Mirrors

Basic Optics, Chapter 25

Mirrors

- Like lenses, mirrors can affect the vergence of light
- Also like lenses, questions and problems involving mirrors are fair game on the OKAP

Mirrors

- Like lenses, mirrors can affect the vergence of light
- Also like lenses, questions and problems involving mirrors are fair game on the OKAP
- Mirrors come in three flavors:
- Plane (flat)
- Concave
- Shaped like the inside of a spoon-ie, like ‘a cave’
- Convex
- Like the back surface of a spoon

Mirrors

- Plane mirrors
- Change the direction of light, but do not alter its vergence (vergence out = vergence in)

Mirrors

- Plane mirrors
- Change the direction of light, but do not alter its vergence (vergence out = vergence in)
- The only rule you need to remember is that, for any light ray, the angle of incidence equals the angle of reflection (with respect to the normal)
(The normal is perpendicular to the plane of the mirror's surface at that location)

Mirrors

- Plane mirrors
- Change the direction of light, but do not alter its vergence (vergence out = vergence in)
- The only rule you need to remember is that, for any light ray, the angle of incidence equals the angle of reflection (with respect to the normal)

Mirrors

- Plane mirrors
- Change the direction of light, but do not alter its vergence (vergence out = vergence in)
- The only rule you need to remember is that, for any light ray, the angle of incidence equals the angle of reflection (with respect to the normal)

Mirrors

$\theta_{\text {incidence }}$

Mirrors

Mirrors

Mirrors

Mirrors

Mirrors

Mirrors

Mirrors

 about the point where the extended

We've seen this sort of thing before... What do you suppose is significant about the point where the extended rays meet?
As was the case with ray tracing involving lenses, it determines the location, orientation (ie, upright vs inverted), magnification and status (ie, real vs virtual) of the image.

Mirrors

0000

We've seen this sort of thing before. What do you suppose is significant about the point where the extended
rays meet?
As was the case with ray tracing involving lenses, it determines the location orientation (ie, upright vs inverted), magnification and status (ie, real vs virtual) of the image.

Re plane mirrors:

The image location is always 'behind' the mirror (ie, on the side opposite the object)

Mirrors

000

The image location is always 'behind' the mirror (ie, on the side opposite the object)
The image is always upright (Remember, upright means that the image has the same orientation as the object)
 000 about the point where the extended
rays meet?
As was the case with ray tracing involving lenses, it determines the location, orientation (ie, upright vs inverted), magnification and status (ie, real vs virtual) of the image.

Re plane mirrors:

The image location is always 'behind' the mirror (ie, on the side opposite the object)
The image is always upright (Remember, upright means that the image has the same orientation as the object) The magnification is 1.0 (ie, the image is the same height as the object)

We've seen this sort of thing before. What do you suppose is significant about the point where the extended
rays meet?
As was the case with ray tracing involving lenses, it determines the location, orientation (ie, upright vs inverted), magnification and status (ie, real vs virtual) of the image.
................................. fromer here

Re plane mirrors:

The image location is always 'behind' the mirror (ie, on the side opposite the object)
The image is always upright (Remember, upright means that the image has the same orientation as the object) The magnification is 1.0 (ie, the image is the same height as the object)
The image is always virtual (so you will always have to use extended 'dashed' rays to create it)

Mirrors

Additionally, for plane mirrors: Image-to-mirror distance =

Mirrors

Additionally, for plane mirrors: Image-to-mirror distance $=$ Object-to-mirror distance

Mirrors

Additionally, for plane mirrors: Image-to-mirror distance $=$ Object-to-mirror distance (Note that this is just another way to say 'Vergence out = Vergence in' as mentioned previously)

- Concave/convex mirrors
- Change the direction of light, but also alter its vergence
- The rules governing reflection are equivalent to the ray-tracing rules for lenses we encountered in Chapter 19

Mirrors

The shiny side is shaped like the back of a spoon, so we know this is a convex mirror.

Mirrors

The shiny side is shaped like the back of a spoon, so we know this is a convex mirror.

The first aspect we should note is the center of curvature for the mirror. Think of it as analogous to the nodal point of a lens. spoon, so we know this is aconvex miror.

Mirrors

The shiny side is shaped like the back of a spoon, so we know this is a convex mirror.

The first aspect we should note is the center of curvature for the mirror. Think of it as analogous to the nodal point of a lens.

Mirrors

The shiny side is shaped like the back of a spoon, so we know this is a convex mirror.

The first aspect we should note is the center of curvature for the mirror. Think of it as analogous to the nodal point of a lens.

Mirrors

The shiny side is shaped like the back of a spoon, so we know this is a convex mirror.

