Aberrations

- Aberrations are phenomena that degrade the quality of the image formed by an optical system

Aberrations

- Aberrations are phenomena that degrade the quality of the image formed by an optical system
- Degradation results when light rays from a given object-point \square

Aberrations

- Aberrations are phenomena that degrade the quality of the image formed by an optical system
- Degradation results when light rays from a given object-point fail to form a single imagepoint

Aberrations

- Aberrations are phenomena that degrade the quality of the image formed by an optical system
- Degradation results when light rays from a given object-point fail to form a single image-
- It's important to recognize that aberrations are the rule, not the exception
- Aberration-free vision essentially never occurs

Aberrations

- Some aberrations are attributable to corrective lenses

Aberrations

- Some aberrations are attributable to corrective lenses
- Others are intrinsic to the eye itself

Aberrations

- Some aberrations are attributable to corrective lenses
- Others are intrinsic to the eye itself
- Three familiar forms:

Aberrations

- Some aberrations are attributable to corrective lenses
- Others are intrinsic to the eye itself
- Three familiar forms:
- Spherical error (myopia/hyperopia)
- Cylinder (astigmatism)
- Chromatic aberration

Aberrations

- Back in the day, only three aberrations were addressed by clinicians:

1)
2)
3)

Aberrations

- Back in the day, only three aberrations were addressed by clinicians:

1) Spherical error (ie, myopia/hyperopia)
2) Regular astigmatism
3) Irregular astigmatism

Aberrations

- Back in the day, only three aberrations were addressed by clinicians:

1) Spherical error (ie, myopia/hyperopia)
2) Regular astigmatism

- Regular meaning

3) Irregular astigmatism

Aberrations

- Back in the day, only three aberrations were addressed by clinicians:

1) Spherical error (ie, myopia/hyperopia)
2) Regular astigmatism

- Regular meaning 'that which can be corrected with cylindrical lenses'

3) Irregular astigmatism

Aberrations

- Back in the day, only three aberrations were addressed by clinicians:

1) Spherical error (ie, myopia/hyperopia)
2) Regular astigmatism

- Regular meaning 'that which can be corrected with cylindrical lenses'

3) Irregular astigmatism

- Irregular meaning

Aberrations

- Back in the day, only three aberrations were addressed by clinicians:

1) Spherical error (ie, myopia/hyperopia)
2) Regular astigmatism

- Regular meaning 'that which can be corrected with cylindrical lenses'

3) Irregular astigmatism

- Irregular meaning 'that which can't be corrected with cylindrical lenses'

Aberrations

- Back in the day, only three aberrations were addressed by clinicians:

1) Spherical error (ie, myopia/hyperopia)
2) Regular astigmatism

- Regular meaning that which can be corrected with

3) Irregular astigmatism

- Irregular meaning 'that which can't be corrected with cylindrical lenses'

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) could not be measured in the clinic; and
2) could not be corrected (by glasses) even if they had been measureable

Aberrations

Old Lingo

Aberrations

problem

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) could not be measured in the elinie; and-
2) could not be corrected even if they had been measureable

Aberrations: Wavefront Analysis

Wavefront analysis did away with the first problem problem

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) could not be measured in the elinie, and-
2) could not be corrected even if they had been measureable

Aberrations: Wavefront Analysis

Wavefront analysis did away with the first problem

- Allows clinicians to identify/quantify many of the refractive problems previously consigned to the irregular-astigmatism wastebasket

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) coutd not be measured in the elinie; and-
2) could not be corrected even if they had been measureable

Aberrations: Wavefront Analysis

Wavefront analysis did away with the first problem

- Allows clinicians to identify/quantify many of the refractive problems previously consigned to the irregular-astigmatism wastebasket
- Several different technologies for measuring the wavefront have been developed, but one dominates current clinical practice:
The

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) could not be measured in the elinie; and-
2) could not be corrected even if they had been measureable

Aberrations: Wavefront Analysis

Wavefront analysis did away with the first problem

- Allows clinicians to identify/quantify many of the refractive problems previously consigned to the irregular-astigmatism wastebasket
- Several different technologies for measuring the wavefront have been developed, but one dominates current clinical practice:
The Hartmann-Shack wavefront sensor

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) could not be measured in the elinie; and-
2) could not be corrected even if they had been measureable

Aberrations: Wavefront Analysis

current clinical practice:

The Hartmann-Shack wavefront sensor

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) could not be measured in the elinie;, and-
2) could not be corrected even if they had been measureable

Aberrations: Wavefront Analysis

How does the Hartmann-Shack wavefront sensor (HSWS) work?
Essentially, by reversing the function of the eye. Instead of treating the eye as a light-gathering device, it treats the eye as a light-emitting device. It then analyzes the wavefront of light emitted by the eye with respect to how 'pure' (ie, how uniform and free of warpage) it is.

current clinical practice:

The Hartmann-Shack wavefront sensor

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) could notbe measured the elinie, and-
2) could not be corrected even if they had been measureable

Aberrations: Wavefront Analysis

How does the Hartmann-Shack wavefront sensor (HSWS) work?
Essentially, by reversing the function of the eye. Instead of treating the eye as a light-gathering device, it treats the eye as a light-emitting device. It then analyzes the wavefront of light emitted by the eye with respect to how 'pure' (ie, how uniform and free of warpage) it is.

