Before we start: In this context, what does OVD stand for?
Before we start: In this context, what does OVD stand for? Ophthalmic viscosurgical device
Before we start: In this context, what does OVD stand for? Ophthalmic viscosurgical device.

Note this word—device. The point being: Contrary to popular opinion, OVDs are not drugs, not pharmaceuticals.
Before we start: In this context, what does OVD stand for? Ophthalmic viscosurgical device

Note this word—device. The point being: Contrary to popular opinion, OVDs are not drugs, not pharmaceuticals. Rather, they are a surgical device—more closely related to the bladder retractor you held for hours on Ob/Gyn than they are to the Shugarcaine that precedes them in the AC.
In this next part, physical properties of OVDs will be presented in pairs, and you must decide which property goes with which sort of OVD.
**Cohesive OVD**

OK, start divvying (do these two simultaneously)

- Molecular weight: *High*
- Molecular weight: *Low*
- Molecule length: *Long*
- Molecule length: *Short*
- Self-adheres *well*
- Self-adheres *poorly*
- Surface tension: *High*
- Surface tension: *Low*
- Easy to aspirate
- Difficult to aspirate
- Maintains space *well*
- Maintains space *poorly*
- Coats structures *poorly*
- Coats structures *well*
- Viscosity: *High*
- Viscosity: *Low*

**Dispersive OVD**

*OVD properties: Divvy ’em up*
Cohesive OVD
Molecular weight: High

Dispersion OVD
Molecular weight: Low

Molecule length:
- Long
- Short

Self-adheres:
- Well
- Poorly

Surface tension:
- High
- Low

Maintains:
- Space well
- Space poorly

Coats:
- Structures poorly
- Structures well

Viscosity:
- High
- Low
**Cohesive OVD**

- Molecular weight: *High*
- Molecule length: *Long*

**Dispersive OVD**

- Molecular weight: *Low*
- Molecule length: *Short*

**Cohesive OVD Properties:**
- Self-adheres *well*
- Self-adheres *poorly*
- Surface tension: *High*
- Surface tension: *Low*
- Easy to aspirate
- *Difficult* to aspirate
- Maintains space *well*
- Maintains space *poorly*
- Coats structures *poorly*
- Coats structures *well*
- Viscosity: *High*
- Viscosity: *Low*

**Dispersive OVD**

**OVD properties: Divvy 'em up**
**Q/A**

**Cohesive OVD**
- Molecular weight: *High*
- Molecule length: *Long*
- Self-adheres *well*
  - Surface tension: *High*
  - Surface tension: *Low*
    - Easy to aspirate
    - *Difficult* to aspirate
    - Maintains space *well*
    - Maintains space *poorly*
    - Coats structures *poorly*
    - Coats structures *well*
    - Viscosity: *High*
    - Viscosity: *Low*

**Dispersive OVD**
- Molecular weight: *Low*
- Molecule length: *Short*
- Self-adheres *poorly*
**Cohesive OVD**

- Molecular weight: *High*
- Molecule length: *Long*
- Self-adheres *well*
- Surface tension: *High*

*Easy to aspirate*
*Difficult* to aspirate
Maintains space *well*
Maintains space *poorly*
Coats structures *poorly*
Coats structures *well*
Viscosity: *High*
Viscosity: *Low*

**Dispersive OVD**

- Molecular weight: *Low*
- Molecule length: *Short*
- Self-adheres *poorly*
- Surface tension: *Low*

*OVD properties: Divvy 'em up*
**Cohesive OVD**

- Molecular weight: High
- Molecule length: Long
- Self-adheres well
- **Surface tension:** High

**Dispersive OVD**

- Molecular weight: Low
- Molecule length: Short
- Self-adheres poorly
- **Surface tension:** Low

---

*The BCSC offers a synonym for surface tension—what is it? (Hint: It’s something-ability)*

- Coats structures poorly
- Viscosity: High
- **Viscosity:** Low
OVD properties: Divvy ‘em up

Cohesive OVD

- Molecular weight: High
- Molecule length: Long
- Self-adheres well
- Surface tension: High

Dispersive OVD

- Molecular weight: Low
- Molecule length: Short
- Self-adheres poorly
- Surface tension: Low

The BCSC offers a synonym for surface tension—what is it? (Hint: It’s something-ability)

