General categories of ptosis etiology

Note: These categories are not unique to congenital ptosis; they apply to acquired ptosis as well

Name the categories first…
General categories of ptosis etiology

- Myogenic
- Neurogenic
- Aponeurotic
- Mechanical
- Traumatic

Name the categories first…

Congenital ptosis: Fill ‘er up
<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td></td>
</tr>
<tr>
<td>Neurogenic</td>
<td>(And these specific causes are not unique to congenital ptosis either; they can be associated with acquired ptosis as well)</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>

Name the categories first…and now the specific causes
<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>(1)</td>
</tr>
<tr>
<td>Neurogenic</td>
<td></td>
</tr>
<tr>
<td>Aponeurotic</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>

Name the categories first…and now the specific causes
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Myogenic</th>
<th>‘localized myogenic dysgenesis’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurogenic</td>
<td></td>
</tr>
<tr>
<td>Aponeurotic</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>(3)</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>

Congenital ptosis: Fill ‘er up
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
</tbody>
</table>
| **Neurogenic** | --CNIII palsy
| | --Horner’s |
| | --Marcus Gunn jaw wink |
| Aponeurotic | |
| Mechanical | |
| Traumatic | |

CNIII = Third cranial nerve (ie, the oculomotor nerve)

Congenital ptosis: Fill ‘er up
<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>(1)</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>-- CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>-- Horner’s</td>
</tr>
<tr>
<td></td>
<td>-- Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>(2)</td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
<tr>
<td></td>
<td>--Capillary hemangioma</td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>

Congenital ptosis: Fill ‘er up
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
</tbody>
</table>

Which is the most common cause of congenital ptosis?

Localized myogenic dysgenesis (aka congenital fibrosis of the levator), by a mile.

In myogenic dysgenesis, what is the key finding on downgaze?

Lid lag.

The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

What two nonlid findings are frequently associated with myogenic dysgenesis of the levator?

--abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena

--amblyopia (which is usually not secondary to the ptosis)
General categories of ptosis etiology	Specific causes of congenital ptosis within each category
Myogenic | ‘localized myogenic dysgenesis’
Neurogenic | --CNIII palsy
--Horner’s
--Marcus Gunn jaw wink
Aponeurotic | Rare; associated with forceps injury
Mechanical | --Plexiform neuroma

Which is the most common cause of congenital ptosis?
Localized myogenic dysgenesis (aka congenital fibrosis of the levator), by a mile
Congenital ptosis: Fill ‘er up

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
</tbody>
</table>

Which is the most common cause of congenital ptosis? Localized myogenic dysgenesis (aka congenital fibrosis of the levator), by a mile

In myogenic dysgenesis, what is the key finding on downgaze?
<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
</tbody>
</table>

Which is the most common cause of congenital ptosis?
Localized myogenic dysgenesis (aka congenital fibrosis of the levator), by a mile

In myogenic dysgenesis, what is the key finding on downgaze?
Lid lag. The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td></td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>--Plexiform neuroma</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
</tbody>
</table>

Which is the most common cause of congenital ptosis?
Localized myogenic dysgenesis (aka congenital fibrosis of the levator), by a mile

In myogenic dysgenesis, what is the key finding on downgaze?
Lid lag. The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

What two nonlid findings are frequently associated with myogenic dysgenesis of the levator?
1)
2)
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
</tbody>
</table>
| **Neurogenic** | --CNIII palsy
| | --Horner’s
| | --Marcus Gunn jaw wink |
| **Aponeurotic** | Rare; associated with forceps injury |
| **Mechanical** | --Plexiform neuroma |

Which is the most common cause of congenital ptosis?
Localized myogenic dysgenesis (aka congenital fibrosis of the levator), by a mile

In myogenic dysgenesis, what is the key finding on downgaze?
Lid lag. The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

What two nonlid findings are frequently associated with myogenic dysgenesis of the levator?
1) Abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena
2) Amblyopia (which is usually **not** secondary to the ptosis)

SR = Superior rectus
Congenital ptosis: Fill ‘er up

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
</tbody>
</table>

Which is the most common cause of congenital ptosis?
Localized myogenic dysgenesis (aka congenital fibrosis of the levator), by a mile

In myogenic dysgenesis, what is the key finding on downgaze?
Lid lag. The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

If not occlusive, what is the cause of amblyopia associated with myogenic dysgenesis?
1) Abnormal SR development, leading to vertical strabismus and poor Bell's phenomena
2) Amblyopia (which is usually not secondary to the ptosis)
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>-- Plexiform neuroma</td>
</tr>
</tbody>
</table>

Which is the most common cause of congenital ptosis?

Localized myogenic dysgenesis (aka congenital fibrosis of the levator), by a mile

In myogenic dysgenesis, what is the key finding on downgaze?

Lid lag. The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

If not occlusive, what is the cause of amblyopia associated with myogenic dysgenesis?

Anisometropia and/or strabismus are the more-common causes

1) Abnormal SR development, leading to vertical strabismus and poor Bell's phenomena
2) Amblyopia (which is usually not secondary to the ptosis)
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Myogenic</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
</table>
| ‘localized myogenic dysgenesis’ | --CNIII palsy
| | --Horner’s |

Aponeurotic

Rare; associated with forceps injury

Mechanical

--Plexiform neuroma
--Capillary hemangioma

Traumatic

Congenital ptosis: Fill ‘er up

What surgery is performed to correct congenital ptosis due to myogenic dysgenesis?

The specific procedure depends upon the amount of levator function present.

What determines the amount of levator function present?

It is proportional to the amount of normal muscle tissue present.

What are the specific guidelines relating levator function and choice of procedure?

- $\text{LF} > 10 \text{mm}$: Aponeurosis resection
- $6 \leq \text{LF} < 10$: Aponeurosis + levator resection
- $\text{LF} < 6$: Frontalis sling

What is lid lag?

The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

What two nonlid findings are frequently associated with myogenic dysgenesis of the levator?

1) Abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena
2) Amblyopia (which is usually not secondary to the ptosis)
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
<tr>
<td></td>
<td>--Capillary hemangioma</td>
</tr>
</tbody>
</table>

Traumatic

Rare; associated with blunt trauma.

Congenital ptosis: Fill ‘er up

Which is the most common cause of congenital ptosis?

Localized myogenic dysgenesis (aka congenital fibrosis of the levator), by a mile.

What are the specific guidelines relating levator function and choice of procedure?

- \(LF > 10 \text{mm} \): Aponeurosis resection
- \(LF 6-10 \text{mm} \): Aponeurosis + levator resection
- \(LF < 6 \text{mm} \): Frontalis sling

What surgery is performed to correct congenital ptosis due to myogenic dysgenesis?

The specific procedure depends upon the amount of levator function present.

Lid lag

Lid lag: The muscle is composed of fibrous tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

What two nonlid findings are frequently associated with myogenic dysgenesis of the levator?

1. Abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena
2. Amblyopia (which is usually not secondary to the ptosis)
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
<tr>
<td></td>
<td>--Capillary hemangioma</td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>

Congenital ptosis: Fill ‘er up

What surgery is performed to correct congenital ptosis due to myogenic dysgenesis?
The specific procedure depends upon the amount of levator function present.

What determines the amount of levator function present?

- LF > 10 mm: Aponeurosis resection
- LF 6-10 mm: Aponeurosis + levator resection
- LF < 6 mm: Frontalis sling

In

Lid lag: The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

What two non-lid findings are frequently associated with myogenic dysgenesis of the levator?
1) Abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena
2) Amblyopia (which is usually not secondary to the ptosis)
Congenital Ptosis: Fill ‘er up

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
</tbody>
</table>

What surgery is performed to correct congenital ptosis due to myogenic dysgenesis?
The specific procedure depends upon the amount of levator function present.

What determines the amount of levator function present?
It is proportional to the amount of normal muscle tissue present.

Lid lag
The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

What two nonlid findings are frequently associated with myogenic dysgenesis of the levator?
1) Abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena
2) Amblyopia (which is usually **not** secondary to the ptosis)
Congenital ptosis: Fill ‘er up

General categories of ptosis etiology

- **Myogenic**
 - ‘localized myogenic dysgenesis’
- **Neurogenic**
 - CNIII palsy
 - Horner’s
- **Aponeurotic**
 - Rare; associated with forceps injury
- **Mechanical**
 - Plexiform neuroma
 - Capillary hemangioma

Specific causes of congenital ptosis within each category

- **Myogenic**
 - ‘localized myogenic dysgenesis’

Questions

What surgery is performed to correct congenital ptosis due to myogenic dysgenesis?
The specific procedure depends upon the amount of levator function present.

What determines the amount of levator function present?
It is proportional to the amount of normal muscle tissue present.

What are the specific guidelines relating levator function and choice of procedure?

- **LF>10mm:**
 - Aponeurosis resection
- **LF 6-10:**
 - Aponeurosis + levator resection
- **LF<6:**
 - Frontalis sling

What two nonlid findings are frequently associated with myogenic dysgenesis of the levator?
1) Abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena
2) Amblyopia (which is usually **not** secondary to the ptosis)
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy --Horner’s</td>
</tr>
</tbody>
</table>

What surgery is performed to correct congenital ptosis due to myogenic dysgenesis? The specific procedure depends upon the amount of levator function present.