How does the HSWS turn the eye into a light-emitting device?

current clinical practice:

The Hartmann-Shack wavefront sensor

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) could not be measured in the elinie; and-
2) could not be corrected even if they had been measureable

Aberrations: Wavefront Analysis

How does the Hartmann-Shack wavefront sensor (HSWS) work?

Essentially, by reversing the function of the eye. Instead of treating the eye as a light-gathering device, it treats the eye as a light-emitting device. It then analyzes the wavefront of light emitted by the eye with respect to how 'pure' (ie, how uniform and free of warpage) it is.

How does the HSWS turn the eye into a light-emitting device?
By firing a low-power laser into the eye that reflects off the fovea. The reflected light then passes through the focusing structures of the eye (ie, the lens and cornea), and leaves the eye.
current clinical practice:

The Hartmann-Shack wavefront sensor

Essentially, irregular astigmatism was a wastebasket term for aberrations that:
could notbe measured the elinie, and-
2) could not be corrected even if they had been measureable

Aberrations: Wavefront Analysis

How does the Hartmann-Shack wavefront sensor (HSWS) work?

Essentially, by reversing the function of the eye. Instead of treating the eye as a light-gathering device, it treats the eye as a light-emitting device. It then analyzes the wavefront of light emitted by the eye with respect to how 'pure' (ie, how uniform and free of warpage) it is.

How does the HSWS turn the eye into a light-emitting device?
By firing a low-power laser into the eye that reflects off the fovea. The reflected light then passes through the focusing structures of the eye (ie, the lens and cornea), and leaves the eye.

OK, so the HSWS turns the eye into a flashlight of sorts. How does this allow for identification and quantification of aberrations?
current clinical practice:

The Hartmann-Shack wavefront sensor

Essentially, irregular astigmatism was a wastebasket term for aberrations that: 1) coutd not be measured in the elinie; and-
2) could not be corrected even if they had been measureable

Aberrations: Wavefront Analysis

How does the Hartmann-Shack wavefront sensor (HSWS) work?
Essentially, by reversing the function of the eye. Instead of treating the eye as a light-gathering device, it treats the eye as a light-emitting device. It then analyzes the wavefront of light emitted by the eye with respect to how 'pure' (ie, how uniform and free of warpage) it is.

How does the HSWS turn the eye into a light-emitting device?
By firing a low-power laser into the eye that reflects off the fovea. The reflected light then passes through the focusing structures of the eye (ie, the lens and cornea), and leaves the eye.

OK, so the HSWS turns the eye into a flashlight of sorts. How does this allow for identification and quantification of aberrations?
The HSWS contains an array of sensors that measure the 'emitted' light. If the refracting structures of the eye were perfect (ie, aberration-free), the wavefront of the emitted light would be perfectly flat--any deviation from flatness represents aberration, which in turn reflects imperfections in the eye's focusing structures.
current clinical practice:

The Hartmann-Shack wavefront sensor

Essentially, irregular astigmatism was a wastebasket term for aberrations that: 1) coutd not be measured in the elinie; and-
2) could not be corrected even if they had been measureable

Aberrations

Old Lingo

New Lingo

(from wavefront analysis)
Sphere $\longleftarrow=\longrightarrow$ Defocus
Myopia
Hyperopia

Aberrations

Old Lingo

New Lingo

(from wavefront analysis)

Aberrations

Old Lingo

New Lingo

(from wavefront analysis)

$\begin{gathered}\text { 'Regular } \\ \text { Astigmatism' }\end{gathered},\{$ Cylinder

Aberrations

Old Lingo

New Lingo

(from wavefront analysis)

Aberrations

Old Lingo

New Lingo

(from wavefront analysis)

'Irregular,$\left\{\begin{array}{l}\text { Any component } \\ \text { of refractive error } \\ \text { that could not be } \\ \text { remediated with } \\ \text { spherical and/or } \\ \text { cylindrical lenses }\end{array}\right.$

Aberrations

Old Lingo

New Lingo

(from wavefront analysis)

Aberrations

Old Lingo

New Lingo

(from wavefront analysis)

Aberrations

Old Lingo

New Lingo

(from wavefront analysis)

Aberrations

Old Lingo

New Lingo

(from wavefront analysis)

Aberrations

Aberrations

Not paraxial (close to optical axis, but not parallel to it)

Not paraxial (nearly parallel to optical axis, but not close to it)

When dealing with refraction at a curved surface, we work only with the paraxial rays: Those that are both close to the optical axis and nearly parallel to it.
(The above was presented first in the slide-set Basic Optics, Chapter 17. If you have no idea what it's about, consider reviewing that chapter.)

Aberrations

Not paraxial (close to optical axis, but not parallel to it)

Not paraxial (nearly parallel to optical axis, but not close to it)
When dealing with refraction at a curved surface, we work only with the paraxial rays: Those that are both close to the optical axis and nearly parallel to it.

Until now, we have focused exclusively on the optics of paraxial rays. But to understand higher-order aberrations, we have to consider the optics of nonparaxial rays.

Aberrations

Until now, we have focused exclusively on the optics of paraxial rays. But to understand higher-order aberrations, we have to consider the optics of nonparaxial rays.

The clinically most important higher-order aberration stemming from nonparaxial rays is

 so we'll discuss it first.
Aberrations

Until now, we have focused exclusively on the optics of paraxial rays. But to understand higher-order aberrations, we have to consider the optics of nonparaxial rays.

> The clinically most important higher-order aberration stemming from nonparaxial rays is spherical aberration, so we'll discuss it first.

