Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular
- Pseudophakic
- Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

Corneal
- Incisional
 - RK
 - AK
 - LRI
- Laser
 - PRK
 - LASEK
 - Epi-LASIK
 - LASIK
 - SMILE
- Other
 - ?
 - ?
 - ?
 - ?
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular
- Pseudophakic
 - Refractive lens exchange (RLE)
- Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

Corneal
- Incisional
 - RK
 - AK
 - LRI
- Laser
 - PRK
 - LASEK
 - Epi-LASIK
 - LASIK
 - SMILE

Other
- CK
- SAI
- CRI
- CXL
- ICRS
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

Pseudophakic
 - Refractive lens exchange (RLE)

Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

Incisional
 - RK
 - AK
 - LRI

Corneal

Laser
 - PRK
 - LASEK
 - Epi-LASIK
 - LASIK
 - SMILE

Other
 - CK?
 - SAI
 - CRI
 - CXL
 - ICRS

What does CK stand for?
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

- Pseudophakic
 - Refractive lens exchange (RLE)
- Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

Corneal

Incisional

- RK
- AK
- LRI

Laser

- PRK
- LASEK
- Epi-LASIK
- LASIK
- SMILE

Other

- CK
- SAI
- CRI
- CXL
- ICRS

What does CK stand for? Conductive Keratoplasty
What does **CK** stand for?
Conductive Keratoplasty

What does **SAI** stand for?
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular
- Pseudophakic
 - Refractive lens exchange (RLE)
- Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

Corneal
- Incisional
 - RK
 - AK
 - LRI
- Laser
 - PRK
 - LASEK
 - Epi-LASIK
 - LASIK
 - SMILE

Other
- CK
- SAI
- CRI
- CXL
- ICRS

What does CK stand for?
Conductive Keratoplasty

What does SAI stand for?
Small Aperture Inlay
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular
- Pseudophakic
 - Refractive lens exchange (RLE)
- Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

Corneal
- Incisional
 - RK
 - AK
 - LRI
- Laser
 - PRK
 - LASEK
 - Epi-LASIK
 - LASIK
 - SMILE
- Other
 - CK
 - SAI
 - CRI
 - CXL
 - ICRS

What does **CK** stand for? Conductive Keratoplasty

What does **SAI** stand for? Small Aperture Inlay

What does **CRI** stand for?
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular
- Pseudophakic
 - Refractive lens exchange (RLE)
- Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

Corneal
- Incisional
 - RK
 - AK
 - LRI
- Laser
 - PRK
 - LASEK
 - Epi-LASIK
 - LASIK
 - SMILE
- Other
 - CK
 - SAI
 - CRI
 - CXL
 - ICRS

What does CK stand for? Conductive Keratoplasty

What does SAI stand for? Small Aperture Inlay

What does CRI stand for? Corneal Reshaping Inlay
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

- **Intraocular**
 - Pseudophakic
 - Refractive lens exchange (RLE)
 - Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

- **Corneal**
 - Incisional
 - RK
 - AK
 - LRI
 - Laser
 - PRK
 - LASEK
 - Epi-LASIK
 - LASIK
 - SMILE
 - Other
 - CK
 - SAI
 - CRI
 - CXL
 - ICRS

What does CK stand for?
Conductive Keratoplasty

What does CXL stand for?
Corneal Reshaping Inlay

What does SAI stand for?
Small Aperture Inlay
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular
- Pseudophakic
 - Refractive lens exchange (RLE)
- Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

Corneal
- Incisional
 - RK
 - AK
 - LRI
- Laser
 - PRK
 - LASEK
 - Epi-LASIK
 - LASIK
 - SMILE
- Other
 - CK
 - SAI
 - CRI
 - CXL
 - ICRS

What does **CK** stand for?
Conductive Keratoplasty

What does **CXL** stand for?
Corneal CROSS Linking

What does **CRI** stand for?
Corneal Reshaping Inlay

What does **SAI** stand for?
Small Aperture Inlay
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

Pseudophakic

Refractive lens exchange (RLE)

Phakic IOL

Iris-fixated

Sulcus-fixated

Corneal

Incisional

RK

AK

LRI

Laser

PRK

LASEK

Epi-LASIK

LASIK

SMILE

Other

ICRS?

What does CK stand for?
Conductive Keratoplasty

What does CXL stand for?
Corneal CROSS Linking

What does CRI stand for?
Corneal Reshaping Inlay

What does SAI stand for?
Small Aperture Inlay

What does ICRS stand for?
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

- Pseudophakic
 - Refractive lens exchange (RLE)
- Phakic IOL
 - Iris-fixated
 - Sulcus-fixated

Corneal

Incisional

- RK
- AK
- LRI

Laser

- PRK
- LASEK
- Epi-LASIK
- LASIK
- SMILE

Other

- CK
- SAI
- CRI
- CXL
- ICRS

What does CK stand for? Conductive Keratoplasty

What does CXL stand for? Corneal CROSS Linking

What does CRI stand for? Corneal Reshaping Inlay

What does SAI stand for? Small Aperture Inlay

What does ICRS stand for? Intrastromal Corneal Ring Segments
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Incisional

Laser

Corneal

RK

PPK

Other

CK

SAI

CRI

CXL

ICRS

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

- Pseudophakic
- Phakic IOL
 - Refractive lens exchange (RK)

Corneal

- Incisional
- Laser
 - RK

Other

- CK
- SAI
- CRI
- CXL
- ICRS

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

- Pseudophakic
 - Refractive lens exchange (RLE)

- Phakic IOL

Corneal

- Incisional
 - RK

- Laser
 - PRK
 - LASIK
 - SMILE

Other

- CK
- SAI
- CRI
- CXL
- ICRS

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Incisional

Laser

Corneal

LRI

RK

PPK

Other

CK

SAI

CRI

CXL

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is CK performed?

A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe's tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia? Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be needed) in the corneal periphery, the peripheral cornea flattens, which in turn produces central corneal steepening. The resulting myopic shift allows the pt to see at near without spectacles.
How is CK performed?
A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe's tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat **presbyopia**, whereas CXL and ICRS are primarily used to treat **keratoconus**.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

- Intraocular
 - Pseudophakic
 - Phakic IOL
 - Refractive lens exchange (RLE)

- Corneal
 - Incisional
 - RK
 - Laser
 - PRK
 - LASIK
 - LASEK
 - SMILE
 - Epi-LASIK
 - Other
 - CK
 - SAI
 - CRI
 - ICRS
 - CXL

How is CK performed?
A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe's tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia?
CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and CRI are **used to treat presbyopia**, whereas CXL and ICRS are primarily used to treat **keratoconus**.
How is CK performed?
A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe’s tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia?
Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be needed) in the corneal periphery, the peripheral cornea flattens, which in turn produces central corneal steepening.
How is CK performed?
A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe's tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia?
Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be needed) in the corneal periphery, the peripheral cornea flattens, which in turn produces central corneal steepening. The resulting myopic shift allows the pt to see at near without spectacles.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

- Intraocular
 - Pseudophakic
 - Phakic IOL

- Corneal
 - Incisional
 - RK
 - Laser
 - PRK
 - LASEK
 - LASIK
 - SMILE
 - Epi-LASIK
 - Other
 - Iris-fixated
 - ICRS
 - Collagen Shrinkage
 - Cross-linking
 - RK
 - AK
 - LRI

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and CRI are used to treat **presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.**

How is CK performed?
A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe’s tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia?
Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be necessary) in the corneal periphery, the peripheral cornea flattens, which in turn produces central corneal steepening. The resulting myopic shift allows the pt to see at near without spectacles.

Is CK typically performed unilaterally, or bilaterally?
Unilaterally

Is it usually performed on the dominant, or nondominant eye?
Nondominant

How much myopic shift are we talking about here?
Usually 1-2D
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery
- **Intraocular**
 - Pseudophakic
 - Phakic IOL
- **Corneal**
 - Incisional
 - Laser
- **Other**
 - CK, SAI, CRI
 - CXL, ICRS

How is CK performed?
A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe’s tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia?
Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be needed) in the corneal periphery, the peripheral cornea flattens, which in turn produces central corneal steepening. The resulting myopic shift allows the pt to see at near without spectacles.

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat **presbyopia**, whereas **CXL** and **ICRS** are primarily used to treat **keratoconus**.

