Lens Proteins constitute what proportion of the lens by weight?
Lens Proteins constitute what proportion of the lens by weight? 1/3
Lens Proteins constitute what proportion of the lens by weight? 1/3

Um, cool story bro. Is that proportion supposed to be impressive?
Um, cool story bro. Is that proportion supposed to be impressive? Indeed it is.
Lens Proteins constitute what proportion of the lens by weight? \(\frac{1}{3}\)

Um, cool story bro. Is that proportion supposed to be impressive? Indeed it is

Alrighty then. Is it impressively high, or low?
Um, cool story bro. Is that proportion supposed to be impressive? Indeed it is

Alrighty then. Is it impressively high, or low?
High—no other tissue comes close (a content-by-weight of a third is **2 to 3 times** the protein content of most other tissues!)
Um, cool story bro. Is that proportion supposed to be impressive? Indeed it is.

Alrighty then. Is it impressively high, or low?

High—no other tissue comes close (a content by weight of a third is 2 to 3 times the protein content of most other tissues!)

Proteins are metabolically expensive. Why do lens fibers need such cray levels?
Lens Proteins constitute what proportion of the lens by weight? 1/3

Um, cool story bro. Is that proportion supposed to be impressive? Indeed it is

Alrighty then. Is it impressively high, or low?

High—no other tissue comes close (a content by weight of a third is 2 to 3 times the protein content of most other tissues!)

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) Snell’s law of refraction.
Briefly, what is the ‘life cycle’ of a lens fiber?

Um, secretory bro. Is that proportion supposed to be impressive?

Indeed it is

Alrighty then. Is it impressively high, or low?

High—no other tissue comes close (a content by weight of a third is 2 to 3 times the protein content of most other tissues)

Proteins are metabolically expensive. Why do lens fibers need such cray levels?

The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) Snell’s law of refraction.
Um, secretory bro. Is that proportion supposed to be impressive?

Indeed it is

Alrighty then. Is it impressively high, or low?

High—no other tissue comes close (a content by weight of a third is 2 to 3 times the protein content of most other tissues!)

Proteins are metabolically expensive. Why do lens fibers need such cray levels?
The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) Snell’s law of refraction.

Briefly, what is the ‘life cycle’ of a lens fiber?
The progenitor cells for lens fibers are the lens’s epithelial cells

Briefly, what is the ‘life cycle’ of a lens fiber?
The progenitor cells for lens fibers are the lens’s epithelial cells

Briefly, what is the ‘life cycle’ of a lens fiber?
The progenitor cells for lens fibers are the lens’s epithelial cells

Briefly, what is the ‘life cycle’ of a lens fiber?
The progenitor cells for lens fibers are the lens’s epithelial cells
Briefly, what is the ‘life cycle’ of a lens fiber?
The progenitor cells for lens fibers are the lens’s epithelial cells.

Um, secretory bro. Is that proportion supposed to be impressive?
Indeed it is.

Alrighty then. Is it impressively high, or low?
High—no other tissue comes close (a content by weight of a third is 2 to 3 times the protein content of most other tissues.)

Proteins are metabolically expensive. Why do lens fibers need such cray levels?
The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) Snell’s law of refraction.
Briefly, what is the ‘life cycle’ of a lens fiber?
The progenitor cells for lens fibers are the lens’s epithelial cells, which are found under the and regions of the capsule.

Um, secretory bro. Is that proportion supposed to be impressive?
Indeed it is.

Alrighty then. Is it impressively high, or low?
High—no other tissue comes close (a content by weight of a third is 2 to 3 times the protein content of most other tissues.)

Proteins are metabolically expensive. Why do lens fibers need such cray levels?
The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) Snell’s law of refraction.
Briefly, what is the ‘life cycle’ of a lens fiber?
The progenitor cells for lens fibers are the lens’s epithelial cells, which are found under the anterior and equatorial regions of the capsule.

Um, cool story bro. Is that proportion supposed to be impressive?
Indeed it is.

Alrighty then. Is it impressively high, or low?
High—no other tissue comes close (a content by weight of a third is **2 to 3 times** the protein content of most other tissues!)

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review **1) lens-fiber development**; and 2) Snell’s law of refraction.
Briefly, what is the ‘life cycle’ of a lens fiber?
The progenitor cells for lens fibers are the lens’s epithelial cells, which are found under the anterior and equatorial regions of the capsule. Throughout life, epi cells migrate to a portion of the equatorial periphery called the region, where they elongate in circumferential fashion until reaching the anterior and polar poles, at which points they encounter and interdigitate with growing fibers from the other side of the lens.

