Transverse Magnification

Basic Optics, Chapter 20
Transverse Magnification

- Let’s talk about transverse magnification
 - Also known as *lateral* or *linear* magnification
- Transverse mag concerns the relative height of objects and images in our ray tracings
Transverse Magnification

- Let’s talk about transverse magnification
 - Also known as *lateral* or *linear* magnification
- Transverse mag concerns the relative height of objects and images in our ray tracings
- In principle, with careful tracing, one could simply measure the image and object and determine the ratio directly
 - Fortunately, there are less tedious methods
Transverse magnification is defined as:

\[
\text{Image height} \quad \frac{\text{Object height}}{\text{Image height}}
\]
Transverse magnification is defined as:

\[
\frac{\text{Image height}}{\text{Object height}}
\]

OK, but how do we determine object and image heights when all we have (usually) is info re vergence?
Transverse Magnification

Thin *plus* lens

Here is a ray tracing from a previous chapter.
Here is a ray tracing from a previous chapter. Here it is with only the nodal ray and lens axis ray drawn.
Here is a ray tracing from a previous chapter. Here it is with only the nodal ray and lens axis ray drawn.

Think back to high-school geometry—what does the figure look like?
Transverse Magnification

Thin *plus* lens

![Diagram showing similar triangles and labeled points F1, N, F2 with an angle θ.]

Similar triangles
Transverse Magnification

Thin *plus* lens

Diagram showing the relationship between object (O) and image (I) distances, along with the magnification factor (u and v).
Transverse Magnification

Thin *plus* lens

Transverse magnification = I/O (by definition)
Transverse Magnification

Thin \textit{plus} lens

Transverse magnification = \(I/O \) (by definition)

By similar triangles: \(I/O = v/u \)
Thin prs lens

Therefore, transverse magnification is determinable by simply taking a ratio of the image distance to the object distance.

Transverse magnification = \(I/O \) (by definition)
By similar triangles: \(I/O = v/u \)
Transverse Magnification

Thin plus lens

Transverse magnification = \(I/O \) (by definition)

By similar triangles: \(I/O = \frac{v}{u} \)

Therefore, transverse magnification is determinable by simply taking a ratio of the image distance to the object distance

But we can make it more convenient still…
Transverse Magnification

- The Vergence Formula

Recall the Vergence Formula...

\[u + P = V \]

\[u = \frac{1}{U} \quad \text{and} \quad v = \frac{1}{V} \]

Vergence of incoming light

Vergence contributed by the lens

Vergence of light leaving lens
Transverse Magnification

- The Vergence Formula

\[u = \frac{1}{U} \]
\[v = \frac{1}{V} \]

Recall the **Vergence Formula**...

...and the relationship between vergence (big \(U \), big \(V \)) and distance (little \(u \), little \(v \))

\[U + P = V \]
Transverse Magnification

\[U + P = V \]

Thin plus lens

\[u = 1/U \]
\[v = 1/V \]

SO, transverse magnification = \(I/O \) (by definition)

AND, by similar triangles, \(I/O = v/u \)

AND, by the Vergence Formula, \(v/u = \frac{1/V}{1/U} = \frac{U}{V} \)
Transverse Magnification

\[U + P = V \]

Thin *plus* lens

\[\theta \]

\[u = \frac{1}{U} \]

\[v = \frac{1}{V} \]

SO, transverse magnification = \(\frac{I}{O} \) (by definition)

AND, by similar triangles, \(\frac{I}{O} = \frac{v}{u} \)

AND, by the Vergence Formula, \(\frac{v}{u} = \frac{1/V}{1/U} = \frac{U}{V} \)

THEREFORE, \(\frac{I}{O} = \frac{U}{V} \)
Transverse Magnification

So, in summary:

\[U + P = V \]
Transverse Magnification

Transverse magnification is defined as: \(\frac{\text{Image height}}{\text{Object height}} \)

Thin plus lens

Object height

Image height

\[U + P = V \]
Transverse Magnification

Transverse magnification is defined as: \[
\frac{\text{Image height}}{\text{Object height}}
\]

Transverse magnification is equal to:

\[U + P = V\]
Transverse Magnification

Transverse magnification is defined as: \(\frac{\text{Image height}}{\text{Object height}} \)

Transverse magnification is equal to:

\[
\frac{v}{u} = \frac{\text{Image distance}}{\text{Object distance}} = \frac{\text{Image height}}{\text{Object height}}
\]

(By similar triangles)

\(u + P = V \)

\(\text{Thin plus lens} \)

\[\text{Object height} \]

\[\text{Image height} \]

\[\text{F}_1 \]

\[\text{N} \]

\[\text{F}_2 \]

\[u \]

\[v \]
Transverse Magnification

Transverse magnification is defined as: \(\frac{\text{Image height}}{\text{Object height}} \)

Transverse magnification is equal to:

(By the Vergence Law) \(U + P = V \)

(By similar triangles)

Vergence of incoming light (\(U \))
Vergence of light leaving lens (\(V \))

Object distance (\(u \))
Image distance (\(v \))