Aberrations: Spherical

- A spherical lens is one for which the refracting surface(s) have a single

Aberrations: Spherical

- A spherical lens is one for which the refracting surface(s) have a single radius of curvature

Aberrations: Spherical

- A spherical lens is one for which the refracting surface(s) have a single radius of curvature

Spherical lens

Note that a spherical lens need not be a sphere! For a lens to be 'spherical,' its refracting surface(s) must have a single radius-of-curvature-as if the lens was sliced off of a sphere.

Aberrations: Spherical

Sphemeralenens

- A spherical lens is one for wh the refracting surface(s) have a radius of curvature

Note that a spherical lens need not have a single refracting surface.

Aberrations: Spherical

- A spherical lens is one for which the refracting surface(s) have a single radius of curvature

Note that a spherical lens need not be a plus lens, either.

Aberrations: Spherical

spherocylindrical - A sphericat lens is one for which the refracting surface(s) have a single radius of curvature

What about the refracting surface of a spherocylindrical (S-C) lens?

Spherocylindrical lens?

Aberrations: Spherical

- A spricat lens is one for which the refracting surface(s) have single two radiu of curvature

What about the refracting surface of a spherocylindrical (S-C) lens?
Recall that, by definition, a S-C lens has two different powers oriented at right angles to one another. This means every point on its surface has two radii-one for each power.

Spherocylindrical lens?

Aberrations: Spherical

- A spricat lens is one for which the refracting surface(s) have single two radiu of curvature

What about the refracting surface of a spherocylindrical (S-C) lens?
Recall that, by definition, a S-C lens has two different powers oriented at right angles to one another. This means every point on its surface has two radii-one for each power. Thus, such a lens could not be created by slicing off a section from a sphere.

Aberrations: Spherical

- A spherocylindrical refracting surface(s) have single two radiu of curvature

What about the refracting surface of a spherocylindrical (S-C) lens?
Recall that, by definition, a S-C lens has two different powers oriented at right angles to one another. This means every point on its surface has two radii-one for each power. Thus, such a lens could not be created by slicing off a section from a sphere.

Can you think of an everyday (hint: and delicious) object from which a slice could be taken that would qualify as a S-C lens?

Aberrations: Spherical

- A spherocylindrical refracting surface(s) have single two radiu of curvature

What about the refracting surface of a spherocylindrical (S-C) lens?
Recall that, by definition, a S-C lens has two different powers oriented at right angles to one another. This means every point on its surface has two radii-one for each power. Thus, such a lens could not be created by slicing off a section from a sphere.

Can you think of an everyday (hint: and delicious) object from which a slice could be taken that would qualify as a S-C lens? Yes-a donut.

Aberrations: Spherical

- A spherocylindrical
refracting surface(s) have which the
radius of curvature

What about the refracting surface of a spherocylindrical (S-C) lens?
Recall that, by definition, a S-C lens has two different powers oriented at right angles to one another. This means every point on its surface has two radii-one for each power. Thus, such a lens could not be created by slicing off a section from a sphere.

Can you think of an everyday (hint: and delicious) object from which a slice could be taken that would qualify as a S-C lens? Yes-a donut. Every point on the surface of a donut has two radii-one determined by its distance from the center of the donut's hole, the other by its distance from the center of the part you bite into.

Aberrations: Spherical

spherocylindrical - A sphericat lens is one for which the refracting surface(s) have single two radiu of curvature

What about the refracting surface of a spherocylindrical (S-C) lens?
Recall that, by definition, a S-C lens has two different powers oriented at right angles to one another. This means every point on its surface has two radii-one for each power. Thus, such a lens could not be created by slicing off a section from a sphere.

Can you think of an everyday (hint: and delicious) object from which a slice could be taken that would qualify as a S-C lens? Yes-a donut. Every point on the surface of a donut has two radii-one determined by its distance from the center of the donut's hole, the other by its distance from the center of the part you bite into. So, just as a spherical lens is created by taking a
 slice off a sphere, a spherocylindrical lens is created by taking a slice off a donut.

Aberrations: Spherical

spherocylindrical

- A sphericat lens is one for which the refracting surface(s) have a single two radiu of curvature

What about the refracting surface of a spherocylindrical (S-C) lens?
Recall that, by definition, a S-C lens has two different powers oriented at right angles to one another. This means every point on its surface has two radii-one for each power. Thus, such a lens could ant hemontod huolinine ff onotinn from nonbere. Can you which a Yes-a radii-o donut's

There is a more formal/precise name for the shape from which a spherocylindrical lens is sliced-what is it?
you bite into. So, just as a spherical lens is created by taking a

a slice off a donut.

Aberrations: Spherical

spherocylindrical

- A sphericat lens is one for which the refracting surface(s) have single two radius of curvature

What about the refracting surface of a spherocylindrical (S-C) lens?
Recall that, by definition, a S-C lens has two different powers oriented at right angles to one another. This means every point on its surface has two radii-one for each power. Thus, such a lens could not hnomotnd hwolinineff ontinn from ononere. Can you which a Yes-a radii-o donut's
 you bite into. So, just as a spherical lens is created by taking a

Aberrations: Spherical

spherocylindrical

- A sphericat lens is one for which the refracting surface(s) have a single two radius of curvature

What about the refracting surface of a spherocylindrical (S-C) lens?
Recall that, by definition, a S-C lens has two different powers oriented at right angles to one another. This means every point on its surface has two radii-one for each power. Thus, such a lens could not ho montod hwolinine ff onation from nonbore.