Um, secretory bro. Is that proportion supposed to be impressive? Indeed it is

Alrighty then. Is it impressively high, or low? High—no other tissue comes close (a content by weight of a third is 2 to 3 times the protein content of most other tissues)

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) Snell’s law of refraction.
Briefly, what is the ‘life cycle’ of a lens fiber?
The progenitor cells for lens fibers are the lens’s epithelial cells, which are found under the anterior and equatorial regions of the capsule. Throughout life, epi cells migrate to a portion of the equatorial periphery called the bow region, where they elongate in circumferential fashion until reaching the anterior and polar poles, at which points they encounter and interdigitate with growing fibers from the other side of the lens.

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) Snell’s law of refraction.
Briefly, what is the ‘life cycle’ of a lens fiber?
The progenitor cells for lens fibers are the lens’s epithelial cells, which are found under the anterior and equatorial regions of the capsule. Throughout life, epi cells migrate to a portion of the equatorial periphery called the bow region, where they elongate in circumferential fashion until reaching the anterior and polar poles, at which points they encounter and interdigitate with growing fibers from the other side of the lens. As they elongate, the developing fibers produce the massive quantity of intracellular proteins that results in the lens’s high protein content.

Um, cool story bro. Is that proportion supposed to be impressive?
Indeed it is

Alrighty then. Is it impressively high, or low?
High—no other tissue comes close (a content by weight of a third is 2 to 3 times the protein content of most other tissues)

Proteins are metabolically expensive. Why do lens fibers need such cray levels?
The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) Snell’s law of refraction.
Briefly, what is the ‘life cycle’ of a lens fiber?
The progenitor cells for lens fibers are the lens's epithelial cells, which are found under the anterior and equatorial regions of the capsule. Throughout life, epi cells migrate to a portion of the equatorial periphery called the bow region, where they elongate in circumferential fashion until reaching the anterior and polar poles, at which points they encounter and interdigitate with growing fibers from the other side of the lens. As they elongate, the developing fibers produce the massive quantity of intracellular proteins that results in the lens’s high protein content.

OK, but why does the lens feel the need (so to speak) to crank out so much protein? What purpose is served by doing so?

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) Snell’s law of refraction.
Briefly, what is the ‘life cycle’ of a lens fiber?
The progenitor cells for lens fibers are the lens’s epithelial cells, which are found under the anterior and equatorial regions of the capsule. Throughout life, epi cells migrate to a portion of the equatorial periphery called the bow region, where they elongate in circumferential fashion until reaching the anterior and polar poles, at which points they encounter and interdigitate with growing fibers from the other side of the lens. As they elongate, the developing fibers produce the massive quantity of intracellular proteins that results in the lens’s high protein content.

OK, but why does the lens feel the need (so to speak) to crank out so much protein? What purpose is served by doing so?
The purpose is to render the lens’s refractive index (n) different enough from that of the aqueous and vitreous to make it (the lens) an effective and efficient refracting structure.

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) Snell’s law of refraction.
Briefly, what is the ‘life cycle’ of a lens fiber?
The progenitor cells for lens fibers are the lens’s epithelial cells, which are found under the anterior and equatorial regions of the capsule. Throughout life, epi cells migrate to a portion of the equatorial periphery called the bow region, where they elongate in circumferential fashion until reaching the anterior and polar poles, at which points they encounter and interdigitate with growing fibers from the other side of the lens. As they elongate, the developing fibers produce the massive quantity of intracellular proteins that results in the lens’s high protein content.

OK, but why does the lens feel the need (so to speak) to crank out so much protein? What purpose is served by doing so?
The purpose is to render the lens’s refractive index (n) different enough from that of the aqueous and vitreous to make it (the lens) an effective and efficient refracting structure. In short, it’s a Snell’s law issue. Let’s unpack this.

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) Snell’s law of refraction.
But first, consider the primary purpose of the lens: **Focusing incoming light on the fovea**.

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) **Snell’s law of refraction**.
But first, consider the primary purpose of the lens: **Focusing incoming light on the fovea**. To do this, the lens must supply **20D** (aka **converging** power). Of the roughly **60D** of converging power possessed by the typical eye, **20D** are supplied by the lens (the other **40D** being supplied by the **cornea**).

Here's where Snell's law comes into play. Snell's law tells us that the dioptric power produced at a refracting surface is

\[
P = \frac{n'}{n} \cdot \frac{1}{r}
\]

where
- \(n'\) is the refractive index of the substance the light is heading into (the lens in this case),
- \(n\) is the refractive index of the substance the light is coming from (the aqueous), and
- \(r\) is the *radius of curvature of the refracting surface (the anterior lens capsule)*.

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) **Snell's law of refraction**.
A

But first, consider the primary purpose of the lens: **Focusing incoming light on the fovea.** To do this, the lens must supply plus (aka converging) power.

