Divide the lesions into their respective categories

Retinal Lesions…

…Predisposing to RD

Lattice
Cobblestone degeneration
Vitreoretinal tufts
Meridional folds
RPE hyperplasia
Enclosed ora bays
RPE hypertrophy
Peripheral cystoid degeneration

…NOT Predisposing to RD
Divide the lesions into their respective categories

Retinal Lesions...

...Predisposing to RD

Lattice
Cobblestone degeneration
Vitreoretinal tufts
Meridional folds
RPE hyperplasia
Enclosed ora bays
RPE hypertrophy
Peripheral cystoid degeneration

...NOT Predisposing to RD

Before we start, some background info. What are the three classes of retinal detachment (RD)?
Retinal Lesions…

…Predisposing to RD …NOT Predisposing to RD

Lattice
Cobblestone degeneration
Vitreoretinal tufts
Meridional folds
RPE hyperplasia
Enclosed ora bays
RPE hypertrophy
Peripheral cystoid degeneration

Before we start, some background info. What are the three classes of retinal detachment (RD)? Exudative, tractional and rhegmatogenous
Divide the lesions into their respective categories

Retinal Lesions...

...Predisposing to RD

Lattice
Cobblestone degeneration
Vitreoretinal tufts
Meridional folds
RPE hyperplasia
Enclosed ora bays
RPE hypertrophy
Peripheral cystoid degeneration

...NOT Predisposing to RD

Before we start, some background info. What are the three classes of retinal detachment (RD)?
Exudative, tractional and rhegmatogenous

Looking over the list of lesions above, which of the three is this slide-set concerned with?
Divide the lesions into their respective categories

Retinal Lesions...

...Predisposing to RD

Lattice
Cobblestone degeneration
Vitreoretinal tufts
Meridional folds
RPE hyperplasia
Enclosed ora bays
RPE hypertrophy
Peripheral cystoid degeneration

...NOT Predisposing to RD

Before we start, some background info. What are the three classes of retinal detachment (RD)? Exudative, tractional and rhegmatogenous

Looking over the list of lesions above, which of the three is this slide-set concerned with? Rhegmatogenous
Divide the lesions into their respective categories

Retinal Lesions...

...Predisposing to RD

Lattice
Cobblestone degeneration
Vitreoretinal tufts
Meridional folds
RPE hyperplasia
Enclosed ora bays
RPE hypertrophy
Peripheral cystoid degeneration

...NOT Predisposing to RD

(OK, now start here and work your way down the list, placing each in the appropriate column)
Divide the lesions into their respective categories

Retinal Lesions...

...Predisposing to RD

Lattice

Cobblestone degeneration
Vitreoretinal tufts
Meridional folds
RPE hyperplasia
Enclosed ora bays
RPE hypertrophy
Peripheral cystoid degeneration

...NOT Predisposing to RD
Divide the lesions into their respective categories

Retinal Lesions...

…Predisposing to RD

- Lattice

…NOT Predisposing to RD

- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration
Divide the lesions into their respective categories

Retinal Lesions...

...Predisposing to RD
 Lattice
 Vitreoretinal tufts

...NOT Predisposing to RD
 Cobblestone degeneration
 Meridional folds
 RPE hyperplasia
 Enclosed ora bays
 RPE hypertrophy
 Peripheral cystoid degeneration
Divide the lesions into their respective categories

Retinal Lesions...

...Predisposing to RD
- Lattice
- Vitreoretinal tufts
- Meridional folds

...NOT Predisposing to RD
- Cobblestone degeneration
- RPE hyperplasia
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration
Divide the lesions into their respective categories

Retinal Lesions...

...Predisposing to RD

- Lattice
- Vitreoretinal tufts
- Meridional folds

...NOT Predisposing to RD

- Cobblestone degeneration
- RPE hyperplasia
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration
Divide the lesions into their respective categories

Retinal Lesions...

...Predisposing to RD

- Lattice
- Vitreoretinal tufts
- Meridional folds
- Enclosed ora bays

...NOT Predisposing to RD

- Cobblestone degeneration
- RPE hyperplasia
- RPE hypertrophy
- Peripheral cystoid degeneration
Divide the lesions into their respective categories

Retinal Lesions...

...Predisposing to RD

Lattice

Vitreoretinal tufts

Meridional folds

Enclosed ora bays

...NOT Predisposing to RD

Cobblestone degeneration

RPE hyperplasia

RPE hypertrophy

Peripheral cystoid degeneration
Divide the lesions into their respective categories

Retinal Lesions...

...Predisposing to RD
- Lattice
- Vitreoretinal tufts
- Meridional folds
- Enclosed ora bays

...NOT Predisposing to RD
- Cobblestone degeneration
- RPE hyperplasia
- RPE hypertrophy
- Peripheral cystoid degeneration
Retinal Lesions: Matching!

- **Lattice**
 - (As before, let’s start at the top and work down the list)
 - Actually prevents RD extension
- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration

- RD usually 2° to tractional tear at posterior edge of lesion
- Black and flat
- Small peripheral retinal elevations 2° to vitreous or zonular traction
- Present in 100% of adults >20 y.o.
- Spiculated appearance
- Islands of pars plana epithelium surrounded by retina
- Redundant linear retinal elevations
Retinal Lesions: Matching!

- Lattice
- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration

A

- Actually prevents RD extension
- RD usually 2° to tractional tear at posterior edge of lesion
- Black and flat
- Small peripheral retinal elevations 2° to vitreous or zonular traction
- Present in 100% of adults >20 y.o.
- Spiculated appearance
- Islands of pars plana epithelium surrounded by retina
- Redundant linear retinal elevations
Lattice

Cobblestone degeneration
Vitreoretinal tufts
Meridional folds
RPE hyperplasia
Enclosed ora bays
RPE hypertrophy
Peripheral cystoid degeneration

--Actually prevents RD extension
--RD usually 2° to tractional tear at posterior edge of lesion

Retinal Lesions: Matching!

How common is lattice degeneration?

