Before you begin: This is a big topic, and big topics beget big slide-sets. There are natural breaks around slides 217 and 442; I placed a \textit{break time!} slides at those points to mark them.
Age-related macular degeneration is the #1 cause of blindness in adults age # in resource-rich nations.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

What proportion of Americans 65+ have ARMD?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

What proportion of Americans 65+ have ARMD?
10%
Age-related macular degeneration is the #1 cause of blindness in **adults age 50+** in resource-rich nations.

What proportion of Americans 65+ have ARMD? 75+?

10%
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

What proportion of Americans 65+ have ARMD? 75+?
10%. 25%!
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

What proportion of Americans 65+ have ARMD? 75+? 10%. 25%!

Speaking of demographics: Is ARMD risk related to ethnicity? Yes, ______ have the highest risk and ______ the lowest.
Age-related macular degeneration is the #1 cause of blindness in **adults age 50+** in resource-rich nations.

What proportion of Americans 65+ have ARMD? 75+?
10%. 25%!

Speaking of demographics: Is ARMD risk related to ethnicity?
Yes, whites have the highest risk and AAs the lowest.
Age-related macular degeneration is the #1 cause of blindness in **adults age 50+** in resource-rich nations.

What proportion of Americans 65+ have ARMD? 75+?
10%. 25%!

Speaking of demographics: Is ARMD risk related to ethnicity?
Yes, whites have the highest risk and AAs the lowest; and Asians and Hispanics fall in-between.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

What proportion of Americans 65+ have ARMD? 75+?
10%. 25%!

Speaking of demographics: Is ARMD risk related to ethnicity?
Yes, whites have the highest risk and AAs the lowest; Asians and Hispanics fall in-between.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

What are the other ARMD risk factors?

- Family history;
- Female;
- Light iris color;
- Age;
- Anglo (i.e., white ethnicity);
- Smoking; Sun exposure;
- Hyperopia; Hypercholesterolemia; High CRP.

The mnemonic is...
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

What are the other ARMD risk factors?

- F
- L
- Age
- S
- H

The mnemonic is... **FLASH**

- (two F’s)
- (another A)
- (two S’s)
- (three H’s)
What are the other ARMD risk factors?

- Family history; Female
- Light iris color
- Age; Anglo (i.e., white ethnicity)
- Smoking; Sun exposure
- Hyperopia; Hypercholesterolemia; High CRP

The mnemonic is... **FLASH**
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. **Age** is the strongest risk factor for ARMD.

What are the other ARMD risk factors?
- Family history; Female
- Light iris color
- Age; Anglo (ie, white ethnicity)
- Smoking; Sun exposure
- Hyperopia; Hypercholesterolemia; High CRP

Of the modifiable ones, which is most impactful?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. **Age** is the strongest risk factor for ARMD.

What are the other ARMD risk factors?

- Family history; Female
- Light iris color
- Age; Anglo (ie, white ethnicity)
- Smoking; Sun exposure
- Hyperopia; Hypercholesterolemia; High CRP

Of the modifiable ones, which is most impactful? Smoking
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?

Drusen are aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?

Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?

There are several ways:
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly

How are drusen categorized?
There are several ways:

Drusen are categorized by their size?
Drusen are categorized by the boundaries?
Drusen are categorized by the retinal layer in which they’re located?

Drusen are categorized by their size?

Drusen are categorized by their boundaries?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- Drusen are categorized by their **size**
- Drusen are categorized by the **retinal layer** in which they're located
- Drusen are categorized by their **boundaries**
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- Drusen are categorized by their **size**:
 --?
 --?
 --?
 --?

- Drusen are categorized by their **boundaries**

- Drusen are categorized by the **retinal layer** in which they’re located
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Drusen are categorized by their size:**
 - Small
 - Intermediate
 - Large
 - Drusenoid PED

- **Drusen are categorized by the retinal layer in which they’re located:**

Drusen are categorized by their boundaries:
Age-related macular degeneration is the #1 cause of blindness in adults age **50+** in resource-rich nations

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of **drusen** in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Drusen are categorized by their size:**
 - **Small:** \(<63 \mu m\) diameter
 - Intermediate
 - Large
 - Drusenoid PED

- **Drusen are categorized by the retinal layer in which they’re located**

- **Drusen are categorized by their boundaries**
- Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.
- Age is the strongest risk factor for ARMD.
- The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

Drusen are categorized by their **size**:
- **Small**: <63 μm diameter
- Intermediate
- Large
- Drusenoid PED

Drusen are categorized by the retinal layer in which they're located.

