

The goal of refractive surgery is deceptively straightforward and simple: To render the pt less reliant upon refractive accourtements (ie, contacts and glasses). Ideally, a pt s/p refractive surgery would have 20/20 vision at *all* distances, under *any* lighting conditions, with *no* dysphotopsias (visual experiences that degrade vision quality), and with *no* risk of future negative repercussions vis a vis the long-term health and/or optical performance of the eye. Also ideally, the above could be achieved irrespective of pre-op refractive status and/or pre-existing ocular conditions.

The goal of refractive surgery is deceptively straightforward and simple: To render the pt less reliant upon refractive accourtements (ie, contacts and glasses). Ideally, a pt s/p refractive surgery would have 20/20 vision at *all* distances, under *any* lighting conditions, with *no* dysphotopsias (visual experiences that degrade vision quality), and with *no* risk of future negative repercussions vis a vis the long-term health and/or optical performance of the eye. Also ideally, the above could be achieved irrespective of pre-op refractive status and/or pre-existing ocular conditions.

Current technology is unable to meet this lofty ideal, and thus refractive surgery necessitates compromises and trade-offs; eg, If you had to pick one, would you rather be spectacle-free at distance, or near? Would it be acceptable if you only needed glasses in dimly-lit restaurants? How bothersome would haloes around lights at night be? Because some aspect of the pt's post-op visual life will be less than ideal, key to successful refractive surgery is 1) developing a solid understanding of the pt's visual preferences and requirements, and 2) communicating effectively with the pt regarding what her post-op visual life will be; ie, establishing expectations that are realistic and achievable.

The goal of refractive surgery is deceptively straightforward and simple: To render the pt less reliant upon refractive accourrements (ie, contacts and glasses). Ideally, a pt s/p refractive surgery would have 20/20 vision at all distances, under any lighting conditions, with no dysphotopsias (visual experiences that degrade vision quality), and with no risk of future negative repercussions vis a vis the long-term health and/or optical performance of the eye. Also ideally, the above could be achieved irrespective of pre-op refractive status and/or pre-existing ocular conditions.

Current technology is unable to meet this lofty ideal, and thus refractive surgery necessitates compromises and trade-offs; eq. If you had to pick one, would you rather be spectacle-free at distance, or near? Would it be acceptable if you only needed glasses in dimly-lit restaurants? How bothersome would haloes around lights at night be? Because some aspect of the pt's post-op visual life will be less than ideal, key to successful refractive surgery is 1) developing a solid understanding of the pt's visual preferences and requirements, and 2) communicating effectively with the pt regarding what her post-op visual life will be; ie, establishing expectations that are realistic and achievable. Further, the surgeon must have a refined eye (ahem) for recognizing preexisting ocular conditions that render the pt a poor surgical candidate (or increase the risk of complications down the road).

The goal of refractive surgery is deceptively straightforward and simple: To render the pt less reliant upon refractive accourrements (ie, contacts and glasses). Ideally, a pt s/p refractive surgery would have 20/20 vision at all distances, under any lighting conditions, with no dysphotopsias (visual experiences that degrade vision quality), and with no risk of future negative repercussions vis a vis the long-term health and/or optical performance of the eye. Also ideally, the above could be achieved irrespective of pre-op refractive status and/or pre-existing ocular conditions.

Current technology is unable to meet this lofty ideal, and thus refractive surgery necessitates compromises and trade-offs; eq. If you had to pick one, would you rather be spectacle-free at distance, or near? Would it be acceptable if you only needed glasses in dimly-lit restaurants? How bothersome would haloes around lights at night be? Because some aspect of the pt's post-op visual life will be less than ideal, key to successful refractive surgery is 1) developing a solid understanding of the pt's visual preferences and requirements, and 2) communicating effectively with the pt regarding what her post-op visual life will be; ie, establishing expectations that are realistic and achievable. Further, the surgeon must have a refined eye (ahem) for recognizing preexisting ocular conditions that render the pt a poor surgical candidate (or increase the risk of complications down the road).

Just as the goal of refractive surgery is simple, so too is its organization. Broadly speaking, there are but two types of surgery: **Corneal** and **intraocular**.

The goal of refractive surgery is deceptively straightforward and simple: To render the pt less reliant upon refractive accourrements (ie, contacts and glasses). Ideally, a pt s/p refractive surgery would have 20/20 vision at all distances, under any lighting conditions, with no dysphotopsias (visual experiences that degrade vision quality), and with no risk of future negative repercussions vis a vis the long-term health and/or optical performance of the eye. Also ideally, the above could be achieved irrespective of pre-op refractive status and/or pre-existing ocular conditions.

Current technology is unable to meet this lofty ideal, and thus refractive surgery necessitates compromises and trade-offs; eq. If you had to pick one, would you rather be spectacle-free at distance, or near? Would it be acceptable if you only needed glasses in dimly-lit restaurants? How bothersome would haloes around lights at night be? Because some aspect of the pt's post-op visual life will be less than ideal, key to successful refractive surgery is 1) developing a solid understanding of the pt's visual preferences and requirements, and 2) communicating effectively with the pt regarding what her post-op visual life will be; ie, establishing expectations that are realistic and achievable. Further, the surgeon must have a refined eye (ahem) for recognizing preexisting ocular conditions that render the pt a poor surgical candidate (or increase the risk of complications down the road).