Is CK typically performed unilaterally, or bilaterally?
Unilaterally

Is CK typically performed unilaterally, or bilaterally?
Unilaterally
How is CK performed?
A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe’s tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia?
Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be necessary) in the corneal periphery, the peripheral cornea flattens, which in turn produces central corneal steepening. The resulting myopic shift allows the pt to see at near without spectacles.

Is CK typically performed unilaterally, or bilaterally?
Unilaterally

Is it usually performed on the dominant, or nondominant eye?
Nondominant

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

Is CK typically performed unilaterally, or bilaterally?
Unilaterally

Is it usually performed on the dominant, or nondominant eye?
Nondominant

How does collagen shrinkage treat presbyopia?
Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be necessary) in the corneal periphery, the peripheral cornea flattens, which in turn produces central corneal steepening. The resulting myopic shift allows the pt to see at near without spectacles.
How is CK performed?
A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe’s tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia?
Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be needed) in the corneal periphery, the peripheral cornea flattens, which in turn produces central corneal steepening. The resulting myopic shift allows the pt to see at near without spectacles.

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat **presbyopia**, whereas CXL and ICRS are primarily used to treat keratoconus.

Is CK typically performed unilaterally, or bilaterally?
Unilaterally

Is it usually performed on the dominant, or nondominant eye?
Nondominant
Refractive Surgery

- **Intraocular**
 - Pseudophakic
 - Phakic IOL

- **Corneal**
 - Incisional
 - RK
 - Laser
 - PRK
 - LASEK
 - LASIK
 - SMILE
 - Epi-LASIK

- **Other**
 - Iris-fixated
 - Intraocular
 - Pseudophakic
 - Phakic IOL
 - Refractive lens exchange (RLE)
 - Sulcus-fixated
 - Refractive lens exchange (RLE)

Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

- **CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?**
 - CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

- **Is CK typically performed unilaterally, or bilaterally?**
 - Unilaterally

- **Is it usually performed on the dominant, or nondominant eye?**
 - Nondominant

- **How much myopic shift are we talking about here?**
 - Usually 1-2D

How is CK performed?

A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe’s tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia?

Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be needed) in the corneal periphery, the peripheral cornea flattens, which in turn produces central corneal steepening. The resulting myopic shift allows the pt to see at near without spectacles.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular
- Pseudophakic
- Phakic IOL

Corneal
- Incisional
- Laser
- Other
 - RK
 - PK

Other
- CK
- SAI
- CRI
- CXL

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is CK performed?
A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe’s tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia?
Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be needed) in the corneal periphery, the peripheral cornea flattens, which in turn produces central corneal steepening. The resulting **myopic shift** allows the pt to see at near without spectacles.

Is CK typically performed unilaterally, or bilaterally?
Unilaterally

Is it usually performed on the dominant, or nondominant eye?
Nondominant

How much myopic shift are we talking about here?
Usually 1-2D
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

- **Corneal Incisional Laser**
 - PRK
 - LASEK

Iris-fixated

- Intraocular Pseudophakic
- Phakic IOL

Sulcus-fixated

- Refractive lens exchange (RLE)
- LASIK
- SMILE
- Epi-LASIK

Other

- Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery
- CK
- SAI
- CRI
- CXL
- ICRS

How is CK performed?

A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe's tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia?

Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be needed) in the corneal periphery, the peripheral cornea flattens, which in turn produces central corneal steepening. The resulting myopic shift allows the pt to see at near without spectacles.

Is CK typically performed unilaterally, or bilaterally?

Unilaterally

Is it usually performed on the dominant, or nondominant eye?

Nondominant

How much myopic shift are we talking about here?

Usually 1-2D

Is CK a safe procedure?

Yes. Serious complications are rare.

What is the biggest drawback to CK?

Regression. Long-term studies indicate that a significant proportion of eyes will lose much (if not all) of the treatment effect over time.
Refractive Surgery

Corneal

Is CK a safe procedure?
Yes. Serious complications are rare.

How is CK performed?
A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe's tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia?
Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be needed) in the corneal periphery, the peripheral cornea flattens, which in turn produces central corneal steepening. The resulting myopic shift allows the pt to see at near without spectacles.

CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

Is CK typically performed unilaterally, or bilaterally?
Unilaterally

Is it usually performed on the dominant, or nondominant eye?
Nondominant

How much myopic shift are we talking about here?
Usually 1-2D

Is CK a safe procedure?
Yes. Serious complications are rare.

What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

Other

Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery
Refractive Surgery

Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Is CK a safe procedure?
Yes. Serious complications are rare.

What is the biggest drawback to CK?
Regression

How is CK performed?
A thin probe is inserted into the corneal stroma, and energy (in the form of radiofrequency) is run through the probe’s tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia?
Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be needed), the peripheral cornea flattens, which in turn produces central corneal steepening. The resulting myopic shift allows the pt to see at near without spectacles.

Is CK typically performed unilaterally, or bilaterally?
Unilaterally

Is it usually performed on the dominant, or nondominant eye?
Nondominant

How much myopic shift are we talking about here?
Usually 1-2D

Is CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

Is CK a safe procedure?
Yes. Serious complications are rare.

What is the biggest drawback to CK?
Regression

Is CK typically performed unilaterally, or bilaterally?
Unilaterally

Is it usually performed on the dominant, or nondominant eye?
Nondominant

How much myopic shift are we talking about here?
Usually 1-2D

Is it usually performed on the dominant, or nondominant eye?
Nondominant

How much myopic shift are we talking about here?
Usually 1-2D
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

- PRK
- LASEK
- RK
- AK
- LRI
- LASIK
- SMILE
- Epi-LASIK
- Other

Is CK a safe procedure? Yes. Serious complications are rare.

What is the biggest drawback to CK? Regression. Long-term studies indicate that a significant proportion of eyes will lose much (if not all) of the treatment effect over time.

What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

Is CK typically performed unilaterally, or bilaterally? Unilaterally

Is it usually performed on the dominant, or nondominant eye? Nondominant

How much myopic shift are we talking about here? Usually 1-2D

How is CK performed? A thin probe is inserted into the probe’s tip. This energy heats the adjacent stromal tissue, resulting in collagen shrinkage.

How does collagen shrinkage treat presbyopia? Each area of shrinkage causes localized flattening of the cornea. By placing a number of such spots in a ring (more than one ring may be needed) in the corneal periphery, the peripheral cornea flattens, which in turn produces central corneal steepening. The resulting myopic shift allows the pt to see at near without spectacles.

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too.

Is CK typically performed unilaterally, or bilaterally? Unilaterally

Is it usually performed on the dominant, or nondominant eye? Nondominant

How much myopic shift are we talking about here? Usually 1-2D

Is CK a safe procedure? Yes. Serious complications are rare.

What is the biggest drawback to CK? Regression. Long-term studies indicate that a significant proportion of eyes will lose much (if not all) of the treatment effect over time.

What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

Is CK typically performed unilaterally, or bilaterally? Unilaterally

Is it usually performed on the dominant, or nondominant eye? Nondominant

How much myopic shift are we talking about here? Usually 1-2D

Is CK a safe procedure? Yes. Serious complications are rare.

What is the biggest drawback to CK? Regression. Long-term studies indicate that a significant proportion of eyes will lose much (if not all) of the treatment effect over time.

What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

Is CK typically performed unilaterally, or bilaterally? Unilaterally

Is it usually performed on the dominant, or nondominant eye? Nondominant

How much myopic shift are we talking about here? Usually 1-2D

Is CK a safe procedure? Yes. Serious complications are rare.

What is the biggest drawback to CK? Regression. Long-term studies indicate that a significant proportion of eyes will lose much (if not all) of the treatment effect over time.

What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

Is CK typically performed unilaterally, or bilaterally? Unilaterally

Is it usually performed on the dominant, or nondominant eye? Nondominant

How much myopic shift are we talking about here? Usually 1-2D

Is CK a safe procedure? Yes. Serious complications are rare.

What is the biggest drawback to CK? Regression. Long-term studies indicate that a significant proportion of eyes will lose much (if not all) of the treatment effect over time.

What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

Is CK typically performed unilaterally, or bilaterally? Unilaterally

Is it usually performed on the dominant, or nondominant eye? Nondominant

How much myopic shift are we talking about here? Usually 1-2D

Is CK a safe procedure? Yes. Serious complications are rare.