What determines the amount of levator function present? It is proportional to the amount of normal muscle tissue present.

What are the specific guidelines relating levator function and choice of procedure?
--LF>10mm: Aponeurosis resection

Lid lag: The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

What two nonlid findings are frequently associated with myogenic dysgenesis of the levator?
1) Abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena
2) Amblyopia (which is usually not secondary to the ptosis)
<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy --Horner’s</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma --Capillary hemangioma</td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>

Congenital ptosis: Fill ‘er up

What surgery is performed to correct congenital ptosis due to myogenic dysgenesis?
The specific procedure depends upon the amount of levator function present.

What determines the amount of levator function present?
It is proportional to the amount of normal muscle tissue present.

What are the specific guidelines relating levator function and choice of procedure?
- **LF>10mm**: Aponeurosis resection
- **LF 6-10**: Aponeurosis + levator resection
- **LF<6**: Frontalis sling

Lid lag: The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

What two nonlid findings are frequently associated with myogenic dysgenesis of the levator?
1) Abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena
2) Amblyopia (which is usually not secondary to the ptosis)
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
</tbody>
</table>

Congenital ptosis: Fill ‘er up

What surgery is performed to correct congenital ptosis due to myogenic dysgenesis?
The specific procedure depends upon the amount of levator function present

What determines the amount of levator function present?
It is proportional to the amount of normal muscle tissue present

What are the specific guidelines relating levator function and choice of procedure?
- **LF>10mm**: Aponeurosis resection
- **LF 6-10**: Aponeurosis + levator resection

Lid lag: The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

What two nonlid findings are frequently associated with myogenic dysgenesis of the levator?
1) Abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena
2) Amblyopia (which is usually **not** secondary to the ptosis)
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
</tbody>
</table>

Specific causes of congenital ptosis

- **Myogenic**
 - Localized myogenic dysgenesis
- **Neurogenic**
 - CNIII palsy
- **Aponeurotic**
 - Rare; associated with forceps injury
- **Mechanical**
 - Plexiform neuroma
 - Capillary hemangioma
- **Traumatic**

Congenital ptosis: Fill ‘er up

What surgery is performed to correct congenital ptosis due to myogenic dysgenesis?

The specific procedure depends upon the amount of levator function present.

What determines the amount of levator function present?

It is proportional to the amount of normal muscle tissue present.

What are the specific guidelines relating levator function and choice of procedure?

- **LF > 10 mm**: **Aponeurosis resection**
- **LF 6-10**: **Aponeurosis + levator resection**
- **LF < 6**: **Frontalis sling**

Lid lag: The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) *nor* relax (causing lid lag). Frank lagophthalmos can be present.

What two nonlid findings are frequently associated with myogenic dysgenesis of the levator?

1. Abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena
2. Amblyopia (which is usually **not** secondary to the ptosis)
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
<tr>
<td></td>
<td>--Capillary hemangioma</td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>

Congenital ptosis: Fill ‘er up

What surgery is performed to correct congenital ptosis due to myogenic dysgenesis? The specific procedure depends upon the amount of levator function present.

What determines the amount of levator function present?
It is proportional to the amount of normal muscle tissue present.

<table>
<thead>
<tr>
<th>Levator function (LF)</th>
<th>Choice of procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>>10 mm</td>
<td>Aponeurosis resection</td>
</tr>
<tr>
<td>6-10</td>
<td>Aponeurosis + levator resection</td>
</tr>
<tr>
<td><6</td>
<td>Frontalis sling</td>
</tr>
</tbody>
</table>

Lid lag: The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

What two nonlid findings are frequently associated with myogenic dysgenesis of the levator?
1) Abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena
2) Amblyopia (which is usually not secondary to the ptosis)
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
<tr>
<td></td>
<td>--Capillary hemangioma</td>
</tr>
</tbody>
</table>

In severe unilateral congenital ptosis secondary to myogenic dysgenesis, should you perform unilateral or bilateral slings?

- **LF>10mm:** Aponeurosis resection
- **LF 6-10:** Aponeurosis + levator resection
- **LF<6:** Frontalis sling

Question

What surgery is performed to correct congenital ptosis due to myogenic dysgenesis?

The specific procedure depends upon the amount of levator function present.

What determines the amount of levator function present?

It is proportional to the amount of normal muscle tissue present.

What are the specific guidelines relating levator function and choice of procedure?

- **LF>10mm:** Aponeurosis resection
- **LF 6-10:** Aponeurosis + levator resection
- **LF<6:** Frontalis sling

Additional Notes

In myogenic dysgenesis, what is the key finding on downgaze?

Lid lag. The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

What two non-lid findings are frequently associated with myogenic dysgenesis of the levator?

1) Abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena
2) Amblyopia (which is usually not secondary to the ptosis)
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
<tr>
<td></td>
<td>--Capillary hemangioma</td>
</tr>
</tbody>
</table>

Traumatic

- Rare; associated with forceps injury

Congenital Ptosis: Fill ‘er up

Which is the most common cause of congenital ptosis?

Localized myogenic dysgenesis (aka congenital fibrosis of the levator), by a mile

In myogenic dysgenesis, what is the key finding on downgaze?

Lid lag

The muscle is composed of fibrofatty tissue that can neither contract (causing ptosis) nor relax (causing lid lag). Frank lagophthalmos can be present.

What two non-lid findings are frequently associated with myogenic dysgenesis of the levator?

1. Abnormal SR development, leading to vertical strabismus and poor Bell’s phenomena
2. Amblyopia (which is usually not secondary to the ptosis)

What surgery is performed to correct congenital ptosis due to myogenic dysgenesis?

The specific procedure depends upon the amount of levator function present

What determines the amount of levator function present?

It is proportional to the amount of normal muscle tissue present

What are the specific guidelines relating levator function and choice of procedure?

- **LF>10mm:** Aponeurosis resection
- **LF 6-10:** Aponeurosis + levator resection
- **LF<6:** Frontalis sling

In severe unilateral congenital ptosis secondary to myogenic dysgenesis, should you perform unilateral or bilateral slings?

Tough call. A unilateral sling spares the normally functioning lid, but leaves the patient with a markedly asymmetric appearance. Bilateral slings yield a more symmetric appearance, but necessitate destruction of normal tissue.
What ocular sign is present in congenital Horner’s that is not found in acquired Horner’s?

Heterochromia iridis—the iris on that side is lighter.

What nonocular signs are present that aren’t found in acquired Horner’s?

- Lighter hair on the ipsilateral side of the head
- A lighter-colored nipple on that side of the chest

What diagnosis must be considered as a cause of congenital Horner’s?

Neuroblastoma of the sympathetic chain

What imaging studies are needed to evaluate for neuroblastoma?

MRI of the head and neck

General categories of ptosis etiology	Specific causes of congenital ptosis within each category
Myogenic | ‘localized myogenic dysgenesis’
Neurogenic | --CNIII palsy
--Horner’s
--Marcus Gunn jaw wink

What ocular sign is present in congenital Horner’s that is not found in acquired Horner’s?

Heterochromia iridis—the iris on that side is lighter.

What nonocular signs are present that aren’t found in acquired Horner’s?

- Lighter hair on the ipsilateral side of the head
- A lighter-colored nipple on that side of the chest

What diagnosis must be considered as a cause of congenital Horner’s?

Neuroblastoma of the sympathetic chain

What imaging studies are needed to evaluate for neuroblastoma?

MRI of the head and neck

General categories of ptosis etiology	Specific causes of congenital ptosis within each category
Myogenic | ‘localized myogenic dysgenesis’
Neurogenic | --CNIII palsy
--Horner’s
--Marcus Gunn jaw wink

What ocular sign is present in congenital Horner’s that is not found in acquired Horner’s?

Heterochromia iridis—the iris on that side is lighter.

What nonocular signs are present that aren’t found in acquired Horner’s?

- Lighter hair on the ipsilateral side of the head
- A lighter-colored nipple on that side of the chest

What diagnosis must be considered as a cause of congenital Horner’s?

Neuroblastoma of the sympathetic chain

What imaging studies are needed to evaluate for neuroblastoma?

MRI of the head and neck
What ocular sign is present in congenital Horner’s that is not found in acquired Horner’s?
Heterochromia iridis—the iris on that side is lighter

What nonocular signs are present that aren’t found in acquired Horner’s?
--Lighter hair on the ipsilateral side of the head--A lighter-colored nipple on that side of the chest

What diagnosis must be considered as a cause of congenital Horner’s?
Neuroblastoma of the sympathetic chain

What imaging studies are needed to evaluate for neuroblastoma?
MRI of the head and neck

General categories of ptosis etiology
Specific causes of congenital ptosis within each category

<table>
<thead>
<tr>
<th>Myogenic</th>
<th>‘localized myogenic dysgenesis’</th>
</tr>
</thead>
</table>
| Neurogenic | --CNIII palsy
--Horner’s
--Marcus Gunn jaw wink |

What ocular sign is present in congenital Horner’s that is not found in acquired Horner’s?
Heterochromia iridis—the iris on that side is lighter
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Myogenic</th>
<th>Neurogenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘localized myogenic dysgenesis’</td>
<td>--CNIII palsy --Horner’s --Marcus Gunn jaw wink</td>
</tr>
</tbody>
</table>

What ocular sign is present in congenital Horner’s that is not found in acquired Horner’s?