The first aspect we should note is the center of curvature for the mirror. Think of it as analogous to the nodal point of a lens.

The next aspect we should note are the focal points of the mirror.

Mirrors

The shiny side is shaped like the back of a spoon, so we know this is a convex mirror.

The first aspect we should note is the center of curvature for the mirror. Think of it as analogous to the nodal point of a lens.

The next aspect we should note are the focal points of the mirror. Like a lens, a mirror has a primary focal point

Mirrors

The shiny side is shaped like the back of a spoon, so we know this is a convex mirror.

The first aspect we should note is the center of curvature for the mirror. Think of it as analogous to the nodal point of a lens.

The next aspect we should note are the focal points of the mirror. Like a lens, a mirror has a primary focal point, and a secondary focal point.

Mirrors

The shiny side is shaped like the back of a spoon, so we know this is a convex mirror.

The first aspect we should note is the center of curvature for the mirror. Think of it as analogous to the nodal point of a lens.

The next aspect we should note are the focal points of the mirror. Like a lens, a mirror has a primary focal point, and a secondary focal point. Conveniently, they are located in the same placeexactly halfway between the center of curvature and the surface of the mirror.

Mirrors

The shiny side is shaped like the back of a spoon, so we know this is a convex mirror.

The first aspect we should note is the center of curvature for the mirror. Think of it as analogous to the nodal point of a lens.

The next aspect we should note are the focal points of the mirror. Like a lens, a mirror has a primary focal point, and a secondary focal point. Conveniently, they are located in the same placeexactly halfway between the center of curvature and the surface of the mirror.
(Technically it's not the same location, in that the primary focal is located in what is known as 'object space,' whereas the secondary focal point is located in 'image space.')

Mirrors

The shiny side is shaped like the back of a spoon, so we know this is a convex mirror.

The first aspect we should note is the center of curvature for the mirror. Think of it as analogous to the nodal point of a lens.

The next aspect we should note are the focal points of the mirror. Like a lens, a mirror has a primary focal point, and a secondary focal point. Conveniently, they are located in the same placeexactly halfway between the center of curvature and the surface of the mirror.

Thus, if you know the location of either the center of curvature or the focal point(s), you can determine the location of the other.

Mirrors

The shiny side is shaped like the back of a spoon, so we know this is a convex mirror.

The first aspect we should note is the center of curvature for the mirror. Think of it as analogous to the nodal point of a lens.

The next aspect we should note are the focal points of the mirror. Like a lens, a mirror has a primary focal point, and a secondary focal point. Conveniently, they are located in the same placeexactly halfway between the center of curvature and the surface of the mirror.

Thus, if you know the location of either the center of curvature or the focal point(s), you can determine the location of the other. Likewise, because the distance from the focal point(s) to the mirror (ie, the focal length) is the reciprocal of the converging power of the mirror in diopters, you can also determine the power of the mirror.

Mirrors

The shiny side is shaped like the back of a spoon, so we know this is a convex mirror.

The first aspect we should note is the center of curvature for the mirror. Think of it as analogous to the nodal point of a lens.

The next aspect we should note are the focal points of the mirror. Like a lens, a mirror has a primary focal point, and a secondary focal point. Conveniently, they are located in the same placeexactly halfway between the center of curvature and the surface of the mirror.

Thus, if you know the location of either the center of curvature or the focal point(s), you can determine the location of the other. Likewise, because the distance from the focal point(s) to the mirror (ie, the focal length) is the reciprocal of the converging power of the mirror in diopters, you can also determine the power of the mirror.

Note: Because mirrors always reverse the direction of light, you may see the power expressed thusly, with a minus sign:

Mirrors

The shiny side is shaped like the back of a spoon, so we know this is a convex mirror.

The first aspect we should note is the center of curvature for the mirror. Think of it as analogous to the nodal point of a lens.

The next aspect we should note are the focal points of the mirror. Like a lens, a mirror has a primary focal point, and a secondary focal point. Conveniently, they are located in the same placeexactly halfway between the center of curvature and the surface of the mirror.

Thus, if you know the location of either the center of curvature or the focal point(s), you can determine the location of the other. Likewise, because the distance from the focal point(s) to the mirror (ie, the focal length) is the reciprocal of the converging power of the mirror in diopters, you can also determine the power of the mirror.
 spoon, so ke know this is aconvex mirror.

Mirrors

The shiny side is shaped like the front of a spoon, so we know this is a concave mirror.

The first aspect we should note is the center of curvature for the mirror. Think of it as analogous to the nodal point of a lens.

