Goldmann-Favre Syndrome
-- Macula looks like XLJR, but periphery looks like RP
-- Vitreous is optically empty
Presents with nyctalopia
-- Is also known as enhanced S-cone dz/syndrome

Norrie Disease
-- X-linked
-- Bilateral congenital blindness
-- Associated with:
 -- MR
 -- [nonocular finding] ring loss
 -- Yellowish RD appears w/in weeks of birth
 -- Lenses & Ks opacify with time
 -- Ends in phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
-- Named for peripheral changes, but present in only 50% of cases
-- Foveal schisis present in 100%
-- Looks like CME, but is dry
-- Split is in RNFL
-- Abnormal cells: Müller cells
-- ERG: Selective loss of b-wave
-- If severe, peripheral changes can lead to RD, vitreous heme

Norrie Disease
-- X-linked
-- Bilateral congenital blindness
-- Associated with:
 -- MR
 -- Hearing loss
 -- Yellowish RD appears w/in weeks of birth
 -- Lenses & Ks opacify with time
 -- Ends in phthisis by age 10

Familial Exudative Vitreoretinopathy
-- Looks like ROP (but FT and normal respiratory status)
-- Hallmark: Failure of temporal retina to vascularize
-- Inheritance: AD (check family)
-- Peripheral neo  TRD  retinal breaks and foveal dragging
-- PVD, vitreous traction

Hereditary Hyaloideoretinopathies
with Optically Empty Vitreous
specific disease

Knobloch Syndrome
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

Norrie Disease
- X-linked
- Bilateral congenital blindness
- Associated with:
 - MR
 - Hearing loss
 - Yellowish RD appears within weeks of birth
 - Lenses & Ks opacify with time—Ends in phthisis by age 10

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only % of cases

Goldmann-Favre Syndrome

Familial Exudative Vitreoretinopathy
- Looks like ROP (but FT and normal respiratory status)
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo \(\rightarrow \) TRD \(\rightarrow \) retinal breaks and foveal dragging
- PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Norrie Disease
--X-linked--Bilateral congenital blindness--Associated with:
--MR--Hearing loss--Yellowish RD appears w/in 21 weeks of birth
--Lenses & Ks opacify with time--Ends in…phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

X-linked juvenile retinoschisis: Peripheral retinoschisis
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...[%]

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Norrie Disease

- X-linked
- Bilateral congenital blindness
- Associated with:
 - MR
 - Hearing loss
 - Yellowish RD appears within weeks of birth
 - Lenses & Ks opacify with time
 - Ends in phthisis by age 10

X-Linked Juvenile Retinoschisis

- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in 100%

Goldmann-Favre Syndrome

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Hereditary Vitreoretinopathies
X-linked juvenile retinoschisis: Foveal cysts
X-linked juvenile retinoschisis: Foveal cysts
Norrie Disease
--X-linked--Bilateral congenital blindness--Associated with:
--MR--Hearing loss--Yellowish RD appears w/in 3-4 weeks of birth--Lenses & Ks opacify with time--Ends in amblyopia, phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases--Foveal schisis present in...100%--Looks like CME, but is dry dz
(CME = cystoid macular edema)

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...[retinal layer]

Knobloch Syndrome

Goldmann-Favre Syndrome

Norrie Disease

--Bilateral congenital blindness
--Associated with: MR, Hearing loss
--Yellowish RD appears within...weeks of birth
--Lenses & Ks opacify with time
--Ends in...phthisis by age 10

Familial Exudative Vitreoretinopathy

--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo TRD
--Peripheral neo TRD
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...[retinal layer]
Hereditary Vitreoretinopathies

Norrie Disease
- X-linked
- Bilateral congenital blindness
- Associated with: MR, Hearing loss
- Yellowish RD appears within weeks of birth
- Lenses & Ks opacify with time—Ends in...phthisis by age 10

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in...100%
- Looks like CME, but is dry dz
- Split is in...RNFL

 \(\text{RNFL} = \text{retinal nerve fiber layer}\)

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

Familial Exudative Vitreoretinopathy

- Looks like...ROP (but FT and normal respiratory status)
- Hallmark: Failure of...temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo→TRD→retinal breaks and foveal dragging
- PVD, vitreous traction
Hereditary Vitreoretinopathies

X-linked juvenile retinoschisis: RNFL schisis
Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
--MR
--[nonocular finding] ring loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--Ends in... phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%--Looks like CME, but is dry
--Split is in... RNFL

My mnemonic for recalling this fact is to remember that young (ie, ‘juvenile’) men play in the NFL.
On the other hand, the schisis commonly seen in the elderly occurs in the outer plexiform and/or outer nuclear layers of the retina.

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy
--Looks like... ROP (but FT and normal respiratory status)
--Hallmark: Failure of... temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral... TRD, vitreous heme

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
--MR
--[nonocular finding] ring loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells:

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Norrie Disease
--X-linked--Bilateral congenital blindness--Associated with:
--MR--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells

Goldmann-Favre Syndrome

Familial Exudative Vitreoretinopathy

Knobloch Syndrome

Knobloch Syndrome

Goldmann-Favre Syndrome

Norrie Disease

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Norrie Disease
-- X-linked
-- Bilateral congenital blindness
-- Associated with:
 -- MR
 -- [nonocular finding 2] ring loss
 -- Yellowish RD appears within weeks of birth
 -- Lenses & Ks opacify with time
 -- Ends in phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
-- Named for peripheral changes, but present in only 50% of cases
-- Foveal schisis present in... 100%
-- Looks like CME, but is dry dz
-- Split is in... RNFL
-- Abnormal cells: Müller cells
-- ERG: Selective loss of... b-wave
-- If severe, peripheral changes can lead to... RD, vitreous heme

Familial Exudative Vitreoretinopathy
-- Looks like... ROP (but FT and normal respiratory status)
-- Hallmark: Failure of... temporal retina to vascularize
-- Inheritance: AD (check family)
-- Peripheral neo... TRD
 -- Peripheral foveal dragging
-- PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome
Norrie Disease
Familial Exudative Vitreoretinopathy
Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Knobloch Syndrome
Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
--MR
--[nonocular finding] ring loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--Ends in phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave

Goldmann-Favre Syndrome

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

X-linked juvenile retinoschisis: ERG

Normal

Patient

Absent b-wave

a-wave

b-wave
Norrie Disease
- X-linked
- Bilateral congenital blindness
- Associated with:
 - MR
 - Hearing loss
- Yellowish RD appears within weeks of birth
- Lenses & Ks opacify with time
- Ends in phthisis by age 10

Familial Exudative Vitreoretinopathy
- Looks like ROP (but FT and normal respiratory status)
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD
- Peripheral neo \rightarrow TRD \rightarrow retinal breaks and foveal dragging
- PVD, vitreous traction

Goldmann-Favre Syndrome

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in 100%
- Looks like CME, but is dry dz
- Split is in RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of b-wave
- If severe, peripheral changes can lead to [two problems]
Hereditary Vitreoretinopathies

Norrie Disease
- X-linked
- Bilateral congenital blindness
- Associated with:
 - MR
 - Hearing loss
 - Yellowish RD appears within weeks of birth
 - Lenses & Ks opacify with time
 - Ends in phthisis by age 10

X-Linked Juvenile Retinoschisis
- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in 100%
- Looks like CME, but is dry dz
- Split is in RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of b-wave
- If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome

Familial Exudative Vitreoretinopathy
- Looks like ROP (but FT and normal respiratory status)
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo  TRD  retinal breaks and foveal dragging
- PVD, vitreous traction

Knobloch Syndrome
- Macula looks like XLJR, but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...one dz
but periphery looks like...diff dz

Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with: MR, Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--Ends in...phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neo TRD...retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
(XLJR = X-linked juvenile retinoschisis)
(RP = retinitis pigmentosa)

Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --(nonocular finding) ring loss
 --Yellowish RD appears within weeks of birth
 --Lenses & Ks opacify with time--Ends in...phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo
 TRD
 retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme
Hereditary Vitreoretinopathies

Goldmann-Favre syndrome
Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty

Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time--Ends in phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to RD, vitreous heme

Knobloch Syndrome

Familial Exudative Vitreoretinopathy
--Looks like ROP (but FT and normal respiratory status)
--Hallmark: Failure of temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
 --[nonocular finding] ring loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--Ends in phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty

Familial Exudative Vitreoretinopathy
--Looks like ROP (but FT and normal respiratory status)
--Hallmark: Failure of temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neophthisis, TRD, retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Hereditary Vitreoretinopathies
Goldmann-Favre Syndrome

--Macula looks like... XLJR, but periphery looks like... RP
--Vitreous is... optically empty
Presents with... nyctalopia

Norrie Disease

--X-linked
--Bilateral congenital... blindness
--Associated with:
 --MR
 --[nonocular finding 2] ring loss
 --Yellowish RD appears within... weeks of birth
 --Lenses & Ks opacify with time-- Ends in... phthisis by age 10

Familial Exudative Vitreoretinopathy

--Looks like... ROP (but FT and normal respiratory status)
--Hallmark: Failure of... temporal retina to vascularize
--Inheritance: AD (check family)-- Peripheral neo  TRD  retinal breaks and foveal dragging
--PVD, vitreous traction

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in... 100%
--Looks like CME, but is dry dz
--Split is in... RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of... b-wave
--If severe, peripheral changes can lead to... RD, vitreous heme

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is **dry** dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome

--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia

Knobloch Syndrome

Norrie Disease

--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Goldmann-Favre Syndrome

--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia

Familial Exudative Vitreoretinopathy

--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo...TRD...retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction

Knobloch Syndrome
Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome

--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease

--X-linked
--Bilateral congenital blindness
--Associated with: MR, Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--Ends in phthisis by age 10

Familial Exudative Vitreoretinopathy

--Looks like ROP (but FT and normal respiratory status)
--Hallmark: Failure of temporal retina to vascularize
--Inheritance: AD
--Peripheral ne → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital...blindness
--Associated with:
--MR
--[nonocular finding 2] ring loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Knobloch Syndrome

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods:

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo...TRD...retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & KS opacify with time--Ends in...phthisis by age 10

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods: Non-functioning

Knobloch Syndrome
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like…XLJR, but periphery looks like…RP
--Vitreous is…optically empty
Presents with…nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital…blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in…weeks of birth
--Lenses & Ks opacify with time--Ends in…phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in…100%
--Looks like CME, but is dry
--Split is in…RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of…b-wave
--If severe, peripheral changes can lead to…RD, vitreous heme

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods: Non-functioning
--Red/green cones:

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Familial Exudative Vitreoretinopathy
--Looks like… ROP (but FT and normal respiratory status)
--Hallmark: Failure of…temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo-Troud

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with: MR, Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo...TRD...retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods: Non-functioning
--Red/green cones: Reduced in number
Goldmann-Favre Syndrome
--Macula looks like...XLJR,
 but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia
--Is also known as
 enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital...blindness
--Associated with:
 --MR
 --[nonocular finding 2] ring loss
--Yellowish RD appears w/in...
weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes,
 but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes
 lead to...RD, vitreous heme

Hereditary Vitreoretinopathies
X-Linked Juvenile Retinoschisis

The BCSC Retina book calls Goldmann-Favre a
diffuse photoreceptor dystrophy.” In what ways
are photoreceptors affected?
--Rods: Non-functioning
--Red/green cones: Reduced in number
--Blue cones:

Knobloch Syndrome

Knobloch Syndrome
Hereditary Hyaloideoretinopathies
with Optically Empty Vitreous

Hereditary Hyaloideoretinopathies
with Optically Empty Vitreous
Goldmann-Favre Syndrome
--Macula looks like…XLJR, but periphery looks like…RP
--Vitreous is…optically empty
Presents with…nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital…blindness
--Associated with:
--MR
--[nonocular finding 2] ring loss
--Yellowish RD appears w/in…weeks of birth
--Lenses & Ks opacify with time--Ends in…phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like… ROP (but FT and normal respiratory status)
--Hallmark: Failure of…temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo  TRD  retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods: Non-functioning
--Red/green cones: Reduced in number
--Blue cones: Increased in number

