

 Of the Gram(-) enterics...Which 5 are most commonly implicated in keratitis?

Mnemonic forthcoming...

- Of the Gram(-) enterics...Which 5 are most commonly implicated in keratitis?
 - S
 P
 E Mnemonic → rod-shaped SPECKS in your patient's eye...
 C
 K

- Of the Gram(-) enterics...Which 5 are most commonly implicated in keratitis?
 - Serratia
 - Proteus
 - Enterobacter
 - Citrobacter
 - Klebsiella

Think of these G(-) rods as rod-shaped SPECKS in your patient's eye...

- Of the Gram(-) enterics...Which 5 are most commonly implicated in keratitis?
 - Serratia
 - Proteus
 - Enterobacter
 - Citrobacter
 - Klebsiella

Which G(-) rod keratitis is associated with CL wear? (It's not one of the enterics)

- Of the Gram(-) enterics...Which 5 are most commonly implicated in keratitis?
 - Serratia
 - Proteus
 - Enterobacter
 - Citrobacter
 - Klebsiella

Which G(-) rod keratitis is associated with CL wear? (It's not one of the enterics) *Pseudomonas*

- Of the Gram(-) enterics...Which 5 are most commonly implicated in keratitis?
 - Serratia
 - Proteus
 - Enterobacter
 - Citrobacter
 - Klebsiella

Which G(-) rod keratitis is associated with CL wear? (It's not one of the enterics) *Pseudomonas*

What G(-) rod is associated with blebitis? (A different non-enteric)

- Of the Gram(-) enterics...Which 5 are most commonly implicated in keratitis?
 - Serratia
 - Proteus
 - Enterobacter
 - Citrobacter
 - Klebsiella

Which G(-) rod keratitis is associated with CL wear? (It's not one of the enterics) *Pseudomonas*

What G(-) rod is associated with blebitis? (A different non-enteric) Haemophilus spp

 Name 5 bacteria species that are capable of *penetrating an intact corneal epithelium* to produce a corneal ulcer:

 Name 5 bacteria species that are capable of *penetrating an intact corneal epithelium* to produce a corneal ulcer:

- Name 5 bacteria species that are capable of *penetrating an intact corneal epithelium* to produce a corneal ulcer:
 - another
 Shigella
 Listeria

- Name 5 bacteria species that are capable of *penetrating an intact corneal epithelium* to produce a corneal ulcer:
 - Corynebacterium diphtheriae

- Name 5 bacteria species that are capable of *penetrating an intact corneal epithelium* to produce a corneal ulcer:
 - Corynebacterium diphtheriae

- Name 5 bacteria species that are capable of *penetrating an intact corneal epithelium* to produce a corneal ulcer:
 - Corynebacterium diphtheriae

- Name 5 bacteria species that are capable of *penetrating an intact corneal epithelium* to produce a corneal ulcer:
 - Corynebacterium diphtheriae

- Name 5 bacteria species that are capable of *penetrating an intact corneal epithelium* to produce a corneal ulcer:
 - Corynebacterium diphtheriae
 - N gonoccocus
 - N meningitidis
 - Shigella
 - Listeria

Mnemonic: Corneal disruption Not Needed for Shigella and Listeria

another