Quite—it is found in 5-10% of the population

Is it more common in myopic, or hyperopic eyes?
Myopic

Is it sporadic, or familial?
While not inevitable, a familial predisposition is often found

17

How common is lattice degeneration?
How common is lattice degeneration?
Quite--it is found in 5-10% of the population

Lattice
Cobblestone degeneration
Vitreoretinal tufts
Meridional folds
RPE hyperplasia
Enclosed ora bays
RPE hypertrophy
Peripheral cystoid degeneration

--Black and flat
--Small peripheral retinal elevations 2° to vitreous or zonular traction
--Present in 100% of adults >20
--Spiculated appearance
--Islands of pars plana epithelium surrounded by retina
--Redundant linear retinal elevations

Retinal Lesions: Matching!
Lattice degeneration

- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration

--- Actually prevents RD extension
--- RD usually 2° to tractional tear at posterior edge of lesion
--- Black and flat
--- Small peripheral retinal elevations 2° to vitreous or zonular traction
--- Present in 100% of adults >20
--- Spiculated appearance
--- Islands of pars plana epithelium surrounded by retina
--- Redundant linear retinal elevations

Retinal Lesions: Matching!

Q: How common is lattice degeneration?
A: Quite—it is found in 5-10% of the population

Q: When present, how common is lattice to be bilateral?
A: Quite—it is bilateral in 1/3 to 1/2 of lattice pts
Lattice degeneration

- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration

- Actually prevents RD extension
- RD usually 2° to tractional tear at posterior edge of lesion
- Black and flat
- Small peripheral retinal elevations 2° to vitreous or zonular traction
- Present in 100% of adults >20
- Spiculated appearance
- Islands of pars plana epithelium surrounded by retina
- Redundant linear retinal elevations

A/Q

Retinal Lesions: Matching!

How common is lattice degeneration?
Quite--it is found in 5-10% of the population

When present, how common is lattice to be bilateral?
Quite--it is bilateral in 1/3 to 1/2 of lattice pts

How common is lattice degeneration?
Quite--it is found in 5-10% of the population

When present, how common is lattice to be bilateral?
Quite--it is bilateral in 1/3 to 1/2 of lattice pts
Lattice Degeneration

- Cobblestone degeneration
- Meridional folds
- RPE hyperplasia
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration

- How common is lattice degeneration?
 Quite--it is found in 5-10% of the population

- When present, how common is lattice to be bilateral?
 Quite--it is bilateral in 1/3 to 1/2 of lattice pts

- Prevents RD extension
- RD usually 2° to tractional tear at posterior edge of lesion
- Black and flat
- Small peripheral retinal elevations 2° to vitreous or zonular traction
- Present in 100% of adults >20
- Spiculated appearance
- Islands of pars plana epithelium surrounded by retina
- Redundant linear retinal elevations
Retinal Lesions: Matching!

How common is lattice degeneration?
Quite--it is found in 5-10% of the population

Is it more common in myopic, or hyperopic eyes?

Lattice

Cobblestone pattern commonly

Vitreoretinal tufts --Black and flat

Meridional folds --Small peripheral retinal elevations 2° to vitreous or zonular traction

RPE hyperplasia --Present in 100% of adults >20

Enclosed ora bays --Spiculated appearance

RPE hypertrophy --Islands of pars plana epithelium surrounded by retina

Peripheral cystoid degeneration --Redundant linear retinal elevations
Retinal Lesions: Matching!

How common is lattice degeneration?
Quite--it is found in 5-10% of the population

Is it more common in myopic, or hyperopic eyes?
Myopic

Lattice

Cobblestone degeneration
Vitreoretinal tufts
Meridional folds
RPE hyperplasia
Enclosed ora bays
RPE hypertrophy
Peripheral cystoid degeneration

--Black and flat
--Small peripheral retinal elevations 2° to vitreous or zonular traction
--Present in 100% of adults >20
--Spiculated appearance
--Islands of pars plana epithelium surrounded by retina
--Redundant linear retinal elevations

--Actually prevents RD extension
--RD usually 2° to tractional tear at posterior edge of lesion
--Black and flat
--Small peripheral retinal elevations 2° to vitreous or zonular traction
--Present in 100% of adults >20
--Spiculated appearance
--Islands of pars plana epithelium surrounded by retina
--Redundant linear retinal elevations
Lattice degeneration
- Cobblestone degeneration
- RPE hyperplasia
- Enclosed ora bays
- Meridional folds
- Vitreoretinal tufts
- RPE hypertrophy
- Peripheral cystoid degeneration

Cobblestone degeneration
- Actually prevents RD extension
- RD usually 2° to tractional tear at posterior edge of lesion
- Black and flat
- Small peripheral retinal elevations 2° to vitreous or zonular traction
- Present in 100% of adults >20
- Islands of pars plana epithelium
- Spiculated appearance
- Redundant linear retinal elevations
- Islands of pars plana epithelium surrounded by retina

Retinal Lesions: Matching!

24

- How common is lattice degeneration?
 - Quite common in myopic, or hyperopic eyes

- Is it sporadic, or familial?
 - While not inevitable, a familial predisposition is often found

- Myopic

- Is it more common in myopic, or hyperopic eyes?
 - Quite— it is found in 5–10% of the population

- How common is lattice degeneration?
 - Quite—it is found in 5–10% of the population

- Is it sporadic, or familial?
 - While not inevitable, a familial predisposition is often found

- Myopic
Lattice
Cobblestone degeneration
Vitreoretinal tufts
Meridional folds
RPE hyperplasia
Enclosed ora bays
RPE hypertrophy
Peripheral cystoid degeneration

---Actually prevents RD extension
---RD usually 2 o to tractional tear at posterior edge of lesion
---Black and flat
---Small peripheral retinal elevations 2 o to vitreous or zonular traction
---Present in 100% of adults >20
---Spiculated appearance
---Islands of pars plana epithelium surrounded by retina
---Redundant linear retinal elevations

How common is lattice degeneration?
Quite—it is found in 5-10% of the population

Is it more common in myopic, or hyperopic eyes?
Myopic

Is it sporadic, or familial?
While not inevitable, a familial predisposition is often found

How common is lattice degeneration? Quite—it is found in 5-10% of the population
Is it more common in myopic, or hyperopic eyes? Myopic
Is it sporadic, or familial? While not inevitable, a familial predisposition is often found
There are three clinically important aspects to the structure of lattice degeneration—what are they?

1) A focal area of retina for which the internal limiting membrane is missing;
2) A pocket of liquefied vitreous overlying this retinal lesion;
3) Abnormally firm adhesion between the edges of the retina lesion and the walls of the overlying pocket of liquefied vitreous.