What is the biggest drawback to CK? Regression. Long-term studies indicate that a significant proportion of eyes will lose much (if not all) of the treatment effect over time.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, **SAI** and CRI are used to treat **presbyopia**, whereas CXL and ICRS are primarily used to treat **keratoconus**.

How is SAI performed?

A femtosecond laser is used to create a pocket in the central cornea at a depth of about 200 μm. The SAI is then placed in the pocket, making sure that its aperture is centered on the line of sight.

How does an SAI treat presbyopia?

The central aperture of the inlay is only 1.6 mm; thus, it produces a 'pinhole effect.' This dramatically increases the depth-of-focus of the eye, thus allowing the eye to see at near with affecting distance vision.

As of this writing, only one SAI is FDA approved. What is the name of this device?

The KAMRA corneal inlay.
Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Incisional

Laser

Corneal

Surgical

Other

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is SAI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.
How is SAI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

What does the SAI look like?
Like an opaque ring with a central open aperture.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Corneal

Incisional

Laser

Other

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is SAI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 µm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

What does the SAI look like?
Like an opaque ring with a central open aperture.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

Corneal

Pseudophakic

Phakic IOL

Incisional

Laser

Other

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is SAI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

How does an SAI treat presbyopia?
The central aperture of the inlay is only 1.6 mm; thus, it produces a 'pinhole effect.' This dramatically increases the depth-of-focus of the eye, thus allowing the eye to see at near with affecting distance vision.

As of this writing, only one SAI is FDA approved. What is the name of this device? The KAMRA corneal inlay.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

- Pseudophakic
- Phakic IOL

Corneal

- Incisional
 - RK
- Laser
 - PRK
 - LASEK
 - LASIK
 - RK
 - LRI

Other

- CK
- CRI
- CXL

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is SAI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

How does an SAI treat presbyopia?
The diameter of the central aperture is only 1.6 mm; thus, it produces a ‘pinhole effect.’ This dramatically increases the depth-of-focus of the eye, thus allowing the eye to see at near without affecting distance vision.
Refractive Surgery

Corneal

Intraocular

- Pseudophakic
- Phakic IOL

Corneal

- Incisional
- Laser
- Other

- RK
- PRK
- PK
- LASIK
- CXL
- SAI
- CRI
- ICRS

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is SAI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

How does an SAI treat presbyopia?
The diameter of the central aperture is only 1.6 mm; thus, it produces a ‘pinhole effect.’ This dramatically increases the depth-of-focus of the eye, thus allowing the eye to see at near without affecting distance vision.

As of this writing, only one SAI is FDA approved. What is the name of this device?
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

- **Intraocular**
 - Pseudophakic
 - Phakic IOL
 - Incisional
 - RK
 - Laser
 - PRK
 - LASEK
 - LASIK
 - Other
 - CK
 - CRI
 - SAI
 - CXL

Corneal

- Refractive lens exchange (RLE)
- RK
- LRI
- LASIK

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities? CK, **SAI** and CRI are used to treat **presbyopia**, whereas CXL and ICRS are primarily used to treat **keratoconus**.

How is SAI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

How does an SAI treat presbyopia?
The diameter of the central aperture is only 1.6 mm; thus, it produces a ‘pinhole effect.’ This dramatically increases the depth-of-focus of the eye, thus allowing the eye to see at near without affecting distance vision.

As of this writing, only one SAI is FDA approved. What is the name of this device?
The KAMRA corneal inlay
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular
- Pseudophakic
- Phakic IOL
- Refractive lens exchange (CRS)

Corneal
- Incisional
- Laser
 - RK
 - PRK
 - LASEK
 - LASIK
 - RK
 - AK
 - LRI
- Other
 - LASIK
 - LASEK
 - RK
 - AK
 - LRI

Iris-fixated
- Intraocular
- Pseudophakic
- Phakic IOL
- Sulcus-fixated
- Refractive lens exchange (RLE)
- LASIK
- SMILE
- Epi-LASIK

SAI

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat **presbyopia**, whereas CXL and ICRS are

How is SAI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

How does an SAI treat presbyopia?
The diameter of the central aperture is only 1.6 mm; thus, it produces a ‘pinhole effect.’ This dramatically increases the depth-of-focus of the eye, thus allowing the eye to see at near without affecting distance vision.

As of this writing, only one SAI is FDA approved. What is the name of this device?
The KAMRA corneal inlay
Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Incisional

Laser

Corneal

RK

LASEK

PRK

Laser

Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are

How is SAI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

How does an SAI treat presbyopia?
The diameter of the central aperture is only 1.6 mm; thus, it produces a ‘pinhole effect.’ This dramatically increases the depth-of-focus of the eye, thus allowing the eye to see at near without affecting distance vision.

As of this writing, only one SAI is FDA approved. What is the name of this device?
The KAMRA corneal inlay
Refractive Surgery

Corneal

Intraocular

Pseudophakic

Phakic IOL

Incisional

Laser

Other

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are used to treat keratoconus.

How is SAI performed? A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

Is SAI typically performed unilaterally, or bilaterally? Unilaterally

Is it usually performed on the dominant, or nondominant eye? Nondominant

How does an SAI treat presbyopia? The diameter of the central aperture is only 1.6 mm; thus, it produces a ‘pinhole effect.’ This dramatically increases the depth-of-focus of the eye, thus allowing the eye to see at near without affecting distance vision.

As of this writing, only one SAI is FDA approved. What is the name of this device? The KAMRA corneal inlay
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

- Intraocular
 - Pseudophakic
 - Phakic IOL
 - Refractive lens exchange (CRK)
 - Incisional
 - RK
 - PK
 - Laser
 - PRK
 - LASIK
 - Epi-LASIK
 - Other
 - CK
 - CRI
 - CXL
 - ICRS

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, **SAI** and CRI are used to treat **presbyopia**, whereas CXL and ICRS are primarily used to treat **keratoconus**.

How is SAI performed?

A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

Is SAI typically performed unilaterally, or bilaterally?

Unilaterally

Is it usually performed on the dominant, or nondominant eye?

Nondominant

How does an SAI treat presbyopia?

The diameter of the centrally aperture is only 1.6 mm; thus, it produces a ‘pinhole effect.’ This dramatically increases the depth-of-focus of the eye, thus allowing the eye to see at near without affecting distance vision.

As of this writing, only one SAI is FDA approved. What is the name of this device?

The KAMRA corneal inlay
Refractive Surgery

Corneal

Incisional Laser

Iris-fixated

Intraocular

Pseudophakic

Phakic IOL

Incisional

RK

Laser

Sulcus-fixated

Refractive lens exchange (RLE)

LASIK

SMILE

Epi-LASIK

Other

CK

SAI

CRI

CXL

Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is SAI performed? A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

How does an SAI treat presbyopia? The diameter of the central aperture is only 1.6 mm; thus, it produces a ‘pinhole effect.’ This dramatically increases the depth-of-focus of the eye, thus allowing the eye to see at near without affecting distance vision.

Is SAI typically performed unilaterally, or bilaterally? Unilaterally

Is it usually performed on the dominant, or nondominant eye? Nondominant

How much myopic shift are we talking about here? None.

As of this writing, only one SAI is FDA approved. What is the name of this device? The KAMRA corneal inlay
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Corneal

Other

Intraocular

Pseudophakic

Phakic IOL

Incisional

Laser

Refractive lens exchange (CK)

RK

CXL

SAI

CRI

LRI

Sulcus-fixated

Refractive lens exchange (RLE)

LASIK

PRK

LASEK

How is SAI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

How does an SAI treat presbyopia?
The diameter of the central aperture is only 1.6 mm; thus, it produces a ‘pinhole effect.’ This dramatically increases the depth-of-focus of the eye, thus allowing the eye to see at near without affecting distance vision.

How is SAI typically performed unilaterally, or bilaterally?
Unilaterally

Is it usually performed on the dominant, or nondominant eye?
Nondominant

How much myopic shift are we talking about here?
None. SAI do not change the refractive status of the eye!

As of this writing, only one SAI is FDA approved. What is the name of this device?
The KAMRA corneal inlay

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are

Is SAI typically performed unilaterally, or bilaterally?
Unilaterally

Is it usually performed on the dominant, or nondominant eye?
Nondominant

How much myopic shift are we talking about here?
None. SAI do not change the refractive status of the eye!
How is SAI performed?

A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 \(\mu \text{m} \). The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

How thick is the KAMRA?

The KAMRA corneal inlay is about 6 microns thick.

How does an SAI treat presbyopia?