The next aspect we should note are the focal points of the mirror. Like a lens, a mirror has a primary focal point, and a secondary focal point. Conveniently, they are located in the same placeexactly halfway between the center of curvature and the surface of the mirror.

Thus, if you know the location of either the center of curvature or the focal point(s), you can determine the location of the other. Likewise, because the distance from the focal point(s) to the mirror (ie, the focal length) is the reciprocal of the converging power of the mirror in diopters, you can also determine the power of the mirror.

Mirrors

Mirrors

090

An object is located 50 cm from the surface of a convex mirror with a radius of curvature of 50 cm .

1) Where is the image located?
2) Is the image upright or inverted?
3) Is the image real or virtual?
4) Is the image magnified/minified?

Mirrors

An object is located 50 cm from the surface of a convex mirror with a radius of curvature of 50 cm .

1) Where is the image located?
2) Is the image upright or inverted?
3) Is the image real or virtual?
4) Is the image magnified/minified?

A ray directed toward the center of curvature... is reflected back in the direction from whence it came.

Mirrors

An object is located 50 cm from the surface of a convex mirror with a radius of curvature of 50 cm .

1) Where is the image located?
2) Is the image upright or inverted?
3) Is the image real or virtual?
4) Is the image magnified/minified?

A ray parallel to the optical axis will be reflected as if it originated from the secondary focal point.

Mirrors

An object is located 50 cm from the surface of a convex mirror with a

Mirrors

$\bullet \bullet \bullet \bullet$

An object is located 50 cm from the surface of a convex mirror with a radius of curvature of 50 cm .

1) Where is the image located?
2) Is the image upright or inverted?
3) Is the image real or virtual?
4) Is the image magnified/minified?

Mirrors

An object is located 50 cm from the surface of a convex mirror with a

Mirrors

:
亚

Mirrors

Mirrors

: 100

Mirrors

$:$
An object is located 50 cm from the surface of a convex mirror with a

Mirrors

Mirrors

Mirrors

Mirrors

Mirrors

0

Mirrors

4) Is the image magnified/minified?

The image is obviously minified. However, we can determine the exact image/object ratio by using the similar triangles method:

Mirrors

Mirrors

Mirrors

,
00
$0-2$

Mirrors

$\because: 8$
4) Is the image magnified/minified?

The image is obviously minified. However, we can determine the exact image/object ratio by using the similar triangles method:

Thus the image is $\sim 1 / 3$ the size of the object

$$
\begin{aligned}
& \begin{array}{c}
\text { Vergence of } \\
\text { incoming light }
\end{array} \begin{array}{c}
\text { Vergence added } \\
\text { by the mirror }
\end{array} \quad \begin{array}{c}
\text { Verg } \\
\text { leaving }
\end{array} \\
& -1 / .5+-1 / .25=\mathrm{V} \\
& -2+-4=-6
\end{aligned}
$$

Mirrors

An object is located 1 m from the surface of a concave mirror with a radius of curvature of 55 cm .

1) Where is the image located?
2) Is the image upright or inverted?
3) Is the image real or virtual?
4) Is the image magnified/minified?

Mirrors

An object is located 1 m from the surface of a concave mirror with a radius of curvature of 55 cm .

1) Where is the image located?
2) Is the image upright or inverted?
3) Is the image real or virtual?
4) Is the image magnified/minified?

A ray directed toward the center of curvature is reflected back in the direction from whence it came.

Mirrors

An object is located 1 m from the surface of a concave mirror with a radius of curvature of 55 cm .

1) Where is the image located?

A ray parallel to the optical axis will be reflected as if it originated from the secondary focal point.
2) Is the image upright or inverted?
3) Is the image real or virtual?
4) Is the image magnified/minified?

Mirrors

An object is located 1 m from the surface of a concave mirror with a radius of curvature of 55 cm .

1) Where is the image located?
2) Is the image upright or inverted?
3) Is the image real or virtual?
4) Is the image magnified/minified?

A ray directed toward the primary focal point will be reflected parallel to the optical axis.

Mirrors

An object is located 1 m from the
surface of a concave mirror with a
radius of curvature of 55 cm .

1) Where is the image located?

2) Is the image upright or inverted? 3) Is the image real or virtual? 4) Is the image magnified/minified?

The image is located here. However, we can determine its exact distance from the mirror via the Vergence Formula.

Mirrors

An object is located 1 m from the
surface of a concave mirror with a
radius of curvature of 55 cm .

1) Where is the image located?

Mirrors

An object is located 1 m from the
surface of a concave mirror with a
radius of curvature of 55 cm .

1) Where is the image located?

