--Secondary to pathological process of central portion of location of path process
Lenticonus

--Secondary to "ectasia" of central portion of "lens surface"
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?
‘Conical’
The conical shape of a lenticous lens
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?
‘Conical’

What is the classic two-word description of the clinical appearance of a lens with lenticonus?
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?
‘Conical’

What is the classic two-word description of the clinical appearance of a lens with lenticonus?
‘Oil droplet’
In one (unsurprising) word, what is the shape of the affected lens surface in lenticous?
‘Conical’

What is the classic two-word description of the clinical appearance of a lens with lenticous?
‘Oil droplet’

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract?
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?
‘Conical’

What is the classic two-word description of the clinical appearance of a lens with lenticonus?
‘Oil droplet’

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract?
Retroillumination
Oil-droplet lens change: Retroillumination
--Secondary to ectasia of central portion of lens surface

In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?

'Conical'

What is the classic two-word description of the clinical appearance of a lens with lenticonus?

'Oil droplet'

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract?

Retroillumination

Lenticonus

When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

What is galactosemia?

It is an inborn error of metabolism in which galactose cannot be converted to glucose.

How does this lead to an oil droplet lenticular appearance?

An inert byproduct of galactose metabolism (galactitol) accumulates in lens fibers, creating an osmotic gradient that draws in aqueous. Swelling of the fibers damages them, leading to the changes that produce an oil droplet.

So, there's a fundamental difference between the cause of the oil-droplet appearance in lenticonus (= increased central lenticular power) vs that of galactosemia (= the accumulation of galactitol and fluid in the central lens).

What are the systemic manifestations of galactosemia?

--Failure to thrive
--Hepatomegaly with jaundice
--Impaired cognitive development
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?

'Conical'

What is the classic two-word description of the clinical appearance of a lens with lenticonus?

'Oil droplet'

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract?

Retroillumination

Lenticonus

When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

Galactosemia

It is an inborn error of metabolism in which galactose cannot be converted to glucose. How does this lead to an oil droplet lenticular appearance?

An inert byproduct of galactose metabolism (galactitol) accumulates in lens fibers, creating an osmotic gradient that draws in aqueous. Swelling of the fibers damages them, leading to the changes that produce an oil droplet.

So, there's a fundamental difference between the cause of the oil-droplet appearance in lenticonus (= increased central lenticular power) vs that of galactosemia (= the accumulation of galactitol and fluid in the central lens).

What are the systemic manifestations of galactosemia?

--Failure to thrive
--Hepatomegaly with jaundice
--Impaired cognitive development
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?

‘Conical’

What is the classic two-word description of the clinical appearance of a lens with lenticonus?

‘Oil droplet’

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract?

Retroillumination

Lenticonus

When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

What is galactosemia?

It is an inborn error of metabolism in which galactose cannot be converted to glucose. How does this lead to an oil droplet lenticular appearance?

An inert byproduct of galactose metabolism (galactitol) accumulates in lens fibers, creating an osmotic gradient that draws in aqueous. Swelling of the fibers damages them, leading to the changes that produce an oil droplet.

So, there’s a fundamental difference between the cause of the oil-droplet appearance in lenticonus (= increased central lenticular power) vs that of galactosemia (= the accumulation of galactitol and fluid in the central lens).

What are the systemic manifestations of galactosemia?

--Failure to thrive
--Hepatomegaly with jaundice
--Impaired cognitive development
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?

'Conical'

What is the classic two-word description of the clinical appearance of a lens with lenticonus?

'Oil droplet'

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract?

Retroillumination

Lenticonus

When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

What is galactosemia?

It is an inborn error of metabolism in which galactose cannot be converted to glucose. How does this lead to an oil droplet lenticular appearance?

An inert byproduct of galactose metabolism (galactitol) accumulates in lens fibers, creating an osmotic gradient that draws in aqueous. Swelling of the fibers damages them, leading to the changes that produce an oil droplet.

So, there's a fundamental difference between the cause of the oil-droplet appearance in lenticonus (= increased central lenticular power) vs that of galactosemia (= the accumulation of galactitol and fluid in the central lens).

What are the systemic manifestations of galactosemia?

--Failure to thrive
--Hepatomegaly with jaundice
--Impaired cognitive development
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?

'Conical'

What is the classic two-word description of the clinical appearance of a lens with lenticonus?

'Oil droplet'

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract?

Retroillumination

When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

What is galactosemia?

It is an inborn error of metabolism

An inert byproduct of galactose metabolism (galactitol) accumulates in lens fibers, creating an osmotic gradient that draws in aqueous. Swelling of the fibers damages them, leading to the changes that produce an oil droplet.

So, there's a fundamental difference between the cause of the oil-droplet appearance in lenticonus (= increased central lenticular power) vs that of galactosemia (= the accumulation of galactitol and fluid in the central lens).

What are the systemic manifestations of galactosemia?

--Failure to thrive
--Hepatomegaly with jaundice
--Impaired cognitive development
Lenticonus

When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

What is galactosemia?

It is an inborn error of metabolism in which substance cannot be converted to diff substance.
Lenticonus

In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?

Conical

What is the classic two-word description of the clinical appearance of a lens with lenticonus?

Oil droplet

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract?

Retroillumination

When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

What is galactosemia?

It is an inborn error of metabolism in which galactose cannot be converted to glucose.

Failure to thrive

Hepatomegaly with jaundice

Impaired cognitive development
When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

What is galactosemia?

It is an inborn error of metabolism in which galactose cannot be converted to glucose

How does this lead to an oil droplet lenticular appearance?
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?

'Conical'

What is the classic two-word description of the clinical appearance of a lens with lenticonus?

'Oil droplet'

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract?

Retroillumination

When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

What is galactosemia?

It is an inborn error of metabolism in which galactose cannot be converted to glucose.

How does this lead to an oil droplet lenticular appearance?

An inert byproduct of galactose metabolism accumulates in lens fibers, creating an osmotic gradient that draws in aqueous. Swelling of the fibers damages them, leading to the changes that produce an oil droplet.
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?