‘Coatability’—the tendency for the surface of a liquid to stick to another surface
Cohesive OVD

Molecular weight: High
Molecule length: Long
Self-adheres well
Surface tension: High

Dispersive OVD

Molecular weight: Low
Molecule length: Short
Self-adheres poorly
Surface tension: Low

The BCSC offers a synonym for surface tension—what is it? (Hint: It’s something-ability)
‘Coatability’—the tendency for the surface of a liquid to stick to another surface. Coatability is directly proportional to surface tension, which means that substances with low surface tension are better ‘coat-ers’ than are those with high surface tension.
**Cohesive OVD**

- Molecular weight: *High*
- Molecule length: *Long*
- Self-adheres well
- **Surface tension:** *High*

**Dispersive OVD**

- Molecular weight: *Low*
- Molecule length: *Short*
- Self-adheres poorly
- **Surface tension:** *Low*

---

*The BCSC offers a synonym for surface tension—what is it? (Hint: It’s something-ability)*

‘Coatability’—the tendency for the surface of a liquid to stick to another surface. Coatability is inversely proportional to surface tension, which means that substances with low surface tension are better ‘coat-ers’ than are those with high surface tension.
**Cohesive OVD**

- Molecular weight: High
- Molecule length: Long
- Self-adheres well
- Surface tension: High

**Easy to aspirate**
- Difficult to aspirate
- Maintains space well
- Maintains space poorly
- Coats structures poorly
- Coats structures well
- Viscosity: High
- Viscosity: Low

**Dispersive OVD**

- Molecular weight: Low
- Molecule length: Short
- Self-adheres poorly
- Surface tension: Low
Cohesive OVD
Molecular weight: High
Molecule length: Long
Self-adheres well
Surface tension: High
Easy to aspirate

Dispersive OVD
Molecular weight: Low
Molecule length: Short
Self-adheres poorly
Surface tension: Low
Difficult to aspirate

- Maintains space well
- Maintains space poorly
- Coats structures poorly
- Coats structures well
- Viscosity: High
- Viscosity: Low
Cohesive OVD

- Molecular weight: *High*
- Molecule length: *Long*
- Self-adheres *well*
- Surface tension: *High*
- *Easy to aspirate*
- Maintains space *well*

- Coats structures *poorly*
- Viscosity: *High*

Dispersive OVD

- Molecular weight: *Low*
- Molecule length: *Short*
- Self-adheres *poorly*
- Surface tension: *Low*
- *Difficult to aspirate*
- Maintains space *poorly*

- Coats structures *well*
- Viscosity: *Low*
**Cohesive OVD**

- Molecular weight: *High*
- Molecule length: *Long*
  - Self-adheres *well*
- Surface tension: *High*
  - *Easy to aspirate*
- Maintains space *well*
- Coats structures *poorly*

**Dispersive OVD**

- Molecular weight: *Low*
- Molecule length: *Short*
  - Self-adheres *poorly*
- Surface tension: *Low*
  - *Difficult to aspirate*
- Maintains space *poorly*
- Coats structures *well*

\[
\begin{align*}
\text{Viscosity:} & \quad \text{*High*} \\
\text{Viscosity:} & \quad \text{*Low*}
\end{align*}
\]
Cohesive OVD

- Molecular weight: High
- Molecule length: Long
- Self-adheres well
- Surface tension: High
- Easy to aspirate
- Maintains space well
- Coats structures poorly
- Viscosity: High

Dispersive OVD

- Molecular weight: Low
- Molecule length: Short
- Self-adheres poorly
- Surface tension: Low
- Difficult to aspirate
- Maintains space poorly
- Coats structures well
- Viscosity: Low
In the context of OVDs, to what does the term viscosity refer?

Viscosity refers to how a substance responds to shear force.

With respect to OVDs, what two ‘shear force scenarios’ are we concerned with?

Low shear: Capsulorrhexis

High shear: Phacoemulsification, and I&A

What simplified way does the BCSC suggest to think about viscosity?

Think of it as how ‘thick’ or ‘thin’ a liquid is: High-viscosity liquids are thick, whereas low-viscosity liquids are thin.
In the context of OVDs, to what does the term viscosity refer?