The diameter of the central aperture is only 1.6 mm; thus, it produces a ‘pinhole effect.’ This dramatically increases the depth-of-focus of the eye, allowing the eye to see at near with affecting distance vision.

As of this writing, only one SAI is FDA approved. What is the name of this device?

The KAMRA corneal inlay
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Incisional

Laser

Corneal

Sulcus-fixated

Refractive lens exchange (RLE)

Other

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is SAI performed?

A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

How thick is the KAMRA?

About 6 microns

How does an SAI treat presbyopia?

The diameter of the central aperture is only 1.6 mm; thus, it produces a ‘pinhole effect.’ This dramatically increases the depth-of-focus of the eye, thus allowing the eye to see at near without affecting distance vision.

As of this writing, only one SAI is FDA approved. What is the name of this device?

The KAMRA corneal inlay
How is SAI performed?

A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

How thick is the KAMRA?

About 6 microns

For comparison purposes: What is the diameter of a red blood cell?

About 6 microns

How does an SAI treat presbyopia?

The diameter of the central aperture is only 1.6 mm; thus, it produces a ‘pinhole effect.’ This dramatically increases the depth-of-focus of the eye, thus allowing the eye to see at near without affecting distance vision.

As of this writing, only one SAI is FDA approved. What is the name of this device?

The KAMRA corneal inlay
How is SAI performed?

A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 200 μm. The SAI is then placed under the flap/in the pocket, making sure that its aperture is centered on the line of sight.

How thick is the KAMRA?
About 6 microns

For comparison purposes: What is the diameter of a red blood cell?
About 6 microns

As of this writing, only one SAI is FDA approved. What is the name of this device?
The KAMRA corneal inlay
Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Incisional

Corneal

Laser

Other

LRI

RK

LASK

PPK

Refraction Surgery

Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is CRI performed?

A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?

The CRI is shaped like a tiny ‘flying saucer’—thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

As of this writing, only one CRI is FDA approved. What is the name of this device?

The Raindrop Near Vision Inlay.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

- **Corneal**
 - Pseudophakic
 - Phakic IOL
 - Incisional
 - Laser
 - Other
 - **CRI**

Intraocular

- Refractive lens exchange (RLE)

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and **CRI are used to treat presbyopia**, whereas CXL and ICRS are primarily used to treat **keratoconus**.

How is CRI performed?

A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

- Intraocular
 - Pseudophakic
 - Phakic IOL
- Corneal
 - Incisional
 - RK
 - Laser
 - RK
 - PRK
 - LASEK
 - LASIK
 - Other
 - CK
 - SAI
 - CRI
 - CXL

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and **CRI** are used to treat **presbyopia**, whereas CXL and ICRS are primarily used to treat **keratoconus**.

How is CRI performed?

A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular
- Pseudophakic
- Phakic IOL
- Refractive lens exchange (RLE)

Corneal
- Incisional
- Laser
- Other
 - CK
 - SAI
 - CRI
 - CXL

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat **presbyopia**, whereas CXL and ICRS are primarily used to treat **keratoconus**.

How is CRI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
The CRI is shaped like a tiny ‘flying saucer’--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

RefRACTive Surgery

Intraocular

Pseudophakic

Phakic IOL

Incisional

Laser

Corneal

CRI

CK

SAI

CXL

How is CRI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
The CRI is shaped like a tiny ‘flying saucer’--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

As of this writing, only one CRI is FDA approved. What is the name of this device?
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

- Pseudophakic
- Phakic IOL

Corneal

- Incisional
 - RK
- Laser
 - PRK
 - LASEK
 - LASIK
 - SMILE
 - Epi-LASIK

Other

- CK
- SAI
- CRI
- CXL

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is CRI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
The CRI is shaped like a tiny ‘flying saucer’—thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

As of this writing, only one CRI is FDA approved. What is the name of this device?
The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production)
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

- Pseudophakic
- Phakic IOL

Corneal

- Incisional
- Laser
- Other

Laser

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is CRI performed?

A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap or in the pocket.

How does a CRI treat presbyopia?

The CRI is shaped like a tiny ‘flying saucer’—thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

Is CRI typically performed unilaterally, or bilaterally?

Unilaterally

Is it usually performed on the dominant, or nondominant eye?

Nondominant

As of this writing, only one CRI is FDA approved. What is the name of this device?

The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production).
CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. **What are these respective commonalities?**

CK, SAI and **CRI are used to treat presbyopia**, whereas CXL and ICRS are primarily used to treat **keratoconus**.

How is CRI performed?

A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?

The CRI is shaped like a tiny ‘flying saucer’--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

As of this writing, only one CRI is FDA approved. **What is the name of this device?**

The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production)

Is CRI typically performed unilaterally, or bilaterally?

Unilaterally
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Incisional

Laser

Corneal

Other

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is CRI performed? A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia? The CRI is shaped like a tiny ‘flying saucer’--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

Is CRI typically performed unilaterally, or bilaterally? Unilaterally.

Is it usually performed on the dominant, or nondominant eye? Nondominant

As of this writing, only one CRI is FDA approved. What is the name of this device? The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production).
CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and **CRI are used to treat presbyopia**, whereas CXL and ICRS are primarily used to treat **keratoconus**.

How is CRI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
The CRI is shaped like a tiny ‘flying saucer’--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

As of this writing, only one CRI is FDA approved. What is the name of this device?
The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production)
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Incisional

Laser

Corneal

Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

How tiny is the Raindrop? What is its diameter?

How is CRI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
The CRI is shaped like a tiny ‘flying saucer’—thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

As of this writing, only one CRI is FDA approved. What is the name of this device?
The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production).

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.
Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Incisional

Laser

Corneal

Corneal Incisional Lasers

PRK

LASEK

RK

AK

LRI

Refractive lens exchange (RLE)

LASIK

SMILE

Epi-LASIK

Other

CK

SAI

CRI

CXL

ICRS

CXL and ICRS do too. What are these respective commonalities?

CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is CRI performed?

A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?

The CRI is shaped like a tiny ‘flying saucer’—thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

How tiny is the Raindrop? What is its diameter?

2 mm

What is its thickness:

At the edge?

10 microns

Centrally?

32 microns

As of this writing, only one CRI is FDA approved. What is the name of this device?

The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production)
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

Pseudophakic

Phakic IOL

Incisional

Laser

Corneal

Other

Sulcus-fixated

Refractive lens exchange (RLE)

RK

PRK

LASEK

LASIK

SMILE

Epi-LASIK

Other

CK

SAI

CRI

CXL

ICRS

CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is CRI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
The CRI is shaped like a tiny ‘flying saucer’--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

How tiny is the Raindrop? What is its diameter?
2 mm

What is its thickness:
At the edge?
Centrally?

10 microns
32 microns

As of this writing, only one CRI is FDA approved. What is the name of this device?
The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production)
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular
- Pseudophakic
 - Refractive lens exchange (CLE)

Corneal
- Phakic IOL
- Incisional
 - RK
- Laser
 - PRK
 - LASEK
 - LASIK
 - SMILE
 - Epi-LASIK

Other
- CRI
- SAI
- CXL
- CK
- ICRS

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is CRI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
The CRI is shaped like a tiny ‘flying saucer’—thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

How tiny is the Raindrop? What is its diameter?
2 mm

What is its thickness:
- At the edge? 10 microns
- Centrally? 32 microns

As of this writing, only one CRI is FDA approved. What is the name of this device? The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production).
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

What is the dioptic power of the Raindrop inlay?

2 mm

What is its thickness:
At the edge? 10 microns
Centrally? 32 microns

How is CRI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
The CRI is shaped like a tiny ‘flying saucer’--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

As of this writing, only one CRI is FDA approved. What is the name of this device?
The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production).

What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

What is the dioptric power of the Raindrop inlay?

Zero??!! But it’s shaped like a plus lens--thin peripherally, gradually getting thicker centrally. Given this, how could it possibly have zero dioptric power?
Because its refractive index is identical to that of the cornea. Thus, it does not alter the path of light rays passing through it--its effect is entirely due to the hyperprolate change it induces in the shape of the central anterior cornea.

Does the gradual peripheral-to-central thickening of the Raindrop inlay play a role in how it affects vision?
Yes. Its effect is strongest centrally, and tapers to nothing past its edge. In essence, the Raindrop transforms the cornea into a multifocal device in terms of its focusing power.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

What is the dioptic power of the Raindrop inlay?