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in…100%
--Looks like CME, but is dry
--Split is in…RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of…the b-wave
--If severe, peripheral changes can lead to…RD, vitreous heme
Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
--Macula looks like... XLJR, but periphery looks like... RP
--Vitreous is... optically empty
--Presents with... nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital... blindness
--Associated with:
 --MR
 --[nonocular finding] ring loss
--Yellowish RD appears w/in... weeks of birth
--Lenses & Ks opacify with time
--Ends in... phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in... 100%
--Looks like CME, but is dry
--Split is in... RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of... b-wave
--If severe, peripheral changes can lead to... RD, vitreous heme

Familial Exudative Vitreoretinopathy
--Looks like... ROP (but FT and normal respiratory status)
--Hallmark: Failure of... temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neo... TRD... retinal breaks and foveal dragging
--PVD, vitreous traction

Knobloch Syndrome

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods: Non-functioning
--Red/green cones: Reduced in number
--Blue cones: Increased in number

What are the ERG findings?
--Rod response:
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --[nonocular finding] ring loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like... ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo
 → TRD
 → retinal breaks and foveal dragging

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods: Non-functioning
--Red/green cones: Reduced in number
--Blue cones: Increased in number

What are the ERG findings?
--Rod response: Undetectable
Goldmann-Favre Syndrome

--Macula looks like... XLJR, but periphery looks like... RP
--Vitreous is... optically empty
--Presents with... nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease

--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--Ends in... phthisis by age 10

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in... 100%
--Looks like CME, but is dry
--Split is in... RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of... b-wave
--If severe, peripheral changes can lead to... RD, vitreous heme

Knobloch Syndrome

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?

--Rods: Non-functioning
--Red/green cones: Reduced in number
--Blue cones: Increased in number

What are the ERG findings?

--Rod response: Undetectable
--Red/green cone response:
Goldmann-Favre Syndrome

- Macula looks like XLJ but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia

Norrie Disease

- X-linked
- Bilateral congenital blindness
- Associated with:
 - MR
 - [nonocular finding 2] ring loss
- Yellowish RD appears within weeks of birth
- Lenses & Ks opacify with time
- Ends in phthisis by age 10

Familial Exudative Vitreoretinopathy

- Looks like ROP (but FT and normal respiratory status)
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo \(\rightarrow \) TRD \(\rightarrow \) retinal breaks and foveal dragging
- PVD, vitreous traction

Knobloch Syndrome

- Rods: Non-functioning
- Blue cones: Increased in number
- Red/green cones: Reduced in number

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome

- Macula looks like XLJ but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia

Norrie Disease

- X-linked
- Bilateral congenital blindness
- Associated with:
 - MR
 - Hearing loss

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?

- Rods: Non-functioning
- Red/green cones: Reduced in number
- Blue cones: Increased in number

What are the ERG findings?

- Rod response: Undetectable
- Red/green cone response: Attenuated
- Blue cone response: Enhanced

Goldmann-Favre Syndrome is also known as enhanced S-cone dz/syndrome.
Goldmann-Favre Syndrome

- Macula looks like...XLJR, but periphery looks like...RP
- Vitreous is...optically empty
- Presents with...nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Norrie Disease

- X-linked
- Bilateral congenital blindness
- Associated with:
 - MR
 - [nonocular finding] ring loss
- Yellowish RD appears w/in...weeks of birth
- Lenses & Ks opacify with time
- Ends in...phthisis by age 10

X-Linked Juvenile Retinoschisis

- Named for peripheral changes, but present in only 50% of cases
- Foveal schisis present in...100%
- Looks like CME, but is dry
- Split is in...RNFL
- Abnormal cells: Müller cells
- ERG: Selective loss of...a
- If severe, peripheral changes can lead to...RD, vitreous hema

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?

- Rods: Non-functioning
- Red/green cones: Reduced in number
- Blue cones: Increased in number

What are the ERG findings?

- Rod response: Undetectable
- Red/green cone response: Attenuated
- Blue cones:
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--Ends in...phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry
--Split is in...RNFL
--Abnormal cells: Müller cell
--ERG: Selective loss of...b-waves
--If severe, peripheral changes can lead to...RD, vitreous heme

The BCSC Retina book calls Goldmann-Favre a “diffuse photoreceptor dystrophy.” In what ways are photoreceptors affected?
--Rods: Non-functioning
--Red/green cones: Reduced in number
--Blue cones: Increased in number

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neo  TRD  retinal breaks and foveal dragging

Hereditary Hyaloideoretinopathies

Knobloch Syndrome

What are the ERG findings?
--Rod response: Undetectable
--Red/green cone response: Attenuated
--Blue cones: Enhanced (hence the name of the syndrome)
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as...enhanced S-cone dz/syndrome

Norrie Disease
--Bilateral congenital blindness
--Associated with: MR, Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--Ends in...phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neo...TRD...retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

What’s up with the disease/syndrome ambiguity?

Blame the most recent (at the time of this writing) version of the Retina book--in one chapter the condition is referred to as ‘enhanced S-code syndrome,’ whereas in another the same condition is ‘enhanced S-cone disease.’ (It even has separate entries in the Index.)
Hereditary Vitreoretinopathies

Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--Ends in phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-waves
--If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

What’s up with the disease/syndrome ambiguity?
Blame the most recent (at the time of this writing) version of the Retina book--in one chapter the condition is referred to as ‘enhanced S-cone syndrome,’ whereas in another the same condition is ‘enhanced S-cone disease.’ (It even has separate entries in the Index.)
Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --[nonocular finding] ring loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time—ends in...phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time—ends in...phthisis by age 10

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome
Hereditary Vitreoretinopathies

Norrie Disease
--X-linked recessive

--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--Ends in phthisis by age 10

Goldmann-Favre Syndrome

--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome

--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy

--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo→TRD→retinal breaks and foveal dragging
--PVD, vitreous traction
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with: MR, Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time--Ends in phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neo...TRD...retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with: MR, Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --[nonocular finding 1]
 --[nonocular finding 2]

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Norrie Disease

--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR (= mental retardation)
 --Hearing loss
--MR (mental retardation)
--Lenses & Ks opacify with time--Ends in...phthisis by age 10

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome

--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy

--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo  TRD  retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is **dry** dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of **b**-wave
--If severe, peripheral changes can lead to **RD, vitreous heme**