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) **Snell’s law of refraction.**
But first, consider the primary purpose of the lens: **Focusing incoming light on the fovea.** To do this, the lens must supply **plus (aka converging) power.** Of the roughly \# of converging power possessed by the typical eye, \# are supplied by the lens (the other \# being supplied by the \#). The purpose is to render the lens's refractive index (n) different enough from that of the aqueous and vitreous to make it (the lens) an effective and efficient refracting structure. In short, it's a Snell's law issue. Let's see how.

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) **Snell's law of refraction.**
But first, consider the primary purpose of the lens: **Focusing incoming light on the fovea.** To do this, the lens must supply **plus (aka converging) power.** Of the roughly 60D of converging power possessed by the typical eye, 20D are supplied by the lens (the other 40D being supplied by the cornea.)

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) **Snell’s law of refraction.**
A

But first, consider the primary purpose of the lens: **Focusing incoming light on the fovea.** To do this, the lens must supply **plus (aka converging) power.** Of the roughly 60D of converging power possessed by the typical eye, 20D are supplied by the lens (the other 40D being supplied by the cornea.)

Here’s where Snell’s law comes into play. Snell’s law tells us that the dioptric power produced at a refracting surface is

\[
\frac{n' - n}{r}
\]

where \(n'\) is the refractive index of the substance the light is heading into (the lens in this case), \(n\) is the refractive index of the substance the light is coming from (the aqueous), and \(r\) is the radius of curvature of the refracting surface (the anterior lens capsule).

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) **Snell’s law of refraction.**
Lens Proteins

OK, but what does all this have to do with the intracellular composition of lens fibers? The issue is one of refractive index. Look at Snell’s law again, and note that the magnitude of the numerator is determined not by the values of the two refractive indices, but rather by the difference between the values.

\[
\frac{n' - n}{r}
\]

where \(n'\) is the refractive index of the substance the light is heading into (the lens in this case), \(n\) is the refractive index of the substance the light is coming from (the aqueous), and \(r\) is the radius of curvature of the refracting surface (the anterior lens capsule).

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) Snell’s law of refraction.

No question yet—proceed when ready
OK, but what does all this have to do with the intracellular composition of lens fibers? The issue is one of refractive index. Look at Snell’s law again, and note that the magnitude of the numerator is determined not by the values of the two refractive indices, but rather by the difference between the values. Thus, if there is little to no difference between the nₛ at an interface, there will be little to no refraction at it.

$$\frac{n' - n}{r}$$

where n’ is the refractive index of the substance the light is heading into (the lens in this case), n is the refractive index of the substance the light is coming from (the aqueous), and r is the radius of curvature of the refracting surface (the anterior lens capsule).

The purpose is to render the lens’s refractive index (n) different enough from that of the aqueous and vitreous to make it (the lens) an effective and efficient refracting structure. In short, it’s a Snell’s law issue. Let’s see how.

Proteins are metabolically expensive. Why do lens fibers need such cray levels? The bottom-line answer is: High protein density is needed for the lens to function as an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review
1) lens-fiber development; and 2) **Snell’s law of refraction**.

No question yet—proceed when ready
OK, but what does all this have to do with the intracellular composition of lens fibers? The issue is one of refractive index. Look at Snell’s law again, and note that the magnitude of the numerator is determined not by the values of the two refractive indices, but rather by the difference between the values. Thus, if there is little to no difference between the refractive indices at an interface, there will be little to no refraction at it.

\[
\frac{n' - n}{r}
\]

You have probably anticipated the implications of all this for the composition of the intracellular space in lens fibers. If that space was filled with a liquid isotonic to aqueous, the refractive index of the lens would not differ appreciably from that of the aqueous itself. This would render the Snell’s law numerator of the aqueous-lens interface essentially zero, meaning no refraction could occur there.
OK, but what does all this have to do with the intracellular composition of lens fibers? The issue is one of refractive index. Look at Snell’s law again, and note that the magnitude of the numerator is determined not by the values of the two refractive indices, but rather by the difference between the values. Thus, if there is little to no difference between the \(n_s \) at an interface, there will be little to no refraction at it.

\[
\frac{n' - n}{r}
\]

You have probably anticipated the implications of all this for the composition of the intracellular space in lens fibers. If that space was filled with a liquid isotonic to aqueous, the refractive index of the lens would not differ appreciably from that of the aqueous itself. This would render the Snell’s law numerator of the aqueous-lens interface essentially zero, meaning no refraction could occur there. But the dense concentration of intracellular proteins gives the lens a refractive index of about 1.39, which differs enough from that of the aqueous (1.34) that meaningful refraction occurs.
Lens Proteins

OK, but what does all this have to do with the intracellular composition of lens fibers? The issue is one of refractive index. Look at Snell’s law again, and note that the magnitude of the numerator is determined not by the values of the two refractive indices, but rather by the difference between the values. Thus, if there is little to no difference between the \(n_s \) at an interface, there will be little to no refraction at it.

\[
\frac{n' - n}{r}
\]

You have probably anticipated the implications of all this for the composition of the intracellular space in lens fibers. If that space was filled with a liquid isotonic to aqueous, the refractive index of the lens would not differ appreciably from that of the aqueous itself. This would render the Snell’s law numerator of the aqueous-lens interface essentially zero, meaning no refraction could occur there. But the dense concentration of intracellular proteins gives the lens a refractive index of about 1.39, which differs enough from that of the aqueous (1.34) that meaningful refraction occurs.

