Angular Magnification

Basic Optics, Chapter 21

Transverse Magnification

- But first, let's recall some of the facts about transverse magnification...

Transverse Magnification

- But first, let's recall some of the facts about transverse magnification...
- Transverse magnification refers to the actual sizes of images and objects, not to how they appear to an observer
- How big they are, not how big they look

Transverse Magnification

But what about objects and images located at
infinity?

Transverse Magnification

Transverse mag $=\frac{\text { Image height }}{\text { Object height }}$

$$
=\frac{\text { Image distance }(v)}{\text { Object distance }(u)}
$$

But what about objects and images located at infinity?

Transverse Magnification

Transverse mag $=\frac{\text { Image height }}{\text { Object height }}=$?

$$
=\frac{\text { Image distance }(v)}{\text { Object distance }(u)}
$$

So, if the object is at infinity, then the transverse mag is undefined mathematically, approaching zero. (Huh?)

But what about objects and images located at infinity?

Transverse Magnification

But what about objects and images located at infinity?

Transverse Magnification

- In addition, consider the optics of an afocal system (e.g., a telescope)

Parallel rays to an image at infinity

Parallel rays to an image at infinity

Transverse Magnification

- In addition, consider the optics of an afocal system (e.g., a telescope)

Note that focused rays are not involved-that is, telescopes have parallel (i.e., afocal) rays both coming in and going out

Transverse Magnification

- In addition, consider the optics of an afocal system (e.g., a telescope)

Parallel rays
from an object
at infinity

So, for telescopes, the transverse magnification would seem to be:

In other words, no magnification at all!

Transverse Magnification

- In addition, consider the optics of an afocal system (e.g., a telescope)

Parallel rays to an image at infinity

Parallel rays from an object at infinity

So, for telescopes, the transverse magnification would seem to be:
$\frac{\text { Image distance (v) }}{\text { Object distance (u) }}=\infty / \infty=1.0$
What good is a telescope that doesn't magnify?

Transverse Magnification

- Clearly, transverse mag cannot meet all our 'magnification needs'
- We also need a measure that addresses the apparent sizes of objects and images, not just actual sizes

Angular Magnification

- Clearly, transverse mag cannot meet all our 'magnification needs'
- We also need a measure that addresses the apparent sizes of objects and images, not just actual sizes
- That measure is angular magnification
- How big objects look, not how big they are

Angular Magnification

- Angular size is determined by the angular extent of retina an image subtenses (θ)

Just as in any other optical system, the nodal point of the eye determines image location when ray tracing

Angular Magnification

- Angular size is determined by the angular extent of retina an image subtenses (θ)

Angular Magnification

- Angular size is determined by the angular extent of retina an image subtenses (θ)

Consider this optical system...

Angular Magnification

- Angular size is determined by the angular extent of retina an image subtenses (θ)

Primary focal plane
of plus lens

Consider this optical system...What would happen if we inserted a plus lens such that the object was located at its primary focal plane?

Angular Magnification

- Angular size is determined by the angular extent of retina an image subtenses (θ)

All the rays will leave the lens parallel to the nodal ray, and...

Primary focal plane
of plus lens
Consider this optical system...What would happen if we inserted a plus lens such that the object was located at its primary focal plane?

Angular Magnification

- Angular size is determined by the angular extent of retina an image subtenses (θ)

All the rays will leave the lens parallel to the nodal ray, and..
One of those rays will pass through the nodal point of the eye, Plus lens subtensing a new angular size

Primary focal plane of plus lens

Consider this optical system...What would happen if we inserted a plus lens such that the object was located at its primary focal plane?

Angular Magnification

- Angular size is determined by the angular extent of retina an image subtenses (θ)

Primary focal plane of plus lens

Consider this optical system...What would happen if we inserted a plus lens such that the object was located at its primary focal plane?

Angular Magnification

- Angular size is determined by the angular extent of retina an image subtenses (θ)

Virtual image
at infinity

An increase in the dioptric power of the plus lens...
Higher power plus lens magnifier

Angular Magnification

- So, angular size is determined by the angular extent of retina an image subtenses (θ)
- Which, as we have just seen, is a function of object size and lens power

Angular Magnification
 - But what about angular magnification?

(Remember, size and magnification are not the same thing!)

Angular Magnification

- But what about angular magnification?
- 'Magnification' is a relational term, i.e., the retinal image is bigger or smaller relative to something

Angular Magnification

- But what about angular magnification?
- 'Magnification' is a relational term, i.e., the retinal image is bigger or smaller relative to something

Angular Magnification

- But what about angular magnification?
- 'Magnification' is a relational term, i.e., the retinal image is bigger or smaller relative to something

But there's a problem...

Angular Magnification

- But what about angular magnification?
- 'Magnification' is a relational term, i.e., the retinal image is bigger or smaller relative to something

Recall this slide, where we saw that the angular size of an image also changes with the distance between the object and the retina

Angular Magnification

- But what about angular magnification?
- 'Magnification' is a relational term, i.e., the retinal image is bigger or smaller relative to something

> retinal angular size...

> If the object moves closer to the eye, its angular size on the retina increases, although its actual size is unchanged

So, given that object-retina distance affects unmagnified

Recall this slide, where we saw that the angular size of an image also changes with the distance between the object and the retina

Angular Magnification

- But what about angular magnification?
- 'Magnification' is a relational term, i.e., the retinal image is bigger or smaller relative to something

> determining unmagnified retinal angular size?

> If the object moves closer to the eye, its angular size on the retina increases, although its actual size is unchanged

So, given that object-retina distance affects unmagnified retinal angular size...what distance should be used in

Recall this slide, where we saw that the angular size of an image also changes with the distance between the object and the retina

Angular Magnification

- To determine angular magnification, the object must be at a specific, arbitrary distance

Angular Magnification

- To determine angular magnification, the object must be at a specific, arbitrary distance

Angular Magnification

- To determine angular magnification, the object must be at a specific, arbitrary distance - A reference distance of 25 cm is the standard

	Angular magnification $=$
Magnified retinal angular size	$\rightarrow \theta^{\prime} / \theta$

Angular Magnification

Magnified retinal angular size

Angular magnification = θ^{\prime} / θ Unmagnified retinal angular size at 25 cm

Angular Magnification

$=\frac{\text { lens power }}{4}$

So, e.g., a 20D lens is a 20/4 = 5x magnifier