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is **optically empty**
--Presents with **nyctalopia**
--Is also known as **enhanced S-cone dz/syndrome**

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...
 [time frame relative to birth]

Familial Exudative Vitreoretinopathy
--Looks like ROP (but FT and normal respiratory status)
--Hallmark: Failure of...
--Peripheral neo
 → TRD
 → retinal breaks and foveal dragging
--PVD, vitreous traction

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...
 [time frame relative to birth]
Norrie Disease

--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in... weeks of birth

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome

--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy

--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neo  TRD  retinal breaks and foveal dragging
--PVD, vitreous traction

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome

--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease

--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in... weeks of birth

Familial Exudative Vitreoretinopathy

--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral neo  TRD  retinal breaks and foveal dragging
--PVD, vitreous traction

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

Fundus photograph of 34-week-old infant with Norrie Disease. A and B. Pretreatment images of the right and left eye demonstrating incomplete retinal vasculogenesis with neovascularization and hemorrhage, and incomplete foveal vascularization.

Norrie disease: Yellowish RDs
Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome
- Macula looks like XLJR, but periphery looks like RP
- Vitreous is optically empty
- Presents with nyctalopia
- Is also known as enhanced S-cone dz/syndrome

Norrie Disease
- X-linked
- Bilateral congenital blindness
- Associated with:
 - MR
 - [nonocular finding 2] ring loss
- Yellowish RD appears w/in weeks of birth
- Lenses & Ks opacify with time
- Ends in phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Familial Exudative Vitreoretinopathy
- Looks like ROP (but FT and normal respiratory status)
- Hallmark: Failure of temporal retina to vascularize
- Inheritance: AD (check family)
- Peripheral neo \(\rightarrow \) TRD \(\rightarrow \) retinal breaks and foveal dragging
- PVD, vitreous traction

Norrie Disease
- X-linked recessive
- Bilateral congenital...blindness
- Associated with:
 - MR
 - Hearing loss
 - Yellowish RD appears w/in...weeks of birth

The yellowish (sometimes described as gray-yellowish) retinal mess has been mistaken for a retinal tumor. For this reason, it is sometimes referred to as a pseudoglioma. (This fact will become more relevant in a couple of slides.)
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks [same change]
 (K = cornea)
--Ends in phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to RD, vitreous heme

Familial Exudative Vitreoretinopathy
--Looks like ROP (but FT and normal respiratory status)
--Hallmark: Failure of temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral ne⇒ TRD ⇒ retinal breaks and foveal dragging
--PVD, vitreous traction
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--Ends in phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Knobloch Syndrome

Goldmann-Favre Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in weeks of birth
--Lenses & Ks opacify with time

Familial Exudative Vitreoretinopathy
--Looks like exudative ROP (but FT and normal respiratory status)
--Hallmark: Failure of temporal retina to vascularize
--Inheritance: AD (check family)
--Peripheral ne TRD → retinal breaks and foveal dragging
--PVD, vitreous traction

Knobloch Syndrome
Hereditary Vitreoretinopathies

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in... weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like...XLJR,
 but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as **enhanced S-cone dz/syndrome**

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo
 TRD retinal breaks and foveal dragging
 --PVD, vitreous traction

X-Linked Juvenile Retinoschisis
--Named for peripheral changes,
 but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is **dry dz**
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
--Macula looks like...XLJR,
 but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as **enhanced S-cone dz/syndrome**

Familial Exudative Vitreoretinopathy
--Looks like...ROP (but FT and normal respiratory status)
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo
 TRD retinal breaks and foveal dragging
 --PVD, vitreous traction

Knobloch Syndrome
Familial Exudative Vitreoretinopathy

--Looks like ROP (but FT and normal respiratory status)
--Hallmark: Failure of temporal retina to vascularize
--Inheritance: AD (check family)--Peripheral neo→TRD→retinal breaks and foveal dragging
--PVD, vitreous traction

Norrie Disease

--X-linked recessive
--Bilateral congenital blindness
--Associated with: (MR, Hearing loss)
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome

--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Hereditary Vitreoretinopathies

Goldmann-Favre Syndrome

Norrie Disease

X-Linked Juvenile Retinoschisis

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

Familial Exudative Vitreoretinopathy
--Looks like…[dz]

Goldmann-Favre Syndrome
--Macula looks like…XLJR, but periphery looks like…RP
--Vitreous is…optically empty
Presents with…nyctalopia
--Is also known as *enhanced S-cone dz/syndrome*

Norrie Disease
--X-linked recessive
--Bilateral congenital…blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in…weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in…100%
--Looks like CME, but is *dry* dz
--Split is in…RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of…*b*-wave
--If severe, peripheral changes can lead to…RD, vitreous heme

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Hereditary Vitreoretinopathies

Familial Exudative Vitreoretinopathy
---Looks like...ROP but FT and w/ normal respiratory status

(ROP = Retinopathy of prematurity)
(FT = Full term)

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...[normal prenatal event]
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

Goldmann-Favre Syndrome

Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Norrie Disease

Knobloch Syndrome
HEREDITARY VITREORETINOPATHIES

FEVR: Unvascularized temporal retina
A 41-year-old man with an unremarkable medical history presented for evaluation of a raised, pigmented peripheral retinal lesion. The patient was asymptomatic. VA was 20/40 OD and 20/25 OS. DFE OD showed a dragged macula (2A, double-headed arrow) with temporal fibrovascular tissue. OS (2B) had a normal fovea and infratemporal retinoschisis. FA OD demonstrated a V-shaped area of avascular/limited perfusion in the temporal retina (2C, arrow), with mild leakage. FA OS showed mild nonperfusion in the far temporal periphery (2D, arrow). After the patient received laser photocoagulation therapy to right eye, he had no further complications, no increase in fibrosis, and no new areas of neovascularization (2E, 2F).
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in 100%
--Looks like CME, but is dry dz
--Split is in RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of b-wave
--If severe, peripheral changes can lead to RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of temporal retina to vascularize
--Inheritance:

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Norrie Disease

--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome

--Macula looks like XLJR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy

--Looks like ROP -- but FT and w/ normal respiratory status
--Hallmark: Failure of temporal retina to vascularize
--Inheritance: AD, AR, X-linked

Knobloch Syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD →
 bad thing 1
 and
 bad thing 2
(neo = short for 'neovascularization')
(TRD = tractional retinal detachment)
Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Knobloch Syndrome

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme
Hereditary Vitreoretinopathies

FEVR: Foveal/disc dragging
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome

--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease

--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy

--Looks like...ROP--but FT and w/normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present

(PVD = posterior vitreous detachment)
Norrie disease and the X-linked version of FEVR have been traced to defects in a signaling protein called norrin. The gene responsible is the Norrie Disease – Pseudoglioma (NDP) gene. Multiple dz-causing mutations of this gene have been identified. In addition to Norrie’s and X-linked FEVR, the NDP gene has been implicated in the pathogenesis of some (not all) cases of several other retinal conditions, including:

- Persistent hyperplastic primary vitreous (PHPV)
- Retinopathy of prematurity (ROP)
- Coats disease

The precise role played by the NDP gene in PHPV, ROP and Coats disease has yet to be elucidated.