Heterochromia iridis—the iris on that side is lighter

What nonocular signs are present that aren’t found in acquired Horner’s?

What ocular sign is present in congenital Horner’s that is not found in acquired Horner’s?
Heterochromia iridis—the iris on that side is lighter.

What nonocular signs are present that aren't found in acquired Horner’s?
- Lighter hair on the ipsilateral side of the head
- A lighter-colored nipple on that side of the chest

General categories of ptosis etiology
<table>
<thead>
<tr>
<th>Myogenic</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
</tbody>
</table>

Congenital ptosis: Fill ‘er up

- **Myogenic**
 - ‘localized myogenic dysgenesis’

- **Neurogenic**
 - --CNIII palsy
 - --Horner’s
 - --Marcus Gunn jaw wink

What ocular sign is present in congenital Horner’s that is not found in acquired Horner’s? Heterochromia iridis—the iris on that side is lighter.

What nonocular signs are present that aren’t found in acquired Horner’s? --Lighter hair on the ipsilateral side of the head

Additionally, if the child has naturally curly hair, the hair on the side ipsilateral to the Horner will be noticeably more curly.
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
</tbody>
</table>

What ocular sign is present in congenital Horner’s that is not found in acquired Horner’s?

Heterochromia iridis—the iris on that side is lighter

What nonocular signs are present that aren’t found in acquired Horner’s?

--Lighter hair on the ipsilateral side of the head

Additionally, if the child has naturally curly hair, the hair on the side ipsilateral to the Horner will be noticeably **less** curly

What diagnosis must be considered as a cause of congenital Horner’s?

Neuroblastoma of the sympathetic chain

What imaging studies are needed to evaluate for neuroblastoma?

MRI of the head and neck
Congenital ptosis: Fill ‘er up

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
</tbody>
</table>

What ocular sign is present in congenital Horner’s that is not found in acquired Horner’s? Heterochromia iridis—the iris on that side is lighter.

What nonocular signs are present that aren’t found in acquired Horner’s?
--Lighter hair on the ipsilateral side of the head
--A lighter-colored nipple on that side of the chest

What diagnosis must be considered as a cause of congenital Horner’s?
Congenital ptosis: Fill ‘er up

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
</tbody>
</table>

What ocular sign is present in congenital Horner’s that is not found in acquired Horner’s?
Heterochromia iridis—the iris on that side is lighter

What nonocular signs are present that aren’t found in acquired Horner’s?
--Lighter hair on the ipsilateral side of the head
--A lighter-colored nipple on that side of the chest

What diagnosis must be considered as a cause of congenital Horner’s?
Neuroblastoma of the sympathetic chain
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Myogenic</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td></td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
</tbody>
</table>

What ocular sign is present in congenital Horner’s that is not found in acquired Horner’s?

Heterochromia iridis—the iris on that side is lighter

What nonocular signs are present that aren’t found in acquired Horner’s?

--Lighter hair on the ipsilateral side of the head
--A lighter-colored nipple on that side of the chest

What diagnosis must be considered as a cause of congenital Horner’s?

Neuroblastoma of the sympathetic chain

What imaging studies are needed to evaluate for neuroblastoma?
General categories of ptosis etiology

Myogenic
- ‘localized myogenic dysgenesis’

Neurogenic
- CNIII palsy
- Horner’s
- Marcus Gunn jaw wink

Specific causes of congenital ptosis within each category

General categories of ptosis etiology

Myogenic
- ‘localized myogenic dysgenesis’

Neurogenic
- CNIII palsy
- Horner’s
- Marcus Gunn jaw wink

Other questions:

What ocular sign is present in congenital Horner’s that is not found in acquired Horner’s?
Heterochromia iridis—the iris on that side is lighter

What nonocular signs are present that aren’t found in acquired Horner’s?
- Lighter hair on the ipsilateral side of the head
- A lighter-colored nipple on that side of the chest

What diagnosis must be considered as a cause of congenital Horner’s?
Neuroblastoma of the sympathetic chain

What imaging studies are needed to evaluate for neuroblastoma?
MRI of the head, neck and chest
General categories of ptosis etiology

- **Myogenic**
 - ’localized myogenic dysgenesis’

- **Neurogenic**
 - CNIII palsy
 - Horner’s
 - Marcus Gunn jaw wink

- **Aponeurotic**
 - Rare; associated with forceps injury

- **Mechanical**
 - Plexiform neuroma
 - Capillary hemangioma

Specific causes of congenital ptosis within each category

- **Myogenic**
 - ’localized myogenic dysgenesis’

- **Neurogenic**
 - CNIII palsy
 - Horner’s
 - Marcus Gunn jaw wink

- **Aponeurotic**
 - Rare; associated with forceps injury

- **Mechanical**
 - Plexiform neuroma
 - Capillary hemangioma

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?

What does synkinesis refer to?

The involuntary movement of one body part in response to the voluntary movement of another

Is the ptosis of MGJW unilateral, or bilateral?

Unilateral

What is the clinical hallmark of MGJW?

The ptotic lid elevates in response to voluntary movements of the jaw

Which jaw movements are involved?

- Lateral displacement
- Protrusion
- Wide opening
- Clenching
General categories of ptosis etiology

Specific causes of congenital ptosis within each category

- Myogenic
 - 'localized myogenic dysgenesis'

- Neurogenic
 - CNIII palsy
 - Horner’s
 - Marcus Gunn jaw wink

- Aponeurotic
 - Rare; associated with forceps injury

- Mechanical
 - Plexiform neuroma
 - Capillary hemangioma

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary movements of the jaw.

Which jaw movements are involved? - Lateral displacement
- Protrusion
- Wide opening
- Clenching
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to?

The involuntary movement of one body part in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary movements of the jaw.

Which jaw movements are involved? --Lateral displacement --Protrusion --Wide opening --Clenching.

General categories of ptosis etiology

- Myogenic
 - ‘localized myogenic dysgenesis’
- Neurogenic
 - CNIII palsy
 - Horner’s
 - Marcus Gunn jaw wink
- Aponeurotic
 - Rare; associated with forceps injury
- Mechanical
 - Plexiform neuroma
 - Capillary hemangioma
- Traumatic

Congenital ptosis: Fill ‘er up
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to?
The involuntary movement of one body part in response to the voluntary movement of another.

Specific causes of congenital ptosis within each category:

- Myogenic:
 - Localized myogenic dysgenesis

- Neurogenic:
 - CN III palsy
 - Horner’s
 - Marcus Gunn jaw wink

- Aponeurotic:
 - Rare; associated with forceps injury

- Mechanical:
 - Plexiform neuroma
 - Capillary hemangioma

- Traumatic:
 - Congenital ptosis: Fill ‘er up
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?
It is one of synkinesis.

What does synkinesis refer to?
The involuntary movement of one bodypart in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral?

A

General categories of ptosis etiology

Specific causes of congenital ptosis within each category

- **Myogenic**
 - 'localized myogenic dysgenesis'

- **Neurogenic**
 - --CNIII palsy
 - --Horner’s
 - --Marcus Gunn jaw wink

- **Aponeurotic**
 - Rare; associated with forceps injury

- **Mechanical**
 - --Plexiform neuroma
 - --Capillary hemangioma

Congenital ptosis: Fill ‘er up

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?

It is one of synkinesis

What does synkinesis refer to?

The **involuntary** movement of one bodypart in response to the **voluntary** movement of another

Is the ptosis of MGJW unilateral, or bilateral?

Unilateral

Is the ptosis of MGJW unilateral, or bilateral?

Unilateral
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?
It is one of synkinesis

What does synkinesis refer to?
The involuntary movement of one bodypart in response to the voluntary movement of another

Is the ptosis of MGJW unilateral, or bilateral?
Unilateral

What is the clinical hallmark of MGJW?
The ptotic lid elevates in response to voluntary movements of the jaw

--Lateral displacement
--Protrusion
--Wide opening
--Clenching
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one bodypart in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?
It is one of synkinesis

What does synkinesis refer to?
The involuntary movement of one bodypart in response to the voluntary movement of another

Is the ptosis of MGJW unilateral, or bilateral?
Unilateral

What is the clinical hallmark of MGJW?
The ptotic lid elevates in response to voluntary masticatory movements of the jaw

What is the classic story regarding when parents first note their infant has MGJW?
It is while the infant is nursing (Mom may say the infant’s lid ‘twitches’ while nursing)
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one bodypart in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

What is the classic story regarding when parents first note their infant has MGJW? It is while the infant is nursing (Mom may say the infant’s lid ‘twitches’ while nursing).