‘Conical’

What is the classic two-word description of the clinical appearance of a lens with lenticonus?

‘Oil droplet’

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract?

Retroillumination

When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

What is galactosemia?

It is an inborn error of metabolism in which galactose cannot be converted to glucose

How does this lead to an oil droplet lenticular appearance?

An inert byproduct of galactose metabolism (galactitol) accumulates in lens fibers, creating an osmotic gradient that draws in aqueous. Swelling of the fibers damages them, leading to the changes that produce an oil droplet.

--Secondary to ectasia of central portion of lens surface
Galactosemia: Oil-droplet cataracts
When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

What is galactosemia?
It is an inborn error of metabolism in which galactose cannot be converted to glucose.

How does this lead to an oil droplet lenticular appearance?
An inert byproduct of galactose metabolism (galactitol) accumulates in lens fibers, creating an osmotic gradient that draws in aqueous. Swelling of the fibers damages them, leading to the changes that produce an oil droplet.

So, there’s a fundamental difference between the cause of the oil-droplet appearance in lenticonus (= altered central lenticular power) vs that of galactosemia (= the accumulation of galactitol and fluid in the central lens).
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?

‘Conical’

What is the classic two-word description of the clinical appearance of a lens with lenticonus?

‘Oil droplet’

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract?

Retroillumination

When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

What is galactosemia?

It is an inborn error of metabolism in which galactose cannot be converted to glucose

How does this lead to an oil droplet lenticular appearance?

An inert byproduct of galactose metabolism (galactitol) accumulates in lens fibers, creating an osmotic gradient that draws in aqueous. Swelling of the fibers damages them, leading to the changes that produce an oil droplet.

So, there’s a fundamental difference between the cause of the oil-droplet appearance in lenticonus (= altered central lenticular power) vs that of galactosemia (= the accumulation of galactitol and fluid in the central lens).

What are the systemic manifestations of galactosemia?

--?
--?
--?
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus? ‘Conical’

What is the classic two-word description of the clinical appearance of a lens with lenticonus? ‘Oil droplet’

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract? Retroillumination

When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third? Galactosemia

What is galactosemia? It is an inborn error of metabolism in which galactose cannot be converted to glucose

How does this lead to an oil droplet lenticular appearance? An inert byproduct of galactose metabolism (galactitol) accumulates in lens fibers, creating an osmotic gradient that draws in aqueous. Swelling of the fibers damages them, leading to the changes that produce an oil droplet.

So, there’s a fundamental difference between the cause of the oil-droplet appearance in lenticonus (= altered central lenticular power) vs that of galactosemia (= the accumulation of galactitol and fluid in the central lens).

What are the systemic manifestations of galactosemia? --Failure to thrive --Hepatomegaly with jaundice --Impaired cognitive development
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?

‘Conical’

What is the classic two-word description of the clinical appearance of a lens with lenticonus?

‘Oil droplet’

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract?

Retroillumination

Lenticonus

When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

What is galactosemia?

It is an inborn error of metabolism in which galactose cannot be converted to glucose.

What is the long-term prognosis of galactosemia?

The severe form (which is also the most common) is uniformly fatal if not treated.

What are the systemic manifestations of galactosemia?

--Failure to thrive
--Hepatomegaly with jaundice
--Impaired cognitive development

An inert byproduct of galactose metabolism (galactitol) accumulates in lens fibers, creating an osmotic gradient that draws in aqueous. Swelling of the fibers damages them, leading to the changes that produce an oil droplet.

So, there’s a fundamental difference between the cause of the oil-droplet appearance in lenticonus (= altered central lenticular power) vs that of galactosemia (= the accumulation of galactitol and fluid in the central lens).
In one (unsurprising) word, what is the shape of the affected lens surface in lenticonus?

‘Conical’

What is the classic two-word description of the clinical appearance of a lens with lenticonus?

‘Oil droplet’

What simple exam maneuver is the surest way to detect the presence of an oil droplet cataract?

Retroillumination

When you hear the term oil droplet applied to the appearance of the lens, three conditions should come to mind. Two are anterior and posterior lenticonus—what is the third?

Galactosemia

What is galactosemia?

It is an inborn error of metabolism in which galactose cannot be converted to glucose.

What is the long-term prognosis of galactosemia?

The severe form (which is also the most common) is uniformly fatal if not treated.

How does this lead to an oil droplet lenticular appearance?

An inert byproduct of galactose metabolism (galactitol) accumulates in lens fibers, creating an osmotic gradient that draws in aqueous. Swelling of the fibers damages them, leading to the changes that produce an oil droplet.

So, there’s a fundamental difference between the cause of the oil-droplet appearance in lenticonus (= altered central lenticular power) vs that of galactosemia (= the accumulation of galactitol and fluid in the central lens).

What are the systemic manifestations of galactosemia?

--Failure to thrive
--Hepatomegaly with jaundice
--Impaired cognitive development
---Secondary to *ectasia* of central portion of *lens surface*

---Typical clinical course:

---Early: Manifests as *refractive issue*
Lenticonus

--Secondary to **ectasia** of central portion of lens surface

--Typical clinical course:
 --Early: Manifests as **myopia**
Lenticonus

--Secondary to **ectasia** of central portion of **lens surface**

--Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as different refractive issue
Lenticonus

--Secondary to **ectasia** of central portion of **lens surface**

--Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as **irregular astigmatism**
--Secondary to **ectasia** of central portion of **lens surface**
--Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as **irregular astigmatism**
 --Later: The **lens layer** opacifies
A

--Secondary to **ectasia** of central portion of **lens surface**
--Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as **irregular astigmatism**
 --Later: The **cortex** opacifies
Lenticonus

--Secondary to **ectasia** of central portion of **lens surface**

--Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as **irregular astigmatism**
 --Later: The **cortex** opacifies
 --At age **#.#** years: Capsule → **two words**
Lenticonus

