The meibomian glands are embedded within the tarsal plate.
The meibomian glands are embedded within the tarsal plate.
The meibomian glands are embedded within the **tarsal plate**.
The product of a meibomian gland is called **meibum**.
Glands of the Orbit *(but not that one)*

- The meibomian glands are embedded within the **tarsal plate**.
- The product of a meibomian gland is called **meibum**.
The meibomian glands are embedded within the tarsal plate.
The product of a meibomian gland is called meibum.
The product of a sebaceous gland is called...

Glands of the Orbit (but not that one)
Glands of the Orbit (but not that one)

- The meibomian glands are embedded within the **tarsal plate**.
- The product of a meibomian gland is called **meibum**.
- The product of a sebaceous gland is called **sebum**.
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called **meibum**. The product of a sebaceous gland is called **sebum**.

How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).
- The meibomian glands are embedded within the tarsal plate.
- The product of a meibomian gland is called meibum.
- The product of a sebaceous gland is called sebum.
- How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (\leq to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic? For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting-point of the meibum
The meibomian glands are embedded within the tarsal plate.

The product of a meibomian gland is called **meibum**.

The product of a sebaceous gland is called **sebum**.

How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic? For two reasons:

--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and

--Because this alteration increases the melting point of the meibum.

OK, but how does this cause tear dysfunction?
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic? For two reasons:

--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and

--Because this alteration increases the melting-point of the meibum.

OK, but how does this cause tear dysfunction? By contaminating the mucin layer, these polar lipids disrupt its ability to stabilize the tear film, leading to early tear-film break-up.
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic? For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer, and
--Because this alteration increases the melting-point of the meibum.

And how does this cause tear dysfunction?
The meibomian glands are embedded within the tarsal plate.
The product of a meibomian gland is called meibum.
The product of a sebaceous gland is called sebum.
How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (\(\leq \) to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic? For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting-point of the meibum.

And how does this cause tear dysfunction? As the melting temp approaches or exceeds ocular surface temp, the meibum will become more viscous (and thus resistant to excretion). This leads to a vicious cycle of deleterious effects.
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called **meibum**. The product of a sebaceous gland is called **sebum**.

How do these differ (other than in their gland of origin)? **Meibum** has a much lower concentration of polar triglycerides and free fatty acids than does **sebum**. Also, **meibum** has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?

For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting-point of the meibum.

And how does this cause tear dysfunction?
As the melting temp approaches or exceeds ocular surface temp, the meibum will become more viscous (and thus resistant to excretion). This leads to a vicious cycle of deleterious effects.

What is the vicious cycle involving altered meibum lipids?

altered lipids → effect of increased viscosity
Glands of the Orbit (but not that one)

- The meibomian glands are embedded within the tarsal plate.
- The product of a meibomian gland is called meibum.
- The product of a sebaceous gland is called sebum.
- How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?

For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting-point of the meibum.

And how does this cause tear dysfunction?
As the melting temp approaches or exceeds ocular surface temp, the meibum will become more viscous (and thus resistant to excretion). This leads to a vicious cycle of deleterious effects.

What is the vicious cycle involving altered meibum lipids?

altered lipids → plugging of the MG orifi
The meibomian glands are embedded within the tarsal plate.

- The product of a meibomian gland is called **meibum**.
- The product of a sebaceous gland is called **sebum**.

How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?

For two reasons:

- Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
- Because this alteration increases the melting-point of the meibum.

What is the vicious cycle involving altered meibum lipids?

Altered lipids → plugging of the MG orifi → effect of MG orifi plugging
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum.

How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (\leq to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?

For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer, and
--Because this alteration increases the melting-point of the meibum.

And how does this cause tear dysfunction? As the melting temp approaches or exceeds ocular surface temp, the meibum will become more viscous (and thus resistant to excretion). This leads to a vicious cycle of deleterious effects.

What is the vicious cycle involving altered meibum lipids?

altered lipids \rightarrow plugging of the MG orifi \rightarrow stasis of lipid in the MGs
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic? For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer, and
--Because this alteration increases the melting-point of the meibum.

What is the vicious cycle involving altered meibum lipids?

altered lipids → plugging of the MG orifi → stasis of lipid in the MGs → effect of lipid stasis in the glands
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic? For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer, and
--Because this alteration increases the melting-point of the meibum.