What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is CRI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
The CRI is shaped like a tiny ‘flying saucer’--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

As of this writing, only one CRI is FDA approved. What is the name of this device?
The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production)
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Zero?!! But it’s shaped like a plus lens--thin peripherally, gradually getting thicker centrally. Given this, how could it possibly have zero dioptric power?

What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is CRI performed? A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia? The CRI is shaped like a tiny ‘flying saucer’--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

As of this writing, only one CRI is FDA approved. What is the name of this device? The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production)

What is its thickness: At the edge? 10 microns. Centrally? 32 microns.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

What is the dioptic power of the Raindrop inlay?

Zero??!! But it’s shaped like a plus lens--thin peripherally, gradually getting thicker centrally. Given this, how could it possibly have zero dioptic power?
Because its refractive index is identical to that of the cornea. Thus, it does not alter the path of light rays passing through it--its effect is entirely due to the hyperprolate change it induces in the shape of the central anterior cornea.

How is CRI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
The CRI is shaped like a tiny ‘flying saucer’--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

How tiny is the Raindrop? What is its diameter?
2 mm

What is its thickness:
At the edge? 10 microns
Centrally? 32 microns

What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is CRI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
The CRI is shaped like a tiny ‘flying saucer’--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

As of this writing, only one CRI is FDA approved. What is the name of this device?
The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production)
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

What is the dioptric power of the Raindrop inlay?

Zero??!! But it’s shaped like a plus lens--thin peripherally, gradually getting thicker centrally. Given this, how could it possibly have zero dioptric power?
Because its refractive index is identical to that of the cornea. Thus, it does not alter the path of light rays passing through it--its effect is entirely due to the hyperprolate change it induces in the shape of the central anterior cornea.

How tiny is the Raindrop? What is its diameter?
2 mm

What is its thickness:
At the edge? 10 microns
Centrally? 32 microns

The CRI is shaped like a tiny ‘flying saucer’--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

As of this writing, only one CRI is FDA approved. What is the name of this device?
The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production)
Raindrop Corneal Inlay

- Refractive Power: None
- Optically clear hydrogel
- 77% water content
- Similar refractive index as the cornea (1.37)
- Glucose concentration: -2.5% in tissue anterior to the inlay to +0.6% in tissue just posterior to the inlay
- Oxygen concentration: +3.3% in tissue anterior to the inlay to -3.5% posterior to the inlay

32 μm center thickness

2 mm
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

What is the dioptic power of the Raindrop inlay?

Zero??!! But it’s shaped like a plus lens--thin peripherally, gradually getting thicker centrally. Given this, how could it possibly have zero dioptic power?
Because its refractive index is identical to that of the cornea. Thus, it does not alter the path of light rays passing through it--its effect is entirely due to the hyperprolate change it induces in the shape of the central anterior cornea.

Does the gradual peripheral-to-central thickening of the Raindrop inlay play a role in how it affects vision?

How is CRI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 μm. The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
The CRI is shaped like a tiny ‘flying saucer’--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

How tiny is the Raindrop? What is its diameter?
2 mm

What is its thickness:
At the edge? 10 microns
Centrally? 32 microns

What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

How is CRI performed?

As of this writing, only one CRI is FDA approved. What is the name of this device?
The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production)
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

What is the dioptic power of the Raindrop inlay?

Zero??!! But it's shaped like a plus lens--thin peripherally, gradually getting thicker centrally. Given this, how could it possibly have zero dioptic power?
Because its refractive index is identical to that of the cornea. Thus, it does not alter the path of light rays passing through it--its effect is entirely due to the hyperprolate change it induces in the shape of the central anterior cornea.

Does the gradual peripheral-to-central thickening of the Raindrop inlay play a role in how it affects vision?
Yes. Its effect is strongest centrally, and tapers to nothing past its edge. In essence, the Raindrop transforms the cornea into a multifocal device in terms of its focusing power.

How is CRI performed?
A femtosecond laser is used to create a flap or pocket in the central cornea at a depth of about 150 \(\mu \text{m} \). The CRI is then placed under the flap/in the pocket.

How does a CRI treat presbyopia?
The CRI is shaped like a tiny 'flying saucer'--thin at the edges, thicker centrally. This shape causes the central cornea to bulge slightly, making it more prolate (and thereby causing a myopic shift centrally).

How is the Raindrop? What is its diameter?
2 mm

What is its thickness:
At the edge? 10 microns
Centrally? 32 microns

What are these respective commonalities?
\textbf{CK, SAI and CRI are used to treat presbyopia}, whereas CXL and ICRS are
primarily used to treat keratoconus.

As of this writing, only one CRI is FDA approved. What is the name of this device?
The Raindrop Near Vision Inlay (although as of this writing, the parent company has stopped production).
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for?

RCI stands for Refractive Corneal Inlay.
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for? **Refractive Corneal Inlay**
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for? **Refractive Corneal Inlay**

How is it implanted?

In essence, like a multifocal CL/IOL. It is ring-shaped (ie, has a central aperture). This allows rays from distant objects to pass through unrefracted (by the device). The doughnut-shaped device itself consists of rings of increasing plus power, and these rings of added plus power produce the presbyopia-correcting effect.
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for?

Refractive Corneal Inlay

How is it implanted?
Like the KAMRA and Raindrop, it is implanted in the central anterior cornea in a pocket, or under a flap.
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for? Refractive Corneal Inlay

How is it implanted?
Like the KAMRA and Raindrop, it is implanted in the central anterior cornea in a pocket, or under a flap.

Briefly, how does it work?
In essence, like a multifocal CL/IOL. It is ring-shaped (ie, has a central aperture). This allows rays from distant objects to pass through unrefracted (by the device). The doughnut-shaped device itself consists of rings of increasing plus power, and these rings of added plus power produce the presbyopia-correcting effect.

Which specific device is close to FDA approval?
The Flexivue Microlens (Flexivue for short)
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for?

Refractive Corneal Inlay

How is it implanted?
Like the KAMRA and Raindrop, it is implanted in the central anterior cornea in a pocket, or under a flap.

Briefly, how does it work?
In essence, like a multifocal CL/IOL. It is ring-shaped (ie, has a central aperture). This allows rays from distant objects to pass through unrefracted (by the device). The doughnut-shaped device itself consists of rings of increasing plus power, and these rings of added plus power produce the presbyopia-correcting effect.
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for?

Refractive Corneal Inlay

How is it implanted?
Like the KAMRA and Raindrop, it is implanted in the central anterior cornea in a pocket, or under a flap.

Briefly, how does it work?
In essence, like a multifocal CL/IOL. It is ring-shaped (ie, has a central aperture). This allows rays from distant objects to pass through unrefracted (by the device). The doughnut-shaped device itself consists of rings of increasing plus power, and these rings of added plus power produce the presbyopia-correcting effect.

Which specific device is close to FDA approval?
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for? Refractive Corneal Inlay

How is it implanted?
Like the KAMRA and Raindrop, it is implanted in the central anterior cornea in a pocket, or under a flap.

Briefly, how does it work?
In essence, like a multifocal CL/IOL. It is ring-shaped (ie, has a central aperture). This allows rays from distant objects to pass through unrefracted (by the device). The doughnut-shaped device itself consists of rings of increasing plus power, and these rings of added plus power produce the presbyopia-correcting effect.

Which specific device is close to FDA approval?
The Flexivue Microlens (Flexivue for short)
Flexivue Microlens®

- Thickness: 15 μm
- Diameter: 3.2 mm

- Peripheral zone with refractive power: +1.5 D to +3.5 D
- Central zone without refractive power

Flexivue Microlens
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for?

Is RCI typically performed unilaterally, or bilaterally?

How is it implanted?

Like the KAMRA and Raindrop, it is implanted in the central anterior cornea in a pocket, or under a flap.

Briefly, how does it work?

In essence, like a multifocal CL/IOL. It is ring-shaped (ie, has a central aperture). This allows rays from distant objects to pass through unrefracted (by the device). The doughnut-shaped device itself consists of rings of increasing plus power, and these rings of added plus power produce the presbyopia-correcting effect.

Which specific device is close to FDA approval?

The Flexivue Microlens (Flexivue for short)
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for?

Refractive Corneal Inlay

How is it implanted?

Like the KAMRA and Raindrop, it is implanted in the central anterior cornea in a pocket, or under a flap.

Briefly, how does it work?