--Secondary to **ectasia** of central portion of **lens surface**
--Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as **irregular astigmatism**
 --Later: The **cortex** opacifies
 --At age 4-5 years: Capsule **ruptures** → **total opacification**
Lenticonus comes in two (very) basic forms—what are they?
--Secondary to ectasia of central portion of lens surface.
--Typical clinical course:
 --Early: Manifests as myopia
 --Next: Manifests as irregular astigmatism
 --Later: The cortex opacifies
 --At age 4-5 years: Capsule ruptures → total opacification

Lenticonus comes in two (very) basic forms—what are they?
Anterior lenticonus and **posterior** lenticonus, referring to involvement of the anterior and posterior capsules respectively.
Lenticonus

Anterior lenticonus
Lenticonus

Posterior lenticonus
Just for fun: An eye with both anterior *and* posterior lenticonus
Lenticonus

--Secondary to **ectasia** of central portion of **lens surface**
--Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as **irregular astigmatism**
 --Later: The **cortex** opacifies
 --At age *4-5 years*: Capsule **ruptures** \rightarrow **total opacification**

<table>
<thead>
<tr>
<th></th>
<th>Usually unilateral vs usually bilateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior lenticonus</td>
<td>?</td>
</tr>
<tr>
<td>Posterior lenticonus</td>
<td>?</td>
</tr>
</tbody>
</table>
---Secondary to **ectasia** of central portion of **lens surface**
---Typical clinical course:
 ---Early: Manifests as **myopia**
 ---Next: Manifests as **irregular astigmatism**
 ---Later: The **cortex** opacifies
 ---At age 4-5 years: Capsule **ruptures** → **total opacification**

<table>
<thead>
<tr>
<th>Anterior lenticonus</th>
<th>Usually bilateral</th>
<th>Usually unilateral vs usually bilateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior lenticonus</td>
<td>Usually bilateral</td>
<td>90% unilateral</td>
</tr>
<tr>
<td>Posterior lenticonus</td>
<td>90% unilateral</td>
<td></td>
</tr>
</tbody>
</table>
--- Secondary to **ectasia** of central portion of **lens surface**

--- Typical clinical course:

--- Early: Manifests as **myopia**
--- Next: Manifests as **irregular astigmatism**
--- Later: The **cortex** opacifies
--- At age 4-5 years: Capsule **ruptures** → **total opacification**

Lenticonus

<table>
<thead>
<tr>
<th></th>
<th>Usually unilateral vs usually bilateral</th>
<th>More common vs less common</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior lenticonus</td>
<td>Usually bilateral</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Posterior lenticonus</td>
<td>90% unilateral</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
--Secondary to **ectasia** of central portion of **lens surface**

--Typical clinical course:

--- Early: Manifests as **myopia**
--- Next: Manifests as **irregular astigmatism**
--- Later: The **cortex** opacifies
--- At age 4-5 years: Capsule **ruptures** \rightarrow **total opacification**

--- **Anterior lenticonus**
- Usually **bilateral**
- Less common

--- **Posterior lenticonus**
- 90% **unilateral**
- More common (but still rare)
Lenticonus

--Secondary to **ectasia** of central portion of **lens surface**

--Typical clinical course:

--Early: Manifests as **myopia**
--Next: Manifests as **irregular astigmatism**
--Later: The **cortex** opacifies
--At age 4-5 years: Capsule **ruptures** → **total opacification**

<table>
<thead>
<tr>
<th></th>
<th>Usually unilateral vs usually bilateral</th>
<th>More common vs less common</th>
<th>Usually sporadic vs usually syndromic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior lenticonus</td>
<td>Usually bilateral</td>
<td>Less common</td>
<td>?</td>
</tr>
<tr>
<td>Posterior lenticonus</td>
<td>90% unilateral</td>
<td>More common (but still rare)</td>
<td>?</td>
</tr>
</tbody>
</table>
Lenticonus

--Secondary to **ectasia** of central portion of **lens surface**
--Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as **irregular astigmatism**
 --Later: The **cortex** opacifies
 --At age **4-5 years**: Capsule **ruptures** → **total opacification**

<table>
<thead>
<tr>
<th></th>
<th>Usually unilateral vs usually bilateral</th>
<th>More common vs less common</th>
<th>Usually sporadic vs usually syndromic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior lenticonus</td>
<td>Usually bilateral</td>
<td>Less common</td>
<td>Usually syndromic</td>
</tr>
<tr>
<td>Posterior lenticonus</td>
<td>90% unilateral</td>
<td>More common (but still rare)</td>
<td>Usually sporadic (unless bilateral)</td>
</tr>
</tbody>
</table>
Lenticonus

--Secondary to *ectasia* of central portion of lens surface
--Typical clinical course:
 --Early: Manifests as *myopia*
 --Next: Manifests as *irregular astigmatism*
 --Later: The cortex *opacifies*
 --At age 4-5 years: Capsule ruptures \rightarrow *total opacification*

<table>
<thead>
<tr>
<th></th>
<th>Usually unilateral vs</th>
<th>More common</th>
<th>Usually sporadic vs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior lenticonus</td>
<td>Usually bilateral</td>
<td>Less common</td>
<td>Usually syndromic</td>
</tr>
<tr>
<td>Posterior lenticonus</td>
<td>90% unilateral</td>
<td>More common (but still rare)</td>
<td>Usually sporadic (unless bilateral)</td>
</tr>
</tbody>
</table>

Note that these factoids ‘go together,’ ie, syndromic conditions usually affect both eyes…
--Secondary to **ectasia** of central portion of lens surface

--Typical clinical course:

--Early: Manifests as **myopia**

--Next: Manifests as **irregular astigmatism**

--Later: The **cortex** opacifies

--At age 4-5 years: Capsule ruptures → **total opacification**

<table>
<thead>
<tr>
<th></th>
<th>Usually unilateral vs usually bilateral</th>
<th>More common vs less common</th>
<th>Usually sporadic vs usually syndromic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior lenticonus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior lenticonus</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...and likewise, these two go together as well (sporadic conditions usually affect only one)

90% **unilateral**

More common (but still rare)

Usually **sporadic** (unless bilateral)
--Secondary to ectasia of central portion of lens surface

--Typical clinical course:

--Early: Manifests as myopia

--Next: Manifests as irregular astigmatism

--Later: The cortex opacifies

--At age 4-5 years: Capsule ruptures → total opacification

--Bilateral cases are associated with two of the familial oculorenal syndromes
Lenticonus

--Secondary to ectasia of central portion of lens surface
--Typical clinical course:
 --Early: Manifests as myopia
 --Next: Manifests as irregular astigmatism
 --Later: The cortex opacifies
 --At age 4-5 years: Capsule ruptures → total opacification
--Bilateral cases are associated with two of the familial oculorenal syndromes
Lenticonus

--Secondary to ectasia of central portion of lens surface.