By way of an example, consider: Why is underwater vision so blurry? The refractive index of the cornea is about 1.34, and the refractive index of air is 1.0, so the difference between them (ie, the numerator of Snell’s law as it pertains to the air-cornea interface) is 0.34. In contrast, the refractive index of water is 1.33. Thus, when you open your eyes underwater, the Snell’s law numerator at the water-cornea interface is only 0.01, which renders the value of the overall fraction almost zero. This means that essentially no refraction takes place at the cornea underwater, effectively eliminating 40 of the 60D of convergence needed for clear vision. This is how the numerator in Snell’s law transforms an on-land emmetrope into an underwater hyperope (and a very high one at that).

But to consider it another way, the high protein concentration of lens fibers is not just a function of keeping the lens from becoming too soft and losing its ability to refract light. It is directly related to the high protein content of lens fibers, which is needed to produce the refractive index of the lens that renders it an effective refracting structure. We will unpack this statement over the next several slides, but doing so requires we take a couple of steps back and review 1) lens-fiber development; and 2) Snell’s law of refraction.
OK, but what does all this have to do with the intracellular composition of lens fibers? The issue is one of refractive index. Look at Snell’s law again, and note that the magnitude of the numerator is determined not by the values of the two refractive indices, but rather by the difference between the values. Thus, if there is little to no difference between the refractive indices at an interface, there will be little to no refraction at it. Here’s where Snell’s law comes into play: Snell’s law tells us that the dioptric power produced at a refracting surface is

\[n' - n \]

where \(n' \) is the refractive index of the substance the light is heading into (the lens in this case), \(n \) is the refractive index of the substance the light is coming from (the aqueous), and \(r \) is the radius of curvature of the refracting surface (the anterior lens capsule).

Before we move on:

---If you’re not grocking this whole Snell’s law thing, review slide-set BO17 (or better still, do the whole Basic Optics tutorial)

---For more details concerning lens fiber development, see set L14
Lens proteins come in one of two basic types. What are they? (Hint: The types are divvied on the basis of a physical property of the proteins.)
Lens proteins come in one of two basic types. What are they? (Hint: The types are divvied on the basis of a physical property of the proteins.)
One of these types predominates in the lens of a young person— which one?
One of these types predominates in the lens of a young person—
which one?
Water soluble
One of these types predominates in the lens of a young person— which one?
Water soluble

Water-soluble proteins comprise what percentage of proteins in the young lens?
Lens Proteins

Water Soluble

Water-soluble proteins comprise what percentage of proteins in the young lens?
80%

One of these types predominates in the lens of a young person— which one?
Water soluble
One of these types predominates in the lens of a young person— which one?
Water soluble

What happens to the relative proportions of water soluble vs insoluble proteins as the person ages?
One of these types predominates in the lens of a young person— which one?
Water soluble

What happens to the relative proportions of water soluble vs insoluble proteins as the person ages?
It reverses—water insoluble predominates
One of these types predominates in the lens of a young person—water soluble or water insoluble? What happens to the relative proportions of water soluble vs insoluble proteins as the person ages? It reverses—water insoluble predominates.

What accounts for this change in the proportion of water-soluble vs insoluble proteins? It's very straightforward—as the lens ages, water-soluble proteins aggregate, in the process forming particles that are water-insoluble.

Is this fact of any clinical relevance, or are you just torturing me with minutiae? Unlike much of the esoterica in this slide-set, a straight line can be drawn from this fact to the exam room. These water-insoluble aggregates are very large and scatter light, thereby reducing acuity. Further, there is a direct correlation between the proportion of water-insoluble proteins and how brunescent a cataract is.
Lens Proteins

What accounts for this change in the proportion of water-soluble vs insoluble proteins? It’s very straightforward—as the lens ages, water-soluble proteins aggregate, in the process forming particles that are water-insoluble.

It reverses—water insoluble predominates.
One of these types predominates in the lens of a young person—which one?

What happens to the relative proportions of water soluble vs insoluble proteins as the person ages?

It reverses—water insoluble predominates.

What accounts for this change in the proportion of water-soluble vs insoluble proteins? It’s very straightforward—as the lens ages, water-soluble proteins aggregate, in the process forming particles that are water-insoluble.

Is this fact of any clinical relevance, or are you just torturing me with minutiae?