Retinal tears (with subsequent rhegmatogenous RD can result from traction on these abnormal vitreo-retinal adhesions.

- Lattice
- Cobblestone degeneration
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration

--Actually prevents RD extension
--RD usually 2° to tractional tear at posterior edge of lesion
--Spiculated appearance
--Islands of pars plana epithelium surrounded by retina
--Redundant linear retinal elevations
There are three clinically important aspects to the structure of lattice degeneration—what are they?

1) A focal area of retina for which the internal limiting membrane is missing;
2) A pocket of liquefied vitreous overlying this retinal lesion;
3) Abnormally firm adhesion between the edges of the retina lesion and the walls of the overlying pocket of liquefied vitreous.

Retinal tears (with subsequent rhegmatogenous RD) can result from traction on these abnormal vitreo-retinal adhesions.
There are three clinically important aspects to the structure of lattice degeneration—what are they?

1) A focal area of retina for which the **internal limiting membrane** is missing;
2) A pocket of liquefied vitreous overlying this retinal lesion;
3) Abnormally firm adhesion between the edges of the retina lesion and the walls of the overlying pocket of liquefied vitreous.

Q/A

Retinal Lesions: Matching!

- **Lattice**
- **Cobblestone degeneration**
- **Enclosed ora bays**
- **RPE hypertrophy**
- **Peripheral cystoid degeneration**
 - Actually prevents RD extension
 - RD usually 2° to tractional tear at posterior edge of lesion
 - Spiculated appearance
 - Islands of pars plana epithelium surrounded by retina
 - Redundant linear retinal elevations
There are three clinically important aspects to the structure of lattice degeneration--what are they?
1) A focal area of retina for which the internal limiting membrane is missing;
2) a pocket of liquefied vitreous overlying this retinal lesion; and
3) abnormally firm adhesion between the edges of the retina lesion and the walls of the overlying pocket of liquefied vitreous.

Lattice

- Cobblestone degeneration
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration

- Actually prevents RD extension
- RD usually 2° to tractional tear at posterior edge of lesion
- Spiculated appearance
- Islands of pars plana epithelium surrounded by retina
- Redundant linear retinal elevations
Retinal Lesions: Matching!

There are three clinically important aspects to the structure of lattice degeneration—what are they?
1) A focal area of retina for which the internal limiting membrane is missing;
2) a pocket of liquefied vitreous overlying this retinal lesion; and
3) abnormally firm adhesion between the edges of the retina lesion and the walls of the overlying pocket of liquefied vitreous.
There are three clinically important aspects to the structure of lattice degeneration—what are they?

1) A focal area of retina for which the **internal limiting membrane** is missing;
2) a pocket of **liquefied vitreous** overlying this retinal lesion; and
3) **abnormally firm adhesion** between the edges of the retina lesion and the walls of the overlying pocket of liquefied vitreous.

Retinal tears (with subsequent rhegmatogenous RD) can result from traction on these abnormal vitreo-retinal adhesions.
Retinal Lesions: Matching!

- Lattice
- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration

- Actually prevents RD extension
- RD usually 2° to tractional tear at posterior edge of lesion
- Black and flat
- Small peripheral retinal elevations 2° to vitreous or zonular traction
- Present in 100% of adults >20 y.o.
- Spiculated appearance
- Islands of pars plana epithelium surrounded by retina
- Redundant linear retinal elevations
Retinal Lesions: Matching!

- Lattice
- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration

-- Actually prevents RD extension
-- RD usually 2° to tractional tear at posterior edge of lesion
-- Black and flat
-- Small peripheral retinal elevations 2° to vitreous or zonular traction
-- Present in 100% of adults >20 y.o.
-- Spiculated appearance
-- Islands of pars plana epithelium surrounded by retina
-- Redundant linear retinal elevations
What is the ophthalmoscopic appearance of cobblestone (aka paving-stone) degeneration?

Small discrete white/yellow areas, often with a thin rim of hypertrophic RPE. The areas are often closely confluent (hence their harkening to the appearance of cobble- or paving-stones). They are found anterior to the equator, often close to the ora.

What is the histological essence of cobblestone degeneration?

They are focal areas of atrophic outer retina/RPE/choriocapillaris. The remaining retinal layers are fused to the underlying Bruch's membrane.

How do they prevent extension of an RD?

Because they involve fusion of the neurosensory retina to Bruch's, they do not allow liquid vitreous to proceed through their location.
What is the ophthalmoscopic appearance of cobblestone degeneration (aka paving-stone degeneration)? Small discrete white/yellow areas, often with a thin rim of hypertrophic RPE. The areas are often closely confluent (hence their harkening to the appearance of cobble- or paving-stones). They are found anterior to the equator, often close to the ora serrata.

Cobblestone degeneration - Actual prevents RD extension

- RD usually 2° to tractional tear at posterior edge of lesion
What is the ophthalmoscopic appearance of cobblestone (aka paving-stone) degeneration? Small discrete white/yellow areas, often with a thin rim of hypertrophic RPE. The areas are often closely confluent (hence their harkening to the appearance of cobble- or pavingstones). They are found anterior to the equator, often close to the ora serrata.

What is the ora serrata?

The junction between the peripheral retina and the pars plana of the ciliary body >20 y.o.

What is the histological essence of cobblestone degeneration? They are focal areas of atrophic outer retina/RPE/choriocapillaris. The remaining retinal layers are fused to the underlying Bruch's membrane.

How do they prevent extension of an RD? Because they involve fusion of the neurosensory retina to Bruch's, they do not allow liquid vitreous to proceed through their location.

RPE hypertrophy

Peripheral cystoid degeneration

--Islands of pars plana epithelium surrounded by retina

--Redundant linear retinal elevations
What is the ophthalmoscopic appearance of cobblestone (aka paving-stone) degeneration? Small discrete white/yellow areas, often with a thin rim of hypertrophic RPE. The areas are often closely confluent (hence their harkening to the appearance of cobble- or pavingstones). They are found anterior to the equator, often close to the ora serrata.

What is the ora serrata? The junction between the peripheral retina and the pars plana of the ciliary body.

Cobblestone degeneration

Lattice

--Actually prevents RD extension

--RD usually 2° to tractional tear at posterior edge of lesion

--Black and flat

--Small peripheral retinal elevations due to vitreous or zonular traction

--Present in 100% of adults >20 y.o.