General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>'localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
<tr>
<td></td>
<td>--Capillary hemangioma</td>
</tr>
</tbody>
</table>
General categories of ptosis etiology

Specific causes of congenital ptosis within each category

Myogenic
- Localized myogenic dysgenesis

Neurogenic
- CN III palsy
- Horner’s
- Marcus Gunn jaw wink

Aponeurotic
- Rare; associated with forceps injury

Mechanical
- Plexiform neuroma
- Capillary hemangioma

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?
It is one of synkinesis

What does synkinesis refer to?
The involuntary movement of one body part in response to the voluntary movement of another

Is the ptosis of MGJW unilateral, or bilateral?
Unilateral

What is the clinical hallmark of MGJW?
The ptotic lid elevates in response to voluntary masticatory movements of the jaw

Can MGJW present such that the ptosis worsens with jaw movements?

A
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one body part in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Can MGJW present such that the ptosis worsens with jaw movements? Yes, but this is distinctly uncommon.
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to?
The involuntary movement of one body part in response to the voluntary movement of another

Is the ptosis of MGJW unilateral or bilateral? Bilateral

What are the muscles of mastication?
- Medial (or internal) pterygoid
- Lateral (or external) pterygoid
- Masseter
- Temporalis

Which cranial nerve innervates them?
The trigeminal

What is the clinical hallmark of MGJW?
The ptotic lid elevates in response to voluntary masticatory movements of the jaw

What are the specific causes of congenital ptosis within each category?

- Myogenic
 - 'localized myogenic dysgenesis'
- Neurogenic
 - CNIII palsy
 - Horner’s
 - Marcus Gunn jaw wink
- Aponeurotic
 - Rare; associated with forceps injury
- Mechanical
 - Plexiform neuroma
 - Capillary hemangioma
General categories of ptosis etiology

Specific causes of congenital ptosis within each category

- Myogenic
 - 'localized myogenic dysgenesis'

- Neurogenic
 - CNIII palsy
 - Horner’s
 - Marcus Gunn jaw wink

- Aponeurotic
 - Rare; associated with forceps injury

- Mechanical
 - Plexiform neuroma
 - Capillary hemangioma

- Traumatic

Congenital ptosis: Fill ‘er up

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?
It is one of synkinesis

What does synkinesis refer to?
The involuntary movement of one body part in response to the movement of another

What are the muscles of mastication?
- Medial (or internal) pterygoid
- Lateral (or external) pterygoid
- Masseter
- Temporalis

What are the masticatory movements of the jaw?
- Lateral displacement
- Protrusion
- Wide opening
- Clenching

Which cranial nerve innervates them?
The trigeminal

Is the ptosis of MGJW unilateral, or bilateral?
Unilateral

What is the clinical hallmark of MGJW?
The ptotic lid elevates in response to voluntary masticatory movements of the jaw
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to?
The involuntary movement of one bodypart in response to the movement of another.

What are the muscles of mastication?
- Medial (or internal) pterygoid
- Lateral (or external) pterygoid
- Masseter
- Temporalis

Which cranial nerve innervates them?
The trigeminal nerve.

What are the specific causes of congenital ptosis within each category?

Myogenic
- Localized myogenic dysgenesis

Neurogenic
- CNIII palsy
- Horner’s
- Marcus Gunn jaw wink

Aponeurotic
- Rare; associated with forceps injury

Mechanical
- Plexiform neuroma
- Capillary hemangioma

Traumatic
- Congenital ptosis: Fill ‘er up
General categories of ptosis etiology

Specific causes of congenital ptosis within each category

Myogenic
- Localized myogenic dysgenesis

Neurogenic
- CNIII palsy
- Horner’s
- Marcus Gunn jaw wink

Aponeurotic
- Rare; associated with forceps injury

Mechanical
- Plexiform neuroma
- Capillary hemangioma

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?
It is one of synkinesis

What does synkinesis refer to?
The involuntary movement of one body part in response to the voluntary movement of another

What are the muscles of mastication?
- Medial (or internal) pterygoid
- Lateral (or external) pterygoid
- Masseter
- Temporalis

Which cranial nerve innervates them?
The trigeminal (V)

Congenital ptosis: Fill ‘er up

The ptotic lid elevates in response to voluntary masticatory movements of the jaw
General categories of ptosis etiology

Specific causes of congenital ptosis within each category

Myogenic
- 'localized myogenic dysgenesis'

Neurogenic
- CN III palsy
- Horner's
- Marcus Gunn jaw wink

Aponeurotic
- Rare; associated with forceps injury

Mechanical
- Plexiform neuroma
- Capillary hemangioma

Traumatic

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?

What does synkinesis refer to?

The involuntary movement of one body part in response to the voluntary movement of another

Is the ptosis of MGJW unilateral, or bilateral?

Unilateral

What is the clinical hallmark of MGJW?

The ptotic lid elevates in response to voluntary masticatory movements of the jaw

Which jaw movements are involved?
- Lateral displacement
- Protrusion
- Wide opening
- Clenching

What are the muscles of mastication?
- Medial (or internal) pterygoid
- Lateral (or external) pterygoid
- Masseter
- Temporalis

Which cranial nerve innervates them?

The trigeminal (V)

Which branch of the trigeminal?
- Mandibular (V3)

Which branch of the trigeminal innervates the muscles of mastication?
- Mandibular (V3)
Congenital ptosis: Fill ‘er up

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one body part in response to the voluntary movement of another.

What are the muscles of mastication? --Medial (or internal) pterygoid --Lateral (or external) pterygoid --Masseter --Temporalis

Which cranial nerve innervates them? The trigeminal (V)

Which branch of the trigeminal? The mandibular (V₃)

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Are the movements of MGJW unilateral or bilateral? Bilateral.

Which movements are involved? --Lateral displacement --Protrusion --Wide opening --Clenching

Are the muscles of mastication innervated by the same cranial nerve? Yes, the trigeminal (V) innervates both the mandibular (V₃) and maxillary (V₂) branches. However, the spinal accessory nerve (CN XI) innervates the sternocleidomastoid and trapezius muscles, which are also involved in mastication.

Specific causes of congenital ptosis within each category

Myogenic
--'localized myogenic dysgenesis'

Neurogenic
--CNIII palsy
--Horner’s
--Marcus Gunn jaw wink

Aponeurotic
Rare; associated with forceps injury

Mechanical
--Plexiform neuroma
--Capillary hemangioma
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?
It is one of synkinesis.

What does synkinesis refer to?
The involuntary movement of one bodypart in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral?
Unilateral.

What is the clinical hallmark of MGJW?
The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved?
-- Lateral displacement
-- Protrusion
-- Wide opening
-- Clenching

Specific causes of congenital ptosis within each category:

Myogenic
- Localized myogenic dysgenesis
- 'localized myogenic dysgenesis'

Neurogenic
- CNIII palsy
- Horner’s
- Marcus Gunn jaw wink

Aponeurotic
- Rare; associated with forceps injury

Mechanical
- Plexiform neuroma
- Capillary hemangioma

Congenital ptosis: Fill ‘er up
General categories of ptosis etiology

- **Myogenic**
 - "localized myogenic dysgenesis"

- **Neurogenic**
 - --CNIII palsy
 - --Horner’s
 - --Marcus Gunn jaw wink

- **Aponeurotic**
 - Rare; associated with forceps injury

- **Mechanical**
 - --Plexiform neuroma
 - --Capillary hemangioma

Congenital ptosis: Fill ‘er up

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to?

The involuntary movement of one body part in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral?

Unilateral.

What is the clinical hallmark of MGJW?

The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved?

--Lateral displacement
--Protrusion
--Wide opening
--Clenching
Congenital ptosis: Fill ‘er up

General categories of ptosis etiology
- Myogenic: 'localized myogenic dysgenesis'
- Neurogenic: --CNIII palsy --Horner’s --Marcus Gunn jaw wink
- Aponeurotic: Rare; associated with forceps injury
- Mechanical: --Plexiform neuroma --Capillary hemangioma
- Traumatic

Specific causes of congenital ptosis within each category

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?
It is one of synkinesis.

What does synkinesis refer to?
The involuntary movement of one body part in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral?
Unilateral.

What is the clinical hallmark of MGJW?
The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved?
- Lateral displacement (contralateral to ptosis? ipsilateral to ptosis?)
- Protrusion
- Wide opening
- Clenching

If lateral displacement is the movement that resolves the ptosis, is the direction of the displacement contralateral to the ptosis, or ipsilateral?
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one body part in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved? --Lateral displacement (contralateral to ptosis) --Protrusion --Wide opening --Clenching

If lateral displacement is the movement that resolves the ptosis, is the direction of the displacement contralateral to the ptosis, or ipsilateral? Contralateral.
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?

It is one of synkinesis.

What does synkinesis refer to?

The involuntary movement of one bodypart in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral?

Unilateral.

What is the clinical hallmark of MGJW?

The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved?