Viscosity refers to how a substance responds to shear force.
In the context of OVDs, to what does the term viscosity refer?

Viscosity refers to how a substance responds to shear force.
In the context of OVDs, to what does the term viscosity refer?

Viscosity refers to how a substance responds to shear force.

With respect to OVDs, what two ‘shear force scenarios’ are we concerned with?

- Low shear: Capsulorrhexis
- High shear: Phacoemulsification, and I&A

What simplified way does the BCSC suggest to think about viscosity?

Think of it as how ‘thick’ or ‘thin’ a liquid is: High-viscosity liquids are thick, whereas low-viscosity liquids are thin.
In the context of OVDs, to what does the term viscosity refer? Viscosity refers to how a substance responds to shear force.

With respect to OVDs, what two ‘shear force scenarios’ are we concerned with?

--- Low shear
--- High shear
**Cohesive OVD**

- Molecular weight: *High*
- Molecule length: *Long*
- Self-adheres well
- Viscosity: *Low*
- Surface tension: *High*
- Easy to aspirate
- Maintains space well
- Coats structures poorly

**Dispersive OVD**

- Molecular weight: *Low*
- Molecule length: *Short*
- Self-adheres poorly
- Viscosity: *High*
- Surface tension: *Low*
- Difficult to aspirate
- Maintains space poorly
- Coats structures well

---

*In the context of OVDs, to what does the term viscosity refer?*

Viscosity refers to how a substance responds to shear force.

*With respect to OVDs, what two ‘shear force scenarios’ are we concerned with? Which intraoperative steps provide a ready example of each?*

---

- **Low shear:** Capsulorrhexis
- **High shear:** Phacoemulsification, and I&A

*What simplified way does the BCSC suggest to think about viscosity?*

Think of it as how ‘thick’ or ‘thin’ a liquid is: High-viscosity liquids are thick, whereas low-viscosity liquids are thin.
In the context of OVDs, to what does the term viscosity refer?
Viscosity refers to how a substance responds to shear force.

With respect to OVDs, what two ‘shear force scenarios’ are we concerned with?
Which intraoperative steps provide a ready example of each?

--Low shear: Capsulorrhexis
--High shear

Viscosity

High

Low
In the context of OVDs, to what does the term viscosity refer?
Viscosity refers to how a substance responds to shear force.

With respect to OVDs, what two ‘shear force scenarios’ are we concerned with?
Which intraoperative steps provide a ready example of each?

--Low shear: Capsulorrhexis
--High shear: ?
In the context of OVDs, to what does the term *viscosity* refer?

Viscosity refers to how a substance responds to shear force.

*With respect to OVDs, what two ‘shear force scenarios’ are we concerned with?*

*Which intraoperative steps provide a ready example of each?*

---

**Low shear:** Capsulorrhexis

**High shear:** Phacoemulsification, and I&A

---

In the context of OVDs, to what does the term *viscosity* refer?

Viscosity refers to how a substance responds to shear force.

*With respect to OVDs, what two ‘shear force scenarios’ are we concerned with?*

*Which intraoperative steps provide a ready example of each?*

---

**Low shear:** Capsulorrhexis

**High shear:** Phacoemulsification, and I&A

---

Coats structures well

Maintains space well

Easy to aspirate

Surface tension: Low

Self-adheres well

Molecular weight: High

Molecule length: Long

Viscosity: High

Coats structures poorly

Maintains space poorly

Difficult to aspirate

Surface tension: High

Self-adheres poorly

Molecular weight: Low

Molecule length: Short

Viscosity: Low
In the context of OVDs, to what does the term viscosity refer?

Viscosity refers to how a substance responds to shear force.

With respect to OVDs, what two ‘shear force scenarios’ are we concerned with?

Which intraoperative steps provide a ready example of each?

--Low shear: Capsulorrhexis
--High shear: Phacoemulsification, and I&A

What simplified way does the BCSC suggest to think about viscosity?
**Cohesive OVD**

- Molecular weight: *High*
- Molecule length: *Long*
- Self-adheres *well*
- Viscosity: *Low*
- Surface tension: *High*
- Easy to aspirate
- Maintains space *poorly*
- Coats structures poorly

**Dispersive OVD**

- Molecular weight: *Low*
- Molecule length: *Short*
- Self-adheres poorly
- Viscosity: *High*
- Surface tension: *Low*
- Difficult to aspirate
- Maintains space *well*
- Coats structures *well*

---

In the context of OVDs, to what does the term viscosity refer?