--Spiculated appearance

--Islands of pars plana epithelium surrounded by retina

Retinal Lesions: Matching!

Peripheral cystoid degeneration

RPE hypertrophy

--Redundant linear retinal elevations

--Islands of pars plana epithelium surrounded by retina
What is the ophthalmoscopic appearance of cobblestone (aka paving-stone) degeneration?

Small discrete white/yellow areas, often with a thin rim of hypertrophic RPE. The areas are often closely confluent (hence their harkening to the appearance of cobble- or pavingstones). They are found anterior to the equator, often close to the ora serrata.

What is the histological essence of cobblestones?

RPE hypertrophy

Peripheral cystoid degeneration

--Islands of pars plana epithelium surrounded by retina

--Redundant linear retinal elevations

Lattice

--Actually prevents RD extension

Cobblestone degeneration

--RD usually 2° to tractional tear at posterior edge of lesion

Meridional folds

RPE hyperplasia

Enclosed ora bays

Peripheral cystoid degeneration

--Actually prevents RD extension

--RD usually 2° to tractional tear at posterior edge of lesion

Black and flat

Small peripheral retinal elevations 2° to vitreous or zonular traction

Present in 100% of adults >20 y.o.

Spiculated appearance

Islands of pars plana epithelium surrounded by retina

Redundant linear retinal elevations
What is the ophthalmoscopic appearance of cobblestone (aka paving-stone) degeneration? Small discrete white/yellow areas, often with a thin rim of hypertrophic RPE. The areas are often closely confluent (hence their harkening to the appearance of cobble- or pavingstones). They are found anterior to the equator, often close to the ora serrata.

What is the histological essence of cobblestones? They are focal areas of atrophic outer retina/RPE/choriocapillaris. The remaining retinal layers are fused to the underlying Bruch's membrane.
What is the ophthalmoscopic appearance of cobblestone (aka paving-stone) degeneration?
Small discrete white/yellow areas, often with a thin rim of hypertrophic RPE. The areas are often closely confluent (hence their harkening to the appearance of cobble- or pavingstones). They are found anterior to the equator, often close to the ora serrata.

What is the histological essence of cobblestones?
They are focal areas of atrophic outer retina/RPE/choriocapillaris. The remaining retinal layers are fused to the underlying Bruch’s membrane.

How do they prevent extension of an RD?
Because they involve fusion of the neurosensory retina to Bruch’s, they do not allow liquid vitreous to proceed through their location.
What is the ophthalmoscopic appearance of cobblestone (aka paving-stone) degeneration?
Small discrete white/yellow areas, often with a thin rim of hypertrophic RPE. The areas are often closely confluent (hence their harkening to the appearance of cobble- or pavingstones). They are found anterior to the equator, often close to the ora serrata.

What is the histological essence of cobblestones?
They are focal areas of atrophic outer retina/RPE/choriocapillaris. The remaining retinal layers are fused to the underlying Bruch’s membrane.

How do they prevent extension of an RD?
Because they involve fusion of the neurosensory retina to Bruchs, they do not allow liquid vitreous to proceed through their location.
Retinal Lesions: Matching!

- Lattice
- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration

- Actually prevents RD extension
- RD usually 2º to tractional tear at posterior edge of lesion
- Black and flat
- Small peripheral retinal elevations 2º to vitreous or zonular traction
- Present in 100% of adults >20 y.o.
- Spiculated appearance
- Islands of pars plana epithelium surrounded by retina
- Redundant linear retinal elevations
Retinal Lesions: Matching!

- **Lattice**
 - Actually prevents RD extension

- **Cobblestone degeneration**
 - RD usually 2° to tractional tear at posterior edge of lesion

- **Vitreoretinal tufts**
 - Black and flat

- **Meridional folds**

- **RPE hyperplasia**

- **Enclosed ora bays**

- **RPE hypertrophy**

- **Peripheral cystoid degeneration**
 - Present in 100% of adults >20
 - Spiculated appearance
 - Islands of pars plana epithelium surrounded by retina
 - Redundant linear retinal elevations
Q

Retinal Lesions: Matching!

- Lattice
- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia

Vitreoretinal tufts are known also by what name?

Vitreoretinal tufts are known also by the name of Peripheral retinal tufts.

They are highly focal areas of glial hyperplasia firmly attached to both the vitreous face/zonules and the retina. Because of the strength of these attachments, traction arising in the vitreous (or zonules) will elevate the retina. If sufficient traction is applied, the retina will break, resulting in a hole or horseshoe tear.

- Vitreoretinal tufts
 - --Actually prevents RD extension
 - --RD usually 2° to tractional tear at posterior edge of lesion
 - --Black and flat
 - --Small peripheral retinal elevations 2° to vitreous or zonular traction
A

Retinal Lesions: Matching!

- Lattice
- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia

Vitreoretinal tufts

- Actually prevents RD extension
- RD usually 2° to tractional tear at posterior edge of lesion
- Black and flat
- Small peripheral retinal elevations 2° to vitreous or zonular traction

Vitreoretinal tufts are known also by what name?
Peripheral retinal tufts
Retinal Lesions: Matching!

- Lattice
- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia

Vitreoretinal tufts are known also by what name?
Peripheral retinal tufts

What are vitreoretinal tufts composed of?

- They are highly focal areas of glial hyperplasia firmly attached to both the vitreous face/zonules and the retina. Because of the strength of these attachments, traction arising in the vitreous (or zonules) will elevate the retina. If sufficient traction is applied, the retina will break, resulting in a hole or horseshoe tear.

Wait—Both the Matching answer and the one above referenced zonules. What gives?

There are three subtypes of vitreoretinal tufts, one of which bridges between the retina and the zonules, not vitreous.
Retinal Lesions: Matching!