Norrie Disease

- X-linked recessive
- Bilateral congenital…blindness
- Associated with:
 - MR
 - Hearing loss
 - Yellowish RD appears w/in…weeks of birth
 - Lenses & Ks opacify with time
 - End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy

- Looks like…ROP--but FT and w/ normal respiratory status
- Hallmark: Failure of…temporal retina to vascularize
- Inheritance: AD, AR, X-linked
- Peripheral neo → TRD → retinal breaks and foveal dragging
- PVD, vitreous traction present

Knobloch Syndrome
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present

Knobloch Syndrome
--Classic triad: predisposition to location, and CNS developmental prob + refractive prob + retinal prob

Knobloch Syndrome
--Classic triad: predisposition to location, and CNS developmental prob + refractive prob + retinal prob

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present

Knobloch Syndrome
--Classic triad: predisposition to location, and CNS developmental prob + refractive prob + retinal prob

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
Hereditary Vitreoretinopathies

Knobloch syndrome: Occipital encephalocele
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
 --Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neophthisis...retinal breaks and foveal dragging
--PVD, vitreous traction present

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment

Hereditary Hyaloideoretinopathies
with Optically Empty Vitreous

Goldmann-Favre Syndrome

Norrie Disease

Familial Exudative Vitreoretinopathy

Knobloch Syndrome

Do Knobloch pts always have a full-blown occipital encephalocele?
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment

Do Knobloch pts always have a full-blown occipital encephalocele? No, there is a spectrum of severity--some kids 'only' have a funky occipital scalp.
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
 --Yellowish RD appears within weeks of birth
 --Lenses & Ks opacify with time
 --End stage: Phthisis by age 10

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment

Goldmann-Favre Syndrome
--Macula looks like XLR, but periphery looks like RP
--Vitreous is optically empty
--Presents with nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Familial Exudative Vitreoretinopathy
--Looks like ROP--but FT and with normal respiratory status

Do Knobloch pts always have a full-blown occipital encephalocele? No, there is a spectrum of severity--some kids ‘only’ have a funky occipital scalp. Protip: If shown a photo of the back of a kid’s head, with the hair pushed out of the way to reveal the scalp, go with Knobloch syndrome.
Hereditary Vitreoretinopathies

Knobloch syndrome: Funky occipital scalp
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis

--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome

--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as **enhanced S-cone dz/syndrome**

Norrie Disease

--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome

--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
--RPE is...
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
 --Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Is also known as enhanced S-cone dz/syndrome

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
--RPE is atrophic
Knobloch syndrome: Atrophic RPE
Hereditary Vitreoretinopathies

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
--RPE is atrophic
--Irides are structural issue

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
--RPE is atrophic
--Irides are structural issue

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present
Norrie Disease
--X-linked recessive
--Bilateral congenital blindness
--Associated with:
 --MR
 --Hearing loss
--Yellowish RD appears within weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is...optically empty
--Presents with...nyctalopia
--Is also known as enhanced S-cone dz/syndrome

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
--RPE is atrophic
--Irides are cryptless

Familial Exudative Vitreoretinopathy
--Looks like...ROP--but FT and w/ normal respiratory status
--Hallmark: Failure of...temporal retina to vascularize
--Inheritance: AD, AR, X-linked
--Peripheral neo → TRD → retinal breaks and foveal dragging
--PVD, vitreous traction present

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50% of cases
--Foveal schisis present in...100%
--Looks like CME, but is dry dz
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Hereditary Vitreoretinopathies
Hereditary Vitreoretinopathies

Knobloch syndrome: Cryptless irides
Hereditary Vitreoretinopathies

Knobloch Syndrome
--Classic triad: Occipital encephalocele + high myopia + predisposition to retinal detachment
--RPE is atrophic
--Irides are cryptless

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is optically empty

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
The hyaloideoretinopathies get their own slides...

X-Linked Juvenile Retinoschisis
--Named for peripheral changes, but present in only 50%
--Foveal schisis present in...50% of cases
--Looks like CME, but is dry
--Split is in...RNFL
--Abnormal cells: Müller cells
--ERG: Selective loss of...b-wave
--If severe, peripheral changes can lead to...RD, vitreous heme

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies
--All have vitreous...
--All are associated with:
--myopia
--glaucoma
--cataracts
--lattice degeneration

The hyaloideoretinopathies get their own slides...

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is optically empty

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
The hyaloideoretinopathies get their own slides...

Hereditary Hyaloideoretinopathies
--All have vitreous...
--All are associated with:
--myopia
--glaucoma
--cataracts
--lattice degeneration

The hyaloideoretinopathies get their own slides...

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is optically empty

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
The hyaloideoretinopathies get their own slides...

Hereditary Hyaloideoretinopathies
--All have vitreous...
--All are associated with:
--myopia
--glaucoma
--cataracts
--lattice degeneration

The hyaloideoretinopathies get their own slides...

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is optically empty

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
The hyaloideoretinopathies get their own slides...

Hereditary Hyaloideoretinopathies
--All have vitreous...
--All are associated with:
--myopia
--glaucoma
--cataracts
--lattice degeneration

The hyaloideoretinopathies get their own slides...

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is optically empty

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
The hyaloideoretinopathies get their own slides...

Hereditary Hyaloideoretinopathies
--All have vitreous...
--All are associated with:
--myopia
--glaucoma
--cataracts
--lattice degeneration

The hyaloideoretinopathies get their own slides...