In essence, like a multifocal CL/IOL. It is ring-shaped (ie, has a central aperture). This allows rays from distant objects to pass through unrefracted (by the device). The doughnut-shaped device itself consists of rings of increasing plus power, and these rings of added plus power produce the presbyopia-correcting effect.

Which specific device is close to FDA approval?

The Flexivue Microlens (Flexivue for short)
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for?

Is RCI typically performed unilaterally, or bilaterally?

Unilaterally

Is it usually performed on the dominant, or nondominant eye?

Nondominant

Briefly, how does it work?

In essence, like a multifocal CL/IOL. It is ring-shaped (ie, has a central aperture). This allows rays from distant objects to pass through unrefracted (by the device). The doughnut-shaped device itself consists of rings of increasing plus power, and these rings of added plus power produce the presbyopia-correcting effect.

Which specific device is close to FDA approval?

The Flexivue Microlens (Flexivue for short)
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for?

- **Refractive**
- **Corneal**
- **Inlay**

Briefly, how does it work?

In essence, like a multifocal CL/IOL. It is ring-shaped (ie, has a central aperture). This allows rays from distant objects to pass through unrefracted (by the device). The doughnut-shaped device itself consists of rings of increasing plus power, and these rings of added plus power produce the presbyopia-correcting effect.

Which specific device is close to FDA approval?

The Flexivue Microlens (Flexivue for short)

Is RCI typically performed unilaterally, or bilaterally?
- **Unilaterally**

Is it usually performed on the dominant, or nondominant eye?
- **Nondominant**
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for?

RCI stands for Refractive Corneal Inlay. How is it implanted? Like the KAMRA and Raindrop, it is implanted in the central anterior cornea in a pocket, or under a flap.

Briefly, how does it work? In essence, like a multifocal CL/IOL. It is ring-shaped (ie, has a central aperture). This allows rays from distant objects to pass through unrefracted (by the device). The doughnut-shaped device itself consists of rings of increasing plus power, and these rings of added plus power produce the presbyopia-correcting effect.

Which specific device is close to FDA approval? The Flexivue Microlens (Flexivue for short)

Is RCI typically performed unilaterally, or bilaterally? Unilaterally

Is it usually performed on the dominant, or nondominant eye? Nondominant

How much plus power are we talking about here? The rings range in power from 1.5 to 3.5D
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for?

R: Refractive
C: Corneal
I: Inlay

How is it implanted?
Like the KAMRA and Raindrop, it is implanted in the central anterior cornea in a pocket, or under a flap.

Briefly, how does it work?
In essence, like a multifocal CL/IOL. It is ring-shaped (ie, has a central aperture). This allows rays from distant objects to pass through unrefracted (by the device). The doughnut-shaped device itself consists of rings of increasing plus power, and these rings of added plus power produce the presbyopia-correcting effect.

How much plus power are we talking about here?
The rings range in power from 1.5 to 3.5D

Which specific device is close to FDA approval?
The Flexivue Microlens (Flexivue for short)
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for?

Refractive Corneal Inlay

How is it implanted?
Like the KAMRA and Raindrop, it is implanted in the central anterior cornea in a pocket, or under a flap.

Briefly, how does it work?
In essence, like a multifocal CL/IOL. It is ring-shaped (i.e., has a central aperture). This allows rays from distant objects to pass through unrefracted (by the device). The doughnut-shaped device itself consists of rings of increasing plus power, and these rings of added plus power produce the presbyopia-correcting effect.

The fact that rays from distance are unaffected implies what about the refractive status of the eye?

The Flexivue Microlens (Flexivue for short)
There is another presbyopia-correcting inlay that is currently in Phase III trials, and likely will be FDA approved soon. In this context, what does RCI stand for?

Refractive Corneal Inlay

How is it implanted?
Like the KAMRA and Raindrop, it is implanted in the central anterior cornea in a pocket, or under a flap.

Briefly, how does it work?
In essence, like a multifocal CL/IOL. It is ring-shaped (ie, has a central aperture). This allows rays from distant objects to pass through unrefracted (by the device). The doughnut-shaped device itself consists of rings of increasing plus power, and these rings of added plus power produce the presbyopia-correcting effect.

The fact that rays from distance are unaffected implies what about the refractive status of the eye? That it is emmetropic. Because of this, most surgeons will implant the Flexivue only if the pt is emmetropic in both eyes.
Corneal Inlay, Collagen Shrinkage, and Cross-Linking Surgery

In one word, what sort of condition is keratoconus (KCN)?

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat **presbyopia**, whereas CXL and ICRS are primarily used to treat **keratoconus**.
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too.
What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus
Corneal Inlay, Collagen Shrinkage, and Cross-Linking Surgery

In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too.
What are these respective commonalities?
CK, SAI and CRI are used to treat *presbyopia*, whereas CXL and ICRS are primarily used to treat *keratoconus*.
Corneal Inlay, Collagen Shrinkage, and Cross-Linking

In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?
Noninflammatory

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too.

CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too.
What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.
In one word, what sort of condition is keratoconus (KCN)?
An **ectasia**

It is inflammatory, or noninflammatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat **presbyopia**, whereas CXL and ICRS are primarily used to treat **keratoconus**
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

In addition to KCN, what are the two other main ectatic conditions for which CXL is used?

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

In addition to KCN, what are the two other main ectatic conditions for which CXL is used?
--Pellucid marginal degeneration
--Ectasia after keratorefractive surgery

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.
Refractive Surgery

Corneal Incisional Laser

PRK
LASEK

Iris-fixated Intraocular Pseudophakic Phakic IOL

RK
AK
LRI

Sulcus-fixated Refractive lens exchange (RLE)

LASIK
SMILE
Epi-LASIK

Other

Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus

What corneal problem, fundamental to KCN, is addressed by CXL?

In normal corneal stroma, collagen fibrils are arranged in tightly packed, orderly lattices. These lattices are disrupted in KCN, which allows the cornea to progressively warp. CXL tightens the bonds among corneal fibrils, thereby preventing further warpage and thus halting dz progression.

Briefly, how is CXL performed?
After removal of the corneal epithelium, the stroma is suffused with riboflavin, then subjected to UV radiation. The riboflavin acts as a photosensitizer, absorbing the radiation and producing reactive oxygen species. The reactive oxygen species cause cross-linking to occur among fibrils, stiffening the cornea.
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

What corneal problem, fundamental to KCN, is addressed by CXL?
In normal corneal stroma, collagen fibrils are arranged in tightly packed, orderly lattices. These lattices are disrupted in KCN, which allows the cornea to progressively warp. CXL tightens the bonds among corneal fibrils, thereby preventing further warpage and thus halting dz progression.
CXL concept

BEFORE CXL: LESS CROSSLINKING = WEAKER CORNEA

AFTER CXL: MORE CROSSLINKING = STRONGER CORNEA
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

What corneal problem, fundamental to KCN, is addressed by CXL?
In normal corneal stroma, collagen fibrils are arranged in tightly packed, orderly lattices. These lattices are disrupted in KCN, which allows the cornea to progressively warp. CXL tightens the bonds among corneal fibrils, thereby preventing further warpage and thus halting dz progression.

Briefly, how is CXL performed?

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.
In one word, what sort of condition is keratoconus (KCN)?

An ectasia

It is inflammatory, or noninflammatory?

Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?

The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?

Adolescence

What corneal problem, fundamental to KCN, is addressed by CXL?

In normal corneal stroma, collagen fibrils are arranged in tightly packed, orderly lattices. These lattices are disrupted in KCN, which allows the cornea to progressively warp. **CXL tightens the bonds among corneal fibrils, thereby preventing further warpage and thus halting dz progression.**

Briefly, how is CXL performed?

After removal of the corneal epithelium, the stroma is suffused with a riboflavin substance, then subjected to UV radiation.

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and CRI are used to treat **presbyopia**, whereas **CXL** and ICRS are primarily used to treat **keratoconus**
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

What corneal problem, fundamental to KCN, is addressed by CXL?
In normal corneal stroma, collagen fibrils are arranged in tightly packed, orderly lattices. These lattices are disrupted in KCN, which allows the cornea to progressively warp. CXL tightens the bonds among corneal fibrils, thereby preventing further warpage and thus halting dz progression.

