Corneal transparency requires that its water content be maintained at 78%.

The corneal water content becomes progressively greater from anterior to posterior.

Intraocular pressure works to desiccate the cornea, while corneal GAGs work to hydrate it.

The difference between IOP and the effect of corneal GAGs is called the imbibition pressure of the corneal stroma.
Corneal transparency requires that its water content be maintained at **78%**.
Corneal transparency requires that its water content be maintained at 78%. The corneal water content becomes progressively greater from anterior to posterior vs posterior to anterior.
Corneal transparency requires that its water content be maintained at 78%.
The corneal water content becomes progressively greater from anterior to posterior.
Corneal transparency requires that its water content be maintained at 78%.

The corneal water content becomes progressively greater from anterior to posterior.

Intraocular pressure works to dessicate the cornea, while corneal GAGs work to hydrate it, making the difference between IOP and the effect of corneal GAGs the imbition pressure of the corneal stroma.
Corneal transparency requires that its water content be maintained at 78%.

The corneal water content becomes progressively greater from anterior to posterior.

Intraocular pressure works to dessicate the cornea, while corneal GAGs work to hydrate it.

A
Corneal Hydration

- Corneal transparency requires that its water content be maintained at 78%.
- The corneal water content becomes progressively greater from anterior to posterior.
- Intraocular pressure works to desiccate the cornea, while corneal GAGs work to hydrate it.

What are GAGs?
Corneal transparency requires that its water content be maintained at 78%.

The corneal water content becomes progressively greater from anterior to posterior.

Intraocular pressure works to dessicate the cornea, while corneal GAGs work to hydrate it.

What are GAGs?
Glycosaminoglycans—important components of the corneal stroma.
Corneal transparency requires that its water content be maintained at 78%.

The corneal water content becomes progressively greater from anterior to posterior.

Intraocular pressure works to dessicate the cornea, while corneal GAGs work to hydrate it.

What are GAGs?
Glycosaminoglycans—important components of the corneal stroma.

How do GAGs promote corneal hydration?
Corneal transparency requires that its water content be maintained at 78%.

The corneal water content becomes progressively greater from anterior to posterior.

Intraocular pressure works to dessicate the cornea, while corneal GAGs work to hydrate it.

What are GAGs?
Glycosaminoglycans—important components of the corneal stroma.

How do GAGs promote corneal hydration?
GAGs are negatively charged and thus repel each other. In repelling each other, they expand the intrastromal space, thereby producing a swelling pressure.
Corneal transparency requires that its water content be maintained at 78%.

The corneal water content becomes progressively greater from anterior to posterior.

Intraocular pressure works to dessiccate the cornea, while corneal GAGs work to hydrate it.

Huh? I thought IOP forced water into the cornea. How does it have a dessicating effect?
Corneal transparency requires that its water content be maintained at 78%.

The corneal water content becomes progressively greater from anterior to posterior.

Intraocular pressure works to dessicate the cornea, while corneal GAGs work to hydrate it.

Huh? I thought IOP forced water into the cornea. How does it have a dessicating effect? By pushing against the cornea, IOP in effect ‘wrings out the sponge,’ promoting dessication. An intact endothelium-Descemet’s effectively prevents aqueous ingress, unless IOP is so high as to overwhelm the endothelial pump function.
Corneal transparency requires that its water content be maintained at 78%.

The corneal water content becomes progressively greater from anterior to posterior.

Intraocular pressure works to dessicate the cornea, while corneal GAGs work to hydrate it.

The difference between IOP and the effect of corneal GAGs is called the imbition pressure of the corneal stroma.
Corneal transparency requires that its water content be maintained at 78%.

The corneal water content becomes progressively greater from anterior to posterior.

Intraocular pressure works to dessicate the cornea, while corneal GAGs work to hydrate it.

The difference between IOP and the effect of corneal GAGs is called the imbibition pressure of the corneal stroma.