Refraction: Points and Planes

Basic Optics, Chapter 18

Points and Planes

- As we learned in Chapter 4, every lens has two focal points:
- the primary focal point
- the secondary focal point

Points and Planes

- As we learned in Chapter 4, every lens has two focal points:
- the primary focal point
- the secondary focal point
- Primary focal point: Location at which an object could be placed, and light rays associated with the object would exit the lens with zero
 vergence (i.e., parallel)

Points and Planes

- As we learned in Chapter 4, every lens has two focal points:
- the primary focal point
- the secondary focal point
- Primary focal point: Location at which an object could be placed, and light rays associated with the object would exit the lens with zero vergence (i.e., parallel)
- Secondary focal point: Location at which the image is formed when light rays with zero vergence (i.e., parallel) encounter a given lens

Points and Planes

- As we learned in Chapter 4, every lens has two focal points:
- the primary focal point
- the secondary focal point
- And as we shall see shortly, these points are simply special locations on two important planes:
- the primary focal plane
- the secondary focal plane

Points and Planes

- As we learned in Chapter 4, every lens has two focal points:
- the primary focal point
- the secondary focal point
- And as we shall see shortly, these points are simply special locations on two important planes:
- the primary focal plane
- the secondary focal plane
- But first we will meet several other important members of the light-ray model family:
- the nodal point(s)
- the lens axis

Points and Planes

- As we learned in Chapter 4, every lens has two focal points:
- t1 primary focal point
- e secondary focal point
- And as we shallseestiortly, these points are

The primary focal points, nodal points, and two others called the principal points (which, you will be happy to learn, we won't get into) comprise what are known as the cardinal points for a lens system. Taken together, the cardinal points capture and describe the critical optical properties of any lens system. (And that's all I think you need to know about cardinal points per se.)
members of the light-ray model family:

- th nodal point(s)
- the lens axis

Points and Planes

Note: The term thin here means infinitely thin. Obviously, real lenses are not infinitely thin! A thin lens is a theoretical construct we employ because it simplifies the optics and thereby facilitates understanding.

Thin plus lens

Points and Planes

Thin plus lens

Nodal point (N): Location through which any ray, from any angle, will pass undeviated

Points and Planes

If a ray passes through the nodal point, it will not be refracted-that is, it will exit the lens with the same angle at which it entered

Thin plus lens

Nodal point (N): Location through which any ray, from any angle, will pass undeviated

Points and Planes

As an important aside...

In a thick (i.e., real) lens, there are two nodal points. However...

Points and Planes

As an important aside...

In a thick (i.e., real) lens, there are two nodal points. However... the same rule applies-a ray entering one nodal point will appear to 'jump' to the other and exit at the same angle (i.e., undeviated)

Points and Planes

Thin plus lens

(Technically speaking, a thin lens has two nodal points as well-it's just that they are both located at the same point in optical space.)

Points and Planes

Thin plus lens

Lens axis: The ray that passes through both focal points and the nodal point

Points and Planes

Thin plus lens

Lens axis: The ray that passes through both focal points and the nodal point

Points and Planes

The term optical axis is more general, and can be applied to eyes as well as lenses. (Recall from Chapter 4 that eyes have focal points; trust me that eyes also have nodal points.)

Points and Planes

The term optical axis is more general, and can be applied to eyes as well as lenses. (Recall from Chapter 4 that eyes have focal points; trust me that eyes also have nodal points.)
Bonus question: As shown, is this an emmetropic, hyperopic or myopic eye?

Points and Planes

The term optical axis is more general, and can be applied to eyes as well as lenses. (Recall from Chapter 4 that eyes have focal points; trust me that eyes also have nodal points.)
Bonus question: As shown, is this an emmetropic, hyperopic or myopic eye? Hyperopic. (The tipoff: The secondary focal point is behind the eye.)

Points and Planes

Thin plus lens

Primary focal point: The location from which rays hitting a lens will leave that lens with zero vergence (i.e., parallel to lens axis). You know this from Chapter 4.

Points and Planes

Thin plus lens

Primary focal plane: Rays emanating from any point on this plane will exit the lens parallel to one another (but not necessarily parallel to the lens axis)

Points and Planes

Consider this point on the primary focal plane. Rays passing through the lens from here will exit the lens parallel to one another. But how can we know which direction that will be?

Primary focal plane: Rays emanating from any point on this plane will exit the lens parallel to one another (but not necessarily parallel to the lens axis)

Points and Planes

Consider this point on the primary focal plane. Rays passing through the lens from here will exit the lens parallel to one another. But how can we know which direction that will be?

Primary focal plane: Rays emanating from any point on this plane will exit the lens parallel to one another (but not necessarily parallel to the lens axis)

Points and Planes

Consider this point on the primary focal plane. Rays passing through the lens from here will exit the lens parallel to one another. But how can we know which direction that will be?

Primary focal plane: Rays emanating from any point on this plane will exit the lens parallel to one another (but not necessarily parallel to the lens axis)

Points and Planes

Thin plus lens

Here again is the slide depicting the primary focal point within the context of the primary focal plane. You can now see that the nodal ray of the primary focal point is the lens (optical) axis.

Points and Planes

Thin plus lens

Secondary focal point: The location where rays parallel to the axis ray (ie, traveling with zero vergence) will be focused. (Also from Chapter 4.)

Points and Planes

Thin plus lens

Secondary focal plane: The 'home location' of all images formed by parallel rays hitting the lens

Points and Planes

Consider this point on the secondary focal plane.
From what direction will its formative rays arrive?

Secondary focal plane: The 'home location' of all images formed by parallel rays hitting the lens

Points and Planes

Consider this point on the secondary focal plane.
From what direction will its formative rays arrive?

Once again we can use the nodal ray...

Thin plus lens

Secondary focal plane: The 'home location' of all images formed by parallel rays hitting the lens

Points and Planes

Consider this point on the secondary focal plane.
From what direction will its formative rays arrive?

Thin plus lens
Once again we can use the nodal ray...And we know the remaining rays must be parallel to it

Secondary focal plane: The 'home location' of all images formed by parallel rays hitting the lens

Points and Planes

Thin plus lens

Here again is the slide depicting the secondary focal point within the context of the secondary focal plane. You can now see that the nodal ray of the secondary focal point is the lens (optical) axis.

Points and Planes

Thin minus lens

Here is a thin minus lens. Recall that the locations of the primary and secondary focal points are reversed as compared with a plus lens.

Points and Planes

Here is a thin minus lens. Recall that the locations of the primary and secondary focal points are reversed as compared with a plus lens
Naturally, the same must be true of the primary and secondary focal planes.

Points and Planes

Rays associated with the primary focal point exit the lens parallel to the lens axis.

Points and Planes

> .and rays associated with the secondary focal point are those that enter the lens with zero vergence (i.e., parallel to the lens axis).

Points and Planes

Primary focal plane: Rays associated with a point on this plane exit the lens parallel to one another (but not necessarily parallel to the lens axis)

Points and Planes

Secondary focal plane: The 'home location' of all images formed by parallel rays hitting the lens