It reverses—water insoluble predominates.
What accounts for this change in the proportion of water-soluble vs insoluble proteins? It’s very straightforward—as the lens ages, water-soluble proteins aggregate, in the process forming particles that are water-insoluble

Is this fact of any clinical relevance, or are you just torturing me with minutiae? Unlike much of the esoterica in this slide-set, a straight line can be drawn from this fact to the exam room. These water-insoluble aggregates are very large and scatter light, thereby reducing acuity.

It reverses—water insoluble predominates
What accounts for this change in the proportion of water-soluble vs insoluble proteins? It’s very straightforward—as the lens ages, water-soluble proteins aggregate, in the process forming particles that are water-insoluble.

Is this fact of any clinical relevance, or are you just torturing me with minutiae? Unlike much of the esoterica in this slide-set, a straight line can be drawn from this fact to the exam room. These water-insoluble aggregates are very large and scatter light, thereby reducing acuity. Further, there is a direct correlation between the proportion of water-insoluble proteins and how brunescent a cataract is.
Lens Proteins

Water Soluble

Water Insoluble

What happens to the relative proportions of water soluble vs insoluble proteins as the person ages?

It reverses—water insoluble predominates.

What accounts for this change in the proportion of water-soluble vs insoluble proteins?

As the lens ages, water-soluble proteins aggregate, in the process forming particles that are water-insoluble.

Is this fact of any clinical relevance, or are you just torturing me with minutiae?

Unlike much of the esoterica in this slide-set, a straight line can be drawn from this fact to the exam room. These water-insoluble aggregates are very large and scatter light, thereby reducing acuity. Further, there is a direct correlation between the proportion of water-insoluble proteins and how brunescent a cataract is.

Water-insoluble proteins comprise what percentage of proteins in an old, brunescent lens?

It can be as high as 90%!
One of these types predominates in the lens of a young person—which one? Water soluble.

What happens to the relative proportions of water soluble vs insoluble proteins as the person ages? It reverses—water insoluble predominates.

What accounts for this change in the proportion of water-soluble vs insoluble proteins? As the lens ages, water-soluble proteins aggregate, in the process forming particles that are water-insoluble.

Is this fact of any clinical relevance, or are you just torturing me with minutiae? Unlike much of the esoterica in this slide-set, a straight line can be drawn from this fact to the exam room. These water-insoluble aggregates are very large and scatter light, thereby reducing acuity. Further, there is a direct correlation between the proportion of water-insoluble proteins and how brunescent a cataract is. It can be as high as 90%!
By what other name are the water-soluble proteins known?
By what other name are the water-soluble proteins known?
‘Crystallins’
By what other name are the water-soluble proteins known? ‘Crystallins’

Crystallins come in three forms (two of which are grouped together). What are they?
By what other name are the water-soluble proteins known? ‘Crystallins’

Crystallins come in three forms (two of which are grouped together). What are they?
By what other name are the water-soluble proteins known? ‘Crystallins’

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function?
By what other name are the water-soluble proteins known? ‘Crystallins’

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function? They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure
By what other name are the water-soluble proteins known? ‘Crystallins’

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function? They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.

What might you be expected to remember about each of the crystallins?

- α: The largest
- β, γ: Smallest
By what other name are the water-soluble proteins known?

'Crystallins'

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function?

They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.
By what other name are the water-soluble proteins known? 'Crystallins'.

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function? They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.
By what other name are the water-soluble proteins known? 'Crystallins'

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function? They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.

Lens Proteins

Water Soluble aka...

Crystallins

α

βγ

Water Insoluble

What might you be expected to remember about each of the crystallins?
α: The largest; also, it is a heat-shock protein
β
γ
By what other name are the water-soluble proteins known?

'Crystallins'

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function?

They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.

What might you be expected to remember about each of the crystallins?

α: The largest; also, it is a heat-shock protein

βγ

In general, what is a heat-shock protein?

A protein expressed in response to stress

What role does α-crystallin play in the lens in this regard?

Denatured lens proteins will aggregate (ie, glom together) to form large particles; α-crystallin interdicts this process by binding to the denatured proteins
By what other name are the water-soluble proteins known? 'Crystallins'

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function?
They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.

What might you be expected to remember about each of the crystallins?

α: The largest; also, it is a heat-shock protein

βγ

In general, what is a heat-shock protein?
A protein expressed in response to stress
By what other name are the water-soluble proteins known? ‘Crystallins’

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function? They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.

In general, what is a heat-shock protein? A protein expressed in response to stress.

What role does α-crystallin play in the lens in this regard? Denatured lens proteins will aggregate (ie, glom together) to form large particles; α-crystallin interdicts this process by binding to the denatured proteins.

What might you be expected to remember about each of the crystallins?

α: The largest; also, it is a heat-shock protein

β, γ: aka Crystallins

Water Soluble

Water Insoluble

Lens Proteins

α

β γ

heat-shock protein
By what other name are the water-soluble proteins known? ‘Crystallins’

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function?

