Optics Quiz 4

This quiz is intended to be taken after completion of Chapters 16-19

Note: Some questions herein may have appeared first in a copyrighted source. If you own the copyright to a question and would like an acknowledgement or to have the question removed, please contact me EyeDentistAAO@gmail.com

No, you can't use a calculator (and you don't need one anyway)

Note that some questions are callbacks from previous quizzes

Define refractive index (ie, fill in the fraction)

—— = The refractive index of the material

Define refractive index (ie, fill in the fraction)

$\frac{\text { Speed of liaht in vacuum }}{\text { Speed of light in material }}=$ The refractive index of the material

Fill in the blanks

Changing the direction of light via refraction requires two things:
a) The light ray must pass from a substance of
; and
b) The light ray must encounter the interface between the two substances... \qquad

Fill in the blanks

Changing the direction of light via refraction requires two things:
a) The light ray must pass from a substance of one \boldsymbol{n} to a substance of a different \boldsymbol{n}; and
b) The light ray must encounter the interface between the two substances...at an angle

A light ray is encountering a prism...Which way will the ray be refracted?

When a ray passes from a material of lower n to one of higher n, the ray is deflected toward the normal.

When a ray passes from a material of higher n to one of lower n, the ray is deflected away from the normal.

Fill in the blanks

Fill in the blanks

Convert each power cross to its spherocylindrical equivalent in...
a) Plus-cylinder format
b) Minus-cylinder format
c) Calculate the S.E. for each lens
d) What type of astigmatism does each represent?
e) One of these has a special name-which one?

Convert each power cross to its spherocylindrical equivalent in...
a) Plus-cylinder format
b) Minus-cylinder format
c) Calculate the S.E. for each lens
d) What type of astigmatism does each represent?
e) One of these has a special name-which one?

$+1$
(a) Plus: $-1+2 \times 180$

Plus: +1 +2 x 135

Convert each power cross to its spherocylindrical equivalent in...
a) Plus-cylinder format
b) Minus-cylinder format
c) Calculate the S.E. for each lens
d) What type of astigmatism does each represent? e) One of these has a special name-which one?

$+1$
(a) Plus: $-1+2 \times 180$

Minus: +1 - 2×090

Plus: $-6+2 \times 045$
Minus: -4-2 x 135

Plus: +1 +2 x 135
Minus: +3-2 x 045

Convert each power cross to its spherocylindrical equivalent in...
a) Plus-cylinder format
b) Minus-cylinder format
c) Calculate the S.E. for each lens
d) What type of astigmatism does each represent? e) One of these has a special name-which one?

$+1$
(a) Plus: $-1+2 \times 180$

Minus: +1 - 2×090
c) S.E.: Plano

Plus: $-6+2 \times 045$
Minus: -4 -2 x 135
S.E.: -5

Plus: +1 +2 x 135
Minus: +3-2 x 045
S.E.: +2

Convert each power cross to its spherocylindrical equivalent in...
a) Plus-cylinder format
b) Minus-cylinder format
c) Calculate the S.E. for each lens
d) What type of astigmatism does each represent?
e) One of these has a special name-which one?

$+1$
(a) Plus: $-1+2 \times 180$

Minus: +1 - 2×090
S.E.: Plano

Mixed astigmatism

Plus: $-6+2 \times 045$
Minus: -4 -2 x 135
S.E.: -5

Compound myopic

Plus: +1 +2 x 135
Minus: +3-2 x 045
S.E.: +2

Compound hyperopic

Convert each power cross to its spherocylindrical equivalent in...
a) Plus-cylinder format
b) Minus-cylinder format
c) Calculate the S.E. for each lens
d) What type of astigmatism does each represent?
e) One of these has a special name-which one?

$+1$
(a) Plus: $-1+2 \times 180$

Minus: +1 - 2×090
c) S.E.: Plano
(d) Mixed astigmatism

Plus: $-6+2 \times 045$
Minus: -4 -2 x 135
S.E.: -5

Compound myopic

Plus: +1 +2 x 135
Minus: +3-2 x 045
S.E.: +2

Compound hyperopic
(e) This one is a Jackson cross (look at the power cross: Cylinders of equal-but-opposite power oriented 90° from one another)
a) Where will the image be?
b) Will it be upright or inverted?
c) Are the object and image real or virtual?

a) Where will the image be?
b) Will it be upright or inverted?
c) Are the object and image real or virtual?

a) Where will the image be?
b) Will it be upright or inverted?
c) Are the object and image real or virtual?

Trace the: Nodal ray
a) Where will the image be?
b) Will it be upright or inverted?
c) Are the object and image real or virtual?

Trace the:
Nodal ray
a) Where will the image be? To the right of the lens
b) Will it be upright or inverted?
c) Are the object and image real or virtual?

a) Where will the image be? To the right of the lens
b) Will it be upright or inverted? Inverted
c) Are the object and image real or virtual?