Briefly, how is CXL performed?
After removal of the corneal epithelium, the stroma is suffused with riboflavin, then subjected to UV radiation.
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

What corneal problem, fundamental to KCN, is addressed by CXL?
In normal corneal stroma, collagen fibrils are arranged in tightly packed, orderly lattices. These lattices are disrupted in KCN, which allows the cornea to progressively warp. CXL tightens the bonds among corneal fibrils, thereby preventing further warpage and thus halting dz progression.

Briefly, how is CXL performed?
After removal of the corneal epithelium, the stroma is suffused with riboflavin, then subjected to UV radiation. The riboflavin acts as a photosensitizer, absorbing the radiation and producing reactive oxygen species. The reactive oxygen species cause cross-linking to occur among fibrils, stiffening the cornea.
1. We remove the Epithelium

2. Riboflavin (Vitamin B2) eye drops are applied onto the cornea

3. 1 minute later, the solution is irrigated or washed away by the surgeon

4. An ultra-violet light (UVA) illuminates the Riboflavin solution for the corneal cross-linking procedure

CXL: Process
CXL: Process
In one word, what sort of condition is keratoconus (KCN)?

An ectasia

It is inflammatory, or noninflammatory?

Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?

Adolescence

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?

CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus

What corneal problem, fundamental to KCN, is addressed by CXL?

In normal corneal stroma, collagen fibrils are arranged in tightly packed, orderly lattices. These lattices are disrupted in KCN, which allows the cornea to progressively warp. CXL tightens the bonds among corneal fibrils, thereby preventing further warpage and thus halting dz progression.

Briefly, how is CXL performed?

After removal of the corneal epithelium, the stroma is suffused with riboflavin, then subjected to UV radiation. The riboflavin acts as a photosensitizer, absorbing the radiation and producing reactive oxygen species. The reactive oxygen species cause cross-linking to occur among fibrils, stiffening the cornea.

How much stiffer is the cornea after CXL?

300% stiffer!
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

What corneal problem, fundamental to KCN, is addressed by CXL?
In normal corneal stroma, collagen fibrils are arranged in tightly packed, orderly lattices. These lattices are disrupted in KCN, which allows the cornea to progressively warp. CXL tightens the bonds among corneal fibrils, thereby preventing further warpage and thus halting dz progression.

Briefly, how is CXL performed?
After removal of the corneal epithelium, the stroma is suffused with riboflavin, then subjected to UV radiation. The riboflavin acts as a photosensitizer, absorbing the radiation and producing reactive oxygen species. The reactive oxygen species cause cross-linking to occur among fibrils, stiffening the cornea.

How much stiffer is the cornea after CXL?
300% stiffer!

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.

Does this dramatic increase in stiffening flatten the cone?

How much stiffer is the cornea after CXL?
300% stiffer!

This dramatic increase in stiffness is not about flattening the cone. In normal corneal stroma, collagen fibrils are arranged in tightly packed, orderly lattices. These lattices are disrupted in KCN, which allows the cornea to progressively warp. CXL tightens the bonds among corneal fibrils, thereby preventing further warpage and thus halting disease progression.
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflamatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

What corneal problem, fundamental to KCN, is addressed by CXL?
In normal corneal stroma, collagen fibrils are arranged in tightly packed, orderly lattices. These lattices are disrupted in KCN, which allows the cornea to progressively warp. CXL tightens the bonds among corneal fibrils, thereby preventing further warpage and thus halting dz progression.

Briefly, how is CXL performed?
After removal of the corneal epithelium, the stroma is suffused with riboflavin, then subjected to UV radiation. The riboflavin acts as a photosensitizer, absorbing the radiation and producing reactive oxygen species. The reactive oxygen species cause cross-linking to occur among fibrils, stiffening the cornea.

Does this dramatic increase in stiffening flatten the cone?
Actually, no. Post CXL, the cornea may be slightly flatter, but not significantly so.

How much stiffer is the cornea after CXL?
300% stiffer!

Does this dramatic increase in stiffening flatten the cone? Actually, no. Post CXL, the cornea may be slightly flatter, but not significantly so.

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus.
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

What corneal problem, fundamental to KCN, is addressed by CXL?
In normal corneal stroma, collagen fibrils are arranged in tightly packed, orderly lattices. These lattices are disrupted in KCN, which allows the cornea to progressively warp. CXL tightens the bonds among corneal fibrils, thereby preventing further warpage and thus halting dz progression.

Briefly, how is CXL performed?
After removal of the corneal epithelium, the stroma is suffused with riboflavin, then subjected to UV radiation. The riboflavin acts as a photosensitizer, absorbing the radiation and producing reactive oxygen species. The reactive oxygen species cause cross-linking to occur among fibrils, stiffening the cornea.

Does this dramatic increase in stiffening flatten the cone?
Actually, no. Post CXL, the cornea may be slightly flatter, but not significantly so.

If it doesn’t flatten the cone, what’s the point of CXL?
To halt disease progression, as well as render the eye a better candidate for vision-rehabilitating interventions such as...

How much stiffer is the cornea after CXL?
300% stiffer!
In one word, what sort of condition is keratoconus (KCN)?
An ectasia

It is inflammatory, or noninflammatory?
Noninflammatory

What does corneal topography reveal about the typical dz course in KCN?
The central and/or paracentral cornea thins progressively, producing a cone-like bulge. Extreme irregular astigmatism eventually results.

At what life stage does the dz tend to progress most rapidly?
Adolescence

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat **presbyopia**, whereas **CXL** and ICRS are primarily used to treat **keratoconus**

Does this dramatic increase in stiffening flatten the cone?
Actually, no. Post CXL, the cornea may be *slightly* flatter, but not significantly so.

If it doesn’t flatten the cone, what’s the point of CXL?
To halt disease progression, as well as render the eye a better candidate for vision-rehabilitating interventions such as…

How much stiffer is the cornea after CXL?
300% stiffer!

After removal of the corneal epithelium, the stroma is suffused with riboflavin, then subjected to UV radiation. The riboflavin acts as a photosensitizer, absorbing the radiation and producing reactive oxygen species. The reactive oxygen species cause cross-linking to occur among fibrils, stiffening the cornea.
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

Intraocular

- Pseudophakic
- Phakic IOL

Phakic IOL

Corneal

- Incisional
- Laser
- Other

cross-linking surgery

Other

- CK
- SAI
- CRI
- CXL
- ICRS

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and **ICRS are primarily used to treat keratoconus**.

What is the current main indication for ICRS surgery?
What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities? CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus
What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery
- **Intraocular**
 - Pseudophakic
 - Phakic IOL
- **Corneal**
 - Incisional
 - RK
 - Laser
 - PRK
 - LASIK
 - SMILE
 - Epi-LASIK
- **Other**
 - CK
 - SAI
 - CXL
 - CRI
 - ICRS

What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.
Intrastromal ring segments
Intrastromal ring segments in situ
What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

How is the flattening effect titrated?
By selecting segments that differ in thickness.

What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

How is the flattening effect titrated?
By selecting segments that differ in thickness. That is, the inner and outer radius-of-curvature of Intacs segments do not vary among the different ‘powers.’ What does vary is the thickness of the segments (As of this writing, Intacs come in eight thicknesses.)

Which produces more corneal flattening--a thicker Intacs, or a thinner one?

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat presbyopia, whereas CXL and ICRS are primarily used to treat keratoconus

What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

How is the flattening effect titrated?
By selecting segments that differ in thickness. That is, the inner and outer radius-of-curvature of Intacs segments do not vary among the different ‘powers.’ What **does** vary is the thickness of the segments (As of this writing, Intacs come in eight thicknesses.)

Which produces more corneal flattening—a thicker Intacs, or a thinner one?
A thicker one

What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs

CK, SAI and CRI have something in common. Likewise, CXL and ICRS do too. What are these respective commonalities?
CK, SAI and CRI are used to treat **presbyopia**, whereas CXL and **ICRS** are primarily used to treat **keratoconus**
What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs

The hallmark of KCN is corneal steepening that is greater inferiorly than superiorly. How might this affect Intacs selection in the surgical correction of KCN?
Typically, the surgeon will opt to place a thicker segment inferiorly, and a thinner one superiorly.

Which produces more corneal flattening—a thicker Intacs, or a thinner one?
A thicker one

How is the flattening effect titrated?
By selecting segments that differ in thickness. That is, the inner and outer radius-of-curvature of Intacs segments do not vary among the different ‘powers.’ What does vary is the thickness of the segments (As of this writing, Intacs come in eight thicknesses.)
What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

How is the flattening effect titrated?
By selecting segments that differ in thickness. That is, the inner and outer radius-of-curvature of Intacs segments do not vary among the different ‘powers.’ What does vary is the thickness of the segments (As of this writing, Intacs come in eight thicknesses.)