Can you which a Yes-a radii-o donut's you bite into. So, just as a spherical lens is created by taking a There is a more formal/precise name for the shape from which a spherocylindrical lens is sliced-what is it? A torus

Similarly, this more-formal name gives rise to an alternate name for a spherocylindrical lens-what is it?
slincurula spition spherocylindricall lens is created by taking

Aberrations: Spherical

spherocylindrical

- A sphericat lens is one for which the refracting surface(s) have a single two radius of curvature

What about the refracting surface of a spherocylindrical (S-C) lens?
Recall that, by definition, a S-C lens has two different powers oriented at right angles to one another. This means every point on its surface has two radii-one for each power. Thus, such a lens could not hnomotnd hwolinineff onotinn from ononore.

Can you which a Yes-a radii-o donut's

There is a more formal/precise name for the shape from which a spherocylindrical lens is sliced-what is it? A torus

Similarly, this more-formal name gives rise to an alternate name for a spherocylindrical lens-what is it? A toric lens you bite into. So, just as a spherical lens is created by taking a

a slice off a donut.

Aberrations: Spherical

Let's drill down on how spherical aberration comes to pass:

Aberrations: Spherical

Object point

Consider an object-lens system as above.

Let's drill down on how spherical aberration comes to pass:

Aberrations: Spherical

If we deal only with the paraxial rays, we find their focus closely approximates a perfect point, as predicted by first-order optics.

Let's drill down on how spherical aberration comes to pass:

Aberrations: Spherical

If we deal only with the paraxial rays, we find their focus closely approximates a perfect point, as predicted by first-order optics.

However, when we look at the behavior of the non-paraxial rays, we find they do not focus at the same location as the paraxial rays; rather, because they are more sharply refracted, they focus anterior to the paraxial focal point.

Let's drill down on how spherical aberration comes to pass:

Aberrations: Spherical

If we deal only with the paraxial rays, we find their focus closely approximates a perfect point, as predicted by first-order optics.

However, when we look at the behavior of the non-paraxial rays, we find they do not focus at the same location as the paraxial rays; rather, because they are more sharply refracted, they focus anterior to the paraxial focal point.

Why are nonparaxial rays refracted more than paraxial rays on a spherical lens?

Aberrations: Spherical

If we deal only with the paraxial rays, we find their focus closely approximates a perfect point, as predicted by first-order optics.

However, when we look at the behavior of the non-paraxial rays, we find they do not focus at the same location as the paraxial rays; rather, because they are more sharply refracted, they focus anterior to the paraxial focal point

Why are nonparaxial rays refracted more than paraxial rays on a spherical lens? Snell's Law states that the angle of refraction is a function of the angle of incidence. For paraxial rays, the angle of incidence is determined solely by the radius-ofcurvature of the lens.

Aberrations: Spherical

If we deal only with the paraxial rays, we find their focus closely approximates a perfect point, as predicted by first-order optics.

However, when we look at the behavior of the non-paraxial rays, we find they do not focus at the same location as the paraxial rays; rather, because they are more sharply refracted, they focus anterior to the paraxial focal point.

Why are nonparaxial rays refracted more than paraxial rays on a spherical lens? Snell's Law states that the angle of refraction is a function of the angle of incidence. For paraxial rays, the angle of incidence is determined solely by the radius-ofcurvature of the lens. However, the angle-of-incidence for non-paraxial rays is a function of both the radius of curvature and the fact that the surface of the lens becomes more and more oblique (relative to the path of the light) as you move away from the lens axis; ie, the lens periphery 'turns away' from the incoming light, thereby increasing the angle of incidence in a way unrelated to the radius of curvature.

Aberrations: Spherical

If we deal only with the paraxial rays, we find their focus closely approximates a perfect point, as predicted by first-order optics.

However, when we look at the behavior of the non-paraxial rays, we find they do not focus at the same location as the paraxial rays; rather, because they are more sharply refracted, they focus anterior to the paraxial focal point. By the time these rays reach the focal plane for the paraxial rays, they are diverging. Thus, they contribute not to a focal point, but rather to a somewhat defocused area called a blur circle.

Aberrations: Spherical

If we deal only with the paraxial rays, we find their focus closely approximates a perfect point, as predicted by first-order optics.

However, when we look at the behavior of the non-paraxial rays, we find they do not focus at the same location as the paraxial rays; rather, because they are more sharply refracted, they focus anterior to the paraxial focal point. By the time these rays reach the focal plane for the paraxial rays, they are diverging. Thus, they contribute not to a focal point, but rather to a somewhat defocused area called a blur circle.

When progressively peripheral rays are refracted more and more sharply the lens is said to possess positive spherical aberration.

Aberrations: Spherical

If we deal only with the paraxial rays, we find their focus closely approximates a perfect point, as predicted by first-order optics.

However, when we look at the behavior of the non-paraxial rays, we find they do less not focus at the same location as the paraxial rays; rather, because they aremore sharply refracted, they focus antorior to the paraxial focal point.
posterior

On the other hand, when progressively peripheral rays are refracted less and less sharply, the lens is said to possess negative spherical aberration.

Aberrations: Spherical

Aberrations: Spherical

Aberrations: Spherical

And because it is an optical instrument...

Aberrations: Spherical

And because it is an optical instrument...the eye is subject to the same phenomenon.

Aberrations: Spherical

When the pupil is small, light reaching the retina consists largely of paraxial rays; ie, rays passing through the central portion of the cornea.