--Typical clinical course:
 --Early: Manifests as myopia.
 --Next: Manifests as irregular astigmatism.
 --Later: The cortex opacifies.
 --At age 4-5 years: Capsule ruptures \(\rightarrow\) total opacification.

--Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome).
Lenticonus

--Secondary to ectasia of central portion of lens surface
--Typical clinical course:
 --Early: Manifests as myopia
 --Next: Manifests as irregular astigmatism
 --Later: The cortex opacifies
 --At age 4-5 years: Capsule ruptures \(\rightarrow\) total opacification
--Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome)
Lenticonus

- Secondary to ectasia of central portion of lens surface
- Typical clinical course:
 - Early: Manifests as myopia
 - Next: Manifests as irregular astigmatism
 - Later: The cortex opacifies
 - At age 4-5 years: Capsule ruptures → total opacification
- Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome)

<table>
<thead>
<tr>
<th></th>
<th>Lenticonus location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>?</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>?</td>
</tr>
</tbody>
</table>
Lenticonus

--Secondary to **ectasia** of central portion of **lens surface**
--Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as **irregular astigmatism**
 --Later: The **cortex** opacifies
 --At age 4-5 years: Capsule *ruptures* → **total opacification**
--Bilateral cases are associated with two of the **familial oculorenal syndromes**
 (**Alport** syndrome; **Lowe** syndrome)

<table>
<thead>
<tr>
<th></th>
<th>Lenticonus location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
</tr>
</tbody>
</table>
Lenticonus

Secondary to *ectasia* of central portion of lens surface.

Typical clinical course:
- Early: Manifests as myopia
- Next: Manifests as *irregular astigmatism*
- Later: The *cortex* opacifies
- At age 4-5 years: Capsule ruptures → *total opacification*

Bilateral cases are associated with two of the *familial oculorenal* syndromes (Alport syndrome; Lowe syndrome)

<table>
<thead>
<tr>
<th>Alport Syndrome</th>
<th>Anterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenticonus</td>
<td></td>
</tr>
<tr>
<td>Posterior</td>
<td></td>
</tr>
</tbody>
</table>
Anterior lenticonus in Alport syndrome
Lenticonus

--Secondary to **ectasia** of central portion of **lens surface**
--Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as **irregular astigmatism**
 --Later: The **cortex** opacifies
 --At age 4-5 years: Capsule ruptures → **total opacification**

How prevalent is lenticonus in Alport and Lowe syndromes?

<table>
<thead>
<tr>
<th>Location</th>
<th>Alport Syndrome</th>
<th>Lowe Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lenticonus

--Secondary to ectasia of central portion of lens surface
--Typical clinical course:
 --Early: Manifests as myopia
 --Next: Manifests as irregular astigmatism
 --Later: The cortex opacifies
 --At age 4-5 years: Capsule ruptures → total opacification

How prevalent is lenticonus in Alport and Lowe syndromes?
Anterior lenticonus is not a major component of Alport syndrome, being present in only 25% of cases

<table>
<thead>
<tr>
<th></th>
<th>Lenticonus location</th>
<th>Anterior</th>
<th>Lowe Syndrome</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lenticonus

Secondary to ectasia of central portion of lens surface.

Typical clinical course:

- Early: Manifests as myopia
- Next: Manifests as irregular astigmatism
- Later: The cortex opacifies
- At age 4-5 years: Capsule ruptures \(\rightarrow\) total opacification

Bilateral cases can be associated with the familial oculorenal syndromes (e.g., Alport syndrome, Lowe syndrome).

How prevalent is lenticonus in Alport and Lowe syndromes?

Anterior lenticonus is not a major component of Alport syndrome, being present in only 25% of cases. In contrast, posterior lenticonus is a defining feature of Lowe syndrome.

<table>
<thead>
<tr>
<th>Location</th>
<th>Alport Syndrome</th>
<th>Lowe Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenticous location</td>
<td>Anterior</td>
<td>Posterior</td>
</tr>
</tbody>
</table>

Alport Syndrome is X-linked with hematuria in childhood, high nerve deafness, and nephritis. *Lowe Syndrome* is also X-linked with hematuria in infancy, microsphero-phakia, MR, rickets, and hypotonia.
---Secondary to **ectasia** of central portion of **lens surface**

---Typical clinical course:

---Early: Manifests as **myopia**

---Next: Manifests as **irregular astigmatism**

---Later: The **cortex** opacifies

---At age 4-5 years: Capsule ruptures → **total opacification**

---Bilateral cases are associated with two of the **familial oculorenal syndromes**

(**Alport** syndrome; **Lowe** syndrome)

<table>
<thead>
<tr>
<th></th>
<th>Lenticonus location</th>
<th>Inheritance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>?</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>?</td>
</tr>
</tbody>
</table>
Lenticonus

---Secondary to *ectasia* of central portion of lens surface

---Typical clinical course:
- Early: Manifests as *myopia*
- Next: Manifests as *irregular astigmatism*
- Later: The *cortex* opacifies
- At age 4-5 years: Capsule ruptures → total opacification

---Bilateral cases are associated with two of the *familial oculorenal* syndromes (Alport syndrome; Lowe syndrome)