What is the vicious cycle involving altered meibum lipids?

altered lipids → plugging of the MG orifi → stasis of lipid in the MGs → enhanced bacterial colonization and overgrowth within MGs
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic? For two reasons:

--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer, and
--Because this alteration increases the melting-point of the meibum

What is the vicious cycle involving altered meibum lipids?

altered lipids → plugging of the MG orifi → stasis of lipid in the MGs → enhanced bacterial colonization and overgrowth within MGs → effect of enhanced bacterial presence in the glands
The meibomian glands are embedded within the tarsal plate.

The product of a meibomian gland is called **meibum**.

The product of a sebaceous gland is called **sebum**.

How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?

For two reasons:

--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer, and

--Because this alteration increases the melting point of the meibum (but not that one).

And how does this cause tear dysfunction?

As the melting temp approaches or exceeds ocular surface temp, the meibum will become more viscous (and thus resistant to excretion). This leads to a **vicious cycle** of deleterious effects.

What is the vicious cycle involving altered meibum lipids?

altered lipids → plugging of the MG orifi → stasis of lipid in the MGs → enhanced bacterial colonization and overgrowth within MGs → altered lipids
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called **meibum**. The product of a sebaceous gland is called **sebum**.

How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (\leq to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?

For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting point of the meibum.

What systemic drug used to manage MGD/DES works by blocking bacterial lipase activity?

Doxycycline (and similar tetracycline derivatives)

In addition to blocking bacterial lipase activity, what other salutary effect does doxy have with respect to DES?

It blocks the effects of MMP-9.
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic? For two reasons:
-- Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
-- Because this alteration increases the melting-point of the meibum.

What systemic drug used to manage MGD/DES works by blocking bacterial lipase activity? Doxycycline (and similar tetracycline derivatives)
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called **meibum**. The product of a sebaceous gland is called **sebum**.

How do these differ (other than in their gland of origin)? **Meibum** has a much lower concentration of polar triglycerides and free fatty acids than does **sebum**. Also, **meibum** has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?

For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting-point of the meibum.

What systemic drug used to manage MGD/DES works by blocking bacterial lipase activity? **Doxycycline (and similar tetracycline derivatives)**

Um, hello--doxycycline is an antibiotic, and it’s being used to treat a bacteria-related condition. Surely its anti-microbial properties play a role?
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum.

How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?

For two reasons:

--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting-point of the meibum.

What systemic drug used to manage MGD/DES works by blocking bacterial lipase activity?

Doxycycline (and similar tetracycline derivatives)

Um, hello--doxycycline is an antibiotic, and it’s being used to treat a bacteria-related condition. Surely its anti-microbial properties play a role?

Actually no--they’re probably only minimally contributory to its effects. But there is another effect worth mentioning…
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called **meibum**. The product of a sebaceous gland is called **sebum**.

How do these differ (other than in their gland of origin)? **Meibum** has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?

For two reasons:

--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and

--Because this alteration increases the melting-point of the meibum.

What systemic drug used to manage MGD/DES works by blocking bacterial lipase activity?

Doxycycline (and similar tetracycline derivatives)

In addition to blocking bacterial lipase activity, what other salutary effect does doxy have with respect to DES?
The meibomian glands are embedded within the tarsal plate.
The product of a meibomian gland is called *meibum*.
The product of a sebaceous gland is called *sebum*.
How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?
For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting point of the meibum.

What systemic drug used to manage MGD/DES works by blocking bacterial lipase activity?
Doxycycline (and similar tetracycline derivatives)

In addition to blocking bacterial lipase activity, what other salutary effect does doxy have with respect to DES?
It blocks the effects of MMP-9
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called **meibum**. The product of a sebaceous gland is called **sebum**. How do these differ (other than in their gland of origin)? **Meibum** has a much lower concentration of polar triglycerides and free fatty acids than does **sebum**. Also, **meibum** has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?

For two reasons:

--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and

--Because this alteration increases the melting point of the meibum (but not that one).

What systemic drug used to manage MGD/DES works by blocking bacterial lipase activity?

Doxycycline (and similar tetracycline derivatives)

In addition to blocking bacterial lipase, what other salutary effect does doxy have with respect to DES?

It blocks the effects of MMP-9.

In the present context, what does MMP stand for?

Matrix metalloproteinase

What is MMP-9?

A pro-inflammatory cytokine released by distressed corneal epithelial cells.
In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic? For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting-point of the meibum.