Aberrations: Spherical

When the pupil is small, light reaching the retina consists largely of paraxial rays; ie, rays passing through the central portion of the cornea. However, when the pupil is large, rays passing through the peripheral cornea come into play, and spherical aberration causes these rays to be focused more anteriorly, resulting in a myopic component to the final image.

Aberrations: Spherical

Remember, all these rays aro from tho
same point on the object at infinity.)

When the pupil is small, light reaching the retina consists largely of paraxial rays; ie, rays passing through the central portion of the cornea. However, when the pupil is large, rays passing through the peripheral cornea come into play, and spherical aberration causes these rays to be focused more anteriorly, resulting in a myopic component to the final image. Spherical aberration is a factor in the phenomenon called night myopia, in which pts complain of blurred vision brought on by dusk- and night-time illumination levels.

Aberrations: Spherical

Aberrations: Spherical

How much spherical aberration does the average human cornea possess?
About $+0.27 \mu \mathrm{~m}$

Why is the unit of spherical aberration microns--a unit of distance? What distance is being referred to?

How much spherical aberration does the average human cornea possess?
About +0.27 $\mu \mathrm{m}$

Why is the unit of spherical aberration microns--a unit of distance? What distance is being referred to? It refers to the distance between the location where central rays form a focal point and where the peripheral rays form a focal point

How much spherical aberration does the average human cornea possess?
About +0.27 $\mu \mathrm{m}$

Why is the unit of spherical aberration microns--a unit of distance? What distance is being referred to? It refers to the distance between the location where central rays form a focal point and where the peripheral rays form a focal point

But as can be seen in the figure, the location of the focal point for rays passing through the corneal periphery is a function of 'how peripheral' those rays are. Given this, how can one measure spherical aberration?

How much spherical aberration does the average human cornea possess?
About +0.27 $\mu \mathrm{m}$

Why is the unit of spherical aberration microns--a unit of distance? What distance is being referred to? It refers to the distance between the location where central rays form a focal point and where the peripheral rays form a focal point

But as can be seen in the figure, the location of the focal point for rays passing through the corneal periphery is a function of 'how peripheral' those rays are. Given this, how can one measure spherical aberration?
By convention, rays passing through the cornea 6 mm from the optical axis are used

How much spherical aberration does the average human cornea possess?
About +0.27 $\boldsymbol{\mu m}$

Aberrations: Spherical

How much spherical aberration does the average human cornea possess?
About +0.27 $\mu \mathrm{m}$
So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?

Aberrations: Spherical

How much spherical aberration does the average human cornea possess?
About $+0.27 \mu \mathrm{~m}$
So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

How much spherical aberration does the average human cornea possess?
About +0.27 $\mu \mathrm{m}$
So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

Recall that the cornea's Q factor is -0.26 . What would it be if the cornea had no spherical aberration? About -0.52

How much spherical aberration does the average human cornea possess?
About $+0.27 \mu \mathrm{~m}$
So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

Recall that the cornea's Q factor is -0.26 . What would it be if the cornea had no spherical aberration? About -0.52

Why didn't we evolve corneas with a Q factor of -0.52 ?

How much spherical aberration does the average human cornea possess?
About +0.27 $\mu \mathrm{m}$
So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

Recall that the cornea's Q factor is -0.26 . What would it be if the cornea had no spherical aberration? About -0.52

Why didn't we evolve corneas with a Q factor of -0.52 ?
Well, no one can say for sure of course. But what can be said with certainty is that a Q factor of -0.52 would require a radically different angle between the cornea and the sclera--an angle that could not be achieved given the biomechanics and size of the normal human globe.

How much spherical aberration does the average human cornea possess?
About +0.27 $\mu \mathrm{m}$
So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

Recall that the cornea's Q factor is -0.26 . What would it be if the cornea had no spherical aberration? About -0.52

Why didn't we evolve corneas with a Q factor of -0.52 ?
Well, no one can say for sure of course. But what can be said with certainty is that a Q factor of -0.52 would require a radically different angle between the cornea and the sclera--an angle that could not be achieved given the biomechanics and size of the normal human globe. Thus, a Q factor of -0.52 would require a very radical 're-design' of the globe--and thus of the orbits, and the cranium, and etc.

How much spherical aberration does the average human cornea possess?
About $+0.27 \mu \mathrm{~m}$
So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

Recall that the cornea's Q factor is -0.26 . What would it be if the cornea had no spherical aberration? About -0.52
eyes
Why didn't we evolve comeaswith a Q factor of -0.52 ? We did!
Well, no one can say for sure of course. But what can be said with certainty is that a Q factor of -0.52
Interestingly, while we didn't evolve corneas with a Q factor of -0.52 , we did evolve eyes with it. The human lens of a young adult has an average Q value of about -0.25 . Thus, the entire refracting system of the average young adult human eye has a total Q factor very close to -0.52 , and thus has little to no spherical aberration!

How much spherical aberration does the average human cornea possess?
About $+0.27 \mu \mathrm{~m}$
So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

Recall that the cornea's Q factor is -0.26 . What would it be if the cornea had no spherical aberration? About -0.52

Why didn't we evolve comeas with a Q factor of -0.52 ? We did!
Well, no one can say for sure of course. But what can be said with certainty is that a Q factor of -0.52 Interesting didn't evolve corneas with a Q factor of -0.52 , we did evolve eyes with it. The human young adult
young adult untmave has a thtal \cap factnr verv c.lnse tn -0.52 and thus has little to no snherical aherration!
'Young adult' seems to be emphasized, implying that the Q factor is not -0.25 in older adults. What happens to the Q factor of the lens as we age?