They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.

What might you be expected to remember about each of the crystallins?

α: The largest; also, it is a heat-shock protein

βγ

In general, what is a heat-shock protein?
A protein expressed in response to stress

What role does α-crystallin play in the lens in this regard?
Denatured lens proteins will aggregate (ie, glom together) to form large particles; α-crystallin interdicts this process by binding to the denatured proteins.
By what other name are the water-soluble proteins known? ‘Crystallins’

Crystallins come in three forms (two of which are grouped together). What are they?

Water Soluble *aka*...

What vital role do crystallins play in lens function?

They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.

What might you be expected to remember about each of the crystallins?

α: The largest; also, it is a heat-shock protein

βγ

In general, what is a heat-shock protein? A protein expressed in response to stress.

What role does α-crystallin play in the lens in this regard? Denatured lens proteins will aggregate (ie, glom together) to form large particles; α-crystallin interdicts this process by binding to the denatured proteins.

Is protein denaturation and aggregation a significant issue in the human lens?
By what other name are the water-soluble proteins known?

‘Crystallins’

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function?

They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.

Lens Proteins

Q/A

What might you be expected to remember about each of the crystallins?

α: The largest; also, it is a heat-shock protein

βγ

In general, what is a heat-shock protein?

A protein expressed in response to stress

What role does α-crystallin play in the lens in this regard?

Denatured lens proteins will aggregate (ie, glom together) to form large particles; α-crystallin interdicts this process by binding to the denatured proteins.

Is protein denaturation and aggregation a significant issue in the human lens?

Indeed it is. The resulting particles contribute directly to cataract formation.
By what other name are the water-soluble proteins known?

‘Crystallins’

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function?

They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.

Lens Proteins

Water Soluble aka… Water Insoluble

Crystallins

α

βγ

α: The largest; also, it is a heat-shock protein

What might you be expected to remember about each of the crystallins?

In general, what is a heat-shock protein? A protein expressed in response to stress

What role does α-crystallin play in the lens in this regard? Denatured lens proteins will aggregate (ie, glom together) to form large particles; α-crystallin interdicts this process by binding to the denatured proteins.

Is protein denaturation and aggregation a significant issue in the human lens? Indeed it is. The resulting particles contribute directly to cataract formation.
By what other name are the water-soluble proteins known? ‘Crystallins’

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function? They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.
By what other name are the water-soluble proteins known? ‘Crystallins’

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function? They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.
By what other name are the water-soluble proteins known? ‘Crystallins’

Crystallins come in three forms (two of which are grouped together). What are they?

What vital role do crystallins play in lens function?

They are the proteins cranked out by elongating lens fibers that increase the lens’s refractive index enough to render it a viable refracting structure.

Lens Proteins

Water Soluble

aka...

Water Insoluble

Crystallins

α

βγ

α: The largest; also, it is a heat-shock protein
β: The most common by weight
γ: The smallest of the three
Water-insoluble proteins come two basic types. What are they? (Hint: The types are divvied on the basis of a physical property of the proteins.)
Water-insoluble proteins come two basic types. What are they? (Hint: The types are divvied on the basis of a physical property of the proteins.)
What sort of protein comprises the majority of the urea-soluble fraction of the water-insoluble lens proteins?
What sort of protein comprises the majority of the urea-soluble fraction of the water-insoluble lens proteins?
Cytoskeletal proteins
What sort of protein comprises the majority of the urea-soluble fraction of the water-insoluble lens proteins?
Cytoskeletal proteins

What function do cytoskeletal proteins serve?
What sort of protein comprises the majority of the urea-soluble fraction of the water-insoluble lens proteins?
Cytoskeletal proteins

What function do cytoskeletal proteins serve?
They are the primary component of the structural framework of lens cells
What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?
What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?

Major intrinsic protein (MIP)
What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins? Major intrinsic protein (MIP)

To what class of proteins do MIPs belong?
What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?

Major intrinsic protein (MIP)

To what class of proteins do MIPs belong?

Aquaporins
What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?

Major intrinsic protein (MIP)

To what class of proteins do MIPs belong?

Aquaporins

For what function are aquaporins known?

As water channels in cell membranes (Note: The Lens book is not clear whether the MIP/aquaporin in lens cells serves this function)
What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?

Major intrinsic protein (MIP)

To what class of proteins do MIPs belong?

Aquaporins

For what function are aquaporins known?

As water channels in cell membranes
What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?

Major intrinsic protein (MIP)

To what class of proteins do MIPs belong?

Aquaporins

For what function are aquaporins known?

As water channels in cell membranes
What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?

Major intrinsic protein (MIP)

To what class of proteins do MIPs belong?

Aquaporins

For what function are aquaporins known?

As water channels in cell membranes (Note: The Lens book is not clear whether the MIP/aquaporin in lens cells serves this function)
What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?