- Lattice
- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia

Vitreoretinal tufts

--- Actually prevents RD extension
--- RD usually 2° to tractional tear at posterior edge of lesion
--- Black and flat
--- Small peripheral retinal elevations 2° to vitreous or zonular traction

Vitreoretinal tufts are known also by what name?
Peripheral retinal tufts

What are vitreoretinal tufts composed of?
They are highly focal areas of glial hyperplasia firmly attached to both the vitreous face/zonules and the retina. Because of the strength of these attachments, traction arising in the vitreous (or zonules) will elevate the retina. If sufficient traction is applied, the retina will break, resulting in a hole or horseshoe tear.
Vitreoretinal tufts are known also by what name?
Peripheral retinal tufts

What are vitreoretinal tufts composed of?
They are highly focal areas of glial hyperplasia firmly attached to both the vitreous face/zonules and the retina. Because of the strength of these attachments, traction arising in the vitreous (or zonules) will elevate the retina. If sufficient traction is applied, the retina will break, resulting in a hole or horseshoe tear.

Wait--Both the Matching answer and the one above referenced zonules. What gives?
Retinal Lesions: Matching!

- Lattice
- Cobblestone degeneration
- Meridional folds
- RPE hyperplasia
- Vitreoretinal tufts
- Enclosed ora bays
- Peripheral cystoid degeneration

Vitreoretinal tufts are known also by what name?
Peripheral retinal tufts

What are vitreoretinal tufts composed of?
They are highly focal areas of glial hyperplasia firmly attached to both the vitreous face/zonules and the retina. Because of the strength of these attachments, traction arising in the vitreous (or zonules) will elevate the retina. If sufficient traction is applied, the retina will break, resulting in a hole or horseshoe tear.

Wait--Both the Matching answer and the one above referenced zonules. What gives?
There are three subtypes of vitreoretinal tufts, one of which bridges between the retina and the zonules, not vitreous.

- --Actually prevents RD extension
- --RD usually 2° to tractional tear at posterior edge of lesion
- --Black and flat
- --Small peripheral retinal elevations 2° to vitreous or zonular traction
Retinal Lesions: Matching!

- **Lattice**
 - Actually prevents RD extension

- **Cobblestone degeneration**
 - RD usually 2° to tractional tear at posterior edge of lesion

- **Vitreoretinal tufts**
 - Black and flat

- **Meridional folds**
 - Small peripheral retinal elevations 2° to vitreous or zonular traction

- **RPE hyperplasia**

- **Enclosed ora bays**

- **RPE hypertrophy**

- **Peripheral cystoid degeneration**
 - Present in 100% of adults >20 y.o.
 - Spiculated appearance
 - Islands of pars plana epithelium surrounded by retina
 - Redundant linear retinal elevations
Lattice
Cobblestone degeneration
Vitreoretinal tufts
Meridional folds
RPE hyperplasia
Enclosed ora bays
RPE hypertrophy
Peripheral cystoid degeneration

Retinal Lesions: Matching!

--Actually prevents RD extension
--RD usually 2° to tractional tear at posterior edge of lesion
--Black and flat
--Small peripheral retinal elevations 2° to vitreous or zonular traction
--Present in 100% of adults >20 y.o.
--Spiculated appearance
--Islands of pars plana epithelium surrounded by retina
--Redundant linear retinal elevations
Retinal Lesions: Matching!

- Lattice
 - --Actually prevents RD extension
- Cobblestone degeneration
 - --RD usually 2° to tractional tear at posterior edge of lesion
- Vitreoretinal tufts
 - --Black and flat
- Meridional folds
 - --Small peripheral retinal elevations 2° to vitreous or zonular traction
 - How are meridional folds oriented?
- Peripheral systole degeneration
 - --Redundant linear retinal elevations

- Dentate processes
Retinal Lesions: Matching!

Lattice
--Actually prevents RD extension

Cobblestone degeneration

Vitreoretinal tufts
--RD usually 2° to tractional tear at posterior edge of lesion

Meridional folds
--Black and flat
--Small peripheral retinal elevations 2° to vitreous or zonular traction

How are meridional folds oriented?
Anterior-posterior. Think of them as ‘ridges of retina’ that start at the ora and run posteriorly a millimeter or two.

Peripheral systolic degeneration
--Redundant linear retinal elevations
Q

Retinal Lesions: Matching!

Lattice
- Actually prevents RD extension

Cobblestone degeneration
- RD usually 2° to tractional tear at posterior edge of lesion

Vitreoretinal tufts
- Black and flat

Meridional folds
- Small peripheral retinal elevations 2° to vitreous or zonular traction

How are meridional folds oriented?
Anterior-posterior. Think of them as ‘ridges of retina’ that start at the ora and run posteriorly a millimeter or two.

With what common (at the ora) retinal findings are they associated?

Peripheral systolic degeneration
- Redundant linear retinal elevations
Retinal Lesions: Matching!

Lattice -- Actually prevents RD extension
Cobblestone degeneration -- RD usually 2° to tractional tear at posterior edge of lesion
Vitreoretinal tufts

Meridional folds
-- Black and flat
-- Small peripheral retinal elevations 2° to vitreous or zonular traction

How are meridional folds oriented?
Anterior-posterior. Think of them as ‘ridges of retina’ that start at the ora and run posteriorly a millimeter or two.

With what common (at the ora) retinal findings are they associated?
Dentate processes and ora bays

Peripheral systolic degeneration -- Redundant linear retinal elevations
Retinal Lesions: Matching!

- Lattice
- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia
- Enclosed ora bays
- Peripheral cystoid degeneration

- Actually prevents RD extension
- RD usually 2° to tractional tear at posterior edge of lesion
- Black and flat
- Small peripheral retinal elevations 2° to vitreous or zonular traction
- Present in 100% of adults > 20 y.o.
- Spiculated appearance
- Islands of pars plana epithelium surrounded by retina
- Redundant linear retinal elevations

How are meridional folds oriented?
- Anterior-posterior. Think of them as 'ridges of retina' that start at the ora and run posteriorly a millimeter or two.

With what common (at the ora) retinal finding are they associated?
- Dentate processes and ora bays
- Dentate processes look like very pointy teeth (hence the word dentate)

Peripheral systoid degeneration

--Redundant linear retinal elevations
Retinal Lesions: Matching!