<table>
<thead>
<tr>
<th>Alport Syndrome</th>
<th>Lowe Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td>Posterior</td>
</tr>
<tr>
<td>Most are X-linked</td>
<td>X-linked</td>
</tr>
</tbody>
</table>
- Secondary to **ectasia** of central portion of lens surface.
- Typical clinical course:
 - **Early**: Manifests as **myopia**
 - **Next**: Manifests as **irregular astigmatism**
 - **Later**: The cortex opacifies
 - **At age 4-5 years**: Capsule ruptures → total opacification
- Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome)

<table>
<thead>
<tr>
<th></th>
<th>Lenticonus location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>?</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>?</td>
</tr>
</tbody>
</table>
Lenticonus

--Secondary to **ectasia** of central portion of **lens surface**
--Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as **irregular astigmatism**
 --Later: The **cortex** opacifies
 --At age 4-5 years: Capsule ruptures → **total opacification**
--Bilateral cases are associated with two of the **familial oculorenal syndromes** (Alport syndrome; Lowe syndrome)

<table>
<thead>
<tr>
<th></th>
<th>Lenticonus location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood vs infancy</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in childhood vs infancy</td>
</tr>
</tbody>
</table>
Lenticonus

--Secondary to ectasia of central portion of lens surface
--Typical clinical course:
 --Early: Manifests as myopia
 --Next: Manifests as irregular astigmatism
 --Later: The cortex opacifies
 --At age 4-5 years: Capsule ruptures \(\rightarrow\) total opacification
--Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome)

<table>
<thead>
<tr>
<th></th>
<th>Lenticous location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
</tr>
</tbody>
</table>
Lenticonus

--Secondary to ectasia of central portion of lens surface.

--Typical clinical course:
 --Early: Manifests as myopia.
 --Next: Manifests as irregular astigmatism.
 --Later: The cortex opacifies.
 --At age 4-5 years: Capsule ruptures → total opacification.

--Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome)

<table>
<thead>
<tr>
<th></th>
<th>Lenticonus location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>?</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>?</td>
</tr>
</tbody>
</table>
Lenticonus

--Secondary to **ectasia** of central portion of **lens surface**
--Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as **irregular astigmatism**
 --Later: The cortex opacifies
 --At age 4-5 years: Capsule ruptures \(\rightarrow\) **total opacification**
--Bilateral cases are associated with two of the **familial oculorenal syndromes**
 (**Alport** syndrome; **Lowe** syndrome)

<table>
<thead>
<tr>
<th>Lenticonus</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
</tr>
</tbody>
</table>
Lenticonus

- Secondary to **ectasia** of central portion of lens surface
- Typical clinical course:
 - Early: Manifests as **myopia**
 - Next: Manifests as **irregular astigmatism**
 - Later: The **cortex** opacifies
 - At age 4-5 years: Capsule ruptures → **total opacification**
- Bilateral cases are associated with two of the **familial oculorenal** syndromes (**Alport** syndrome; **Lowe** syndrome)

<table>
<thead>
<tr>
<th></th>
<th>Lenticonus location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
<td>?</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
<td>?</td>
</tr>
</tbody>
</table>
A

---Secondary to **ectasia** of central portion of **lens surface**
---Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as **irregular astigmatism**
 --Later: The **cortex** opacifies
 --At age 4-5 years: Capsule ruptures → **total opacification**
---Bilateral cases are associated with two of the **familial oculorenal** syndromes (Alport syndrome; Lowe syndrome)

<table>
<thead>
<tr>
<th>Alport Syndrome</th>
<th>Lowe Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td>Posterior</td>
</tr>
<tr>
<td>Most are X-linked</td>
<td>X-linked</td>
</tr>
<tr>
<td>Hematuria in childhood</td>
<td>Hematuria in infancy</td>
</tr>
<tr>
<td>High-f nerve deafness; nephritis</td>
<td>MR; rickets; hypotonia</td>
</tr>
<tr>
<td>Anterior subcapsular cataract</td>
<td>Microsphero-phakia</td>
</tr>
</tbody>
</table>
Anterior subcapsular cataract

Lenticonus
Lenticonus

Microspherophakia
Lenticonus

--Secondary to **ectasia** of central portion of **lens surface**
--Typical clinical course:
 --Early: Manifests as **myopia**
 --Next: Manifests as **irregular astigmatism**
 --Later: The **cortex** opacifies
 --At age 4-5 years: Capsule ruptures **→** total opacification
--Bilateral cases are associated with two of the **familial oculorenal syndromes** (**Alport** syndrome; **Lowe** syndrome, and the…)

<table>
<thead>
<tr>
<th></th>
<th>Lenticonus location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
<td>Microsphero-phakia</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
<td>Microsphero-phakia</td>
</tr>
</tbody>
</table>

For completeness’ sake: *There are four more familial oculorenal syndromes mentioned in the BCSC books. All are the same type of disorder. What type are they?*
Lenticonus

---Secondary to **ectasia** of central portion of **lens surface**

---Typical clinical course:

---Early: Manifests as **myopia**

---Next: Manifests as **irregular astigmatism**

---Later: The **cortex** opacifies

---At age 4-5 years: Capsule **ruptures** → **total opacification**

---Bilateral cases are associated with two of the **familial oculorenal syndromes** (Alport syndrome; **Lowe** syndrome, and the...ciliopathies)

<table>
<thead>
<tr>
<th></th>
<th>Lenticonus location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
<td>Microsphero-phakia</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
<td>Microsphero-phakia</td>
</tr>
</tbody>
</table>

*For completeness’ sake: There are four more familial oculorenal syndromes mentioned in the BCSC books. All are the same type of disorder. What type are they?** **Ciliopathy**
What is a ciliopathy?