Just as the goal of refractive surgery is simple, so too is its organization. Broadly speaking, there are but two types of surgery: **Corneal** and **intraocular**. Corneal (aka *keratorefractive*) procedures work by reshaping the cornea to offset the native refractive error of the eye; there are a plethora of techniques and technologies for doing this.

The goal of refractive surgery is deceptively straightforward and simple: To render the pt less reliant upon refractive accourrements (ie, contacts and glasses). Ideally, a pt s/p refractive surgery would have 20/20 vision at all distances, under any lighting conditions, with no dysphotopsias (visual experiences that degrade vision quality), and with no risk of future negative repercussions vis a vis the long-term health and/or optical performance of the eye. Also ideally, the above could be achieved irrespective of pre-op refractive status and/or pre-existing ocular conditions.

Current technology is unable to meet this lofty ideal, and thus refractive surgery necessitates compromises and trade-offs; eq. If you had to pick one, would you rather be spectacle-free at distance, or near? Would it be acceptable if you only needed glasses in dimly-lit restaurants? How bothersome would haloes around lights at night be? Because some aspect of the pt's post-op visual life will be less than ideal, key to successful refractive surgery is 1) developing a solid understanding of the pt's visual preferences and requirements, and 2) communicating effectively with the pt regarding what her post-op visual life will be; ie, establishing expectations that are realistic and achievable. Further, the surgeon must have a refined eye (ahem) for recognizing preexisting ocular conditions that render the pt a poor surgical candidate (or increase the risk of complications down the road).

Just as the goal of refractive surgery is simple, so too is its organization. Broadly speaking, there are but two types of surgery: Corneal and intraocular. Corneal (aka keratorefractive) procedures work by reshaping the cornea to offset the native refractive error of the eye; there are a plethora of techniques and technologies for doing this. In contrast, intraocular procedures are more limited in their variety: They involve either replacing the native lens with an IOL, or placing in the anterior chamber an accessory IOL that offsets the eye's native refractive error.

The goal of refractive surgery is deceptively straightforward and simple: To render the pt less reliant upon refractive accourtements (ie, contacts and glasses). Ideally, a pt s/p refractive surgery would have 20/20 vision at *all* distances, under *any* lighting conditions, with *no* dysphotopsias (visual experiences that degrade vision quality), and with *no* risk of future negative repercussions vis a vis the long-term health and/or optical performance of the eye. Also ideally, the above could be achieved irrespective of pre-op refractive status and/or pre-existing ocular conditions.

Current technology is unable to meet this lofty ideal, and thus refractive surgery necessitates compromises and trade-offs; eg, If you had to pick one, would you rather be spectacle-free at distance, or near? Would it be acceptable if you only needed glasses in dimly-lit restaurants? How both the compromise to the property of the pr

understanding of the pt's visual preferences and requirements, and 2) communicating effectively with the pt regarding what her post-op visual life will be; ie, establishing expectations that are realistic and achievable. Further, the surgeon must have a refined eye (ahem) for recognizing preexisting ocular conditions that render the pt a poor surgical candidate (or increase the risk of complications down the road).

Just as the goal of refractive surgery is simple, so too is its organization. Broadly speaking, there are but two types of surgery: **Corneal** and **intraocular**. Corneal (aka *keratorefractive*) procedures work by reshaping the cornea to offset the native refractive error of the eye; there are a plethora of techniques and technologies for doing this. In contrast, *intraocular procedures* are more limited in their variety: They involve either replacing the native lens with an IOL, or placing in the anterior chamber an accessory IOL that offsets the eye's native refractive error.

• The refractive state of an eye—that is, whether it is _____, ____ or _____is determined by the location of its ______ two words

The refractive state of an eye—that is, whether it is emmetropic, myopic or hyperopic—is determined by the location of its far point

- The refractive state of an eye—that is, whether it is emmetropic, myopic or hyperopic—is determined by the location of its far point
- The far point is: The location in space to the retina when the eye is not

- The refractive state of an eye—that is, whether it is emmetropic, myopic or hyperopic—is determined by the location of its far point
- The far point is: The location in space conjugate to the retina when the eye is not accommodating

(Accommodation refers to conformational changes in the ciliary body/lens to facilitate vision at near.)

- The refractive state of an eye—that is, whether it is emmetropic, myopic or hyperopic—is determined by the location of its *far point*
- The far point is: The location in space conjugate to the retina when the eye is not accommodating

(Accommodation refers to conformational changes in the ciliary body/lens to facilitate vision at near.)

(The Far Point of) The Emmetropic Eye

(The Far Point of) The Emmetropic Eye

In the **emmetropic** eye, the parallel rays from a location at infinity are focused to a point located precisely on the retina.