- Lattice
- Cobblestone degeneration
- Vitreoretinal tufts

- Meridional folds:
 - Anterior-posterior orientation
 - Think of them as 'ridges of retina' that start at the ora and run posteriorly a millimeter or two.
 - With what common (at the ora) retinal finding are they associated? Dentate processes and ora bays

- RPE hyperplasia
- Enclosed ora bays
- Peripheral cystoid degeneration

- Actually prevents RD extension
- RD usually 2° to tractional tear at posterior edge of lesion
- Black and flat
- Small peripheral retinal elevations due to vitreous or zonular traction
- Present in 100% of adults >20 y.o.
- Spiculated appearance
- Islands of pars plana epithelium surrounded by retina
- Redundant linear retinal elevations

Pars plana of ciliary body
Ora bays
Peripheral retina
Dentate processes
Ora bays look like inlets of water (hence the word bay)
Dentate processes look like very pointy teeth (hence the word dentate)

Peripheral systoid degeneration

--Redundant linear retinal elevations
Retinal Lesions: Matching!

- Lattice
- Cobblestone degeneration
- Vitreoretinal tufts
- Meridional folds
- RPE hyperplasia
- Enclosed ora bays
- Peripheral cystoid degeneration

--- Actually prevents RD extension
--- RD usually 2° to tractional tear at posterior edge of lesion
--- Black and flat
--- Small peripheral retinal elevations 2° to vitreous or zonular traction
--- Present in 100% of adults >20 y.o.
--- Spiculated appearance
--- Islands of pars plana epithelium surrounded by retina
--- Redundant linear retinal elevations
- Retinal Lesions: Matching!

How are meridional folds oriented? Anterior-posterior. Think of them as ‘ridges of retina’ that start at the ora and run posteriorly a millimeter or two.

With what common (at the ora) retinal finding are they associated? Dentate processes and ora bays

Meridional folds are elevated ridges of retina in a dentate process

Dentate processes look like very pointy teeth (hence the word dentate)

Ora bays look like inlets of water (hence the word bay)

Pars plana of the ciliary body
Peripheral retina

---Redundant linear retinal elevations
Q

Retinal Lesions: Matching!

Lattice
Cobblestone degeneration
Vitreoretinal tufts
Meridional folds
Peripheral cystoid degeneration

---Actually prevents RD extension
---RD usually 2° to tractional tear at posterior edge of lesion
---Black and flat
---Small peripheral retinal elevations 2° to vitreous or zonular traction

Meridional folds

How are meridional folds oriented?
Anterior-posterior. Think of them as ‘ridges of retina’ that start at the ora and run posteriorly a millimeter or two.

With what common (at the ora) retinal findings are they associated?
Dentate processes and ora bays

How do meridional folds increase the risk of an RD?
---Redundant linear retinal elevations
Retinal Lesions: Matching!

Lattice
- Actually prevents RD extension

Cobblestone degeneration
- RD usually 2° to tractional tear at posterior edge of lesion

Vitreoretinal tufts
- Black and flat
- Small peripheral retinal elevations 2° to vitreous or zonular traction

Meridional folds
- Anterior-posterior. Think of them as ‘ridges of retina’ that start at the ora and run posteriorly a millimeter or two.

How are meridional folds oriented?
Anterior-posterior. Think of them as ‘ridges of retina’ that start at the ora and run posteriorly a millimeter or two.

With what common (at the ora) retinal findings are they associated?
Dentate processes and ora bays

How do meridional folds increase the risk of an RD?
The vitreous base straddles these structures, and post-PVD traction at the end of the fold can lead to a horseshoe tear

Peripheral cystoid degeneration
- Redundant linear retinal elevations
How are meridional folds oriented?
Anterior-posterior. Think of them as ‘ridges of retina’ that start at the ora and run posteriorly a millimeter or two.

With what common (at the ora) retinal findings are they associated?
Dentate processes and ora bays

How do meridional folds increase the risk of an RD?
The vitreous base straddles these structures, and post-PVD traction at the posterior end of the fold can lead to a horseshoe tear

Retinal Lesions: Matching!

Lattice --Actually prevents RD extension
Cobblestone degeneration --RD usually 2° to tractional tear at posterior edge of lesion
Vitreoretinal tufts --Black and flat
Meridional folds --Small peripheral retinal elevations 2° to vitreous or zonular traction
Peripheral cystoid degeneration --Redundant linear retinal elevations
Q

Retinal Lesions: Matching!

- Lattice
 -- Actually prevents RD extension

- Cobblestone degeneration
 -- RD usually 2° to tractional tear at posterior edge of lesion

- Vitreoretinal tufts
 -- Black and flat

- Meridional folds
 -- Small peripheral retinal elevations
 2° to vitreous or zonular traction

- RPE hyperplasia
 -- Present in 100% of adults >20 y.o.
 -- Spiculated appearance

- Enclosed ora bays

- RPE hypertrophy

- Peripheral cystoid degeneration
 -- Redundant linear retinal elevations
A

Retinal Lesions: Matching!

- Lattice
 - Actually prevents RD extension
- Cobblestone degeneration
 - RD usually 2° to tractional tear at posterior edge of lesion
- Vitreoretinal tufts
 - Black and flat
- Meridional folds
 - Small peripheral retinal elevations 2° to vitreous or zonular traction
- RPE hyperplasia
 - Present in 100% of adults >20 y.o.
 - Spiculated appearance
- Enclosed ora bays
- RPE hypertrophy
- Peripheral cystoid degeneration
 - Islands of pars plana epithelium surrounded by retina
 - Redundant linear retinal elevations
Retinal Lesions: Matching!

- **Lattice**
 - Actually prevents RD extension

- **Cobblestone degeneration**
 - RD usually 2º to tractional tear at posterior edge of lesion

- **Vitreoretinal tufts**
 - Black and flat

- **Meridional folds**
 - Small peripheral retinal elevations 2º to vitreous or zonular traction

- **RPE hyperplasia**
 - Present in 100% of adults >20 y.o.
 - Spiculated appearance
 - Islands of pars plana epithelium surrounded by retina

- **Enclosed ora bays**
 - Redundant linear retinal elevations

- **RPE hypertrophy**

- **Peripheral cystoid degeneration**
Retinal Lesions: Matching!

- **Lattice**
 --Actually prevents RD extension

- **Cobblestone degeneration**
 --RD usually 2° to tractional tear at posterior edge of lesion

- **Vitreoretinal tufts**
 --Black and flat

- **Meridional folds**
 --Small peripheral retinal elevations 2° to vitreous or zonular traction

- **RPE hyperplasia**
 --Present in 100% of adults >20 y.o.