--Lateral displacement (contralateral to ptosis)
--Protrusion
--Wide opening
--Clenching

Specific causes of congenital ptosis within each category

- Localized myogenic dysgenesis’
 - CNIII palsy
 - Horner’s
 - Marcus Gunn jaw wink

- Neurogenic
 - CNIII palsy
 - Horner’s
 - Marcus Gunn jaw wink

- Aponeurotic

- Mechanical

- Traumatic; associated with forceps injury
 - Plexiform neuroma
 - Capillary hemangioma

What do these movements have in common?

All are performed by the lateral pterygoid muscle.
Q/A

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one body part in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved? --Lateral displacement (contralateral to ptosis) --Protrusion --Wide opening --Clenching.

What do these movements have in common? All are performed by the lateral pterygoid muscle.

Specific causes of congenital ptosis within each category:

- Myogenic: localized myogenic dysgenesis
- Neurogenic: --CNIII palsy --Horner’s --Marcus Gunn jaw wink
- Aponeurotic: rare; associated with forceps injury
- Mechanical: --Plexiform neuroma --Capillary hemangioma

Congenital ptosis: Fill ‘er up.
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one body part in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved? -- Lateral displacement (contralateral to ptosis) -- Protrusion -- Wide opening -- Clenching

(Note: Is aka the external pterygoid muscle)
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one body part in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved? -- Lateral displacement (contralateral to ptosis) -- Protrusion -- Wide opening -- Clenching.

What do these movements have in common? All are performed by the lateral pterygoid muscle.

What does this imply about the pathophysiology of MGJW? That it usually involves an abnormal connection between the levator palpebrae muscle of the ptotic eye and the contralateral lateral pterygoid muscle.
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one bodypart in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved? --Lateral displacement (contralateral to ptosis) --Protrusion --Wide opening --Clenching

What do these movements have in common? All are performed by the lateral pterygoid muscle.

What does this imply about the pathophysiology of MGJW? That it usually involves an abnormal connection between the levator palpebrae muscle of the ptotic eye and the contralateral lateral pterygoid muscle.
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one body part in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved? --Lateral displacement (contralateral to ptosis) --Protrusion --Wide opening --Clenching

What do these movements have in common? All are performed by the lateral pterygoid muscle.

What does this imply about the pathophysiology of MGJW?
General categories of ptosis etiology

Specific causes of congenital ptosis within each category

<table>
<thead>
<tr>
<th>Category</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>'localized myogenic dysgenesis'</td>
</tr>
</tbody>
</table>

- CNIII palsy
- Horner’s
- Marcus Gunn jaw wink

- Neurogenic
- Aponeurotic; associated with forceps injury
 - Plexiform neuroma
 - Capillary hemangioma

- Mechanical
- Traumatic
 - Capillary hemangioma

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?

It is one of synkinesis

What does synkinesis refer to?

The **involuntary** movement of one body part in response to the **voluntary** movement of another.

Is the ptosis of MGJW unilateral, or bilateral?

Unilateral

What is the clinical hallmark of MGJW?

The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved?

- Lateral displacement (contralateral to ptosis)
- Protrusion
- Wide opening
- Clenching

What does this imply about the pathophysiology of MGJW?

That it doesn’t **always** involve the lateral pterygoid muscle.
Congenital ptosis: Fill ‘er up

General categories of ptosis etiology

Specific causes of congenital ptosis within each category

- **Myogenic**
 - localized myogenic dysgenesis

- **Neurogenic**
 - CN III palsy
 - Horner’s
 - Marcus Gunn jaw wink

- **Aponeurotic**
 - Rare; associated with forceps injury

- **Mechanical**
 - Plexiform neuroma
 - Capillary hemangioma

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?

It is one of **synkinesis**

What does synkinesis refer to?

The **involuntary** movement of one body part in response to the **voluntary** movement of another

Is the ptosis of MGJW unilateral, or bilateral?

Unilateral

What is the clinical hallmark of MGJW?

The ptotic lid elevates in response to voluntary masticatory movements of the jaw

Which jaw movements are involved?

- Lateral displacement (contralateral to ptosis)
- Protrusion
- Wide opening

--Clenching

What do these movements have in common?

All are performed by the lateral pterygoid muscle

What muscle is implicated when clenching is the triggering movement?

The **medial pterygoid**
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to?
The involuntary movement of one bodypart in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral?
Unilateral.

What is the clinical hallmark of MGJW?
The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved?
--Lateral displacement (contralateral to ptosis)
--Protrusion
--Wide opening
--Clenching

What do these movements have in common? All are performed by the lateral pterygoid muscle.

What muscle is implicated when clenching is the triggering movement? The medial pterygoid.

(Note: Is aka the internal pterygoid)
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one bodypart in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved? -- Lateral displacement (contralateral to ptosis) -- Protrusion -- Wide opening -- Clenching.

Among pts with congenital ptosis, is MGJW a common, or uncommon finding? More common than you might think -- it is present in about 5% of congenital ptosis cases.
Q/A

Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one body part in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

Which jaw movements are involved? Lateral displacement (contralateral to ptosis), protrusion, wide opening, clenching.

Among pts with congenital ptosis, is MGJW a common, or uncommon finding? More common than you might think—it is present in about 5% of congenital ptosis cases.

Specific causes of congenital ptosis within each category:

- Myogenic: localized myogenic dysgenesis
 -- CNIII palsy
 -- Horner’s
 -- Marcus Gunn jaw wink
 -- Plexiform neuroma
 -- Capillary hemangioma

- Neurogenic: --

- Aponeurotic: Rare; associated with forceps injury

- Mechanical: -- Plexiform neuroma
 -- Capillary hemangioma

- Traumatic: --
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one body part in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

Which jaw movements are involved? --Lateral displacement (contralateral to ptosis) --Protrusion --Wide opening --Clenching

Among pts with congenital ptosis, is MGJW a common, or uncommon finding? More common than you might think—it is present in about 5% of congenital ptosis cases.
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one body part in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved?--Lateral displacement (contralateral to ptosis)--Protrusion--Wide opening--Clenching

Is MGJW sporadic, or familial? The vast majority of cases are sporadic.

Specific causes of congenital ptosis within each category:

- Myogenic
 - Localized myogenic dysgenesis'
- Neurogenic
 --CNIII palsy
 --Horner’s
 --Marcus Gunn jaw wink
- Aponeurotic
 - Rare; associated with forceps injury
- Mechanical
 --Plexiform neuroma
 --Capillary hemangioma

Q: "Congenital ptosis: Fill ‘er up"
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to?
The involuntary movement of one body part in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved? --Lateral displacement (contralateral to ptosis) --Protrusion --Wide opening --Clenching

Is MGJW sporadic, or familial? The vast majority of cases are sporadic.
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one bodypart in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw. Which jaw movements are involved? --Lateral displacement --Protrusion --Wide opening --Clenching. All are performed by the lateral pterygoid muscle.

In Marcus Gunn jaw-winking syndrome, CN5 (dys)innervates the levator. Thus, Marcus Gunn jaw wink is an example of a congenital cranial dysinnervation disorder. Another such disorder should readily come to mind—what is it?
A

Congenital ptosis: Fill ‘er up

General categories of ptosis etiology

- Specific causes of congenital ptosis within each category
 - Myogenic
 - 'localized myogenic dysgenesis’
 - Neurogenic
 - --CNIII palsy
 - --Horner’s
 - --Marcus Gunn jaw wink
 - Aponeurotic
 - Rare; associated with forceps injury
 - Mechanical
 - --Plexiform neuroma
 - --Capillary hemangioma
 - Traumatic

Bowdy speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)?

It is one of synkinesis

What does synkinesis refer to?

The involuntary movement of one bodypart in response to the voluntary movement of another

Is the ptosis of MGJW unilateral, or bilateral?

Unilateral

What is the clinical hallmark of MGJW?

The ptotic lid elevates in response to voluntary masticatory movements of the jaw

Which jaw movements are involved?

- --Lateral displacement
- --Protrusion
- --Wide opening
- --Clenching

In Marcus Gunn jaw-winking syndrome, CN5 (dys)innervates the levator.

Thus, Marcus Gunn jaw wink is an example of a congenital cranial dysinnervation disorder. Another such disorder should readily come to mind--what is it?

Duane syndrome
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one bodypart in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to voluntary masticatory movements of the jaw.

Which jaw movements are involved? Lateral displacement, protrusion, wide opening, clenching (contralateral to ptosis).

All are performed by the lateral pterygoid muscle.

In Marcus Gunn jaw-winking syndrome, CN5 (dys)innervates the levator. Thus, Marcus Gunn jaw wink is an example of a congenital cranial dysinnervation disorder. Another such disorder should readily come to mind—what is it? Duane syndrome.

In Duane syndrome, which cranial nerve (dys)innervates what muscle?
Broadly speaking, what sort of disorder is Marcus Gunn jaw wink (MGJW)? It is one of synkinesis.

What does synkinesis refer to? The involuntary movement of one bodypart in response to the voluntary movement of another.

Is the ptosis of MGJW unilateral, or bilateral? Unilateral.

