tongue that is large compared to the jaw, resulting in airway obstruction
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?

Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?

It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?

Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues?

Micrognathia→glossoptosis→cleft palate→feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?

Ocular disease only

![Diagram showing ocular disease only and associated with systemic disease]

- Wagner’s disease
- **Stickler syndrome**

Associated with systemic disease
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?
Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues?
Micrognathia→glossoptosis→cleft palate→feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?
The affected joints are **enlarged**, and **hypermobile**

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- **Stickler syndrome**
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one? Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence? It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence? Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues? Micrognathia → glossoptosis → cleft palate → feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest? The affected joints are enlarged, and hypermobile

Ocular disease only

Wagner’s disease

Associated with systemic disease

Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome: hypermobile joints
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a "domino effect" which leads to other malformations.

In PRS, what is the "single developmental malformation" that triggers the sequence?
Micrognathia

And what is the "sequence," i.e., the subsequent malformations and functional issues?
Micrognathia → glossoptosis → cleft palate → feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?
The affected joints are enlarged and hypermobile.

What is the non-eponymous name for Stickler syndrome?
Hereditary arthro-ophthalmopathy, Marfanoid variety. Note that this term may have fallen out of favor (it appeared in my Retina book back in the day, but not in the most recent edition.) I'm mentioning it as a way to "make stick" the nature of the arthropathy associated with Stickler syndrome.
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?

Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?

It means that a single developmental malformation initiates a domino effect which leads to other malformations.

In PRS, what is the "single developmental malformation" that triggers the sequence?

Micrognathia

And what is the "sequence," ie, the subsequent malformations and functional issues?

Micrognathia → glossoptosis → cleft palate → feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?

The affected joints are enlarged, and hypermobile

Ocular disease only

- Wagner's disease

Associated with systemic disease

- **Stickler syndrome, aka...**

 ‘Hereditary arthro-ophthalmopathy, Marfanoid variety’

What is the non-eponymous name for Stickler syndrome?

‘Hereditary arthro-ophthalmopathy, Marfanoid variety.’ Note that this term may have fallen out of favor (it appeared in my *Retina* book back in the day, but not in the most recent edition.) I’m mentioning it as a way to ‘make stick’ the nature of the arthropathy associated with Stickler syndrome.
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--- All have vitreous...veils
--- All are associated with:
 --- Myopia
 --- Cataracts
 --- Glaucoma
 --- Lattice degeneration

Ocular disease only

Wagner’s disease?

Associated with systemic disease

Stickler syndrome?

Of these two conditions, only one carries a very high risk of retinal detachment. Which one?
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--- All have vitreous...veils
--- All are associated with:
 --- Myopia
 --- Cataracts
 --- Glaucoma
 --- Lattice degeneration

Of these two conditions, only one carries a very high risk of retinal detachment. Which one? Stickler syndrome. BTW, this fact (the high RD risk associated with Stickler) is emphasized by the BCSC books--may be worth your time to commit it to memory.
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --Lattice degeneration

Ocular disease only
- Wagner's disease
- Jansen's disease

Associated with systemic disease
- 'Hereditary arthro-ophthalmopathy with stiff joints' (Weill-Marchesani-like variety)
- 'Hereditary arthro-ophthalmopathy, Marfanoid variety' (Stickler syndrome)

Are Stickler pts at increased risk of RD?
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous…veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --Lattice degeneration

Ocular disease only

- Wagner’s disease
- Jansen’s disease

Associated with systemic disease

- ‘Hereditary arthro-ophthalmopathy with stiff joints’ (Weill-Marchesani-like variety)
- ‘Hereditary arthro-ophthalmopathy, Marfanoid variety’ (Stickler syndrome)

Are Stickler pts at increased risk of RD?

Very much so. Even worse, their RDs are associated with large multiple breaks, rendering repair difficult.
Hereditary Vitreoretinopathies

Stickler syndrome: RD