How much spherical aberration does the average human cornea possess?
About $+0.27 \mu \mathrm{~m}$
So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

Recall that the cornea's Q factor is -0.26 . What would it be if the cornea had no spherical aberration? About -0.52

Why didn't we evolve comeaswith a Q factor of -0.52 ? We did!
Well, no one can say for sure of course. But what can be said with certainty is that a Q factor of -0.52 Interesting didn't evolve corneas with a Q factor of -0.52 , we did evolve eyes with it. The human young adult
young adult uman eve has a tntal \cap fantor verv n.lnse tn -0.52 and thus has little tn nn snherical aherration!
'Young adult' seems to be emphasized, implying that the Q factor is not -0.25 in older adults. What happens to the Q factor of the lens as we age?

How much spherical aberration does the average human cornea possess?
About $+0.27 \mu \mathrm{~m}$
So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

Recall that the cornea's Q factor is -0.26 . What would it be if the cornea had no spherical aberration? About -0.52
eyes
Why didn't we evolve comeaswith a Q factor of -0.52 ? We did!
Well, no one can say for sure of course. But what can be said with certainty is that a Q factor of -0.52 Interesting didn't evolve corneas with a Q factor of -0.52 , we did evolve eyes with it. The human voung adult
young adult umandeve has a tntal \cap factnr verv culnse tn $-\cap .52$ and thus has little to no snherical aherration!
'Young adult' seems to be emphasized, implying that the Q factor is not -0.25 in older adults. What happens to the Q factor of the lens as we age?

How much spherical aberration does the average human cornea possess?
About $+0.27 \mu \mathrm{~m}$
So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

Recall that the cornea's Q factor is -0.26 . What would it be if the cornea had no spherical aberration? About -0.52
eyes
Why didn't we evolve comeas with a Q factor of -0.52 ? We did!
Well, no one can say for sure of course. But what can be said with certainty is that a Q factor of -0.52
Interestingly whe didn't evolve corneas with a Q factor of -0.52 , we did evolve eyes with it. The human lens of = young adult has an average Q value of about -0.25 . Thus, the entire refracting system of the average young adult juman eve has a tntal \cap factinr verv c.lnse th -0.5 ? and thus has liftle to nn snherical aherration!

Young adult' seems to be emphasized, implying that the Q factor is not -0.25 in older adults. What happens to the Q factor of the lens as we age?

How much spherical aberration does the average human cornea possess?
About $+0.27 \mu \mathrm{~m}$
So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

Recall that the cornea's Q factor is -0.26 . What would it be if the cornea had no spherical aberration? About -0.52
eyes
Why didn't we evolve comeas with a Q factor of -0.52 ? We did!
Well, no one can say for sure of course. But what can be said with certainty is that a Q factor of -0.52
Interestingly didn't evolve corneas with a Q factor of -0.52 , we did evolve eyes with it. The human lens of = young adult has an average Q value of about -0.25 . Thus, the entire refracting system of the average young adult juman eve has a tntal \cap factnr verv cinse $t \mathrm{n}-\mathrm{n} 5$) and thus has liftle to nn snherical aherration!

Young adult' seems to be emphasized, implying that the Q factor is not -0.25 in older adults. What happens to the Q factor of the lens as we age?

How much spherical aberration does the average human cornea possess?
About $+0.27 \mu \mathrm{~m}$
So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

Recall that the cornea's Q factor About -0.52

Why didn't we evolve corneas witl a Q factor of -0.52 ?
Well, no one can say for sure of ourse. But what can be said with certainty is that a Q factor of -0.52 would require a radically differe t angle between the cornea and the sclera--an angle that could not be achieved given the biomechar CS and size of the normal human globe. Thus, a Q factor of - 0.52 would require a very radical 're-des fn ' of the globe--and thus of the orbits, and the cranium, and etc.

So, the average cornea has a spherical aberration of $+0.27 \mu \mathrm{~m}$ and a Q factor of -0.26 . Surely it's not a coincidence that these numbers almost perfectly cancel one another out?

So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

Recall that the cornea's Q factor About -0.52

Why didn't we evolve corneas witl a Q factor of -0.52 ?
Well, no one can say for sure of ourse. But what can be said with certainty is that a Q factor of -0.52 would require a radically differe t angle between the cornea and the sclera--an angle that could not be achieved given the biomechar CS and size of the normal human globe. Thus, a Q factor of - 0.52 would require a very radical 're-des fn ' of the globe--and thus of the orbits, and the cranium, and etc.

So, the average cornea has a spherical aberration of $+0.27 \mu \mathrm{~m}$ and a Q factor of -0.26 .
Surely it's not a coincidence that these numbers almost perfectly cancel one another out? I'm afraid that's exactly what it is--a coincidence

So this means the cornea possesses positive spherical aberration. But the cornea's Q factor is negative. What gives?
The Q factor measures the relative asphericity of the cornea. A negative Q factor simply means the corneal periphery has less power than the central cornea; it does not mean the cornea as a whole doesn't have spherical aberration!