What is the clinical hallmark of MGJW? The ptotic lid elevates in response to masticatory movements of the jaw. Which jaw movements are involved? --Lateral displacement (contralateral to ptosis) --Protrusion --Wide opening --Clenching. All are performed by the lateral pterygoid muscle.

In Marcus Gunn jaw-winking syndrome, CN5 (dys)innervates the levator. Thus, Marcus Gunn jaw wink is an example of a congenital cranial dysinnervation disorder. Another such disorder should readily come to mind—what is it? Duane syndrome.

In Duane syndrome, which cranial nerve (dys)innervates what muscle? CN3 innervates the lateral rectus.
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
<tr>
<td></td>
<td>--Capillary hemangioma</td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>

What refractive problem is associated with virtually all forms of congenital ptosis?

Astigmatism

Does the astigmatism resolve after successful ptosis surgery?

Generally no, so be sure to re-refract after surgery.
General categories of ptosis etiology | Specific causes of congenital ptosis within each category

<table>
<thead>
<tr>
<th>Myogenic</th>
<th>‘localized myogenic dysgenesis’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
<tr>
<td></td>
<td>--Capillary hemangioma</td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>

What refractive problem is associated with virtually all forms of congenital ptosis? Astigmatism
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
</tbody>
</table>
| **Neurogenic** | --CNIII palsy

--Horner’s

--Marcus Gunn jaw wink |
| **Aponeurotic**| Rare; associated with forceps injury |
| **Mechanical** | --Plexiform neuroma

--Capillary hemangioma |
| **Traumatic** | |

Congenital ptosis: Fill ‘er up

What refractive problem is associated with virtually all forms of congenital ptosis?

Astigmatism

Does the astigmatism resolve after successful ptosis surgery?
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of congenital ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>‘localized myogenic dysgenesis’</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>--CNIII palsy</td>
</tr>
<tr>
<td></td>
<td>--Horner’s</td>
</tr>
<tr>
<td></td>
<td>--Marcus Gunn jaw wink</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Rare; associated with forceps injury</td>
</tr>
<tr>
<td>Mechanical</td>
<td>--Plexiform neuroma</td>
</tr>
<tr>
<td></td>
<td>--Capillary hemangioma</td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>

Congenital ptosis: Fill ‘er up

What refractive problem is associated with virtually all forms of congenital ptosis?
Astigmatism

Does the astigmatism resolve after successful ptosis surgery?
Generally **not**--so be sure to re-refract after surgery
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>(3)</td>
</tr>
<tr>
<td>Neurogenic</td>
<td></td>
</tr>
<tr>
<td>Aponeurotic</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>

Acquired ptosis: Fill ‘er up

Now let’s look at acquired ptosis
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Myogenic</th>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>MG (myasthenia gravis)</td>
</tr>
<tr>
<td></td>
<td>Muscular dystrophy</td>
</tr>
<tr>
<td>Muscle dystrophy</td>
<td>CPEO (chronic progressive external ophthalmoplegia)</td>
</tr>
<tr>
<td>Neurogenic</td>
<td></td>
</tr>
<tr>
<td>Aponeurotic</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
</table>
| **Myogenic** | MG
Muscular dystrophy
CPEO |
| **Neurogenic** | (2, maybe 3) |
| Aponeurotic | |
| Mechanical | |
| Traumatic | |
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
</tr>
<tr>
<td>MG</td>
</tr>
<tr>
<td>Muscular dystrophy</td>
</tr>
<tr>
<td>CPEO</td>
</tr>
<tr>
<td>Neurogenic</td>
</tr>
<tr>
<td>Horner's CNIII palsy</td>
</tr>
<tr>
<td>Aponeurotic</td>
</tr>
<tr>
<td>Mechanical</td>
</tr>
<tr>
<td>Traumatic</td>
</tr>
</tbody>
</table>

Acquired ptosis: Fill ‘er up

89
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Myogenic</th>
<th>Neurogenic</th>
<th>Aponeurotic</th>
<th>Mechanical</th>
<th>Traumatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>Horner's CNIII palsy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscular dystrophy</td>
<td>CPEO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific causes of acquired ptosis within each category

- **Myogenic**: MG
- **Neurogenic**: Horner's CNIII palsy
- **Aponeurotic**
- **Mechanical**
- **Traumatic**

*(The BCSC books equivocate with respect to whether MG is a *myogenic* vs a *neurogenic* disorder)*
Acquired ptosis: Fill ‘er up

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
</table>
| Myogenic | MG
Muscular dystrophy
CPEO |
| Neurogenic | Horner's
CNIII palsy |
| Aponeurotic | (1) |
| Mechanical | |
| Traumatic | |
General categories of ptosis etiology

<table>
<thead>
<tr>
<th></th>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
</table>
| **Myogenic** | MG
Muscular dystrophy
CPEO |
| **Neurogenic** | Horner's
CNIII palsy |
| **Aponeurotic** | Aponeurotic dehiscence |
| **Mechanical** | |
| **Traumatic** | |

Acquired ptosis: Fill ‘er up
General categories of ptosis etiology

<table>
<thead>
<tr>
<th></th>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>MG
Muscular dystrophy
CPEO</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>Horner's
CNIII palsy</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Aponeurotic dehiscence</td>
</tr>
<tr>
<td>Mechanical</td>
<td>(3)</td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Category</th>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
</table>
| **Myogenic** | MG
Muscular dystrophy
CPEO |
| **Neurogenic** | Horner's
CNIII palsy |
| **Aponeurotic** | Aponeurotic dehiscence |
| **Mechanical** | Large chalazion
Post-op edema
BCC/SCC |
| **Traumatic** | |

Acquired ptosis: Fill ‘er up

(basal-cell carcinoma/squamous-cell carcinoma)
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
</tr>
<tr>
<td>MG</td>
</tr>
<tr>
<td>Muscular dystrophy</td>
</tr>
<tr>
<td>CPEO</td>
</tr>
<tr>
<td>Neurogenic</td>
</tr>
<tr>
<td>Horner's</td>
</tr>
<tr>
<td>CNIII palsy</td>
</tr>
<tr>
<td>Aponeurotic</td>
</tr>
<tr>
<td>Aponeurotic dehiscence</td>
</tr>
<tr>
<td>Mechanical</td>
</tr>
<tr>
<td>Large chalazion</td>
</tr>
<tr>
<td>Post-op edema</td>
</tr>
<tr>
<td>BCC/SCC</td>
</tr>
<tr>
<td>Traumatic</td>
</tr>
</tbody>
</table>

Which is the most common cause of acquired ptosis?

Aponeurotic dehiscence, by a mile
General categories of ptosis etiology

| Myogenic | MG
Muscular dystrophy	CPEO
Neurogenic	Horner's
CNIII palsy	
Aponeurotic	Aponeurotic dehiscence
Mechanical	CLarge chalazion
Post-op edema	
BCC/SC	
Traumatic	

Specific causes of acquired ptosis within each category

Which is the most common cause of acquired ptosis?
Aponeurotic dehiscence, by a mile

Acquired ptosis: Fill ‘er up
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Myogenic</th>
<th>Neurogenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG, Muscular dystrophy, CPEO</td>
<td>Horner's, CNIII palsy</td>
</tr>
</tbody>
</table>

Specific causes of acquired ptosis within each category

<table>
<thead>
<tr>
<th>Mechanical</th>
<th>Traumatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-op edema, BCC/SCC</td>
<td></td>
</tr>
</tbody>
</table>

What feared causes must be considered in acquired ptosis secondary to Horner’s?

- Pancoast tumor
- Carotid dissection
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Myogenic</th>
<th>Neurogenic</th>
<th>Mechanical</th>
<th>Traumatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>Horner's</td>
<td>Post-op edema</td>
<td></td>
</tr>
<tr>
<td>MG, Muscular dystrophy</td>
<td>CNIII palsy</td>
<td>BCC/SCC</td>
<td></td>
</tr>
<tr>
<td>CPEO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific causes of acquired ptosis within each category

What feared causes must be considered in acquired ptosis secondary to Horner’s?

- Pancoast tumor
- Carotid dissection

Acquired ptosis: Fill ‘er up
Acquired ptosis: Fill ‘er up

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>MG
Muscular dystrophy
CPEO</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Aponeurotic dehiscence</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Large chalazion
Post-op edema
BCC/SCC</td>
</tr>
<tr>
<td>Traumatic</td>
<td></td>
</tr>
</tbody>
</table>

What must you be sure to enquire about in any pt presenting with myasthenia?