(The Far Point of) **The Emmetropic Eye**

In the **emmetropic** eye, the parallel rays from a location at infinity are focused to a point located precisely on the retina. In other words, *the far point of the emmetropic eye is at infinity.*

Far Point of the emmetropic eye: Infinity

(The Far Point of) **The Emmetropic Eye**

In the **emmetropic** eye, the parallel rays from a location at infinity are focused to a point located precisely on the retina. In other words, *the far point of the emmetropic eye is at infinity.* Thus, emmetropes see 20/20 (or better) at distance without correction.

Far Point of the emmetropic eye: Infinity

(The Far Point of) The Myopic Eye

In contrast to the sharp uncorrected distance vision of the emmetrope, consider the plight of the **myope**.

(The Far Point of) The Myopic Eye

In contrast to the sharp uncorrected distance vision of the emmetrope, consider the plight of the **myope**.

In the myopic eye, rays from infinity meet three words

(The Far Point of) The Myopic Eye

In contrast to the sharp uncorrected distance vision of the emmetrope, consider the plight of the **myope**.

In the myopic eye, rays from infinity meet in the vitreous.

(The Far Point of) The Myopic Eye

plight of the **myope**.

In the myopic eye, rays from infinity meet in the vitreous. By the time they reach the retina, the rays have diverged to form a wowds, not a focal point.

(The Far Point of) The Myopic Eye

In contrast to the sharp uncorrected distance vision of the emmetrope, consider the plight of the **myope**.

In the myopic eye, rays from infinity meet in the vitreous. By the time they reach the retina, the rays have diverged to form a blur circle, not a focal point.

(The Far Point of) The Myopic Eye

The myopic eye has too much v little converging power for its length

In contrast to the sharp uncorrected distance vision of the emmetrope, consider the plight of the **myope**.

In the myopic eye, rays from infinity meet in the vitreous. By the time they reach the retina, the rays have diverged to form a blur circle, not a focal point.

You could say the myopic eye has too converging power for its length.

(The Far Point of) The Myopic Eye

The myopic eye has too much converging power for its length

In contrast to the sharp uncorrected distance vision of the emmetrope, consider the plight of the **myope**.

In the myopic eye, rays from infinity meet in the vitreous. By the time they reach the retina, the rays have diverged to form a blur circle, not a focal point.

You could say the myopic eye has too much converging power for its length.

(The Far Point of) The Myopic Eye

The myopic eye has too much converging power for its length

In contrast to the sharp uncorrected distance vision plight of the **myope**.

Note that if the retina was *here*, the rays from infinity would be focused to a point.

In the myopic eye, rays from infinity meet in the vitreous. By the time they reach the retina, the rays have diverged to form a blur circle, not a focal point.

You could say the myopic eye has too much converging power for its length.

(The Far Point of) The Myopic Eye

The myopic eye has too much converging power for its length

In contrast to the sharp uncorrected distance vision of the emmetrope, consider the plight of the **myope**.

In the myopic eye, rays from infinity meet in the vitreous. By the time they reach the retina, the rays have diverged to form a blur circle, not a focal point. You could say the myopic eye has too much converging power for its length.

To be focused on the retina, the Far Point of a myopic eye will have to offset its excess convergence with an equivalent amount of divergence. **To accomplish this...**

(The Far Point of) The Myopic Eye

The myopic eye has too much converging power for its length

...the Far Point of a myopic eye is just anterior to the corneal plane.

(The Far Point of) The Myopic Eye

The myopic eye has too much converging power for its length

...the Far Point of a myopic eye is just anterior to the corneal plane. Rays from this location are still quite divergent when they reach the eye, and this divergence offsets the excess convergence that is built into the myopic eye. Thus, rays originating from the far point end up sharply focused at the retina.

(The Far Point of) The Myopic Eye

The myopic eye has too much converging power for its length

...the Far Point of a myopic eye is just anterior to the corneal plane. Rays from this location are still quite divergent when they reach the eye, and this divergence offsets the excess convergence that is built into the myopic eye. Thus, rays originating from the far point end up sharply focused at the retina. This is why nearsighted individuals can read without glasses—they're able to put the material at or near their far point.

(The Far Point of) The Hyperopic Eye

Now consider the **hyperope**. Where do parallel rays meet in *these* eyes?

The Hyperopic Eye

Now consider the **hyperope**. Where do parallel rays meet in *these* eyes? In the hyperopic eye, rays from infinity never meet—they run out of eyeball first. Thus, like the myopic eye, the rays form a blur circle, not a focal point, at the retina.

(The Far Point of) The Hyperopic Eye

The hyperopic eye has too converging power for its length

Now consider the **hyperope**. Where do parallel rays meet in *these* eyes? In the hyperopic eye, rays from infinity never meet—they run out of eyeball first. Thus, like the myopic eye, the rays form a blur circle, not a focal point, at the retina.

You could say the hyperopic eye has too converging power for its length.

(The Far Point of) **The Hyperopic Eye**

The hyperopic eye has too little converging power for its length

Now consider the **hyperope**. Where do parallel rays meet in *these* eyes? In the hyperopic eye, rays from infinity never meet—they run out of eyeball first. Thus, like the myopic eye, the rays form a blur circle, not a focal point, at the retina.

You could say the hyperopic eye has too little converging power for its length.