Trace the:
Nodal ray
Secondary focal point ray

Opposite directions = inverted
a) Where will the image be? To the right of the lens
b) Will it be upright or inverted? Inverted
c) Are the object and image real or virtual? Both are real

a) Where will the image be?

Note: Minus lens!

b) Will it be upright or inverted?
c) Are the object and image real or virtual?
d) Is the image magnified or minified?

Thin minus lens

Trace the: Nodal ray

a) Where will the image be?
b) Will it be upright or inverted?
c) Are the object and image real or virtual?
d) Is the image magnified or minified?

Thin minus lens

a) Where will the image be?

Trace the:

Nodal ray

b) Will it be upright or inverted?
c) Are the object and image real or virtual?
d) Is the image magnified or minified?

a) Where will the image be?
b) Will it be upright or inverted?

Trace the:
Nodal ray
c) Are the object and image real or virtual?
d) Is the image magnified or minified?

Thin minus lens

a) Where will the image be? To the left of the lens
b) Will it be upright or inverted?
c) Are the object and image real or virtual?
d) Is the image magnified or minified?

Trace the:

Nodal ray

Secondary focal point ray
Primary focal point ray

Thin minus lens

a) Where will the image be? To the left of the lens
b) Will it be upright or inverted? Upright
c) Are the object and image real or virtual?
d) Is the image magnified or minified?

Trace the:

Nodal ray

Secondary focal point ray
Primary focal point ray

Same direction = Upright
a) Where will the image be? To the left of the lens
b) Will it be upright or inverted? Upright
c) Are the object and image real or virtual? Object is real d) Is the image magnified or minified?

Thin minus lens

a) Where will the image be? To the left of the lens
b) Will it be upright or inverted? Upright
c) Are the object and image real or virtual? Image is virtual d) Is the image magnified or minified?

a) Where will the image be? To the left of the lens
b) Will it be upright or inverted? Upright
c) Are the object and image real or virtual?
d) Is the image magnified or minified? Minified

A pt is a +4 hyperope. He is capable of a total of 4D of accommodation. Absent corrective lenses or surgery:
a) Where is his near point relative to the corneal plane?
b) Formally, his range of clear vision is from where to where?
c) Practically speaking, his range of clear vision is from where to where?

A pt is a +4 hyperope. He is capable of a total of 4D of accommodation. Absent corrective lenses or surgery:
a) Where is his near point relative to the corneal plane?
b) Formally, his range of clear vision is from where to where?
c) Practically speaking, his range of clear vision is from where to where?
a) To see clearly at distance, this +4 hyperope must first employ 4D of accommodation, which uses up all of his accommodative reserve. Thus, he has no remaining accommodative power with which to focus any closer.

A pt is a +4 hyperope. He is capable of a total of 4D of accommodation. Absent corrective lenses or surgery:
a) Where is his near point relative to the corneal plane?
b) Formally, his range of clear vision is from where to where?
c) Practically speaking, his range of clear vision is from where to where?
a) To see clearly at distance, this +4 hyperope must first employ 4D of accommodation, which uses up all of his accommodative reserve. Thus, he has no remaining accommodative power with which to focus any closer.
b) His formal range of clear vision is just 'at infinity.'

A pt is a +4 hyperope. He is capable of a total of 4D of accommodation. Absent corrective lenses or surgery:
a) Where is his near point relative to the corneal plane?
b) Formally, his range of clear vision is from where to where?
c) Practically speaking, his range of clear vision is from where to where?
a) To see clearly at distance, this +4 hyperope must first employ 4D of accommodation, which uses up all of his accommodative reserve. Thus, he has no remaining accommodative power with which to focus any closer.
b) His formal range of clear vision is just 'at infinity.'
c) In practical terms, from out in the distance to somewhere around the $20 \mathrm{ft} / 6 \mathrm{~m}$ mark.

A pt is plano uncorrected. She is capable of a total of $8 D$ of accommodation. Absent corrective lenses or surgery: a) Where is her near point relative to the corneal plane?
b) Her range of clear vision is from where to where?

A pt is plano uncorrected. She is capable of a total of $8 D$ of accommodation. Absent corrective lenses or surgery: a) Where is her near point relative to the corneal plane?
b) Her range of clear vision is from where to where?
a) This pt has no error lens. When she cranks in her 8D of accommodation, she has a total of 8 D in play. This puts her near point at $1 / 8=0.125 \mathrm{~m}(12.5 \mathrm{~cm})$ anterior to the corneal plane.

A pt is plano uncorrected. She is capable of a total of $8 D$ of accommodation. Absent corrective lenses or surgery:
a) Where is her near point relative to the corneal plane?
b) Her range of clear vision is from where to where?
a) This pt has no error lens. When she cranks in her 8D of accommodation, she has a total of 8 D in play. This puts her near point at $1 / 8=0.125 \mathrm{~m}(12.5 \mathrm{~cm})$ anterior to the corneal plane.
b) Because of her lack of an error lens, this pt can see clearly at distance. As noted, her near point is at 12.5 cm . Therefore, her range of clear vision is from infinity to 12.5 cm anterior to the corneal plane.