The image is located here. However, we can determine its exact distance from the mirror via the Vergence Formula.

Vergence of Vergence added Vergence of light incoming light by the mirror leaving the mirror

(Again, the power of a mirror is $1 / \mathrm{f}$, and f is $1 / 2$ the radius)

Mirrors

An object is located 1 m from the
surface of a concave mirror with a
radius of curvature of 55 cm .

Mirrors

An object is located 1 m from the
surface of a concave mirror with a
radius of curvature of 55 cm .

1) Where is the image located?
2) Is the image upright or inverted? 3) Is the image real or virtual?
3) Is the image magnified/minified?

The image is located here. However, we can determine its exact distance from the mirror via the Vergence Formula. The image is .38 m $(38 \mathrm{~cm})$ to the left of the mirror.
$\begin{array}{ccc}\begin{array}{c}\text { Vergence of } \\ \text { incoming light }\end{array} & \begin{array}{c}\text { Vergence added } \\ \text { by the mirror }\end{array} & \begin{array}{c}\text { Vergence of light } \\ \text { leaving the mirror }\end{array}\end{array}$

$$
\begin{aligned}
& U+P=V \\
& -1 / 1+1 / .275=V \\
& -1+3.64=2.64
\end{aligned}
$$

Mirrors

Mirrors

- -2

An object is located 1 m from the

surface of a concave mirror with a
radius of curvature of 55 cm .

1) Where is the image located?
2) Is the image upright or inverted?

3) Is the image real or virtual?
4) Is the image magnified/minified?

The image is real (note no dashed lines).

Vergence of Vergence added Vergence of light incoming light by the mirror leaving the mirror

$$
\begin{aligned}
& U+P=V \\
& -1 / 1+1 / .275=V \\
& -1+3.64=2.64
\end{aligned}
$$

Mirrors

Mirrors

An object is located 1 m from the
surface of a concave mirror with a
radius of curvature of 55 cm .

1) Where is the image located?

Mirrors

00
00
The image is minified. To determine by how much, we again employ the method of similar triangles:

$$
\frac{\text { Image size }}{\text { Object size }}=\frac{\text { Image distance }}{\text { Object distance }}=\frac{.38 \mathrm{~m}}{1 \mathrm{~m}}=0.38
$$

Mirrors

Mirrors

A ray directed toward the center of curvature is reflected back in the direction from whence it came.

Mirrors

 A ray parallel to the optical axis will be reflected as if it originated from the secondary focal point.An object is located 25 cm from the surface of a concave mirror with a radius of curvature of 1 m .

1) Where is the image located?
2) Is the image upright or inverted?
3) Is the image real or virtual?
4) Is the image magnified/minified?

$$
U+P=V
$$

$$
\begin{aligned}
U+P & =V \\
-1 / .25+1 / .5 & =V
\end{aligned}
$$

$$
\begin{aligned}
U+P & =V \\
-1 / .25+1 / .5 & =V \\
-4+2 & =-2
\end{aligned}
$$

The image is located here. We can determine its exact distance from the mirror via the Vergence Formula.

An object is located 25 cm from the surface of a concave mirror with a radius of curvature of 1 m

1) Where is the image located?
2) Is the image upright or inverted? 3) Is the image real or virtual?
3) Is the image magnified/minified?

$$
\begin{aligned}
U+P & =V \\
-1 / .25+1 / .5 & =V \\
-4+2 & =-2
\end{aligned}
$$

$$
\begin{aligned}
U+P & =V \\
-1 / .25+1 / .5 & =V \\
-4+2 & =-2
\end{aligned}
$$

$$
\begin{aligned}
U+P & =V \\
-1 / .25+1 / .5 & =V \\
-4+2 & =-2
\end{aligned}
$$

$$
\begin{aligned}
U+P & =V \\
-1 / .25+1 / .5 & =V \\
-4+2 & =-2
\end{aligned}
$$

$$
\begin{array}{r}
U+P=V \\
-1 / .25+1 / .5=V \\
-4+2=-2
\end{array}
$$

The image is magnified. To determine by how much, we can use the method of similar triangles:

An object is located 25 cm from the surface of a concave mirror with a radius of curvature of 1 m .

1) Where is the image located?
2) Is the image upright or inverted?
3) Is the image magnified/minified?

Vergence of incoming light

$$
\frac{\text { Image size }}{\text { Object size }}=\frac{\text { Image distance }}{\text { Object distance }}=\frac{50 \mathrm{~cm}}{25 \mathrm{~cm}}=2
$$

$$
\begin{array}{r}
U+P=V \\
-1 / .25+1 / .5=V \\
-4+2=-2
\end{array}
$$