Thin plus lens

\(U + P = V \)
Transverse Magnification

Transverse magnification is defined as:

\[
\frac{\text{Image height}}{\text{Object height}} = \frac{\text{Image distance (v)}}{\text{Object distance (u)}}
\]

Transverse magnification is equal to:

(By the Vergence Law) \quad (By similar triangles)

Vergence of incoming light (U)
Vergence of light leaving lens (V)

A few final points about transverse magnification:
Transverse Magnification

Transverse magnification is defined as:

\[
\text{Image height} \quad \frac{\text{Object height}}{\text{Image distance (v)}} \quad \text{Object distance (u)}
\]

Transverse magnification is equal to:

(By the Vergence Law) \quad \frac{\text{Vergence of incoming light (U)}}{\text{Vergence of light leaving lens (V)}} \quad \text{(By similar triangles)} \quad \frac{\text{Image distance (v)}}{\text{Object distance (u)}}

A few final points about transverse magnification:

--The sign of the value indicates the relative orientations of object and image
Transverse Magnification

Transverse magnification is defined as:
\[
\frac{\text{Image height}}{\text{Object height}}
\]

Transverse magnification is equal to:

\[
\frac{V_2 - F_1}{V_1 - F_2} \quad \text{(By the Vergence Law)}
\]

\[
\frac{v}{u} \quad \text{(By similar triangles)}
\]

Vergence of incoming light \((U)\)
Vergence of light leaving lens \((V)\)
Image distance \((v)\)
Object distance \((u)\)

A few final points about transverse magnification:

-- The **sign** of the value indicates the relative orientations of object and image

-- A **positive** value indicates the image has the same orientation as the object
 (i.e., both are either above or below the lens axis)
Transverse Magnification

Transverse magnification is defined as: \[
\frac{\text{Image height}}{\text{Object height}}
\]

Transverse magnification is equal to:

\[
\frac{\text{Vergence of incoming light (U)}}{\text{Vergence of light leaving lens (V)}} = \frac{\text{Image distance (v)}}{\text{Object distance (u)}}
\]

\[\frac{F_2}{F_1} = \frac{N}{N}\]

A few final points about transverse magnification:
--The **sign** of the value indicates the relative orientations of object and image
 --A **positive** value indicates the image has the same orientation as the object
 (i.e., both are either **above** or **below** the lens axis)
 --A **negative** value indicates they are on **opposite** sides of the lens axis
Transverse Magnification

Transverse magnification is defined as:
\[
\frac{\text{Image height}}{\text{Object height}}
\]

Transverse magnification is equal to:

- (By the Vergence Law)
 - Vergence of incoming light (U)
 - Vergence of light leaving lens (V)

- (By similar triangles)
 - Image distance (v)
 - Object distance (u)

A few final points about transverse magnification:
--The size of the value indicates the relative size of object and image
Transverse Magnification

Transverse magnification is defined as:

\[
\frac{\text{Image height}}{\text{Object height}}
\]

Transverse magnification is equal to:

\[
\frac{\text{Image distance}}{\text{Object distance}}
\]

\[
\text{Vergence of incoming light (U)}
\]

\[
\text{Vergence of light leaving lens (V)}
\]

\[
\text{By similar triangles}
\]

\[
\text{By the Vergence Law}
\]

A few final points about transverse magnification:

-- The size of the value indicates the relative size of object and image

-- Transverse mag > 1 → Image is **larger** than the object

Diagram showing the relationship between object (O), image (I), and focal points (F1, F2) with transverse magnification of 2.
Transverse Magnification

Transverse magnification is defined as:

\[
\frac{\text{Image height}}{\text{Object height}}
\]

Transverse magnification is equal to:

\[
\frac{\text{Vergence of incoming light (U)}}{\text{Vergence of light leaving lens (V)}} = \frac{\text{Image distance (v)}}{\text{Object distance (u)}}
\]

A few final points about transverse magnification:

-- The **size** of the value indicates the relative size of object and image
-- Transverse mag > 1 \(\rightarrow\) Image is **larger** than the object
-- Transverse mag < 1 \(\rightarrow\) Image is **smaller** than the object

\[
\text{Transverse mag} = 0.5
\]

\[\text{F}_1 \quad \text{N} \quad \text{F}_2\]
Transverse Magnification

Transverse magnification is defined as:
\[
\frac{\text{Image height}}{\text{Object height}}
\]

Transverse magnification is equal to:
\[
\frac{\text{Image distance (v)}}{\text{Object distance (u)}}
\]

\[
\frac{\text{Vergence of incoming light (U)}}{\text{Vergence of light leaving lens (V)}}
\]

A few final points about transverse magnification:
--The **size** of the value indicates the relative size of object and image
 --Transverse mag > 1 \(\rightarrow\) Image is **larger** than the object
 --Transverse mag < 1 \(\rightarrow\) Image is **smaller** than the object
 --Transverse mag = 1 \(\rightarrow\) Image and object are the **same size**

\[
\text{Transverse mag} = -1
\]