(The Far Point of) **The Hyperopic Eye**

The hyperopic eye has too little converging power for its length

Now consider the **hyperope**. Where do parallel rays me In the hyperopic eye, rays from infinity never meet—they Thus, like the myopic eye, the rays form a blur circle, not a local point, at the retinal.

Note that if the retina was here, the rays from infinity would be focused to a point.

You could say the hyperopic eye has too little converging power for its length.

(The Far Point of) The Hyperopic Eye

The hyperopic eye has too little converging power for its length

Now consider the **hyperope**. Where do parallel rays meet in *these* eyes? In the hyperopic eye, rays from infinity never meet—they run out of eyeball first. Thus, like the myopic eye, the rays form a blur circle, not a focal point, at the retina. You could say the hyperopic eye has too *little* converging power for its length.

In order to be conjugate to the retina, the Far Point of a hyperopic eye must contribute convergence to compensate for this lack of converging power.

To accomplish this...

(The Far Point of) The Hyperopic Eye

...the far point of a hyperopic eye is behind the corneal plane.

(The Far Point of) The Hyperopic Eye

...the far point of a hyperopic eye is *behind* the corneal plane. It contributes convergence to make up for the inadequate native convergence of the hyperopic eye.

(The Far Point of) The Hyperopic Eye

...the far point of a hyperopic eye is behind the corneal plane. It contributes convergence to make up for the inadequate native convergence of the hyperopic eye. Thus, rays associated with the far point end up sharply focused at the retina.

(The Far Point of) The Hyperopic Eye

...the far point of a hyperopic eye is behind the corneal plane. It contributes convergence to make up for the inadequate native convergence of the hyperopic eye. Thus, rays associated with the far point end up sharply focused at the retina. Don't get it twisted—hyperopes can't actually see behind their heads. (Do I really have to say that?)

(The Far Point of) The Hyperopic Eye

The hyperopic eye has too little converging power for its length

Far Point

A and B are conjugate points

...the far point of a hyperopic eye is behind the corneal plane. It contributes convergence to make up for the inadequate native convergence of the hyperopic eye. Thus, rays associated with the far point end up sharply focused at the retina. Don't get it twisted—hyperopes can't actually see behind their heads. (Do I really have to say that?) Unlike myopes—who can see at their far point just out in front of their faces—a hyperope is out of focus at all distances (absent correction or accommodation.)

40

 The myopic eye has too much power for its length, as we said

41

 The myopic eye has too much converging power for its length, as we said

 The myopic eye has too much converging power for its length, as we said

Think of it this way: The myopic eye refracts light as if an extra 'plus' lens was built into it. This so-called **error lens** contributes the excess convergence that produces a myopic refractive error.

 The myopic eye has too much converging power for its length, as we said

This explains why myopes wear minus lenses to correct their refractive error—minus lenses are needed to offset the excess convergence induced by the plus error lenses in their eyes.

Think of it this way: The **myopic eye refracts light as if an extra 'plus' lens was built into it**. This so-called **error lens** contributes the excess convergence that produces a myopic refractive error.

- The myopic eye has too much converging power for its length, as we said
- In contrast, the hyperopic eye has too much power for its length

- 45
- The myopic eye has too much converging power for its length, as we said
- In contrast, the hyperopic eye has too much diverging power for its length

- The myopic eye has too much converging power for its length, as we said
- In contrast, the hyperopic eye has too much diverging power for its length

Thus, the hyperopic eye acts as if it has a *minus* error lens within it, contributing the excess divergence resulting in a hyperopic refractive error.

- The myopic eye has too much converging power for its length, as we said
- In contrast, the hyperopic eye has too much diverging power for its length

This explains why hyperopes wear plus lenses to correct their refractive error—plus lenses are needed to offset the excess divergence induced by the minus error lenses in their eyes.

Thus, the **hyperopic eye acts as if it has a** *minus* **error lens within it**, contributing the excess divergence resulting in a hyperopic refractive error.

The goal of refractive surgery is to produce an error-lens offset that is incorporated into the eye itself, rather than worn on (CLs) or near (glasses) its anterior surface

As mentioned previously, refractive surgical procedures come in two basic forms—
and ______and _____

As mentioned previously, refractive surgical procedures come in two basic forms intraocular and corneal.

Likewise, **intraocular procedures** come in two forms—

, and

Likewise, **intraocular procedures** come in two forms—*pseudophakic*, and *phakic IOL* (PIOL)

A pseudophakic procedure involves removing the native lens and replacing it with an IOL powered to put parallel rays on the retina. The surgery itself is identical to that performed for cataracts. (Such procedures are referred to as three words .)

A pseudophakic procedure involves removing the native lens and replacing it with an IOL powered to put parallel rays on the retina. The surgery itself is identical to that performed for cataracts. (Such procedures are referred to as *clear lens extraction*.)

In a *phakic IOL procedure* the native lens is left in place, and a corrective lens is placed in front of it—an 'intraocular contact lens' if you will.