Viscosity refers to how a substance responds to shear force.

With respect to OVDs, what two ‘shear force scenarios’ are we concerned with?

Which intraoperative steps provide a ready example of each?

- **Low shear**: Capsulorrhexis
- **High shear**: Phacoemulsification, and I&A

What simplified way does the BCSC suggest to think about viscosity?

Think of it as how ‘thick’ or ‘thin’ a liquid is.
In the context of OVDs, to what does the term viscosity refer? Viscosity refers to how a substance responds to shear force.

With respect to OVDs, what two ‘shear force scenarios’ are we concerned with? Which intraoperative steps provide a ready example of each?

- **Low shear**: Capsulorrhexis
- **High shear**: Phacoemulsification, and I&A

What simplified way does the BCSC suggest to think about viscosity? Think of it as how ‘thick’ or ‘thin’ a liquid is: High-viscosity liquids are [one], whereas low-viscosity liquids are [other one].
In the context of OVDs, to what does the term viscosity refer?
Viscosity refers to how a substance responds to shear force.

With respect to OVDs, what two ‘shear force scenarios’ are we concerned with?
Which intraoperative steps provide a ready example of each?

---

Low shear:
- Capsulorrhexis

High shear:
- Phacoemulsification, and I&A

What simplified way does the BCSC suggest to think about viscosity?
Think of it as how ‘thick’ or ‘thin’ a liquid is: High-viscosity liquids are thick, whereas low-viscosity liquids are thin.
<table>
<thead>
<tr>
<th>Cohesive OVD</th>
<th>Dispersive OVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight: <em>High</em></td>
<td>Molecular weight: <em>Low</em></td>
</tr>
<tr>
<td>Molecule length: <em>Long</em></td>
<td>Molecule length: <em>Short</em></td>
</tr>
<tr>
<td>Self-adheres <em>well</em></td>
<td>Self-adheres <em>poorly</em></td>
</tr>
<tr>
<td>Surface tension: <em>High</em></td>
<td>Surface tension: <em>Low</em></td>
</tr>
<tr>
<td><em>Easy to aspirate</em></td>
<td><em>Difficult to aspirate</em></td>
</tr>
<tr>
<td>Maintains space <em>well</em></td>
<td>Maintains space <em>poorly</em></td>
</tr>
<tr>
<td>Coats structures <em>poorly</em></td>
<td>Coats structures <em>well</em></td>
</tr>
<tr>
<td>Viscosity: <em>High</em></td>
<td>Viscosity: <em>Low</em></td>
</tr>
</tbody>
</table>

Think of the OVD molecules as **pasta**.
### Cohesive OVD

- **Molecular weight:** High
- **Molecule length:** Long
- **Self-adheres:** well
- **Surface tension:** High
- **Easy to aspirate**
- **Maintains space:** well
- **Coats structures:** poorly
- **Viscosity:** High

Think of the OVD molecules as **pasta**. **Cohesive** OVD molecules are like spaghetti—very long.

### Dispersive OVD

- **Molecular weight:** Low
- **Molecule length:** Short
- **Self-adheres:** poorly
- **Surface tension:** Low
- **Difficult** to aspirate
- **Maintains space:** poorly
- **Coats structures:** well
- **Viscosity:** Low
<table>
<thead>
<tr>
<th>Cohesive OVD</th>
<th>Dispersive OVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight:</td>
<td>Molecular weight:</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Molecule length:</td>
<td>Molecule length:</td>
</tr>
<tr>
<td>Long</td>
<td>Short</td>
</tr>
<tr>
<td>Self-adheres</td>
<td>Self-adheres:</td>
</tr>
<tr>
<td>well</td>
<td>poorly</td>
</tr>
<tr>
<td>Surface tension:</td>
<td>Surface tension:</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Easy to aspirate</td>
<td>Difficult to aspirate</td>
</tr>
<tr>
<td>Maintains space:</td>
<td>Maintains space:</td>
</tr>
<tr>
<td>well</td>
<td>poorly</td>
</tr>
<tr>
<td>Coats structures:</td>
<td>Coats structures:</td>
</tr>
<tr>
<td>poorly</td>
<td>well</td>
</tr>
<tr>
<td>Viscosity:</td>
<td>Viscosity:</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