A ciliopathy is an inherited condition marked by abnormal structure and/or function of cilia. Cilia are ubiquitous organelles, and ciliopathies primarily affect three organs:

- The eyes
- The brain
- The kidneys

For completeness’ sake: There are four more familial oculorenal syndromes mentioned in the BCSC books. All are the same type of disorder. What type are they? **Ciliopathy**
Lenticonus

What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia

--Later: The cortex opacifies
--At age 4-5 years: Capsule ruptures \rightarrow total opacification
--Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome, and the...ciliopathies)

<table>
<thead>
<tr>
<th></th>
<th>Lenticous location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
<td>Microsphero-phakia</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
<td>Microsphero-phakia</td>
</tr>
</tbody>
</table>

For completeness’ sake: There are four more familial oculorenal syndromes mentioned in the BCSC books. All are the same type of disorder. What type are they? Ciliopathy
Q

Lenticonus

What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia

Cilia are ubiquitous organelles. That said, ciliopathies primarily affect three organs--what are they?

--Later: The cortex opacifies
--At age 4-5 years: Capsule ruptures \rightarrow total opacification
--Bilateral cases are associated with two of the familial oculorenal syndromes (**Alport** syndrome; **Lowe** syndrome, and the...ciliopathies)

<table>
<thead>
<tr>
<th></th>
<th>Lenticonus location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
<td>Microsphero-phakia</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
<td>Microsphero-phakia</td>
</tr>
</tbody>
</table>

For completeness’ sake: There are **four more** familial oculorenal syndromes mentioned in the BCSC books. All are the same type of disorder. What type are they? **Ciliopathy**
What is a ciliopathy? An inherited condition marked by abnormal structure and/or function of cilia

Cilia are ubiquitous organelles. That said, ciliopathies primarily affect three organs--what are they? The eyes, brain and kidneys

--Later: The cortex opacifies
--At age 4-5 years: Capsule ruptures → total opacification
--Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome, and the...ciliopathies)

<table>
<thead>
<tr>
<th></th>
<th>Lenticonus location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
<td>Microsphero-phakia</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
<td>Microsphero-phakia</td>
</tr>
</tbody>
</table>

For completeness’ sake: There are four more familial oculorenal syndromes mentioned in the BCSC books. All are the same type of disorder. What type are they? Ciliopathy
Lenticonus

<table>
<thead>
<tr>
<th>Lenticular Location</th>
<th>Inheritance</th>
<th>Classic Presentation (Nonocular)</th>
<th>Associated Findings</th>
<th>Another Lens Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
</tr>
</tbody>
</table>

For completeness’ sake: There are **four more** familial oculorenal syndromes mentioned in the BCSC books. All are the same type of disorder. What type are they? **Ciliopathy**
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.
Cilia are ubiquitous organelles. That said, ciliopathies primarily affect three organs—what are they?

The eyes??!! Which part of the eye contains cilia wiggling about?
None. Remember, cilia come in two basic flavors: Motile, and nonmotile. It is the nonmotile type which is ubiquitous in the eye.

Lenticonus

<table>
<thead>
<tr>
<th>Lenticonus location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
</tr>
</tbody>
</table>

For completeness’ sake: There are four more familial oculorenal syndromes mentioned in the BCSC books. All are the same type of disorder. What type are they? Ciliopathy
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous organelles. That said, ciliopathies primarily affect three organs:
- The eyes, brain
- The kidneys

What are the four ciliopathies emphasized in the BCSC books?
- Note: You have heard of at least several of these, but may not have thought of them as a group, i.e., as all being members of the *oculorenal syndrome* family. It's important that you make this connection!

For completeness’ sake: There are **four more** *familial oculorenal syndromes* mentioned in the BCSC books. All are the same type of disorder. What type are they? **Ciliopathy**

<table>
<thead>
<tr>
<th>Lenticous</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
</tr>
</tbody>
</table>
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous organelles.
The eyes, brain, and kidneys are particularly affected.

What are the four ciliopathies emphasized in the BCSC books?
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Bilateral cases are associated with two of the familial oculorenal syndromes
(Alport syndrome; Lowe syndrome, and the...ciliopathies)

Lenticonus

<table>
<thead>
<tr>
<th>Lenticonus</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
</tr>
</tbody>
</table>

For completeness’ sake: There are four more familial oculorenal syndromes mentioned in the BCSC books. All are the same type of disorder. What type are they? Ciliopathy
Question:

Lenticonus

<table>
<thead>
<tr>
<th>Location</th>
<th>Inheritance</th>
<th>Classic Presentation (Nonocular)</th>
<th>Associated Findings</th>
<th>Another Lens Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
</tr>
</tbody>
</table>

For completeness’ sake: There are **four more** familial oculo-renal syndromes mentioned in the BCSC books. All are the same type of disorder. What type are they? **Ciliopathy**

What is a ciliopathy?

An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous organelles. The eyes, brain, and kidneys are primarily affected by ciliopathies.

What are the four ciliopathies emphasized in the BCSC books?

- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Do you have a mnemonic for remembering the ciliopathies?

Indeed I do--picture a cilia that JABS you in the eye.

Cilia are ubiquitous organelles.

- Bilateral cases are associated with two of the familial oculo-renal syndromes (**Alport** syndrome; **Lowe** syndrome, and the...ciliopathies)
Lenticonus

What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous organelles. The eyes, brain, and kidneys are primarily affected by ciliopathies.

What are the four ciliopathies emphasized in the BCSC books? What are they?
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Do you have a mnemonic for remembering the ciliopathies? Indeed I do--picture a cilia that JABS you in the eye.

For completeness' sake: There are four more familial oculo-renal syndromes mentioned in the BCSC books. All are the same type of disorder. What type are they?

Ciliopathy
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous organelles. That said, ciliopathies primarily affect three organs—what are they?
- Eyes
- Brain
- Kidneys

What are the four ciliopathies emphasized in the BCSC books?
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

- Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome, and the...ciliopathies)

<table>
<thead>
<tr>
<th>Lenticonus location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
</tr>
<tr>
<td>Ciliopathies</td>
<td></td>
<td>Next we will compare/contrast the ciliopathies with Alport and Lowe syndromes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous organelles. That said, ciliopathies primarily affect three organs—what are they?