Phakic IOL

Phakic IOL

Phakic IOL vaulting over the native lens

Before we get into cornea-based refractive surgeries, let's take a look at corneal optics

The shape of the human cornea is *prolate*, meaning the steeper (ie, has a shorter radius of curvature) than the

central vs
peripheral

central vs
peripheral

portion is

The shape of the human cornea is *prolate*, meaning the central portion is steeper (ie, has a shorter radius of curvature) than the peripheral portion.

The shape of the human cornea is *prolate*, meaning the central portion is steeper (ie, has a shorter radius of curvature) than the peripheral portion. On average, the central cornea is about 3-4D steeper than the periphery.

Power differential of central vs peripheral cornea (don't memorize the numbers)

66

The human eye averages about of total convergence, implying (correctly) that the cornea accounts for roughly of its focusing power

The human eye averages about **60D** of total convergence, implying (correctly) that the cornea accounts for roughly **2/3** of its focusing power

The human eye averages about **60D** of total convergence, implying (correctly) that the cornea accounts for roughly **2/3** of its focusing power

Of course, these are only averages. In order to perform keratorefractive surgery, one must have accurate measurements of central corneal power—ideally, at both its anterior and posterior surfaces.

Two technologies are widely employed to determine central corneal power: Corneal **topography**, and corneal **tomography**

Corneal topography works by reflecting a set of concentric rings (collectively called a wowords) from the anterior corneal surface, and a computer analyzes the distances between, and shapes of, the reflected rings.

Corneal topography works by reflecting a set of concentric rings (collectively called a *Placido disk*) from the anterior corneal surface, and a computer analyzes the distances between, and shapes of, the reflected rings.

Corneal topography works by reflecting a set of concentric rings (collectively called a *Placido disk*) from the anterior corneal surface, and a computer analyzes the distances between, and shapes of, the reflected rings. Based on this analysis, the topographer creates a color-coded 'map' depicting the curvature across the corneal surface.

Corneal topography works by reflecting a set of concentric rings (collectively called a *Placido disk*) from the anterior corneal surface, and a computer analyzes the distances between, and shapes of, the reflected rings. Based on this analysis, the topographer creates a color-coded 'map' depicting the curvature across the corneal surface.

Corneal topography works by reflecting a set of concentric rings (collectively called a *Placido disk*) from the anterior corneal surface, and a computer analyzes the distances between, and shapes of, the reflected rings. Based on this analysis, the topographer creates a color-coded 'map' depicting the curvature across the corneal surface.

three words

Corneal Placido-disk topography: Color map demonstrating astigmatism (ie, the cornea is steeper in its meridian)

Corneal topography works by reflecting a set of concentric rings (collectively called a *Placido disk*) from the anterior corneal surface, and a computer analyzes the distances between, and shapes of, the reflected rings. Based on this analysis, the topographer creates a color-coded 'map' depicting the curvature across the corneal surface.

Corneal Placido-disk topography: Color map demonstrating with-the-rule astigmatism (ie, the cornea is steeper in its vertical meridian)

Corneal tomography works by mapping the anterior and posterior corneal surfaces in relation to one another. It allows for 3-D modeling of the cornea, including both anterior and posterior surface curvature and corneal thickness.

Corneal tomography works by mapping the anterior and posterior corneal surfaces in relation to one another. It allows for 3-D modeling of the cornea, including both anterior and posterior surface curvature and corneal thickness.

Corneal tomography works by mapping the anterior and posterior corneal surfaces in relation to one another. It allows for 3-D modeling of the cornea, including both anterior and posterior surface curvature and corneal thickness.

The data are acquired via one of two technologies (or both in combination): --Scanning-slit: A series of overlapping scans are directed at the cornea. The light reflects off both the anterior and posterior surfaces. These reflections are acquired and analyzed to produce a model of the central cornea.

Corneal tomography works by mapping the anterior and posterior corneal surfaces in relation to one another. It allows for 3-D modeling of the cornea, including both anterior and posterior surface curvature and corneal thickness.

The data are acquired via one of two technologies (or both in combination):

--Scanning-slit. A series of overlapping scans are directed at the cornea. The light reflects off both the anterior and posterior surfaces. These reflections are acquired and analyzed to produce a model of the central cornea.

eponym imaging: A series of eponym images are taken and analyzed with respect to anterior and posterior corneal curvature and corneal thickness.

The data from each image are knitted together to produce a model of the cornea.

Scheimpflug image of the cornea

Corneal tomography works by mapping the anterior and posterior corneal surfaces in relation to one another. It allows for 3-D modeling of the cornea, including both anterior and posterior surface curvature and corneal thickness.

The data are acquired via one of two technologies (or both in combination):

--Scanning-slit. A series of overlapping scans are directed at the cornea. The light reflects off both the anterior and posterior surfaces. These reflections are acquired and analyzed to produce a model of the central cornea.

--Scheimpflug imaging: A series of Scheimpflug images are taken and analyzed with respect to anterior and posterior corneal curvature and corneal thickness. The data from each image are knitted together to produce a model of the cornea.