Aberrations: Zernike Polynomials

- A mathematical system for describing and systematizing optical aberrations

Aberrations: Zernike Polynomials

- A mathematical system for describing and systematizing optical aberrations
- A series of \square; when combined, they can account for the overall contour of a wavefront

Aberrations: Zernike Polynomials

- A mathematical system for describing and systematizing optical aberrations
- A series of shapes; when combined, they can account for the overall contour of a wavefront

Aberrations: Zernike Polynomials

- A mathematical system for describing and systematizing optical aberrations
- A series of shapes; when combined, they can account for the overall contour of a wavefront

In other words: Any wavefront, no matter how complex its shape, can be 'broken down' into a set of Zernike shapes.

Aberrations: Zernike Polynomials

- A mathematical system for describing and systematizing optical aberrations
- A series of shapes; when combined, they can account for the overall contour of a wavefront
- The set of shapes starts off very simple/basic, becoming progressively more complex as the series proceeds

Aberrations: Zernike Polynomials

- A mathematical system for describing and systematizing optical aberrations
- A series of shapes; when combined, they can account for the overall contour of a wavefront
- The set of shapes starts off very simple/basic, becoming progressively more complex as the series proceeds
- The progression is described by the \square of a given shape

Aberrations: Zernike Polynomials

- A mathematical system for describing and systematizing optical aberrations
- A series of shapes; when combined, they can account for the overall contour of a wavefront
- The set of shapes starts off very simple/basic, becoming progressively more complex as the series proceeds
- The progression is described by the order of a given shape

Aberrations: Zernike Polynomials

- A mathematical system for describing and systematizing optical aberrations
- A series of shapes; when combined, they can account for the overall contour of a wavefront
- The set of shapes starts off very simple/basic, becoming progressively more complex as the series proceeds
- The progression is described by the order of a given shape
- Order start at \#, and goes up from there

Aberrations: Zernike Polynomials

- A mathematical system for describing and systematizing optical aberrations
- A series of shapes; when combined, they can account for the overall contour of a wavefront
- The set of shapes starts off very simple/basic, becoming progressively more complex as the series proceeds
- The progression is described by the order of a given shape
- Order start at zero, and goes up from there

Aberrations: Zernike Polynomials

Zernike Polynomial Order

New Lingo

Shape

$2^{\text {nd }} \longleftrightarrow$| Dositive defocus |
| :---: | :---: | :---: |
| Negative defocus |

$$
2^{\text {nd }} \longleftrightarrow \text { Cylinder }
$$

Aberrations: Zernike Polynomials

Zernike Polynomial Order

New Lingo ?

Wait--you said ZPs start at zero and go up from there. What are the $0^{\text {th }}$ and 1 st_ order aberrations??

Shape

(Others, less

Aberrations: Zernike Polynomials

Zernike Polynomial Order

Wait--you said ZPs start at zero and go up from there. What are the $0^{\text {th }}$ and $1^{\text {st_ }}$ order aberrations?
'Piston' and 'prism'

New Lingo
\rightarrow Defocus
Positive defocus
Negative defocus
\rightarrow Cylinder

Shape

Aberrations: Zernike Polynomials

Zernike Polynomial Order

New Lingo

‘Piston’
‘Prism'

Shape

Why haven't we talked about piston and prism?

(Others, less

Aberrations: Zernike Polynomials

Zernike Polynomial Order

New Lingo

‘Piston’
'Prism'

(Others, less clinically relevant)

Aberrations: Zernike Polynomials

Zernike Polynomial Order

$0^{\text {th }} \longleftrightarrow$| 'Piston' |
| :---: |
| $1^{\text {st }}$ |
| $2^{\text {nd }} \longleftrightarrow$ |
| Myopia |
| 'Prism' |

Dyperopia \longleftarrow Defocus

(Others, less

Shape

'Bowl'

Aberrations: Zernike Polynomials

Zernike Polynomial Order

Shape

ASTIGMATISM ‘Saddle’
(Others, less

Aberrations: Zernike Polynomials

Zernike Polynomial Order

(Others, less

Shape

SPHERICAL ABERRATION
'Bundt cake pan’

Aberrations: Zernike Polynomials

Zernike Polynomial Order

Shape

Aberrations: Zernike Polynomials

Zernike Polynomial Order

In layman's terms, what is the problem with the incoming light that leads to the higher-order aberration of coma?

Aberrations: Zernike Polynomials

Zernike Polynomial Order

In layman's terms, what is the problem with the incoming light that leads to the higher-order aberration of coma? Coma occurs when the source of the rays is located off the optical axis. Because of its location, light from this source reaches one side of the pupil before the other.

Aberrations: Zernike Polynomials

Zernike Polynomial Order

Shape

New Lingo

In layman's terms, what is the problem with the incoming light that leads to the higher-order aberration of coma? Coma occurs when the source of the rays is located off the optical axis. Because of its location, light from this source reaches one side of the pupil before the other. The result is that rays entering the 'near' side and the 'far' side of the pupil are focused not at as a single point, but rather as a point with a 'smear' attached (not unlike a comet's tail, which is why the words share a root).

Aberrations: Zernike Polynomials

Zernike Polynomial Order

(Others, less
Shape
-

Aberrations: Zernike Polynomials

Zernike Polynomial Order

In layman's terms, what is the problem with the incoming light that leads to trefoil?