- **Enclosed ora bays**
 --Spiculated appearance

- **RPE hypertrophy**

- **Peripheral cystoid degeneration**
 --Islands of pars plana epithelium surrounded by retina
 --Redundant linear retinal elevations
Retinal Lesions: Matching!

Enclosed ora bays

- Actually prevents RD extension
- RD usually 2° to tractional tear at posterior edge of lesion
- Present in 100% of adults >20 y.o.
- Spiculated appearance
- Islands of pars plana epithelium surrounded by retina
- Redundant linear retinal elevations

How does an enclosed ora bay differ from the sort we encountered previously?

- It differs in that it is 'cut off' from the rest of the pars plana by retina
- The vitreous base straddles these structures, and post-PVD traction on the retina at the posterior end of the bay can lead to a tear.
Retinal Lesions: Matching!

How does an enclosed ora bay differ from the sort we encountered previously?
It differs in that it is ‘cut off’ from the rest of the pars plana by retina.

- Present in 100% of adults >20 y.o.
- Spiculated appearance
- Islands of pars plana epithelium surrounded by retina
- Redundant linear retinal elevations

Enclosed ora bays

Pars plana of the ciliary body

Ora bays

Peripheral retina

Pars plana of the ciliary body

Ora bays

Enclosed ora bay

Peripheral retina
Retinal Lesions: Matching!

- Lattice
 --Actually prevents RD extension
- Cobblestone degeneration
 --RD usually 2° to tractional tear at posterior edge of lesion
- Vitreoretinal tufts
 --Present in 100% of adults >20 y.o.
 --Spiculated appearance
- Enclosed ora bays
 - Islands of pars plana epithelium surrounded by retina
- RPE hypertrophy
- Peripheral cystoid degeneration

How does an enclosed ora bay differ from the sort we encountered previously?
It differs in that it is ‘cut off’ from the rest of the pars plana by retina

How do enclosed ora bays increase the risk of an RD?

Redundant linear retinal elevations
Lattice
Cobblestone degeneration
Vitreoretinal tufts
RPE hyperplasia
Enclosed ora bays
Peripheral cystoid degeneration

--Actually prevents RD extension
--RD usually 2° to tractional tear at posterior edge of lesion

How does an enclosed ora bay differ from the sort we encountered previously?
It differs in that it is ‘cut off’ from the rest of the pars plana by retina

How do enclosed ora bays increase the risk of an RD?
The vitreous base straddles these structures, and post-PVD traction on the retina at the posterior end of the bay can lead to a tear

Enclosed ora bays

--Spiculated appearance
--Islands of pars plana epithelium surrounded by retina
--Redundant linear retinal elevations

Retinal Lesions: Matching!
How does an enclosed ora bay differ from the sort we encountered previously?
It differs in that it is ‘cut off’ from the rest of the pars plana by retina

How do enclosed ora bays increase the risk of an RD?
The vitreous base straddles these structures, and post-PVD traction on the retina at the posterior end of the bay can lead to a tear

Enclosed ora bays

--Spiculated appearance
--Islands of pars plana epithelium surrounded by retina
--Redundant linear retinal elevations
Q

Retinal Lesions: Matching!

- **Lattice**
 --Actually prevents RD extension

- **Cobblestone degeneration**
 --RD usually 2° to tractional tear at posterior edge of lesion

- **Vitreoretinal tufts**
 --Black and flat

- **Meridional folds**
 --Small peripheral retinal elevations 2° to vitreous or zonular traction

- **RPE hyperplasia**
 --Present in 100% of adults >20 y.o.

- **Enclosed ora bays**
 --Spiculated appearance

- **RPE hypertrophy**
 --Islands of pars plana epithelium surrounded by retina

- **Peripheral cystoid degeneration**
 --Redundant linear retinal elevations
Retinal Lesions: Matching!

- Lattice
 --Actually prevents RD extension

- Cobblestone degeneration
 --RD usually 2° to tractional tear at posterior edge of lesion

- Vitreoretinal tufts
 --Black and flat

- Meridional folds
 --Small peripheral retinal elevations 2° to vitreous or zonular traction

- RPE hyperplasia
 --Present in 100% of adults >20 y.o.
 --Spiculated appearance
 --Islands of pars plana epithelium surrounded by retina
 --Redundant linear retinal elevations

- Enclosed ora bays

- Peripheral cystoid degeneration

- RPE hypertrophy

- Retinal Lesions: Matching!
Retinal Lesions: Matching!

- **Lattice**
 - Actually prevents RD extension

- **Cobblestone degeneration**
 - RD usually 2° to tractional tear at posterior edge of lesion

- **Vitreoretinal tufts**
 - Black and flat

- **Meridional folds**
 - Small peripheral retinal elevations 2° to vitreous or zonular traction

- **RPE hyperplasia**
 - Present in 100% of adults >20 y.o.

- **Enclosed ora bays**
 - Spiculated appearance

- **RPE hypertrophy**
 - Islands of pars plana epithelium surrounded by retina

- **Peripheral cystoid degeneration**
 - Redundant linear retinal elevations
Retinal Lesions: Matching!

- **Lattice**
 - Actually prevents RD extension

- **Cobblestone degeneration**
 - RD usually 2° to tractional tear at posterior edge of lesion

- **Vitreoretinal tufts**
 - Black and flat

- **Meridional folds**
 - Small peripheral retinal elevations 2° to vitreous or zonular traction

- **RPE hyperplasia**
 - Present in 100% of adults >20 y.o.

- **Enclosed ora bays**
 - Spiculated appearance

- **RPE hypertrophy**
 - Islands of pars plana epithelium surrounded by retina

- **Peripheral cystoid degeneration**
 - Redundant linear retinal elevations
With respect to retinal breaks, what does it mean to say a pt is ‘symptomatic’?

Symptomatic
With respect to retinal breaks, what does it mean to say a pt is ‘symptomatic’?
It means the patient is c/o **photopsias** and/or **floaters**

Symptomatic
For each retinal break, state whether it should be treated **prophylactically**

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operculated tear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrophic hole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For each retinal break, state whether it should be treated **prophylactically**

<table>
<thead>
<tr>
<th>Retinal Break</th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operculated tear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrophic hole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For each retinal break, state whether it should be treated **prophylactically**

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operculated tear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrophic hole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For each retinal break, state whether it should be treated prophylactically.