Scheimpflug image of the cornea

Pentacam corneal tomographer readout

Pentacam corneal tomographer readout

A) Anterior corneal values

- •K₁, K₂ K_m: The two major meridians (**K₁, K₂**). **K_m** is the average of **K₁** and **K₂**
- •R_f, R_s, R_m: Radii corresponding with **K**₁, **K**₂, and **K**_m, respectively
- •QS: Quality score (I.e. "OK," "Data gaps," "Fix," "Model)
- •Axis: The meridian that requires no cylinder power to correct astigmatism
- Astig: The central corneal astigmatism

B) Posterior corneal values

The same variables described for the back of the cornea.

C), **D)** Fuggedaboudit (too much for this overview)

In addition to determining corneal power, pre-op corneal mapping is employed to determine whether a prospective keratorefractive pt has a words.

In addition to determining corneal power, pre-op corneal mapping is employed to determine whether a prospective keratorefractive pt has a *corneal ectasia*.

In addition to determining corneal power, pre-op corneal mapping is employed to determine whether a prospective keratorefractive pt has a *corneal ectasia*. An ectasia is a inflammatory vs non- condition characterized by progressive corneal bad change 1, the end result of which is corneal bad change 2. Pre-existing ectasia is a strong contraindication to many elective keratorefractive procedures, eg, LASIK.

In addition to determining corneal power, pre-op corneal mapping is employed to determine whether a prospective keratorefractive pt has a corneal ectasia . An ectasia is a noninflammatory condition characterized by progressive corneal thinning, the end result of which is corneal warpage. Pre-existing ectasia is a strong contraindication to many elective keratorefractive procedures, eg, LASIK.

In addition to determining corneal power, pre-op corneal mapping is employed to determine whether a prospective keratorefractive pt has a corneal ectasia. An ectasia is a noninflammatory condition characterized by progressive corneal thinning, the end result of which is corneal warpage. Pre-existing ectasia is a strong contraindication to many elective keratorefractive procedures, eg, LASIK. The two most common ectasias are and three words

In addition to determining corneal power, pre-op corneal mapping is employed to determine whether a prospective keratorefractive pt has a corneal ectasia. An ectasia is a noninflammatory condition characterized by progressive corneal thinning, the end result of which is corneal warpage. Pre-existing ectasia is a strong contraindication to many elective keratorefractive procedures, eg, LASIK. The two most common ectasias are keratoconus (KCN) and pellucid marginal degeneration (PMD).

Topography in KCN: Classic

three words

Topography in KCN: Classic inferior corneal steepening

Topography in PMD: Classic

two words

or

two diff words

Topography in PMD: Classic kissing doves or crab claw

Corneal Placido-disk topography: Mires typical of

KCN? PMD?

Corneal Placido-disk topography: Mires typical of KCN

Most *corneal refractive surgeries* involve altering the shape of the cornea in a way that impacts the vergence it imparts to incoming light.

Most corneal refractive surgeries involve altering the shape of the cornea in a way that impacts the vergence it imparts to incoming light. These alterations can involve the cornea, it, or some other means.

Most corneal refractive surgeries involve altering the shape of the cornea in a way that impacts the vergence it imparts to incoming light. These alterations can involve incising the cornea, lasering it, or some other means.

In a *keratoablative laser procedures* (eg, LASIK), the cornea is reshaped so as to offset the effect of the error lens.

In a *keratoablative laser procedures* (eg, LASIK), the cornea is reshaped so as to offset the effect of the error lens. In **myopic keratoablative surgery**, the central cornea is to the converging power.

In a *keratoablative laser procedures* (eg, LASIK), the cornea is reshaped so as to offset the effect of the error lens. In **myopic keratoablative surgery**, the central cornea is flattened to reduce its converging power.

Think of it as shaving down the peak of a mountain in order to make the structure more mesa-like

the cornea is reshaped so as to offset the surgery, the central cornea is flattened

In a *keratoablative laser procedures* (eg, LASIK), the cornea is reshaped so as to offset the effect of the error lens. In **myopic keratoablative surgery**, the central cornea is flattened to reduce its converging power. **Hyperopic keratoablative surgery** is the opposite—the central cornea is flattened to the central cornea is fl

In a *keratoablative laser procedures* (eg, LASIK), the cornea is reshaped so as to offset the effect of the error lens. In **myopic keratoablative surgery**, the central cornea is flattened to reduce its converging power. **Hyperopic keratoablative surgery** is the opposite—the central cornea is *steepened* to *increase* its converging power.

In a keratoablative laser procedures (eg, L. effect of the error lens. In myopic keratoa to reduce its converging power. Hyperop the central cornea is steepened to incr

In contrast, hyperopic keratoablative surgery is akin to shaving down the rim of a mesa in order to make its structure more mountain-like

Note that, by definition, keratoablative refractive surgery involves reshaping the central cornea (and thereby altering its refractive power) via the removal (by annihilation) of corneal tissue

Refractive Surgery Overview

Refractive Surgery

Intraocular

Corneal

*One laser-based keratorefractive procedure does *not* involve tissue annihilation, rather, in it a section of corneal stroma is carved, then removed *en bloc*

seudophakic

Phakic IOL

Incisional

Laser

Other

Note that, by definition, keratoablative refractive surgery involves reshaping the central cornea (and thereby altering its refractive power) via **the removal** (by annihilation) of corneal tissue*

SMall-Incision Lenticule Extraction

SMILE

What are the five laser-based keratorefractive procedures covered in the BCSC book?