- The eyes
- The brain
- The kidneys

What are the four ciliopathies emphasized in the BCSC books?
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Bilateral cases are associated with two of the familiar oculorenal syndromes (Alport syndrome; Lowe syndrome, and the...ciliopathies)

<table>
<thead>
<tr>
<th>Lenticous location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
</tr>
<tr>
<td>Ciliopathies</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Are lenticous or other lens findings a feature of the ciliopathies?
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous organelles.
The eyes, brain, and kidneys are primarily affected by ciliopathies.

What are the four ciliopathies emphasized in the BCSC books?
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome, and the...ciliopathies)

Alport Syndrome
- Location: Anterior
- Inheritance: Most are X-linked
- Classic presentation (nonocular): Hematuria in childhood
- Associated findings: High-f nerve deafness; nephritis
- Another lens finding: Microsphero-phakia

Lowe Syndrome
- Location: Posterior
- Inheritance: X-linked
- Classic presentation (nonocular): Hematuria in infancy
- Associated findings: MR; rickets; hypotonia
- Another lens finding: Microsphero-phakia

Ciliopathies
- Location: None
- Inheritance: None
- Classic presentation (nonocular): None
- Associated findings: No--unlike Alport and Lowe syndromes, ciliopathies are not associated with lens abnormalities
- Another lens finding: None

Lenticonus

- **Location**: Inheritance Classic
- **Presentation**: Associated findings: Another lens finding

What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous organelles. The eyes, brain, and kidneys are primarily affected by ciliopathies.

What are the four ciliopathies emphasized in the BCSC books?
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome, and the...ciliopathies)
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous organelles. That said, ciliopathies primarily affect three organs—what are they?
- The eyes, brain, and kidneys.

What are the four ciliopathies emphasized in the BCSC books?
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome, and the...ciliopathies)

<table>
<thead>
<tr>
<th></th>
<th>Lenticonus location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
<td>Microspherophakia</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
<td>Microspherophakia</td>
</tr>
<tr>
<td>Ciliopathies</td>
<td>None</td>
<td>?</td>
<td>In what manner are the ciliopathies inherited?</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous organelles. That said, ciliopathies primarily affect three organs. What are they?
The eyes, brain, and kidneys.

What are the four ciliopathies emphasized in the BCSC books?
-- Joubert syndrome
-- Alström syndrome
-- Bardet-Biedl syndrome
-- Senior-Løken syndrome

Unlike the X-linked Alport and Lowe syndromes, ciliopathies are inherited AR.

<table>
<thead>
<tr>
<th>Lenticous Location</th>
<th>Inheritance</th>
<th>Classic Presentation (nonocular)</th>
<th>Associated Findings</th>
<th>Another Lens Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
</tr>
<tr>
<td>Ciliopathies</td>
<td>None</td>
<td>AR</td>
<td>Unlike the X-linked Alport and Lowe syndromes, ciliopathies are inherited AR</td>
<td>None</td>
</tr>
</tbody>
</table>
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous organelles. That said, ciliopathies primarily affect three organs—what are they?

- The eyes, brain
- The kidneys

What are the four ciliopathies emphasized in the BCSC books?
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome, and the...ciliopathies)

<table>
<thead>
<tr>
<th>Lenticonus location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
</tr>
<tr>
<td>Ciliopathies</td>
<td>None</td>
<td>AR</td>
<td>Hematuria?</td>
<td>Is hematuria a feature of the ciliopathies?</td>
</tr>
</tbody>
</table>
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous
The eyes, brain, and kidneys, et cetera.

What are the four ciliopathies emphasized in the BCSC books?---what are they?
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome, and the…ciliopathies)

<table>
<thead>
<tr>
<th>Lenticus</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
</tr>
<tr>
<td>Ciliopathies</td>
<td>None</td>
<td>AR</td>
<td>No hematuria</td>
<td>Also unlike Alport/Lowe syndromes, ciliopathy pts don’t have hematuria (but they do have renal failure)</td>
</tr>
<tr>
<td></td>
<td>Lenticonus location</td>
<td>Inheritance</td>
<td>Classic presentation (nonocular)</td>
<td>Associated findings</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>Ciliopathies do have a classic and important associated eye finding--what is it?</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td></td>
</tr>
<tr>
<td>Ciliopathies</td>
<td>None</td>
<td>AR</td>
<td>No hematuria</td>
<td>?</td>
</tr>
</tbody>
</table>
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia

Cilia are ubiquitous organelles. That said, ciliopathies primarily affect three organs—what are they?

- The eyes
- The brain
- The kidneys

What are the four ciliopathies emphasized in the BCSC books?
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Lenticonus

<table>
<thead>
<tr>
<th>Location</th>
<th>Inheritance</th>
<th>Classic Presentation (Nonocular)</th>
<th>Associated Findings</th>
<th>Another Lens Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>Ciliopathies do have a classic and important associated eye finding--what is it?</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>X-linked</td>
<td>Hematuria in infancy</td>
<td></td>
</tr>
<tr>
<td>Ciliopathies</td>
<td>None</td>
<td>AR</td>
<td>No hematuria</td>
<td>Pigmentary retinopathy with flat ERG</td>
</tr>
</tbody>
</table>
Pigmentary retinopathy in Bardet-Biedl syndrome
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia

Cilia are ubiquitous organelles. That said, ciliopathies primarily affect three organs—what are they?