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Operculated tear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrophic hole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For each retinal break, state whether it should be treated **prophylactically**

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Operculated tear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrophic hole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For each retinal break, state whether it should be treated *prophylactically*.

<table>
<thead>
<tr>
<th>Retinal Break</th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Operculated tear</td>
<td>Maybe</td>
<td>Rarely</td>
</tr>
<tr>
<td>Atrophic hole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For each retinal break, state whether it should be treated **prophylactically**.

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Operculated tear</td>
<td>Maybe</td>
<td>Rarely</td>
</tr>
<tr>
<td>Atrophic hole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lattice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For each retinal break, state whether it should be treated **prophylactically**

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Operculated tear</td>
<td>Maybe</td>
<td>Rarely</td>
</tr>
<tr>
<td>Atrophic hole</td>
<td>Rarely</td>
<td>Rarely</td>
</tr>
<tr>
<td>Lattice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For each retinal break, state whether it should be treated *prophylactically*.

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Operculated tear</td>
<td>Maybe</td>
<td>Rarely</td>
</tr>
<tr>
<td>Atrophic hole</td>
<td>Rarely</td>
<td>Rarely</td>
</tr>
<tr>
<td>Lattice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For each retinal break, state whether it should be treated **prophylactically**

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Operculated tear</td>
<td>Maybe</td>
<td>Rarely</td>
</tr>
<tr>
<td>Atrophic hole</td>
<td>Rarely</td>
<td>Rarely</td>
</tr>
<tr>
<td>Lattice</td>
<td>Rarely</td>
<td>No (unless hx RD in fellow eye)</td>
</tr>
</tbody>
</table>
For each retinal break, state whether it should be treated **prophylactically**

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Operculated tear</td>
<td>Maybe</td>
<td>Rarely</td>
</tr>
<tr>
<td>Atrophic hole</td>
<td>Rarely</td>
<td>Rarely</td>
</tr>
<tr>
<td>Lattice</td>
<td>Rarely</td>
<td>No (unless hx RD in fellow eye)</td>
</tr>
</tbody>
</table>
For each retinal break, state whether it should be treated **prophylactically**

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis?</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear?</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Operculated tear?</td>
<td>Rarely</td>
<td>Rarely</td>
</tr>
<tr>
<td>Atrophic hole?</td>
<td>Rarely</td>
<td>Rarely</td>
</tr>
<tr>
<td>Lattice?</td>
<td>Rarely</td>
<td>No (unless hx RD in fellow eye)</td>
</tr>
<tr>
<td></td>
<td>Symptomatic</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Dialysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Operculated tear</td>
<td>Yes</td>
<td>Never</td>
</tr>
<tr>
<td>Atrophic hole</td>
<td>Rarely</td>
<td>Rarely</td>
</tr>
<tr>
<td>Lattice</td>
<td>Rarely</td>
<td>No (unless hx RD in fellow eye)</td>
</tr>
</tbody>
</table>

In general, which carries the highest risk of RD? Horseshoe tears
For each retinal break, state whether it should be treated **prophylactically**

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Operculated tear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrophic hole</td>
<td>Rarely</td>
<td>Rarely</td>
</tr>
<tr>
<td>Lattice</td>
<td>Rarely</td>
<td>No (unless hx RD in fellow eye)</td>
</tr>
</tbody>
</table>

In general, which carries the highest risk of RD?

Horseshoe tears

Why?
For each retinal break, state whether it should be treated **prophylactically**

<table>
<thead>
<tr>
<th></th>
<th>Symptomatic</th>
<th>Asymptomatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dialysis</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horseshoe tear</td>
<td>Yes</td>
<td>Maybe</td>
</tr>
<tr>
<td>Operculated tear</td>
<td>Rarely</td>
<td>Rarely</td>
</tr>
<tr>
<td>Atrophic hole</td>
<td>Rarely</td>
<td>Rarely</td>
</tr>
<tr>
<td>Lattice</td>
<td>Rarely</td>
<td>No (unless hx RD in fellow eye)</td>
</tr>
</tbody>
</table>

In general, which carries the highest risk of RD? **Horseshoe tears**

Why?
Because of **ongoing vitreous traction**
Q

More Retina Problems of an RD Sort…

- % of eyes harbor a retinal break, but only 1 in big number get an RD
6% of eyes harbor a retinal break, but only 1 in 12,000 get an RD
6% of eyes harbor a retinal break, but only 1 in 12,000 get an RD

Goal of RD prophylaxis: Creation of a prophylaxis goal (2 words)
6% of eyes harbor a retinal break, but only 1 in 12,000 get an RD

Goal of RD prophylaxis: Creation of a chorioretinal scar
6% of eyes harbor a retinal break, but only 1 in 12,000 get an RD

Goal of RD prophylaxis: Creation of a chorioretinal scar

If a flap or horseshoe tear is being prophylaxed, be sure to treat a larger area, especially anterior to the lesion (can pull through a chorioretinal scar)
6% of eyes harbor a retinal break, but only 1 in 12,000 get an RD

Goal of RD prophylaxis: Creation of a chorioretinal scar

If a flap or horseshoe tear is being prophylaxed, be sure to treat a larger area, especially anterior to the lesion (continuing traction can pull through a chorioretinal scar)
6% of eyes harbor a retinal break, but only 1 in 12,000 get an RD.

Goal of RD prophylaxis: Creation of a chorioretinal scar.

If a flap or horseshoe tear is being prophylaxed, be sure to treat a larger area, especially anterior to the lesion. (Continuing traction can pull through a chorioretinal scar.)

How far anterior should treatment extend?
6% of eyes harbor a retinal break, but only 1 in 12,000 get an RD.

- Goal of RD prophylaxis: Creation of a chorioretinal scar.
- If a flap or horseshoe tear is being prophylaxed, be sure to treat a larger area, especially anterior to the lesion. (Continuing traction can pull through a chorioretinal scar.)

How far anterior should treatment extend? As a general rule, all the way to the ora serrata.
6% of eyes harbor a retinal break, but only 1 in 12,000 get an RD.

Goal of RD prophylaxis: Creation of a chorioretinal scar.

If a flap or horseshoe tear is being prophylaxed, be sure to treat a larger area, especially anterior to the lesion. (Continuing traction can pull through a chorioretinal scar)

How far anterior should treatment extend?
As a general rule, all the way to the ora serrata.