Be sure to ask about symptoms related to bulbar weakness (dysphagia, etc).
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Myogenic</th>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>Muscular dystrophy</td>
</tr>
<tr>
<td></td>
<td>CPEO</td>
</tr>
</tbody>
</table>

Aponeurotic
- Aponeurotic dehiscence

Mechanical
- Large chalazion
- Post-op edema
- BCC/SCC

Traumatic

Acquired ptosis: Fill ‘er up

What must you be sure to enquire about in any pt presenting with myasthenia? Be sure to ask about symptoms related to bulbar weakness (dysphagia, etc)
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
</tr>
<tr>
<td>Muscular dystrophy</td>
</tr>
<tr>
<td>CPEO</td>
</tr>
<tr>
<td>Horner's CNIII palsy</td>
</tr>
<tr>
<td>Aponeurotic dehiscence</td>
</tr>
<tr>
<td>Large chalazion</td>
</tr>
<tr>
<td>Post-op edema</td>
</tr>
<tr>
<td>BCC/SCC</td>
</tr>
</tbody>
</table>

Acquired ptosis: Fill ‘er up

About 10% of MG pts harbor an occult neoplasm--what is it?

- About 10% of MG pts harbor an occult neoplasm--what is it?
 - MG
 - Muscular dystrophy
 - CPEO
 - Horner's CNIII palsy
 - Aponeurotic dehiscence
 - Large chalazion
 - Post-op edema
 - BCC/SCC

About 10% of MG pts harbor an occult neoplasm--what is it?

- About 10% of MG pts harbor an occult neoplasm--what is it?
 - About 10% of MG pts harbor an occult neoplasm--what is it?
 - MG
 - Muscular dystrophy
 - CPEO
 - Horner's CNIII palsy
 - Aponeurotic dehiscence
 - Large chalazion
 - Post-op edema
 - BCC/SCC

About 10% of MG pts harbor an occult neoplasm--what is it?

- About 10% of MG pts harbor an occult neoplasm--what is it?
 - About 10% of MG pts harbor an occult neoplasm--what is it?
 - About 10% of MG pts harbor an occult neoplasm--what is it?
 - About 10% of MG pts harbor an occult neoplasm--what is it?
 - About 10% of MG pts harbor an occult neoplasm--what is it?
 - About 10% of MG pts harbor an occult neoplasm--what is it?
 - About 10% of MG pts harbor an occult neoplasm--what is it?
 - About 10% of MG pts harbor an occult neoplasm--what is it?
 - About 10% of MG pts harbor an occult neoplasm--what is it?
 - About 10% of MG pts harbor an occult neoplasm--what is it?
 - About 10% of MG pts harbor an occult neoplasm--what is it?
 - About 10% of MG pts harbor an occult neoplasm--what is it?
 - About 10% of MG pts harbor an occult neoplasm--what is it?
About 10% of MG pts harbor an occult neoplasm--what is it?
A thymoma
About 10% of MG pts harbor an occult neoplasm--what is it?
A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG?

Acquired ptosis: Fill ‘er up
About 10% of MG pts harbor an occult neoplasm—what is it?
A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG?
About half

<table>
<thead>
<tr>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
</tr>
<tr>
<td>Muscular dystrophy</td>
</tr>
<tr>
<td>CPEO</td>
</tr>
<tr>
<td>Horner's</td>
</tr>
<tr>
<td>CNIII palsy</td>
</tr>
<tr>
<td>Aponeurotic dehiscence</td>
</tr>
<tr>
<td>Large chalazion</td>
</tr>
<tr>
<td>Post-op edema</td>
</tr>
<tr>
<td>BCC/SCC</td>
</tr>
</tbody>
</table>
Acquired ptosis: Fill ‘er up

<table>
<thead>
<tr>
<th>MG</th>
<th>CPEO</th>
<th>Horner's CNIII palsy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myasthenia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuromuscular dystrophy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPEO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large chalazion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-op edema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCC/SCC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General categories of ptosis etiology

Specific causes of **acquired** within each category

- **Myogenic**
 - MG
 - Muscular dystrophy
 - CPEO
- **Neurogenic**
 - Horner's CNIII palsy
 - Aponeurotic dehiscence
- **Mechanical**
 - Large chalazion
 - Post-op edema
 - BCC/SCC

Q

About 10% of MG pts harbor an occult neoplasm--what is it?
A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG?
About half

What is a thymoma, and where is it located?

Is MG-associated thymoma usually malignant, or benign?
Benign (although it is malignant in a small number of cases)

How is thymoma diagnosed?
Radiographically, via CXR and/or CT

If an MG pt has a thymoma, what (if anything) should be done about it?
Thymectomy should be considered in select cases
About 10% of MG pts harbor an occult neoplasm--what is it?
A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG?
About half

What is a thymoma, and where is it located?
It is a neoplasm of the thymus, which is located in the anterior/superior mediastinum

MG
Muscular dystrophy
CPEO
Horner's
CNIII palsy
Aponeurotic dehiscence
Large chalazion
Post-op edema
BCC/SCC

Acquired ptosis: Fill ‘er up
Acquired ptosis: Fill ‘er up

About 10% of MG pts harbor an occult neoplasm--what is it?
A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG?
About half

What is a thymoma, and where is it located?
It is a neoplasm of the **thymus**, which is located in the anterior/superior mediastinum

What sort of organ is the thymus? What is its function?

- **MG**
- Muscular dystrophy
- CPEO
- Horner's
- CNIII palsy
About 10% of MG pts harbor an occult neoplasm--what is it?
A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG?
About half

What is a thymoma, and where is it located?
It is a neoplasm of the thymus, which is located in the anterior/superior mediastinum

What sort of organ is the thymus? What is its function?
The thymus is the immune-system organ in which T cells mature
About 10% of MG pts harbor an occult neoplasm--what is it?
A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG?
About half

What is a thymoma, and where is it located?
It is a neoplasm of the thymus, which is located in the anterior/superior mediastinum

What sort of organ is the thymus? What is its function?
The thymus is the immune-system organ in which T cells mature

‘Organ in which T cells mature’--how does this dovetail with the pathophysiology of MG?

MG
Muscular dystrophy
CPEO
Homer's CNIII palsy

Acquired ptosis: Fill ‘er up

Specific causes of acquired within each category
About 10% of MG pts harbor an occult neoplasm--what is it?
A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG?
About half

What is a thymoma, and where is it located?
It is a neoplasm of the thymus, which is located in the anterior/superior mediastinum

What sort of organ is the thymus? What is its function?
The thymus is the immune-system organ in which T cells mature

‘Organ in which T cells mature’–how does this dovetail with the pathophysiology of MG?
MG is a disease of autoantibodies, which are produced by B cells. However, B-cell autoantibody production in MG is prompted by a T-cell response to ACh-receptor antigens. Thus, MG is fundamentally a T-cell disease.
About 10% of MG pts harbor an occult neoplasm--what is it?
A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG?
About half

What is a thymoma, and where is it located?
It is a neoplasm of the thymus, which is located in the anterior/superior mediastinum

Is MG-associated thymoma usually malignant, or benign?
About 10% of MG pts harbor an occult neoplasm--what is it?
A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG?
About half

What is a thymoma, and where is it located?
It is a neoplasm of the thymus, which is located in the anterior/superior mediastinum

Is MG-associated thymoma usually malignant, or benign?
Benign (although it is malignant in a small number of cases)
Q

Acquired ptosis: Fill ‘er up

General categories of ptosis etiology

Specific causes of acquired ptosis within each category

Myogenic
- MG
- Muscular dystrophy
- CPEO

Neurogenic
- Horner’s
- CNIII palsy
- Aponeurotic
- Aponeurotic dehiscence

Mechanical
- Large chalazion
- Post-op edema
- BCC/SCC

Acquired ptosis: Fill ‘er up

About 10% of MG pts harbor an occult neoplasm—what is it?
A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG?
About half

What is a thymoma, and where is it located?
It is a neoplasm of the thymus, which is located in the anterior/superior mediastinum

Is MG-associated thymoma usually malignant, or benign?
Benign (although it is malignant in a small number of cases)

How is thymoma diagnosed?

About 10% of MG pts harbor an occult neoplasm—what is it?
A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG?
About half

What is a thymoma, and where is it located?
It is a neoplasm of the thymus, which is located in the anterior/superior mediastinum

Is MG-associated thymoma usually malignant, or benign?
Benign (although it is malignant in a small number of cases)

How is thymoma diagnosed?
About 10% of MG pts harbor an occult neoplasm—what is it?
A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG?
About half

What is a thymoma, and where is it located?
It is a neoplasm of the thymus, which is located in the anterior/superior mediastinum

Is MG-associated thymoma usually malignant, or benign?
Benign (although it is malignant in a small number of cases)

How is thymoma diagnosed?
Radiographically, via CXR and/or CT

<table>
<thead>
<tr>
<th>Acquired ptosis: Fill ‘er up</th>
</tr>
</thead>
</table>

- MG
- Muscular dystrophy
- CPEO
- Horner's CNIII palsy
- Neurotic dehiscence
- Large chalazion
- Post-op edema
- BCC/SCC
About 10% of MG pts harbor an occult neoplasm—what is it? A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG? About half

What is a thymoma, and where is it located? It is a neoplasm of the thymus, which is located in the anterior/superior mediastinum

Is MG-associated thymoma usually malignant, or benign? Benign (although it is malignant in a small number of cases)

How is thymoma diagnosed? Radiographically, via CXR and/or CT

If an MG pt has a thymoma, what (if anything) should be done about it? Thymectomy should be considered in select cases
General categories of ptosis etiology

Specific causes of acquired ptosis within each category

<table>
<thead>
<tr>
<th>Category</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>MG, muscular dystrophy, CPEO</td>
</tr>
<tr>
<td>Neurogenic</td>
<td>Horner’s, CNIII palsy</td>
</tr>
<tr>
<td>Aponeurotic</td>
<td>Aponeurotic dehiscence</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Large chalazion, Post-op edema, BCC/SCC</td>
</tr>
</tbody>
</table>

About 10% of MG pts harbor an occult neoplasm--what is it? A thymoma

What about the reverse? That is, what percent of thymoma pts will have MG? About half

What is a thymoma, and where is it located? It is a neoplasm of the thymus, which is located in the anterior/superior mediastinum

Is MG-associated thymoma usually malignant, or benign? Benign (although it is malignant in a small number of cases)

How is thymoma diagnosed? Radiographically, via CXR and/or CT

If an MG pt has a thymoma, what (if anything) should be done about it? Thymectomy should be considered in select cases
About 10% of MG pts harbor an endocrine abnormality. What gland is involved?