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is optically empty

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
The hyaloideoretinopathies get their own slides...

Hereditary Hyaloideoretinopathies
--All have vitreous...
--All are associated with:
--myopia
--glaucoma
--cataracts
--lattice degeneration

The hyaloideoretinopathies get their own slides...

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is optically empty

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
The hyaloideoretinopathies get their own slides...

Hereditary Hyaloideoretinopathies
--All have vitreous...
--All are associated with:
--myopia
--glaucoma
--cataracts
--lattice degeneration

The hyaloideoretinopathies get their own slides...

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is optically empty

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
The hyaloideoretinopathies get their own slides...

Hereditary Hyaloideoretinopathies
--All have vitreous...
--All are associated with:
--myopia
--glaucoma
--cataracts
--lattice degeneration

The hyaloideoretinopathies get their own slides...

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is optically empty

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
The hyaloideoretinopathies get their own slides...

Hereditary Hyaloideoretinopathies
--All have vitreous...
--All are associated with:
--myopia
--glaucoma
--cataracts
--lattice degeneration

The hyaloideoretinopathies get their own slides...

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is optically empty

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
The hyaloideoretinopathies get their own slides...

Hereditary Hyaloideoretinopathies
--All have vitreous...
--All are associated with:
--myopia
--glaucoma
--cataracts
--lattice degeneration

The hyaloideoretinopathies get their own slides...

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is optically empty

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
The hyaloideoretinopathies get their own slides...

Hereditary Hyaloideoretinopathies
--All have vitreous...
--All are associated with:
--myopia
--glaucoma
--cataracts
--lattice degeneration

The hyaloideoretinopathies get their own slides...

Goldmann-Favre Syndrome
--Macula looks like...XLJR, but periphery looks like...RP
--Vitreous is optically empty

Norrie Disease
--X-linked recessive
--Bilateral congenital...blindness
--Associated with:
--MR
--Hearing loss
--Yellowish RD appears w/in...weeks of birth
--Lenses & Ks opacify with time
--End stage: Phthisis by age 10

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous
The hyaloideoretinopathies get their own slides...
Hereditary Hyaloideoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous…[finding]
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

---All have vitreous…veils
Hereditary Vitreoretinopathies

Vitreous veils
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --[refractive status]
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous…*veils*
--All are associated with:
--*Myopia* --*[blinding dz]*
Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Glaucoma
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies

with Optically Empty Vitreous

--- All have vitreous...veils
--- All are associated with:
 -- Myopia
 -- Glaucoma
 -- [common eye prob]
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Glaucoma
 --Cataracts
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --[abn retinal finding]
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

-- All have vitreous... veils
-- All are associated with:
 -- Myopia
 -- Cataracts
 -- Glaucoma
 -- Lattice degeneration
Hereditary Vitreoretinopathies

<table>
<thead>
<tr>
<th>Hereditary Hyaloideoretinopathies with Optically Empty Vitreous</th>
</tr>
</thead>
<tbody>
<tr>
<td>--All have vitreous...veils</td>
</tr>
<tr>
<td>--All are associated with:</td>
</tr>
<tr>
<td>--Myopia</td>
</tr>
<tr>
<td>--Cataracts</td>
</tr>
<tr>
<td>--Glaucoma</td>
</tr>
<tr>
<td>--Lattice degeneration</td>
</tr>
</tbody>
</table>

What is unusual about lattice in these conditions?
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Lattice degeneration
 --Glaucoma

What is unusual about lattice in these conditions?
It has a radial orientation, i.e., the lattice points toward the optic nerve, as opposed to the circumferential orientation characteristic of typical lattice.
Hereditary Vitreoretinopathies

Radially-oriented lattice degeneration
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --Lattice degeneration

One way of divvying up the hereditary hyaloideoretinopathies

? ?
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --Lattice degeneration

Ocular disease only Associated with systemic disease

One way of divvying up the hereditary hyaloideoretinopathies
Hereditary Hyaloideoretinopathies

with Optically Empty Vitreous

--All have vitreous…veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --Lattice degeneration

Ocular disease only

Associated with systemic disease
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucma
 --Lattice degeneration

Ocular disease only
 Wagner's disease

Associated with systemic disease
Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
--Myopia
--Cataracts
--Glaucoma
--Lattice degeneration

Ocular disease only
Wagner's disease

Associated with systemic disease
?
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --Lattice degeneration

Ocular disease only

 Wagner's disease

Associated with systemic disease

 Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?

Ocular disease only
- Wagner's disease

Associated with systemic disease
- Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one? Pierre Robin sequence (PRS)

Ocular disease only
- Wagner's disease

Associated with systemic disease
- Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with systemic disease. Which one?

Pierre Robin sequence (PRS)

Ocular disease only

Wagner’s disease

Associated with systemic disease

Stickler syndrome

How do you pronounce Pierre Robin in this context? PEA-err roe-BAHN

With regard to congenital anomalies, what is meant by the term sequence?

It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues.

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?

Micrognathia

And what is the ‘sequence,’ i.e., the subsequent malformations and functional issues?

Micrognathia → glossoptosis → cleft palate → feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?

The affected joints are enlarged and hypermobile.

How do you pronounce Pierre Robin in this context? PEA-err roe-BAHN
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with systemic disease. What is it associated with?

Stickler syndrome is strongly associated with craniofacial malformation--which one?

Pierre Robin sequence

With regard to congenital anomalies, what is meant by the term sequence?

It means that a single developmental malformation initiates a 'domino effect' which leads to other malformations, which in turn lead to significant functional issues.

In PRS, what is the 'single developmental malformation' that triggers the sequence?

Micrognathia

And what is the 'sequence,' ie, the subsequent malformations and functional issues?

Micrognathia → glossoptosis → cleft palate → feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?

The affected joints are enlarged and hypermobile

How do you pronounce Pierre Robin in this context?

PEA-err roe-BAHN

Ocular disease only
Wagner’s disease

Associated with systemic disease
Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one?
Pierre Robin sequence (PRS)

Two categories of craniofacial syndrome

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- Stickler syndrome

The Peds book divides the craniofacial malformations into two groups—what are they?
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one?

