Transverse Magnification

Basic Optics, Chapter 20

Transverse Magnification

- Let's talk about transverse magnification
- Also known as lateral or linear magnification
- Transverse mag concerns the relative height of objects and images in our ray tracings

Transverse Magnification

- Let's talk about transverse magnification
- Also known as lateral or linear magnification
- Transverse mag concerns the relative height of objects and images in our ray tracings
- In principle, with careful tracing, one could simply measure the image and object and determine the ratio directly
- Fortunately, there are less tedious methods

Transverse Magnification

Transverse magnification is defined as:

Image height
 Object height

Transverse Magnification

Transverse magnification is defined as:

Image height Object height

OK, but how do we determine object and image heights when all we have (usually) is info re vergence?

Transverse Magnification

Thin plus lens

Here is a ray tracing from a previous chapter.

Transverse Magnification

Thin plus lens

Here is a ray tracing from a previous chapter.
Here it is with only the nodal ray and lens axis ray drawn.

Transverse Magnification

Thin plus lens

Here is a ray tracing from a previous chapter.
Here it is with only the nodal ray and lens axis ray drawn.
Think back to high-school geometry—what does the figure look like?

Transverse Magnification

Thin plus lens

Similar triangles

Transverse Magnification

Thin plus lens

Transverse Magnification

Thin plus lens

Transverse magnification $=/ / O$ (by definition)

Transverse Magnification

Thin plus lens

Transverse magnification = $/ / O$ (by definition)
By similar triangles: $/ / O=v / u$

Transverse Magnification

Thin plus lens

Transverse magnification = I/O (by definition)
By similar triangles: $/ / O=v / u$

Transverse Magnification

Thin plus lens

Transverse magnification = $/ / O$ (by definition)
By similar triangles: $/ / O=v / u$
But we can make it more convenient still...

Transverse Magnification

- The Vergence Formula

Recall the
Vergence
Formula...

Transverse Magnification

- The Vergence Formula

Recall the Vergence Formula...

... and the relationship between vergence (big U, big V) and distance (little u, little v)

Transverse Magnification

SO, transverse magnification = I/O (by definition)
$A N D$, by similar triangles, $I / O=v / u$
$A N D$, by the Vergence Formula, $v / u=\frac{1 / V}{1 / U}=\frac{U}{V}$

$$
u=1 / U \quad v=1 / V
$$

Transverse Magnification

SO, transverse magnification $=I / O$ (by definition) $A N D$, by similar triangles, $\mathrm{I} / \mathrm{O}=\mathrm{v} / \mathbf{u}$ $A N D$, by the Vergence Formula, $v / u=\frac{1 / V}{1 / U}=\frac{U}{V}$

$$
u=1 / U \quad v=1 / V
$$

Transverse Magnification

So, in summary:

Thin plus lens

Transverse Magnification

Transverse magnification is defined as:
Image height
Object height

Thin plus lens

Transverse Magnification

Transverse magnification is defined as:
Image height
Object height

Transverse magnification is equal to:

Transverse Magnification

Transverse magnification is defined as:
Image height
Object height

Transverse magnification is equal to:

Thin plus lens

Transverse Magnification

Transverse magnification is defined as: $\frac{\text { Image height }}{\text { Object height }}$

Transverse magnification is equal to:

Thin plus lens

Transverse Magnification

Transverse magnification is defined as:

Image height Object height

Transverse magnification is equal to:
(By the Vergence Law)

A few final points about transverse magnification:

Transverse Magnification

Transverse magnification is defined as:

Image height
 Object height

Transverse magnification is equal to:
(By the Vergence Law)

Vergence of incoming light (U)
Vergence of light leaving lens (V)
Image distance (v) Object distance (u)

A few final points about transverse magnification:
--The sign of the value indicates the relative orientations of object and image

Transverse Magnification

Transverse magnification is defined as:

Image height
 Object height

Transverse magnification is equal to:

(By the Vergence Law)

Vergence of incoming light (U) Vergence of light leaving lens (V)
(By similar triangles)

Image distance (v)

Object distance (u)

A few final points about transverse magnification:
--The sign of the value indicates the relative orientations of object and image
--A positive value indicates the image has the same orientation as the object (i.e., both are either above or below the lens axis)

Transverse Magnification

Transverse magnification is defined as:

Image height
 Object height

Transverse magnification is equal to:

(By the Vergence Law)

Vergence of incoming light (U)

 Vergence of light leaving lens (V)(By similar triangles)

Image distance (v)

Object distance (u)

A few final points about transverse magnification:
--The sign of the value indicates the relative orientations of object and image
--A positive value indicates the image has the same orientation as the object
(i.e., both are either above or below the lens axis)
--A negative value indicates they are on opposite sides of the lens axis

Transverse Magnification

Transverse magnification is defined as:

Image height
Object height

Transverse magnification is equal to:

(By the Vergence Law)

Transverse Magnification

Transverse magnification is defined as:

Image height
 Object height

Transverse magnification is equal to:

(By the Vergence Law)
(By similar triangles)

Image distance (v) Object distance (u)

A few final points about transverse magnification:
--The size of the value indicates the relative size of object and image --Transverse mag > $1 \rightarrow$ Image is larger than the object

Transverse Magnification

Transverse magnification is equal to:

A few final points about transverse magnification:
--The size of the value indicates the relative size of object and image
--Transverse mag > $1 \rightarrow$ Image is larger than the object
--Transverse mag < $1 \rightarrow$ Image is smaller than the object

Transverse Magnification

Transverse magnification is equal to:

(By the Vergence Law)

Vergence of incoming light (U) Vergence of light leaving lens (V)
(By similar triangles)

Image distance (v)

Object distance (u)

A few final points about transverse magnification:
--The size of the value indicates the relative size of object and image
--Transverse mag > $1 \rightarrow$ Image is larger than the object

- -Transverse mag $<1 \rightarrow$ Image is smaller than the object
--Transverse mag =1 $\boldsymbol{\rightarrow}$ Image and object are the same size