- Thyroid
- Hyperthyroidism
- Other thyroid abnormalities
- Yes

About acquired ptosis:

- Fill ‘er up

Myogenic
- MG
 - Muscular dystrophy
 - CPEO

Neurogenic
- Horner’s
- CN III palsy

Aponeurotic
- Aponeurotic dehiscence

Mechanical
- Large chalazion
- Post-op edema
- BCC/SCC

Traumatic

Specific causes of acquired ptosis within each category
About 10% of MG pts harbor an endocrine abnormality. What gland is involved? The thyroid.
Acquired ptosis: Fill ‘er up

General categories of ptosis etiology

Specific causes of acquired ptosis within each category

Myogenic

MG
Muscular dystrophy
CPEO

About 10% of MG pts harbor an endocrine abnormality. What gland is involved? The thyroid

What thyroid conditions are commonly associated with MG?
About 10% of MG pts harbor an endocrine abnormality. What gland is involved? The thyroid

What thyroid conditions are commonly associated with MG? Hyperthyroidism is the most common. However, virtually all thyroid abnormalities are overrepresented in the MG population, from goiters to Hashimoto’s to malignancies.
Acquired ptosis: Fill ‘er up

<table>
<thead>
<tr>
<th>General categories of ptosis etiology</th>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>Muscular dystrophy</td>
</tr>
<tr>
<td></td>
<td>CPEO</td>
</tr>
</tbody>
</table>

About 10% of MG pts harbor an endocrine abnormality. What gland is involved?
The thyroid

What thyroid conditions are commonly associated with MG?
Hyperthyroidism is the most common. However, virtually all thyroid abnormalities are overrepresented in the MG population, from goiters to Hashimoto’s to malignancies.

What about Graves’ dz--are MG pts at a greater risk for it as well?
Acquired ptosis: Fill ‘er up

General categories of ptosis etiology

Myogenic

Specific causes of acquired ptosis within each category

MG
Muscular dystrophy
CPEO

About 10% of MG pts harbor an endocrine abnormality. What gland is involved? The thyroid

What thyroid conditions are commonly associated with MG? Hyperthyroidism is the most common. However, virtually all thyroid abnormalities are overrepresented in the MG population, from goiters to Hashimoto’s to malignancies.

What about Graves’ dz--are MG pts at a greater risk for it as well? Yes
General categories of ptosis etiology

<table>
<thead>
<tr>
<th>Specific causes of acquired ptosis within each category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myogenic</td>
</tr>
<tr>
<td>MG</td>
</tr>
<tr>
<td>Muscular dystrophy</td>
</tr>
<tr>
<td>CPEO</td>
</tr>
<tr>
<td>Neurogenic</td>
</tr>
<tr>
<td>Horner’s</td>
</tr>
<tr>
<td>CNIII palsy</td>
</tr>
<tr>
<td>Aponeurotic</td>
</tr>
<tr>
<td>Aponeurotic dehiscence</td>
</tr>
<tr>
<td>Mechanical</td>
</tr>
<tr>
<td>Large chalazion</td>
</tr>
<tr>
<td>Post-op edema</td>
</tr>
<tr>
<td>BCC/SCC</td>
</tr>
<tr>
<td>Traumatic</td>
</tr>
<tr>
<td>Acquired ptosis: Fill ‘er up</td>
</tr>
</tbody>
</table>

About 10% of MG pts harbor an endocrine abnormality. What gland is involved?

The thyroid

What thyroid conditions are commonly associated with MG?

Hyperthyroidism is the most common. However, virtually all thyroid abnormalities are overrepresented in the MG population, from goiters to Hashimoto’s to malignancies.

What about Graves’ dz?

Yes

What percent of MG pts will have concomitant Graves’ dz?
General categories of ptosis etiology | Specific causes of acquired ptosis within each category
---|---
Myogenic | **MG**
Muscular dystrophy
CPEO

About 10% of MG pts harbor an endocrine abnormality. What gland is involved? The thyroid

What thyroid conditions are commonly associated with MG? Hyperthyroidism is the most common. However, virtually all thyroid abnormalities are overrepresented in the MG population, from goiters to Hashimoto’s to malignancies.

What about Graves’ dz? Yes

What percent of MG pts will have concomitant Graves’ dz? About 10

Traumatic
Why must you always check Bell’s phenomenon and corneal sensation prior to ptosis surgery?
Why must you always check Bell’s phenomenon and corneal sensation prior to ptosis surgery?

Ptosis surgery often results in some degree of corneal exposure. A brisk Bell’s provides protection to the ocular surface. Decreased corneal sensation + corneal exposure is a set-up for disaster—the risk of corneal ulceration is very high. The ptosis surgeon should proceed with great caution.
Why must you always check Bell’s phenomenon and corneal sensation prior to ptosis surgery?
Ptosis surgery often results in some degree of corneal exposure. A brisk Bell’s provides protection to the ocular surface. Decreased corneal sensation + corneal exposure is a set-up for disaster—the risk of corneal ulceration is very high. The ptosis surgeon should proceed with great caution.

In evaluating ‘unilateral’ ptosis, why must you manually elevate the ptotic lid?
Why must you always check Bell’s phenomenon and corneal sensation prior to ptosis surgery?
Ptosis surgery often results in some degree of corneal exposure. A brisk Bell’s provides protection to the ocular surface. Decreased corneal sensation + corneal exposure is a set-up for disaster—the risk of corneal ulceration is very high. The ptosis surgeon should proceed with great caution.

In evaluating ‘unilateral’ ptosis, why must you manually elevate the ptotic lid?
Ptosis stimulates increased innervation to the levator muscles in an effort to clear the visual axis. In bilateral but asymmetric ptosis, this may clear the axis of the less-ptotic eye, making it appear normal. Manually elevating the more-ptotic lid removes the stimulus for excess innervation and may reveal a milder but still significant ptosis on the other side. Better to find out now rather than s/p unilateral surgery resulting in a ‘new’ ptosis in the fellow eye.
Why must you always check Bell’s phenomenon and corneal sensation prior to ptosis surgery?
Ptosis surgery often results in some degree of corneal exposure. A brisk Bell’s provides protection to the ocular surface. Decreased corneal sensation + corneal exposure is a set-up for disaster—the risk of corneal ulceration is very high. The ptosis surgeon should proceed with great caution.

In evaluating ‘unilateral’ ptosis, why must you manually elevate the ptotic lid?
Ptosis stimulates increased innervation to the levator muscles in an effort to clear the visual axis. In bilateral but asymmetric ptosis, this may clear the axis of the less-ptotic eye, making it appear normal. Manually elevating the more-ptotic lid removes the stimulus for excess innervation and may reveal a milder but still significant ptosis in the other eye. Better to find it now rather than s/p unilateral surgery resulting in a ‘new’ ptosis in the fellow eye.

Give two reasons why the levator muscles receive equal innervation:
1) Hering’s law of equal innervation to yoke muscles
2) The CNIII nuclear complex contains one fused subnucleus serving both levator muscles, so they must receive the same neural input
Why must you always check Bell’s phenomenon and corneal sensation prior to ptosis surgery?
Ptosis surgery often results in some degree of corneal exposure. A brisk Bell’s provides protection to the ocular surface. Decreased corneal sensation + corneal exposure is a set-up for disaster—the risk of corneal ulceration is very high. The ptosis surgeon should proceed with great caution.

In evaluating ‘unilateral’ ptosis, why must you manually elevate the ptotic lid?
Ptosis stimulates increased innervation to the levator muscles in an effort to clear the visual axis. In bilateral but asymmetric ptosis, this may clear the axis of the less-ptotic eye, making it appear normal. Manually elevating the more-ptotic lid removes the stimulus for excess innervation and may reveal a milder but still significant ptosis in the other eye. Better to find out now rather than post-unilateral surgery.

Give two reasons why the levator muscles receive equal innervation:
1) Hering’s law of equal innervation to yoke muscles
2) The CNIII nuclear complex contains one fused subnucleus serving both levator muscles, so they must receive the same neural input