Which produces more corneal flattening—a thicker Intacs, or a thinner one?
A thicker one

The hallmark of KCN is corneal steepening that is greater inferiorly than superiorly. How might this affect Intacs selection in the surgical correction of KCN?
Typically, the surgeon will opt to place a thicker segment inferiorly, and a thinner one superiorly

In some cases of KCN, the area of inferior steepening is more peripheral and is accompanied by an area of abnormal flattening of the superior cornea, 180° away. In such a situation, what approach might the surgeon take?
To place a single, unpaired Intacs in the inferior cornea, the effect of which will be to flatten the inferior cornea and steepen the superior cornea

What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
Intrastromal ring segments placed for KCN
What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

How is the flattening effect titrated?
By selecting segments that differ in thickness. That is, the inner and outer radius-of-curvature of Intacs segments do not vary among the different 'powers.' What does vary is the thickness of the segments (As of this writing, Intacs come in eight thicknesses.)

What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs

How is the flattening effect titrated?
By selecting segments that differ in thickness. That is, the inner and outer radius-of-curvature of Intacs segments do not vary among the different ‘powers.’ What does vary is the thickness of the segments. (As of this writing, Intacs come in eight thicknesses.)

What is the name for this phenomenon wherein ICRS flattening of the inferior cornea produces desired steepening of the too-flat superior cornea?
The beanbag effect, so-called because it is reminiscent of what happens to the other end of a beanbag chair when one plops down on one end of it.

So this is the same as the ‘coupling effect’ that occurs during arcuate keratotomy (AK) and the creation of limbal relaxing incisions (LRIs), yes?
No! The coupling effect refers to steepening that occurs 90° away from AK incisions and LRIs, whereas the beanbag effect occurs 180° away, and in response to the placement of an ICRS. Don’t get the two confused!

To place a single, unpaired Intacs in the inferior cornea, the effect of which will be to flatten the inferior cornea and steepen the too-flat superior cornea.

What is the name for this phenomenon wherein ICRS flattening of the inferior cornea produces desired steepening of a too-flat superior cornea?
The beanbag effect, so-called because it is reminiscent of what happens to the other end of a beanbag chair when one plops down on one end of it.

So this is the same as the ‘coupling effect’ that occurs during arcuate keratotomy (AK) and the creation of limbal relaxing incisions (LRIs), yes?
No! The coupling effect refers to steepening that occurs 90° away from AK incisions and LRIs, whereas the beanbag effect occurs 180° away, and in response to the placement of an ICRS. Don’t get the two confused!
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

How is the flattening effect titrated?
By selecting segments that differ in thickness. That is, the inner and outer radius-of-curvature of Intacs segments do not vary among the different 'powers.' What **does** vary is the thickness of the segments. (As of this writing, Intacs come in eight thicknesses.)

What is the name for this phenomenon wherein ICRS flattening of the inferior cornea produces desired steepening of a too-flat superior cornea?
The beanbag effect, so-called because it is reminiscent of what happens to the other end of a beanbag chair when one plops down on one end of it.

ICRS have three main advantages over other forms of keratorefractive surgery. What are they?
- No corneal tissue is removed
- It is reversible (i.e., the ICRSs can be removed)
- It is performed on the corneal periphery, so the central cornea is not disturbed

That said, the procedure **what** is the main downside to the procedure?
It is unlikely to result in good UCVA by itself.

What is the current main indication for ICRS surgery?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. **What is that brand?**
Intacs
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

How is the flattening effect titrated?
By selecting segments that differ in thickness. That is, the inner and outer radius-of-curvature of Intacs segments do not vary among the different 'powers.' What does vary is the thickness of the segments (As of this writing, Intacs come in eight thicknesses.)

What is the name for this phenomenon wherein ICRS flattening of the inferior cornea produces desired steepening of a too-flat superior cornea?
The **beanbag effect**, so-called because it is reminiscent of what happens to the other end of a beanbag chair when one plops down on one end of it.

ICRS have three main advantages over other forms of keratorefractive surgery. What are they?
--- No corneal tissue is removed
--- It is reversible (ie, the ICRSs can be removed)
--- It is performed on the corneal periphery, so the central cornea is not disturbed

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

How is the flattening effect titrated?
By selecting segments that differ in thickness. That is, the inner and outer radius-of-curvature of Intacs segments do not vary among the different "powers." What does vary is the thickness of the segments (As of this writing, Intacs come in eight thicknesses.)

What is the name for this phenomenon wherein ICRS flattening of the inferior cornea produces desired steepening of a too-flat superior cornea?
The beanbag effect, so-called because it is reminiscent of what happens to the other end of a beanbag chair when one plops down on one end of it.

ICRS have three main advantages over other forms of keratorefractive surgery. What are they?
--No corneal tissue is removed
--It is reversible (ie, the ICRSs can be removed)
--It is performed on the corneal periphery, so the central cornea is not disturbed

That said, the procedure what is the main downside to the procedure?
Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

How is the flattening effect titrated?
By selecting segments that differ in thickness. That is, the inner and outer radius-of-curvature of Intacs segments do not vary among the different "powers." What does vary is the thickness of the segments (As of this writing, Intacs come in eight thicknesses.)

What is the name for this phenomenon wherein ICRS flattening of the inferior cornea produces desired steepening of a too-flat superior cornea?
The beanbag effect, so-called because it is reminiscent of what happens to the other end of a beanbag chair when one plops down on one end of it

ICRS have three main advantages over other forms of keratorefractive surgery. What are they?
--No corneal tissue is removed
--It is reversible (ie, the ICRSs can be removed)
--It is performed on the corneal periphery, so the central cornea is not disturbed

That said, the procedure what is the main downside to the procedure?
It is unlikely to result in good UCVA by itself

Correction of the astigmatism and myopia induced by KCN

What exactly are ICRS, and how do they reduce astigmatism and myopia?
They are semicircular segments of PMMA that are slipped into channels created within the mid-peripheral cornea. By displacing some of the stroma, they cause local flattening the cornea.

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

How is the flattening effect titrated?
By selecting segments that differ in thickness. That is, the inner and outer radius-of-curvature of Intacs segments do not vary among the different ‘powers.’ What does vary is the thickness of the segments (As of this writing, Intacs come in eight thicknesses.)

What is the name for this phenomenon wherein ICRS flattening of the inferior cornea produces desired steepening of a too-flat superior cornea?
The beanbag effect, so-called because it is reminiscent of what happens to the other end of a beanbag chair when one plops down on one end of it

ICRS have three main advantages over other forms of keratorefractive surgery. What are they?
--No corneal tissue is removed
--It is reversible (ie, the ICRSs can be removed)
--It is performed on the corneal periphery, so the central cornea is not disturbed

That said, the procedure what is the main downside to the procedure?
It is unlikely to result in good UCVA by itself

In fairness, good UCVA is not the goal of ICRS placement; rather, what is the goal?
Correction of the astigmatism and hyperopia induced by KCN

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs
Corneal Inlay, Collagen Shrinkage, and Cross-linking Surgery

Refractive Surgery

How is the flattening effect titrated?
By selecting segments that differ in thickness. That is, the inner and outer radius-of-curvature of Intacs segments do not vary among the different “powers.” What does vary is the thickness of the segments (As of this writing, Intacs come in eight thicknesses.)

What is the name for this phenomenon wherein ICRS flattening of the inferior cornea produces desired steepening of a too-flat superior cornea?
The beanbag effect, so-called because it is reminiscent of what happens to the other end of a beanbag chair when one plops down on one end of it.

ICRS have three main advantages over other forms of keratorefractive surgery. What are they?
--No corneal tissue is removed
--It is reversible (ie, the ICRSs can be removed)
--It is performed on the corneal periphery, so the central cornea is not disturbed

That said, the procedure what is the main downside to the procedure?

It is unlikely to result in good UCVA by itself

In fairness, good UCVA is not the goal of ICRS placement; rather, what is the goal?
By flattening the cornea and reducing astigmatism (especially irregular astigmatism), the hope is that the pt can once again have his/her refractive error adequately corrected by RGPs, or even spectacles

As of this writing, only one brand of ICRS is FDA-approved. What is that brand?
Intacs