Pierre Robin sequence (PRS)

Craniosynostoses

Not craniosynostoses

The Peds book divides the craniofacial malformations into two groups—what are they?

Ocular disease only

Wagner’s disease

Associated with systemic disease

Stickler syndrome

Two categories of craniofacial syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one?
Pierre Robin sequence (PRS)

Craniosynostoses

Not craniosynostoses

Stickler syndrome is also associated with arthropathy. How does this manifest?
The affected joints are enlarged and hypermobile.

Ocular disease only

Wagner’s disease

Associated with systemic disease

Stickler syndrome
Hereditary Hyaloideoretinopathies

Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a **craniofacial malformation**—which one?
Pierre Robin sequence (PRS)

Two categories of craniofacial syndrome

- **Craniosynostoses**
- **Not craniosynostoses**

---Pierre Robin sequence

In which group does Pierre Robin sequence belong?

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- **Stickler syndrome**

Stickler syndrome is associated with [systemic disease](#).

With regard to congenital anomalies, what is meant by the term **sequence**?

It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues.

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?

Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues?

Micrognathia → glossoptosis → cleft palate → feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?

The affected joints are enlarged and hypermobile.

Craniosynostoses
- Not craniosynostoses

---Pierre Robin sequence

Two categories of craniofacial syndrome

- Pierre Robin sequence

In which group does Pierre Robin sequence belong?

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- **Stickler syndrome**
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a **craniofacial malformation**--which one?

Pierre Robin sequence (PRS)

Ocular disease only

 Wagner’s disease

Associated with systemic disease

 Stickler syndrome

Two categories of craniofacial syndrome

Craniosynostoses

Not craniosynostoses

 - Wagner’s disease

 - Stickler syndrome

What are the other three ‘not craniosynostosis’ craniofacial malformations?
Hereditary Vitreoretinopathies

- All have vitreous veils
- All are associated with:
 - Myopia
 - Glaucoma
 - Cataracts
 - Lattice degeneration

Stickler syndrome is strongly associated with a **craniofacial malformation**—which one?

- Pierre Robin sequence (PRS)

Ocular disease only
- Wagner's disease

Associated with systemic disease
- **Stickler syndrome**

Two categories of craniofacial syndrome

- Craniosynostoses
- Not craniosynostoses

- Goldenhar
- Treacher Collins
- Pierre Robin sequence
- Fetal alcohol syndrome

What are the other three 'not craniosynostosis' craniofacial malformations?

Stickler syndrome is strongly associated with a craniofacial malformation—who one? Pierre Robin sequence (PRS)
Hereditary Hyaloideoretinopathies

All have vitreous...veils

All are associated with:

- Myopia
- Glaucoma
- Cataracts
- Lattice degeneration

Hereditary Vitreoretinopathies

Ocular disease only

Wagner's disease

Associated with systemic disease

Stickler syndrome

Stickler syndrome is strongly associated with a craniofacial malformation—Which one?

Pierre Robin sequence (PRS)

Two categories of craniofacial syndrome

Craniosynostoses

Not craniosynostoses

What are the four craniosynostoses?

- Goldenhar
- Treacher Collins
- Pierre Robin sequence
- Fetal alcohol syndrome

Craniosynostoses

Not craniosynostoses

-? -? -? -?

Ocular disease only

Associated with systemic disease

Stickler syndrome

With regard to congenital anomalies, what is meant by the term sequence?

It means that a single developmental malformation initiates a 'domino effect' which leads to other malformations, which in turn lead to significant functional issues.

In PRS, what is the 'single developmental malformation' that triggers the sequence?

Micrognathia

And what is the 'sequence,' ie, the subsequent malformations and functional issues?

Micrognathia

→ glossoptosis

→ cleft palate

→ feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?

The affected joints are enlarged, and hypermobile

Craniosynostoses Not craniosynostoses

-? -? -? -?

Ocular disease only

Associated with systemic disease

Stickler syndrome

- Wagner's disease

What are the four craniosynostoses?

- Goldenhar
- Treacher Collins
- Pierre Robin sequence
- Fetal alcohol syndrome

With regard to congenital anomalies, what is meant by the term sequence?

It means that a single developmental malformation initiates a 'domino effect' which leads to other malformations, which in turn lead to significant functional issues.

In PRS, what is the 'single developmental malformation' that triggers the sequence?

Micrognathia

And what is the 'sequence,' ie, the subsequent malformations and functional issues?

Micrognathia

→ glossoptosis

→ cleft palate

→ feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?

The affected joints are enlarged, and hypermobile

Craniosynostoses Not craniosynostoses

-? -? -? -?

Ocular disease only

Associated with systemic disease

Stickler syndrome

- Wagner's disease

What are the four craniosynostoses?

- Goldenhar
- Treacher Collins
- Pierre Robin sequence
- Fetal alcohol syndrome

With regard to congenital anomalies, what is meant by the term sequence?

It means that a single developmental malformation initiates a 'domino effect' which leads to other malformations, which in turn lead to significant functional issues.

In PRS, what is the 'single developmental malformation' that triggers the sequence?

Micrognathia

And what is the 'sequence,' ie, the subsequent malformations and functional issues?

Micrognathia

→ glossoptosis

→ cleft palate

→ feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?

The affected joints are enlarged, and hypermobile

Craniosynostoses Not craniosynostoses

-? -? -? -?

Ocular disease only

Associated with systemic disease

Stickler syndrome

- Wagner's disease

What are the four craniosynostoses?
Hereditary Vitreoretinopathies

- All have vitreous veils
- All are associated with:
 - Myopia
 - Glaucoma
 - Cataracts
 - Lattice degeneration

Stickler syndrome is strongly associated with a **craniofacial malformation**—which one?

- Pierre Robin sequence (PRS)

Craniosynostoses

- Crouzon
- Apert
- Pfeiffer
- Saethre-Chotzen

Not craniosynostoses

- Goldenhar
- Treacher Collins
- Pierre Robin sequence
- Fetal alcohol syndrome

What are the four craniosynostoses?

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- Stickler syndrome

Micrognathia: The affected joints are enlarged and hypermobile.
Hereditary Vitreoretinopathies

*Stickler syndrome is strongly associated with a craniofacial malformation—which one?
Pierre Robin sequence (PRS)*

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?

Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?