Major intrinsic protein (MIP)

To what class of proteins do MIPs belong?

Aquaporins

For what function are aquaporins known?

As water channels in cell membranes (Note: The Lens book is not clear whether the MIP/aquaporin in lens cells serves this function)

The word ‘aquaporin’ rings a bell…In what ophthalmic condition does (dys)function of such channels play a role? (Note: The lens is in no way involved.)

Neuromyelitis optica (NMO, aka Devic’s dz) and neuromyelitis optica spectrum disorder (NMOSD)

Which aquaporin is implicated in these conditions?

Aquaporin 4 (AQP4)

What is the typical ophthalmic manifestation of NMO(SD)?

Optic neuritis
What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?

Major intrinsic protein (MIP)

To what class of proteins do MIPs belong?

Aquaporins

For what function are aquaporins known?

As water channels in cell membranes (Note: The Lens book is not clear whether the MIP/aquaporin in lens cells serves this function)

The word ‘aquaporin’ rings a bell…In what ophthalmic condition does (dys)function of such channels play a role? (Note: The lens is in no way involved.)

Neuromyelitis optica (NMO, aka Devic’s dz) and neuromyelitis optica spectrum disorder (NMOSD)

Which aquaporin is implicated in these conditions?

Aquaporin 4 (AQP4)

What is the typical ophthalmic manifestation of NMO(SD)?

Optic neuritis
What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?

Major intrinsic protein (MIP)

To what class of proteins do MIPs belong?

Aquaporins

For what function are aquaporins known?

As water channels in cell membranes (Note: The Lens book is not clear whether the MIP/aquaporin in lens cells serves this function)

The word ‘aquaporin’ rings a bell…In what ophthalmic condition does (dys)function of such channels play a role? (Note: The lens is in no way involved.) Neuromyelitis optica (NMO, aka Devic’s dz)

Which aquaporin is implicated in these conditions?

Aquaporin 4 (AQP4)

What is the typical ophthalmic manifestation of NMO(SD)?

Optic neuritis
The word ‘aquaporin’ rings a bell…In what ophthalmic condition does (dys)function of such channels play a role? (Note: The lens is in no way involved.) Neuromyelitis optica (NMO, aka Devic’s dz) and neuromyelitis optica spectrum disorder (NMOSD)

As water channels in cell membranes (Note: The Lens book is not clear whether the MIP/aquaporin in lens cells serves this function)

What is the typical ophthalmic manifestation of NMO(SD)? Optic neuritis

Which aquaporin is implicated in these conditions? Aquaporin 4 (AQP4)
What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?

Major intrinsic protein (MIP)

To what class of proteins do MIPs belong?

Aquaporins

For what function are aquaporins known?

As water channels in cell membranes (Note: The lens book is not clear whether the MIP/aquaporin in lens cells serves this function)

The word ‘aquaporin’ rings a bell...In what ophthalmic condition does (dys)function of such channels play a role? (Note: The lens is in no way involved.)

Neuromyelitis optica (NMO, aka Devic’s dz) and neuromyelitis optica spectrum disorder (NMOSD)

Which aquaporin is implicated in these conditions?

Aquaporin 4 (AQP4)

What is the typical ophthalmic manifestation of NMO(SD)?

Optic neuritis
Lens Proteins

Water Soluble
- α
- βγ

Water Insoluble

Urea Soluble

Urea Insoluble
- MIP

The word ‘aquaporin’ rings a bell…In what ophthalmic condition does (dys)function of such channels play a role? (Note: The lens is in no way involved.)
Neuromyelitis optica (NMO, aka Devic’s dz) and neuromyelitis optica spectrum disorder (NMOSD)

Which aquaporin is implicated in these conditions?
Aquaporin 4 (AQP4)

MIP
Lens Proteins

Water Soluble

Water Insoluble

Urea Soluble

Urea Insoluble

The word ‘aquaporin’ rings a bell…In what ophthalmic condition does (dys)function of such channels play a role? (Note: The lens is in no way involved.) Neuromyelitis optica (NMO, aka Devic’s dz) and neuromyelitis optica spectrum disorder (NMOSD)

Which aquaporin is in the lens?

Aquaporin 0

Is AQP4 the aquaporin found in the lens?

No

Which aquaporin is found in lens cells?

Aquaporin 4 (AQP4)

Aquaporins

As water channels in cell membranes (Note: The Lens book is not clear whether the MIP/aquaporin in lens cells serves this function)
The word ‘aquaporin’ rings a bell… In what ophthalmic condition does (dys)function of such channels play a role? (Note: The lens is in no way involved.) Neuromyelitis optica (NMO, aka Devic’s dz) and neuromyelitis optica spectrum disorder (NMOSD)

Which aquaporin is in the lens?

Is AQP4 the aquaporin found in the lens?