Aberrations: Zernike Polynomials

Zernike Polynomial Order

Aberrations: Zernike Polynomials

$0^{t h}$

In addition to the 3-D
representation of each shape... 3-D representation

Aberrations: Zernike Polynomials

Aberrations: Zernike Polynomials

Aberrations: Zernike Polynomials

Aberrations

two-words keratorefractive surgery did away with the second problem

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) cout no be measured in the elinie, and
2) could no becorread if they had boon measureable- 2

Aberrations

Wavefront-guided keratorefractive surgery did away with the second problem

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) cout not be measured in the elinie, and-
2) could not bo corrector if thoy had moon measurablo-

Aberrations

Pavefront-guided keratorefractive surgery did away with the second problem

- Allows surgeons to correct/minimize the higher-order aberrations identified via wavefront analysis

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) could not be measured in the elinie; and-
${ }_{2}$) could not becorreoted oven if they had boen measureable-

Aberrations

P Wavefront-guided keratorefractive surgery did away with the second problem

- Allows surgeons to correct/minimize the higher-order aberrations identified via wavefront analysis
- That said, precisely which higher-order aberrations should be corrected (and to what degree) is an unsettled issue at this time

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

Aberrations

Wavefront-guided keratorefractive surgery did away with the second problem

How does a wavefront-guided ablative procedure differ from a wavefront-optimized ablative procedure?

unsettled issue at this time

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) coutd not be measured in the elinie; and-
2) could no beorread if they had bon measureable-

Aberrations

Wavefront-guided keratorefractive surgery did away with the second problem

How does a wavefront-guided ablative procedure differ from a wavefront-optimized ablative procedure? In a wavefront-guided procedure, the information obtained from wavefront analysis is used to correct certain higher-order aberrations along with the more-important lower-order (ie, sphere and cyl) aberrations.

unsettled issue at this time

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) eould no be measured the elinie, and
2) could no bo corroced if thoy had boun moasurable-

Aberrations

Wavefront-guided keratorefractive surgery did away with the second problem

How does a wavefront-guided ablative procedure differ from a wavefront-optimized ablative procedure? In a wavefront-guided procedure, the information obtained from wavefront analysis is used to correct
certain higher-order aberrations along with the more-important lower-order (ie, sphere and cyl)
aberrations
In contrast, a wavefront-optimized procedure corrects only sphere and cylinder; no attempt is made to address higher-order aberrations. Instead, the wavefront information is used to 'fine tune' the ablation in such a way as to minimize the creation or exacerbation of higher-order aberrations.

unsettled issue at this time

Essentially, irregular astigmatism was a wastebasket term for aberrations that:

1) coutd not be measured in the elinie, and
2) could not bo corread if thoy had moon measurable-

Aberrations

Wavefront-guided keratorefractive surgery did away with the second problem

```
How does a wavefront-guided ablative procedure differ from a wavefront-optimized ablative procedure? In a wavefront-guided procedure, the information obtained from wavefront analysis is used to correct certain higher-order aberrations along with the more-important lower-order (ie, sphere and cyl)
aberrations
In contrast
wavefront-optimized procedure
address higher-otuctacretinnewavefront information is used to 'fine tune' the ablation in such a way as to minimize the creation or exacerbation of higher-order aberrations.
```

How does a wavefront-optimized ablative procedure differ from a so-called conventional ablative procedure?

Essentially, irregular astigmatism was a wastebasket term for aberrations that: 1) eould no be measured in the elinie, and
2) could not becorread if they had boon measureable $^{\text {2 }}$

Aberrations

P Wavefront-guided keratorefractive surgery did away with the second problem

Abstract

How does a wavefront-guided ablative procedure differ from a wavefront-optimized ablative procedure? In a wavefront-guided procedure, the information obtained from wavefront analysis is used to correct certain higher-order aberrations along with the more-important lower-order (ie, sphere and cyl) aberrations In contrast, wavefront-optimized procedure

\section*{} such a way as to minimize the creation or exacerbation of higher-order aberrations.

How does a wavefront-optimized ablative procedure differ from a so-called conventional ablative procedure? In a conventional procedure, the ablation is determined solely by a standard phoropter-based refraction obtained by the surgeon during pre-op. That is, the phoropter-based refraction is used to program the correction of sphere and cyl. In a wavefront-optimized ablation, the wavefront analysis is used to program the correction of sphere and cyl.

Essentially, irregular astigmatism was a wastebasket term for aberrations that: 1) could not be measured in the elinie; and-
2) could no bo correct if thoy had bou moacureable

Wavefront-guided keratorefractive surgery did away with the second problem

certain higher-order aberrations along with the more-important lower-order (ie, sphere and cyl) aberrations
In contrast, a wavefront-optimized procedure corrects only sphere and cylinder; no attempt is made to address higher-order aberrations. Instead, the wavefront information is used to 'fine tune' the ablation in such a way as to minimize the creation or exacerbation of higher-order ab
How does a wavefront-optimized ablative procedure differ from a so-call conventional ablative rocedure? In a conventional procedure, the ablation is determined solely by a standard obtained by the surgeon during pre-op. That is, the phoropter-based refraction is used to program the correction of sphere and cyl. In a wavefront-optimized ablation, the wavefront analysis is used to program the correction of sphere and cyl.

In addition to wavefront-guided, wavefront-optimized and conventional approaches to ablation, there is one more. What is it?

1) eould not be measured in the elinie;, and-
2) could not becorrected even if they had been measureable

Aberrations

Wavefront-guided keratorefractive surgery did away with the second problem

In addition to wavefront-guided, wavefront-optimized and conventional approaches to ablation, there is one more. What is it?
Topography-guided. For details on this and the other three approaches, see the slide set on Photoablative Refractive Surgery.

Aberrations