Think of the OVD molecules as **pasta**. **Cohesive** OVD molecules are like spaghetti—very long. **Dispersive** OVD molecules are like macaroni—very short.
<table>
<thead>
<tr>
<th><strong>Cohesive OVD</strong></th>
<th><strong>Dispersive OVD</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight: <em>High</em></td>
<td>Molecular weight: <em>Low</em></td>
</tr>
<tr>
<td><strong>Molecule length: <em>Long</em></strong></td>
<td>Molecule length: <em>Short</em></td>
</tr>
<tr>
<td>Self-adheres <em>well</em></td>
<td>Self-adheres <em>poorly</em></td>
</tr>
<tr>
<td>Surface tension: <em>High</em></td>
<td>Surface tension: <em>Low</em></td>
</tr>
<tr>
<td><em>Easy to aspirate</em></td>
<td><em>Difficult</em> to aspirate</td>
</tr>
<tr>
<td>Maintains space <em>well</em></td>
<td>Maintains space <em>poorly</em></td>
</tr>
<tr>
<td>Coats structures <em>poorly</em></td>
<td>Coats structures <em>well</em></td>
</tr>
<tr>
<td>Viscosity: <em>High</em></td>
<td>Viscosity: <em>Low</em></td>
</tr>
</tbody>
</table>

Think of the OVD molecules as pasta. **Cohesive** OVD molecules are like spaghetti—very long. **Dispersive** OVD molecules are like macaroni—very short.

Now consider serving spaghetti vs macaroni. Because spaghetti strands are long, they entangle with and adhere to one another. In contrast, because macaroni are so short, they don't entangle and don't adhere to one another. Thus, repeated spoonings are needed to remove macaroni from a bowl. So it is with OVDs. Cohesives, with their long entangled molecules, tend to come out of the eye as a single glob, whereas the short-chained dispersives have to be removed piecemeal. In like fashion, the non-self-adhering dispersives do an excellent job coating intraocular structures, whereas their self-adherence renders cohesives unsuitable for this.
## Cohesive OVD

- **Molecular weight:** High
- **Molecule length:** Long
- **Self-adheres well**
- **Surface tension:** High
- **Easy to aspirate**
- **Maintains space well**
- **Coats structures poorly**
- **Viscosity:** High

Think of the OVD molecules as **pasta**. **Cohesive** OVD molecules are like spaghetti—very long. **Dispersive** OVD molecules are like macaroni—very short.

Now consider serving spaghetti vs macaroni. Because spaghetti strands are long, they entangle with and adhere to one another. So spooning any tends to result in the removal of most of the spaghetti.

## Dispersive OVD

- **Molecular weight:** Low
- **Molecule length:** Short
- **Self-adheres poorly**
- **Surface tension:** Low
- **Difficult to aspirate**
- **Maintains space poorly**
- **Coats structures well**
- **Viscosity:** Low
Cohesive OVD

Molecular weight: High
Molecule length: Long
Self-adheres well
Surface tension: High
Easy to aspirate
Maintains space well
Coats structures poorly
Viscosity: High

Think of the OVD molecules as pasta. **Cohesive** OVD molecules are like spaghetti—very long. **Dispersive** OVD molecules are like macaroni—very short.

Now consider serving spaghetti vs macaroni. Because spaghetti strands are long, they entangle with and adhere to one another. So spooning any tends to result in the removal of most of the spaghetti.

In contrast, because macaroni are so short, they don’t entangle and don’t adhere to one another.

---

Dispersive OVD

Molecular weight: Low
Molecule length: Short
Self-adheres poorly
Surface tension: Low
Difficult to aspirate
Maintains space poorly
Coats structures well
Viscosity: Low
Cohesive OVD

Molecular weight: High

Molecule length: Long

Self-adheres well

Surface tension: High

Easy to aspirate

Maintains space well

Coats structures poorly

Viscosity: High

Think of the OVD molecules as pasta. Cohesive OVD molecules are like spaghetti—very long. Dispersive OVD molecules are like macaroni—very short.