The eyes, brain, kidneys

What are the four ciliopathies emphasized in the BCSC books?—what are they?
--Joubert syndrome
--Alström syndrome
--Bardet-Biedl syndrome
--Senior-Løken syndrome

--Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome, and the…ciliopathies)

<table>
<thead>
<tr>
<th>Lenticusus</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td>‘Pigmentary retinopathy with flat ERG in an infant’ sounds like what disease?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciliopathies</td>
<td>None</td>
<td>AR</td>
<td>No hematuria</td>
<td>Pigmentary retinopathy with flat ERG</td>
</tr>
</tbody>
</table>
Lenticonus

- Secondary to ectasia of central portion of lens surface
- Typical clinical course:
 - Early: Manifests as myopia
 - Next: Manifests as irregular astigmatism
 - Later: The cortex opacifies
 - At age 4-5 years: Capsule ruptures → total opacification

- Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome, and the...ciliopathies)

<table>
<thead>
<tr>
<th>Lenticular Location</th>
<th>Inheritance</th>
<th>Classic Presentation (nonocular)</th>
<th>Associated Findings</th>
<th>Another Lens Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alport Syndrome</td>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
</tr>
<tr>
<td>Lowe Syndrome</td>
<td>Posterior</td>
<td></td>
<td>Pigmentary retinopathy with flat ERG in an infant sounds like what disease? Leber’s congenital amaurosis. Therefore, before a child is diagnosed with LCA, one must consider the diagnosis of a ciliopathy.</td>
<td>Pigmentary retinopathy with flat ERG</td>
</tr>
<tr>
<td>Ciliopathies</td>
<td>None</td>
<td>AR</td>
<td>No hematuria</td>
<td>Pigmentary retinopathy with flat ERG</td>
</tr>
</tbody>
</table>
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous organelles.

The eyes, brain, and kidneys are affected by ciliopathies.

What are the four ciliopathies emphasized in the BCSC books?
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Alport Syndrome
- Anterior
- Most are X-linked
- Hematuria in childhood
- High-f frequency nerve deafness
- Microspherophakia

Lowe Syndrome
- Posterior
- X-linked
- Hematuria in infancy
- MR; rickets; hypotonia
- Microspherophakia

Ciliopathies
- None
- AR
- No hematuria
- Pigmentary retinopathy with flat ERG
- None

Leber’s congenital amaurosis is an age-related variant of retinitis pigmentosa.

‘Pigmentary retinopathy with flat ERG in an infant’ sounds like what disease?

Leber’s congenital amaurosis. Therefore, before a child is diagnosed with LCA, one must consider the diagnosis of a ciliopathy.
What is a ciliopathy?
An inherited condition marked by abnormal structure and/or function of cilia.

Cilia are ubiquitous organelles. The eyes, brain, and kidneys are affected by ciliopathies.

What are the four ciliopathies emphasized in the BCSC books?
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Bilateral cases are associated with two of the familial oculorenal syndromes (Alport syndrome; Lowe syndrome, and the ciliopathies).

<table>
<thead>
<tr>
<th>Alport Syndrome</th>
<th>Lenticous location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior</td>
<td>Most are X-linked</td>
<td>Hematuria in childhood</td>
<td>High-f nerve deafness; nephritis</td>
<td>Microphthalmia</td>
<td></td>
</tr>
</tbody>
</table>

Leber’s congenital amaurosis is an age-related variant of... **retinitis pigmentosa**

<table>
<thead>
<tr>
<th>Lowe Syndrome</th>
<th>Lenticous location</th>
<th>Inheritance</th>
<th>Classic presentation (nonocular)</th>
<th>Associated findings</th>
<th>Another lens finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posterior</td>
<td>X-linked</td>
<td></td>
<td>Hematuria in infancy</td>
<td>MR; rickets; hypotonia</td>
<td>Microphthalmia, rickets, nephritis</td>
</tr>
</tbody>
</table>

‘Pigmentary retinopathy with flat ERG in an infant’ sounds like what disease? Leber’s congenital amaurosis. Therefore, before a child is diagnosed with LCA, one must consider the diagnosis of a ciliopathy.
Familial Oculorenal Syndromes *tl;dr*

- One sort
- The other sort
Familial Oculorenal Syndromes

tl;dr

Ciliopathies

Not Ciliopathies
Familial Oculorenal Syndromes *tl;dr*

Lenticonus

Ciliopathies

Not Ciliopathies

Q
Familial Oculorenal Syndromes *tl;dr*

- Ciliopathies
 - Joubert syndrome
 - Alström syndrome
 - Bardet-Biedl syndrome
 - Senior-Løken syndrome
- Not Ciliopathies
 - Alport syndrome
 - Lowe syndrome
Familial Oculorenal Syndromes *tl;dr*

- **Ciliopathies**
 - Joubert syndrome
 - Alström syndrome
 - Bardet-Biedl syndrome
 - Senior-Løken syndrome

- **Not Ciliopathies**
 - Alport syndrome
 - Lowe syndrome

Key Features

- Renal failure
- Hematuria
Familial Oculorenal Syndromes *tl;dr*

Ciliopathies
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Not Ciliopathies
- Alport syndrome
- Lowe syndrome

Renal failure
- *without* hematuria
- *with* hematuria

Key Features

Lenticonus
Familial Oculorenal Syndromes *tl;dr*

- **Ciliopathies**
 - Joubert syndrome
 - Alström syndrome
 - Bardet-Biedl syndrome
 - Senior-Løken syndrome

- **Not Ciliopathies**
 - Alport syndrome
 - Lowe syndrome

Key Features

- Renal failure *without* hematuria
 - Classic eye finding: [Lenticonus](#)

- Renal failure *with* hematuria
 - Classic eye finding:
Familial Oculorenal Syndromes

Ciliopathies
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Not Ciliopathies
- Alport syndrome
- Lowe syndrome

Renal failure

without hematuria

Classic eye finding:
Pigmentary retinopathy

Renal failure

with hematuria

Classic eye finding:
Lenticonus
Familial Oculoorenal Syndromes

Ciliopathies
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome

Not Ciliopathies
- Alport syndrome
- Lowe syndrome

Renal failure
- without hematuria
- Renal failure with hematuria

Classic eye finding:
- Pigmentary retinopathy
- Lenticonus

Inheritance:

Key Features
Familial Oculorenal Syndromes

Ciliopathies
- Joubert syndrome
- Alström syndrome
- Bardet-Biedl syndrome
- Senior-Løken syndrome
- Alport syndrome
- Lowe syndrome

Renal failure without hematuria
Classic eye finding: Pigmentary retinopathy
Inheritance: AR

Not Ciliopathies
- Alport syndrome
- Lowe syndrome

Renal failure with hematuria
Classic eye finding: Lenticonus
Inheritance: X-linked

Key Features