What systemic drug used to manage MGD/DES works by blocking bacterial lipase activity? Doxycycline (and similar tetracycline derivatives)

In addition to blocking bacterial lipase, what other salutary effect does doxy have with respect to DES?
It blocks the effects of MMP-9.

In the present context, what does MMP stand for?
Matrix metalloproteinase

The meibomian glands are embedded within the tarsal plate.
The product of a meibomian gland is called meibum.
The product of a sebaceous gland is called sebum.
How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

Glands of the Orbit (but not that one)

The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).
The meibomian glands are embedded within the tarsal plate.
The product of a meibomian gland is called meibum.
The product of a sebaceous gland is called sebum.
How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?

For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting-point of the meibum.

What systemic drug used to manage MGD/DES works by blocking bacterial lipase activity?
Doxycycline (and similar tetracycline derivatives)

In addition to blocking bacterial lipase activity, what other salutary effect does doxy have with respect to DES?
It blocks the effects of MMP-9

In the present context, what does MMP stand for?
Matrix metalloproteinase

What is MMP-9?
A pro-inflammatory cytokine released by distressed corneal epithelial cells
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called **meibum**. The product of a sebaceous gland is called **sebum**. How do these differ (other than in their gland of origin)? **Meibum** has a much lower concentration of polar triglycerides and free fatty acids than does **sebum**. Also, **meibum** has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic? For two reasons:

--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting-point of the meibum. Glands of the Orbit (but not that one)

What systemic drug used to manage MGD/DES works by blocking bacterial lipase activity? **Doxycycline** (and similar tetracycline derivatives)

In addition to blocking bacterial lipase, what other salutary effect does doxy have with respect to DES? It blocks the effects of **MMP-9**

In the present context, what does MMP stand for? **Matrix metalloproteinase**

What is MMP-9? A pro-inflammatory cytokine released by distressed corneal epithelial cells
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum.

How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic? For two reasons:

--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting point of the meibum.

What systemic drug used to manage MGD/DES works by blocking bacterial lipase activity? Doxycycline (and similar tetracycline derivatives)

In the present context, what does MMP stand for? Matrix metalloproteinase

What is MMP-9? A pro-inflammatory cytokine released by distressed corneal epithelial cells.

What are the side effects of doxy? --Photosensitivity: patients should avoid prolonged sun exposure --GI upset: Diarrhea is common --and the classic eye-related side effect: Idiopathic intracranial HTN
The meibomian glands are embedded within the tarsal plate.

The product of a meibomian gland is called **meibum**.

The product of a sebaceous gland is called **sebum**.

How do these differ (other than in their gland of origin)? **Meibum** has a much lower concentration of polar triglycerides and free fatty acids than does **sebum**. Also, **meibum** has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?

For two reasons:

--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting point of the meibum.

What systemic drug used to manage MGD/DES works by blocking bacterial lipase activity? **Doxycycline** (and similar tetracycline derivatives)

In the present context, what does **MMP** stand for?

Matrix metalloproteinase

What is MMP-9?

A pro-inflammatory cytokine released by distressed corneal epithelial cells

What are the side effects of doxy?

--Photosensitivity: patients should avoid prolonged sun exposure
--GI upset: *Diarrhea* is common
--and the classic eye-related side effect: *Idiopathic intracranial HTN*
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

In some forms of meibomian gland dysfunction, bacterial lipase released within the glands renders the meibum more polar. Why is this problematic?
For two reasons:
--Because these more-polar fats are able to pass through the aqueous layer of the tear film and contaminate the mucin layer; and
--Because this alteration increases the melting-point of the meibum.

What systemic drug used to manage MGD/DES works by blocking bacterial lipase activity?
Doxycycline (and similar tetracycline derivatives)

In the present context, what does MMP stand for?
Matrix metalloproteinase

What is MMP-9?
A pro-inflammatory cytokine released by distressed corneal epithelial cells

What are the side effects of doxy?
--Photosensitivity: patients should avoid prolonged sun exposure
--GI upset: Diarrhea is common
--and the classic eye-related side effect: Idiopathic intracranial HTN
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp). There are up to twice as many meibomian glands in the upper lids, which probably accounts for the increased risk of getting chalazia there.
The meibomian glands are embedded within the **tarsal plate**. The product of a meibomian gland is called **meibum**. The product of a sebaceous gland is called **sebum**. How do these differ (other than in their gland of origin)? **Meibum** has a much lower concentration of polar triglycerides and free fatty acids than does **sebum**. Also, **meibum** has a lower melting point (≤ to ocular surface temp). There are up to twice as many meibomian glands in the **upper lids**, which probably accounts for the increased risk of getting **chalazia** there.
- The meibomian glands are embedded within the tarsal plate.
- The product of a meibomian gland is called **meibum**.
- The product of a sebaceous gland is called **sebum**.
- How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).
- There are up to twice as many meibomian glands in the upper lids, which probably accounts for the increased risk of getting chalazia there.