No

Which aquaporin is the urea-insoluble fraction of water-insoluble lens proteins?

Major intrinsic protein (MIP)

To what class of proteins do MIPs belong?

Aquaporins

For what function are aquaporins known?

As water channels in cell membranes (Note: The Lens book is not clear whether the MIP/aquaporin in lens cells serves this function)
What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?

Major intrinsic protein (MIP)

To what class of proteins do MIPs belong?

Aquaporins

For what function are aquaporins known?

As water channels in cell membranes (Note: The Lens book is not clear whether the MIP/aquaporin in lens cells serves this function)

The word ‘aquaporin’ rings a bell... In what ophthalmic condition does (dys)function of such channels play a role? (Note: The lens is in no way involved.)

Neuromyelitis optica (NMO, aka Devic’s dz) and neuromyelitis optica spectrum disorder (NMOSD)

Is AQP4 the aquaporin found in the lens?

No

Which aquaporin is implicated in these conditions?

Aquaporin 4 (AQP4)

What is the typical ophthalmic manifestation of NMO(SD)?

Optic neuritis

Is AQP4 the aquaporin found in the lens?

No

Which aquaporin is found in lens cells?

Aquaporin 0

Aquaporins
Lens Proteins

Water Soluble

Water Insoluble

Urea Soluble

βγ

Urea Insoluble

L MIP

Is AQP4 the aquaporin found in the lens?
No

Which aquaporin is found in lens cells?
Aquaporin 0

What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?
Major intrinsic protein (MIP)

To what class of proteins do MIPs belong?
Aquaporins

For what function are aquaporins known?
As water channels in cell membranes (Note: The Lens book is not clear whether the MIP/aquaporin in lens cells serves this function)

The word ‘aquaporin’ rings a bell…In what ophthalmic condition does (dys)function of such channels play a role? (Note: The lens is in no way involved.)
Neuromyelitis optica (NMO, aka Devic’s dz) and neuromyelitis optica spectrum disorder (NMOSD)

Which aquaporin is implicated in these conditions?
Aquaporin 4 (AQP4)

What is the typical ophthalmic manifestation of NMO(SD)?
Optic neuritis

Is AQP4 the aquaporin found in the lens?
No

Which aquaporin is found in lens cells?
Aquaporin 0
The word ‘aquaporin’ rings a bell…In what ophthalmic condition does (dys)function of such channels play a role? (Note: The lens is in no way involved.) Neuromyelitis optica (NMO, aka Devic’s dz) and neuromyelitis optica spectrum disorder (NMOSD)

Which aquaporin is implicated in these conditions? Aquaporin 4 (AQP4)

What is the typical ophthalmic manifestation of NMO(SD)? Optic neuritis

As water channels in cell membranes (Note: The lens book is not clear whether the MIP/aquaporin in lens cells serves this function)
Lens Proteins

Water Insoluble

Water Soluble

α

βγ

Urea Soluble

Urea Insoluble

MIP

The word ‘aquaporin’ rings a bell…In what ophthalmic condition does (dys)function of such channels play a role? (Note: The lens is in no way involved.) Neuromyelitis optica (NMO, aka Devic’s dz) and neuromyelitis optica spectrum disorder (NMOSD)

Which aquaporin is implicated in these conditions? Aquaporin 4 (AQP4)

What is the typical ophthalmic manifestation of NMO(SD)? Optic neuritis

As water channels in cell membranes (Note: The lens book is not clear whether the MIP/aquaporin in lens cells serves this function)
Lens Proteins

Water Soluble

Water Insoluble

For more on AQP4 and NMO(SD), see slide-set N8

α

βγ

Urea Soluble

Urea Insoluble

The word ‘aquaporin’ rings a bell…In what ophthalmic condition does (dys)function of such channels play a role? (Note: The lens is in no way involved.) Neuromyelitis optica (NMO, aka Devic’s dz) and neuromyelitis optica spectrum disorder (NMOSD)

Which aquaporin is implicated in these conditions? Aquaporin 4 (AQP4)

What is the typical ophthalmic manifestation of NMO(SD)? Optic neuritis

As water channels in cell membranes (Note: The Lens book is not clear whether the MIP/aquaporin in lens cells serves this function)

To what class of proteins do MIPs belong? Aquaporins

Major intrinsic protein (MIP)

To what class of proteins do MIPs belong? Aquaporins

Cytoskeletal proteins

What sort of protein comprises the majority of the urea-insoluble fraction of the water-insoluble lens proteins?

Major intrinsic protein (MIP)

For what function are aquaporins known? As water channels in cell membranes (Note: The Lens book is not clear whether the MIP/aquaporin in lens cells serves this function)

For what function are aquaporins known? As water channels in cell membranes (Note: The Lens book is not clear whether the MIP/aquaporin in lens cells serves this function)