Refractive Surgery Overview

Creation of lenticule and small access (< 4 mm)

Removal of the lenticule

Refractive error is corrected

corneal surface in a way that produces a desired change in its refractive power.

SMall-Incision Lenticule Extraction
SMILE

What are the five laser-based keratorefractive procedures covered in the BCSC book?

being extracted through a very small incision (also created by the femto) that connects the femtocreated intrastromal space and the corneal surface. The resulting loss of tissue reshapes the central

In **keratoablative procedures**, remodeling of the central cornea occurs via annihilation of the corneal stroma with an laser. But before the (same laser) can get to the stroma, the corneal epithelium has to get out of the way.

In **keratoablative procedures**, remodeling of the central cornea occurs via annihilation of the corneal stroma with an excimer laser. But before the excimer can get to the stroma, the corneal epithelium has to get out of the way.

In **PRK**, the handling of the epithelium couldn't be more straightforward. It is simply cast aside—via scraping, chemical destruction, brushing, lasing, etc. This makes PRK the simplest of the laser keratorablative procedures: get the epithelium out of the way, then forget about it.

In **PRK**, the handling of the epithelium couldn't be more straightforward. It is simply cast aside—via scraping, chemical destruction, brushing, lasing, etc. This makes PRK the simplest of the laser keratorablative procedures: get the epithelium out of the way, then forget about it.

However, PRK is associated with several post-operative complications that render it problematic, two of which are 1) it produces significant post-op _____, and 2) it is associated with an increased risk of post-op _____ —a potentially sight-threatening development.

In **PRK**, the handling of the epithelium couldn't be more straightforward. It is simply cast aside—via scraping, chemical destruction, brushing, lasing, etc. This makes PRK the simplest of the laser keratorablative procedures: get the epithelium out of the way, then forget about it.

However, PRK is associated with several post-operative complications that render it problematic, two of which are 1) it produces significant post-op pain, and 2) it is associated with an increased risk of post-op haze formation—a potentially sight-threatening development.

Refractive Surgery Overview

Post-PRK haze

the corneal epithelium has to get out of the way. <u>The four keratoablative procedures differ solely in how the epithelium is handled.</u>

the corneal epithelium has to get out of the way. <u>The four keratoablative procedures differ</u> solely in how the epithelium is handled.

the corneal epithelium has to get out of the way. <u>The four keratoablative procedures differ solely in how the epithelium is handled.</u>

In contrast, the well-known **LASIK** procedure deals with the epithelium by doing an end-run around it. A hinged flap is cut in the stroma and reflected, thereby moving the overlying epithelium out of the treatment area. The underlying stromal bed is then lased, and the flap (with its intact epithelium) is laid back in place. Far less pain; vastly reduced risk of haze formation.

the corneal epithelium has to get out of the way. <u>The four keratoablative procedures differ solely in how the epithelium is handled.</u>

Refractive Surgery Overview

the corneal epithelium has to get out of the way. <u>The four keratoablative procedures differ solely in how the epithelium is handled.</u>

the corneal epithelium has to get out of the way. <u>The four keratoablative procedures differsolely in how the epithelium is handled.</u>

the corneal epithelium has to get out of the way. <u>The four keratoablative procedures differ solely in how the epithelium is handled.</u>

the corneal epithelium has to get out of the way. <u>The four keratoablative procedures differ solely in how the epithelium is handled.</u>

Refractive Surgery Overview

LASEK

Like PRK, LAS**E**K is a 'surface ablation' procedure. However, it deals very differently with the corneal epithelium. In LASEK, the epithelium is chemically devitalized and loosened by bathing it in alcohol. The loosened epithelium is then folded back, and the ablation is performed. Following the ablation, this 'epithelial flap' is smoothed back into place and covered with a bandage CL. By re-positing the epithelium, LASEK avoids the large epi defect (and resulting severe pain) of PRK.

the corneal epithelium has to get out of the way. <u>The four keratoablative procedures differsolely in how the epithelium is handled.</u>

of the cornear stroma with an excimer laser. But before the excimer can get to the stroma, the corneal epithelium has to get out of the way. The four keratoablative procedures differ solely in how the epithelium is handled.

Like LASEK, **epi-LASIK** is a surface-ablation variant designed to avoid the drawbacks of PRK. In it, a blunt keratome (an 'epikeratome') slides under the epithelium, separating it.

In

of the cornear stroma with an excime laser. But before the excimer can get to the stroma, the corneal epithelium has to get out of the way. <u>The four keratoablative procedures differ solely in how the epithelium is handled.</u>

Refractive Surgery Overview

Epi-LASIK

Like LASEK, **epi-LASIK** is a surface-ablation variant designed to avoid the drawbacks of PRK. In it, a blunt keratome (an 'epikeratome') slides under the epithelium, separating it. The epithelial flap thus created is folded back, then re-placed after the stroma has been ablated. (BTW, *epipolis* is a Greek word meaning 'superficial.')

the corneal epithelium has to get out of the way. <u>The four keratoablative procedures differsolely in how the epithelium is handled.</u>

Plus error lens

Myopic Eye

Radial keratotomy

A set of incisions oriented radially (**radial keratotomy**, RK) will flatten the central cornea, and thereby reduce its converging power. Thus, RK can be used to treat myopia. Note that because incisions cannot produce overall *steepening* of the central cornea, RK cannot be used to treat hyperopia.