Now consider serving spaghetti vs macaroni. Because spaghetti strands are long, they entangle with and adhere to one another. So spooning any tends to result in the removal of most of the spaghetti.

In contrast, because macaroni are so short, they don’t entangle and don’t adhere to one another. Thus, repeated spoonings are needed to remove macaroni from a bowl.

Dispersive OVD

Molecular weight: Low

Molecule length: Short

Self-adheres poorly

Surface tension: Low

Difficult to aspirate

Maintains space poorly

Coats structures well

Viscosity: Low
Cohesive OVD

Molecular weight: High
Molecule length: Long
Self-adheres well
Surface tension: High
Easy to aspirate
Maintains space well
Coats structures poorly
Viscosity: High

Think of the OVD molecules as pasta. **Cohesive** OVD molecules are like spaghetti—very long. **Dispersive** OVD molecules are like macaroni—very short.

Now consider serving spaghetti vs macaroni. Because spaghetti strands are long, they entangle with and adhere to one another. So spooning any tends to result in the removal of most of the spaghetti.

In contrast, because macaroni are so short, they don’t entangle and don’t adhere to one another. Thus, repeated spoonings are needed to remove macaroni from a bowl.

So it is with OVDs. Cohesives, with their long entangled molecules, tend to come out of the eye as a single glob.
Think of the OVD molecules as pasta.

**Cohesive** OVD molecules are like spaghetti—very long.

**Dispersive** OVD molecules are like macaroni—very short.

Now consider serving spaghetti vs macaroni. Because spaghetti strands are long, they entangle with and adhere to one another. So spooning *any* tends to result in the removal of *most* of the spaghetti.

In contrast, because macaroni are so short, they *don’t* entangle and *don’t* adhere to one another. Thus, repeated spoonings are needed to remove macaroni from a bowl.

So it is with OVDs. Cohesives, with their long entangled molecules, tend to come out of the eye as a single glob, whereas the short-chained dispersives have to be removed piecemeal.
Cohesive OVD

Molecular weight: High
Molecule length: Long
Self-adheres well
Surface tension: High
Easy to aspirate
Maintains space well
Coats structures poorly
Viscosity: High

Think of the OVD molecules as pasta. **Cohesive** OVD molecules are like spaghetti—very long. **Dispersive** OVD molecules are like macaroni—very short.

Now consider serving spaghetti vs macaroni. Because spaghetti strands are long, they entangle with and adhere to one another. So spooning *any* tends to result in the removal of *most* of the spaghetti.

In contrast, because macaroni are so short, they *don’t* entangle and *don’t* adhere to one another. Thus, repeated spoonings are needed to remove macaroni from a bowl.

So it is with OVDs. Cohesives, with their long entangled molecules, tend to come out of the eye as a single glob, whereas the short-chained dispersives have to be removed piecemeal.

In like fashion, the non-self-adhering dispersives do an excellent job coating intraocular structures.

Dispersive OVD

Molecular weight: Low
Molecule length: Short
Self-adheres poorly
Surface tension: Low
Difficult to aspirate
Maintains space poorly
Coats structures well
Viscosity: Low
Cohesive OVD

- Molecular weight: High
- Molecule length: Long
- Self-adheres well
- Surface tension: High
- Easy to aspirate
- Maintains space well
- Coats structures poorly
- Viscosity: High

Think of the OVD molecules as pasta. **Cohesive** OVD molecules are like spaghetti—very long. **Dispersive** OVD molecules are like macaroni—very short.

Now consider serving spaghetti vs macaroni. Because spaghetti strands are long, they entangle with and adhere to one another. So spooning any tends to result in the removal of most of the spaghetti.

In contrast, because macaroni are so short, they don’t entangle and don’t adhere to one another. Thus, repeated spoonings are needed to remove macaroni from a bowl.

So it is with OVDs. Cohesives, with their long entangled molecules, tend to come out of the eye as a single glob, whereas the short-chained dispersives have to be removed piecemeal.

In like fashion, the non-self-adhering dispersives do an excellent job coating intraocular structures, whereas their self-adherence renders cohesives unsuitable for this.

Dispersive OVD

- Molecular weight: Low
- Molecule length: Short
- Self-adheres poorly
- Surface tension: Low
- Difficult to aspirate
- Maintains space poorly
- Coats structures well
- Viscosity: Low