How many MGs are we talking about for each lid?
- **Uppers:** (looking for a range here)
- **Lowers:** (ditto)
The meibomian glands are embedded within the tarsal plate.

The product of a meibomian gland is called meibum.

The product of a sebaceous gland is called sebum.

How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

There are up to twice as many meibomian glands in the upper lids, which probably accounts for the increased risk of getting chalazia there.

How many MGs are we talking about for each lid?
--Uppers: 30-40
--Lowers: 20-30
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called *meibum*. The product of a sebaceous gland is called *sebum*. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp). There are up to twice as many meibomian glands in the upper lids, which probably accounts for the increased risk of getting chalazia there. What are the glands of Krause and Wolfring? The accessory lacrimal glands.
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp). There are up to twice as many meibomian glands in the upper lids, which probably accounts for the increased risk of getting chalazia there. What are the glands of Krause and Wolfring? The accessory lacrimal glands.
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp). There are up to twice as many meibomian glands in the upper lids, which probably accounts for the increased risk of getting chalazia there. What are the glands of Krause and Wolfring? The accessory lacrimal glands. Where are they located? The...
The meibomian glands are embedded within the tarsal plate.
The product of a meibomian gland is called **meibum**.
The product of a sebaceous gland is called **sebum**.
How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).
There are up to twice as many meibomian glands in the upper lids, which probably accounts for the increased risk of getting chalazia there.
What are the glands of Krause and Wolfring? The accessory lacrimal glands.
Where are they located? The **palpebral** and **forniceal** conjunctiva.
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called **meibum**. The product of a sebaceous gland is called **sebum**. How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).

There are up to twice as many meibomian glands in the upper lids, which probably accounts for the increased risk of getting chalazia there. What are the glands of Krause and Wolfring? The accessory lacrimal glands. Where are they located? The palpebral and forniceal conjunctiva. What are the glands of Zeiss and Moll? Glands of the...
• The meibomian glands are embedded within the tarsal plate.
• The product of a meibomian gland is called meibum.
• The product of a sebaceous gland is called sebum.
• How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).
• There are up to twice as many meibomian glands in the upper lids, which probably accounts for the increased risk of getting chalazia there.
• What are the glands of Krause and Wolfring? The accessory lacrimal glands.
• Where are they located? The palpebral and forniceal conjunctiva.
• What are the glands of Zeiss and Moll? Glands of the eyelash pilosebaceous unit.
- The meibomian glands are embedded within the tarsal plate.
- The product of a meibomian gland is called meibum.
- The product of a sebaceous gland is called sebum.
- How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp).
- There are up to twice as many meibomian glands in the upper lids, which probably accounts for the increased risk of getting chalazia there.
- What are the glands of Krause and Wolfring? The accessory lacrimal glands.
- Where are they located? The palpebral and forniceal conjunctiva
- What are the glands of Zeiss and Moll? Glands of the eyelash pilosebaceous unit.
 - Zeiss glands are sebaceous glands
 - Moll glands are sweat glands
The meibomian glands are embedded within the tarsal plate. The product of a meibomian gland is called meibum. The product of a sebaceous gland is called sebum.

How do these differ (other than in their gland of origin)? Meibum has a much lower concentration of polar triglycerides and free fatty acids than does sebum. Also, meibum has a lower melting point (≤ to ocular surface temp). There are up to twice as many meibomian glands in the upper lids, which probably accounts for the increased risk of getting chalazia there.

What are the glands of Krause and Wolfring? The accessory lacrimal glands.

Where are they located? The palpebral and forniceal conjunctiva.

What are the glands of Zeiss and Moll? Glands of the eyelash pilosebaceous unit.

- Zeiss glands are sebaceous glands
- Moll glands are sweat glands