A set of incisions oriented radially (**radial keratotomy**, RK) will flatten the central cornea, and thereby reduce its converging power. Thus, RK can be used to treat myopia. Note that because incisions cannot produce overall *steepening* of the central cornea, RK cannot be used to treat hyperopia. Note also that, at this juncture, RK is considered obsolete, and is thus no longer performed in the US.

A set of incisions oriented radially (**radial keratotomy**, RK) will flatten the central cornea, and thereby reduce its converging power. Thus, RK can be used to treat myopia. Note that because incisions cannot produce overall *steepening* of the central cornea, RK cannot be used to treat hyperopia. Note also that, at this juncture, **RK is considered obsolete, and is thus no longer performed in the US.**

OTOH, *peripheral* incisional procedures to offset refractive error are an important and oft-used surgical technique

A set of incisions oriented radially (**radial keratotomy**, RK) will flatten the central cornea, and thereby reduce its converging power. Thus, RK can be used to treat myopia. Note that because incisions cannot produce overall *steepening* of the central cornea, RK cannot be used to treat hyperopia. Note also that, at this juncture, **RK is considered obsolete, and is thus no longer performed in the US.**

OTOH, *peripheral* incisional procedures to offset *astigmatic* refractive error are an important and oft-used surgical technique

Both AK and LRI incisions are placed on the steep meridian of the cornea, in pairs located on opposite sides of the cornea. AK incisions are made in the paracentral cornea, whereas LRI are made at the limbus (as their name implies).

AK incisions LR incisions

Both AK and LRI incisions are placed on the steep meridian of the cornea, in pairs located on opposite sides of the cornea. AK incisions are made in the paracentral cornea, whereas LRI are made at the limbus (as their name implies). Both techniques have the effect of flattening the meridian in which they're placed, but through a process called *coupling*, steepening the meridian 90 deg away.

Corneal Coupling Effect

Both AK and LRI incisions are placed on the steep meridian of the cornea, in pairs located on opposite sides of the cornea. AK incisions are made in the paracentral cornea, whereas LRI are made at the limbus (as their name implies). Both techniques have the effect of flattening the meridian in which they're placed, but through a process called *coupling*, steepening the meridian 90 deg away. The most common indication for AK is correction of astigmatism in an eye that is s/p penetrating keratoplasty.

Both AK and LRI incisions are placed on the steep meridian of the cornea, in pairs located on opposite sides of the cornea. AK incisions are made in the paracentral cornea, whereas LRI are made at the limbus (as their name implies). Both techniques have the effect of flattening the meridian in which they're placed, but through a process called *coupling*, steepening the meridian 90 deg away. The most common indication for AK is correction of astigmatism in an eye that is s/p penetrating keratoplasty. LRI are typically placed at the time of surgery to correct corneal astigmatism in hopes of producing better UCVA post-op.

Both AK and LRI incisions are placed on the steep meridian of the cornea, in pairs located on opposite sides of the cornea. AK incisions are made in the paracentral cornea, whereas LRI are made at the limbus (as their name implies). Both techniques have the effect of flattening the meridian in which they're placed, but through a process called *coupling*, steepening the meridian 90 deg away. The most common indication for AK is correction of astigmatism in an eye that is s/p penetrating keratoplasty. LRI are typically placed at the time of cataract surgery to correct corneal astigmatism in hopes of producing better UCVA post-op.

CK probe

CK in action

CK scars

Corneal Reshaping Inlay CRI

Corneal CROSS Linking — CXL

Intrastromal Corneal Ring Segments — ICRS

Made from Polyvinylidene Fluoride (PVDF)

Intraocular

Pseudophakic

In **CK**, a thermal probe is used to produce a set of focal corneal scars. The scars produce local corneal steepening, thereby increasing convergence and improving vision at near.

The **SAI** is a tiny donut-shaped disc that is implanted in the central corneal stroma. Its central aperture produces a pinhole effect to improve near vision.

Like the SAI, the **CRI** is a tiny device implanted in the central corneal stroma. However, its mechanism of action is different—it is disc-shaped with a central 'bump' that increases the curvature of the overlying corneal surface, which in turn increases corneal convergence and thus improves near vision.

Corneal

BEFORE CXL: LESS CROSSLINKING
= WEAKER CORNEA

AFTER CXL: MORE CROSSLINKING = STRONGER CORNEA

We remove the Epithelium

Ribloflavin (Vitamin B2) eye drops are applied onto the cornea

1 minute later, the solution is irrigated or washed away by the surgeon

 An ultra-violet light (UVA) illuminates the Riboflavin solution for the corneal cross-linking procedure

CXL: Process

183

CXL: Process

Intrastromal ring segments

187

Intrastromal ring segments in situ

Intrastromal ring segments placed for KCN