Optics Quiz 1

This quiz is intended to be taken after completion of Chapters 1-5

Note: Some questions herein may have appeared first in a copyrighted source. If you own the copyright to a question and would like an acknowledgement or to have the question removed, please contact me EyeDentistAAO@gmail.com
No, you can’t use a calculator (and you don’t need one anyway)
What is the vergence at Point A?

Distance = 10cm
What is the vergence at Point A?

Distance = 10cm

Vergence = 1/distance in meters

Vergence = 1/0.1 = +10D
What is the vergence at Point A?

Distance = 10cm

Vergence = 1/distance in meters = 1/0.1 = +10D

An easy error to make is to fail to convert the distance units to meters. Don’t make it.
What is the vergence at Point D?

Distance = 2 m
What is the vergence at Point D?

Vergence = 1/distance in meters = 1/2 = -0.5D

The (-) sign is crucial, as it indicates the light is *diverging*. If you didn’t include it, you got the question wrong.
How far apart are the object and the final image?

Object

-0.33 m

-1D

0.75 m

+5D
How far apart are the object and the final image?

This problem requires a three-step solution:
How far apart are the object and the final image?

\[U + V = P \]
\[-3 + (-1) = -4 \]
\[1/-4 = -0.25 \text{ m} \]

Step 1:
Use the **Vergence Formula** to determine the location of the image formed by the first lens.
How far apart are the object and the final image?

\[U + V = P \]

-3 + (-1) = -4
1/-4 = -0.25 m

\[U + V = P \]

-1 + (+5) = 4D
1/4 = 0.25 m

Step 2:
Repeat Step 1 using that image as the object for the second lens
How far apart are the object and the final image?

\[
U + V = P
\]

Object

\[
-3 + (-1) = -4
\]

\[
1/-4 = -0.25 \text{ m}
\]

Image 1

\[
+5D
\]

\[
-1 + (+5) = 4D
\]

\[
1/4 = 0.25 \text{ m}
\]

Image 2

\[
0.33 \text{ m}
\]

\[
0.75 \text{ m}
\]

\[
-0.25 \text{ m}
\]

\[
-1.0 \text{ m}
\]

\[
0.25 \text{ m}
\]

\[
0.33 \text{ m} + 0.75 \text{ m} + 0.25 \text{ m} = 1.33 \text{ m}
\]

Step 3:
Determine the distance between the initial object and final image.
Fill in the blanks
Fill in the blanks

Primary focal point: Object location associated with parallel rays **leaving** a lens

Secondary focal point: Image location associated with parallel rays **entering** a lens
I can’t stress enough how important it is to have the definitions of the primary and secondary focal points on lock. For example, in the next few tutorial chapters we will see that the spectacle correction of refractive error is inextricably linked to the secondary focal point.
I can’t stress enough how important it is to have the definitions of the primary and secondary focal points on lock. For example, in the next few tutorial chapters we will see that the spectacle correction of refractive error is inextricably linked to the secondary focal point. Meaning, if you don’t understand the focal points, you can’t understand the correction of refractive error—which, it’s fair to say, is a rather important thing to understand. Get the focal points straight in your head now!
Define…

Conjugate points:
Define…

Conjugate points: Two points that are *object* and *image* of one another
Conjugate points: Two points that are *object* and *image* of one another.

Far point:
Define...

Conjugate points: Two points that are *object* and *image* of one another

Far point: The point in visual space conjugate with the retina when the eye is not accommodating
Define…

Conjugate points: Two points that are *object* and *image* of one another

Far point: The point in visual space conjugate with the retina *when the eye is not accommodating*.

Too often, first-years omit the qualifier *…when the eye is not accommodating* in defining the far point. It is critical to the definition, so don’t forget it.
Define…

Conjugate points: Two points that are *object* and *image* of one another

Far point: The point in visual space conjugate with the retina *when the eye is not accommodating* Too often, first-years omit the qualifier …*when the eye is not accommodating* in defining the far point. It is critical to the definition, so don’t forget it.

Like the focal points (especially the secondary), the *far point concept* is foundational to anything having to do with refractive error and its correction. I can’t stress enough—you must understand the far point in your bones.
Indicate where the parallel rays will meet for each refractive status by extending the rays.

What is the name for this location?
---Indicate where the parallel rays will meet for each refractive status by extending the rays.
---What is the name for this location? **The secondary focal point**

Parallel rays from infinity (vergence = 0)

Parallel rays from infinity (vergence = 0)

Parallel rays from infinity (vergence = 0)
--Indicate the location of the **far point** for each refractive state
--Draw rays from the far point to where they meet in the eye

Hyperopic Eye

Emmetropic Eye

Myopic Eye
---Indicate the location of the **far point** for each refractive state
---Draw rays from the far point to where they meet in the eye
The vergence at A is +5D. Draw the rays (ie, lines which have an arrow at one end), and indicate the distance between A and the focal point.
The vergence at A is +5D. Draw the rays (ie, lines which have an arrow at one end), and indicate the distance between A and the focal point.

First things first. Note:
--Unless otherwise specified, in optics problems light always travels left to right.
--The (+) in the vergence (+%) tells us the light is converging.

Distance =
The vergence at A is +5D. Draw the rays (ie, lines which have an arrow at one end), and indicate the distance between A and the focal point.

First things first. Note:
--Unless otherwise specified, in optics problems light always travels left to right.
--The (+) in the vergence (+%) tells us the light is converging.

We now know to set up the problem thusly:
The vergence at A is +5D. Draw the rays (ie, lines which have an arrow at one end), and indicate the distance between A and the focal point.

Distance = 20 cm

Solving:

Vergence = 1/distance in meters

5 = 1/distance in meters = 1/.2 m = 20 cm
How far apart are the object and the final image?
How far apart are the object and the final image?

\[U + V = P \]
\[-2 + (+2) = 0 \]

The first image is located at optical infinity.
How far apart are the object and the final image?

Light rays from an object (the 1st image in this case) at infinity are all parallel to one another, i.e., they have zero vergence.

\[U + V = P \]

\[-2 + (+2) = 0 \]

\[U + V = P \]

\[0 + (+5) = +5D \]

\[\frac{1}{5} = 0.2 \text{ m} \]
How far apart are the object and the final image?

\[U + V = P \]

- \[-2 + (+2) = 0 \]

- \[0 + (+5) = +5D \]

\[1/5 = 0.2 \text{ m} \]

Doan fogit to answer the question asked!

\[= 1.7 \text{ m} \]
What is the name of the indicated point?

The Hyperopic Eye

The Emmetropic Eye

The Myopic Eye
What is the name of the indicated point?

The Hyperopic Eye

The Emmetropic Eye

Primary Focal Point

The Myopic Eye