It means that a single developmental malformation initiates a 'domino effect' which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?

Ocular disease only

Wagner’s disease

Associated with systemic disease

Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?
Micrognathia

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues.

In PRS, what is the single developmental malformation that triggers the sequence?

Micrognathia

What does micrognathia mean?

- Micrognathia

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one? Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence? It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?

Micrognathia

What does micrognathia mean? It means ‘severe hypoplasia of the mandible’

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- Stickler syndrome
Hereditary Vitreoretinopathies

Pierre Robin sequence: Micrognathia
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one? Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence? It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence? Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues?

Ocular disease only

- Wagner’s disease

Associated with systemic disease

- Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?
Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues?
Micrognathia → glossoptosis → cleft palate → feeding difficulties

Ocular disease only
- Wagner’s disease

Associated with systemic disease
- **Stickler syndrome**
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies

--All have vitreous...veils

--All are associated with:

- Myopia
- Glaucoma
- Cataracts
- Lattice degeneration

Hereditary Vitreoretinopathies

--Ocular disease only

- Wagner’s disease

--Associated with systemic disease

- Stickler syndrome

Stickler syndrome is strongly associated with a craniofacial malformation--which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?
Micrognathia

And what is the ‘sequence’, ie, the single developmental malformation and functional issues?
Micrognathia → glossoptosis → cleft palate → feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?
The affected joints are enlarged and hypermobile

What does glossoptosis refer to?
The position of the tongue being too posterior
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?
Micrognathia

And what is the ‘sequence’, i.e., the malformations that result from the initial issues?
Micrognathia → glossoptosis → cleft palate → feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?
The affected joints are enlarged and hypermobile

What does glossoptosis refer to?
The position of the organ being too

Ocular disease only
Wagner’s disease

Associated with systemic disease
Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?
Micrognathia

And what is the ‘sequence’, i.e., the chain reaction of additional malformations and functional issues?

| Micrognathia | glossoptosis | The position of the tongue being too posterior |

Stickler syndrome is also associated with arthropathy. How does this manifest?

The affected joints are enlarged and hypermobile

What does glossoptosis refer to?

Ocular disease only
Wagner’s disease

Associated with systemic disease
Stickler syndrome
Hereditary Vitreoretinopathies

Pierre Robin sequence: Glossoptosis
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?

Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?

It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?

Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues?

Micrognathia → glossoptosis → cleft palate → feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?

Ocular disease only

Associated with systemic disease

- Wagner’s disease

- Stickler syndrome
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?
Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues?
Micrognathia → glossoptosis → cleft palate → feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?
The affected joints are **size**, and **tight vs loose**

Ocular disease only

- Wagner’s disease

Associated with systemic disease

- **Stickler syndrome**
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one? Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence? It means that a single developmental malformation initiates a ‘domino effect’ which leads to other malformations, which in turn lead to significant functional issues

In PRS, what is the ‘single developmental malformation’ that triggers the sequence? Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues? Micrognathia→glossoptosis→cleft palate→feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest? The affected joints are enlarged, and hypermobile

Ocular disease only

- Wagner’s disease

Associated with systemic disease

- **Stickler syndrome**
Hereditary Vitreoretinopathies

Stickler syndrome: hypermobile joints
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation--which one?
Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term *sequence*?
It means that a single developmental malformation initiates a domino effect which leads to other malformations.

What is the non-eponymous name for Stickler syndrome?

In PRS, what is the ‘single developmental malformation’ that triggers the sequence?
Micrognathia

And what is the ‘sequence,’ ie, the subsequent malformations and functional issues?
Micrognathia→glossoptosis→cleft palate→feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?
The affected joints are enlarged, and hypermobile

Ocular disease only
Wagner’s disease

Associated with systemic disease
Stickler syndrome, aka...
Hereditary Vitreoretinopathies

Stickler syndrome is strongly associated with a craniofacial malformation—*which one?* Pierre Robin sequence (PRS)

With regard to congenital anomalies, what is meant by the term sequence?
It means that a single developmental malformation initiates a domino-effect which leads to other malformations.

In PRS, what is the 'single developmental malformation'?
Micrognathia

And what is the 'sequence,' ie, the subsequent malformations and functional issues?
Micrognathia → glossoptosis → cleft palate → feeding difficulties

Stickler syndrome is also associated with arthropathy. How does this manifest?
The affected joints are enlarged, and hypermobile

Ocular disease only

- Wagner’s disease

Associated with systemic disease

- **Stickler syndrome, aka...**
 ‘Hereditary arthro-ophthalmopathy, Marfanoid variety’
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

-- All have vitreous...veils
-- All are associated with:
 -- Myopia
 -- Cataracts
 -- Glaucoma
 -- Lattice degeneration

Ocular disease only

Associated with systemic disease

Wagner’s disease?

Stickler syndrome?

Of these two conditions, only one carries a very high risk of retinal detachment. Which one?
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucma
 --Lattice degeneration

Of these two conditions, only one carries a very high risk of retinal detachment. Which one? **Stickler syndrome.** BTW, this fact (the high RD risk associated with Stickler) is emphasized by the BCSC books--may be worth your time to commit it to memory.
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
 --Myopia
 --Cataracts
 --Glaucoma
 --Lattice degeneration

Ocular disease only

Wagner’s disease

Are Stickler pts at increased risk of RD?

Associated with systemic disease

‘Hereditary arthro-ophthalmopathy with stiff joints’ (Weill-Marchesani-like variety)

‘Hereditary arthro-ophthalmopathy, Marfanoid variety’ (Stickler syndrome)
Hereditary Vitreoretinopathies

Hereditary Hyaloideoretinopathies with Optically Empty Vitreous

--All have vitreous...veils
--All are associated with:
--Myopia
--Cataracts
--Glaucoma
--Lattice degeneration

Ocular disease only

Wagner’s disease
Jansen’s disease

Associated with systemic disease

‘Hereditary arthro-ophthalmopathy with stiff joints’ (Weill-Marchesani-like variety)

Are Stickler pts at increased risk of RD?
Very much so. Even worse, their RDs are associated with large multiple breaks, rendering repair difficult

‘Hereditary arthro-ophthalmopathy, Marfanoid variety’ (Stickler syndrome)
Hereditary Vitreoretinopathies

Stickler syndrome: RD