Drusen are categorized by their **boundaries**.
Small drusen
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

Drusen are categorized by their size:
- Small: <63 µm diameter
- Intermediate
- Large
- Drusenoid PED

Drusen are categorized by the retinal layer in which they’re located.

Drusen are categorized by their boundaries.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly

How are drusen categorized?
There are several ways:

- *Drusen are categorized by their size:*
 - Small: <63 μm diameter
 - Intermediate: 63–124
 - Large
 - Drusenoid PED

- *Drusen are categorized by the retinal layer in which they’re located*

- *Drusen are categorized by their boundaries*
Intermediate drusen
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Drusen are categorized by their size:**
 - Small: <63 μm diameter
 - Intermediate: 63–124
 - Large: ≥125
 - Drusenoid PED

- Drusen are categorized by the retinal layer in which they're located.

- Drusen are categorized by their boundaries.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Drusen are categorized by their size:**
 - Small: <63 \(\mu \text{m} \) diameter
 - Intermediate: 63–124
 - Large: \(\geq 125 \)
 - Drusenoid PED

- Drusen are categorized by the retinal layer in which they’re located.

- Drusen are categorized by their boundaries.
Large drusen
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- Drusen are categorized by their size:
 - Small: <63 µm diameter
 - Intermediate: 63–124
 - Large: ≥125

- Drusen are categorized by the retinal layer in which they're located:

- Drusen are categorized by their boundaries.

How the heck are you supposed to know the size of a druse in microns?

By comparing it to the size of a retinal vein as it crosses the border of the ONH (their diameter is about 124 µm there, and thus make a convenient reference).
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Size:**
 - Small: <63 μm diameter
 - Intermediate: 63–124 μm
 - Large: ≥125 μm

- **Boundaries**

How the heck are you supposed to know the size of a druse in microns?
By comparing it to the size of a retinal vein as it crosses the border of the ONH (their diameter is about 124 μm there, and thus make a convenient reference).

Drusen are categorized by the retinal layer in which they're located

Drusen are categorized by their boundaries
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Size**: Small: <63 μm diameter, Intermediate: 63–124, Large: ≥125
- **Boundaries**
- **Retinal layer** in which they're located

How the heck are you supposed to know the size of a druse in microns?
By comparing it to the size of a retinal vein as it crosses the border of the ONH.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Drusen are categorized by their size:**
 - Small: <63 μm
 - Intermediate: 63–124
 - Large: ≥125

- Drusen are categorized by the retinal layer in which they're located.
- Drusen are categorized by their boundaries.

How the heck are you supposed to know the size of a druse in microns?
By comparing it to the size of a retinal vein as it crosses the border of the ONH (their diameter is about 124 µm there, and thus make a convenient reference).
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Small**: <63 μm diameter
- **Intermediate**: 63–124
- **Large**: ≥125

Drusen are categorized by their size:

- Drusen are categorized by the retinal layer in which.

How the heck are you supposed to know the size of a druse in microns?
By comparing it to the size of a retinal vein as it crosses the border of the ONH (their diameter is about 124 μm there, and thus make a convenient reference).
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly

How are drusen categorized?
There are several ways:

Drusen are categorized by their size:
- Small: <63 μm diameter
- Intermediate: 63–124
- Large: ≥125
- Drusenoid PED: ≥350

Drusen are categorized by the retinal layer in which they’re located

Drusen are categorized by their boundaries
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

Drusen are categorized by their size:
- **Small:** <63 μm diameter
- **Intermediate:** 63–124
- **Large:** ≥125
- **Drusenoid PED:** >350

Drusen are categorized by their boundaries

Drusen are categorized by the retinal layer in which they’re located
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:
- **Small**: <63 μm diameter
- **Intermediate**: 63–124
- **Large**: ≥125
- **Drusenoid PED**: >350

Drusen are categorized by their boundaries.

Drusen are categorized by the retinal layer in which they’re located.

In this context, what does PED stand for?

In this context, what does PED stand for?

Drusen are categorized by their size:
- **Small**: <63 μm diameter
- **Intermediate**: 63–124
- **Large**: ≥125
- **Drusenoid PED**: >350

Drusen are categorized by their boundaries.

In this context, what does PED stand for?

Ped pigment epithelium detachment.

It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

There are three basic forms of PED—what are the other two? Each is identifiable via the appearance of the sub-RPE space on OCT. What is this appearance for each?
- **Drusenoid**: Uniformly hyperreflective
- **Serous/hemorrhagic**: Solid with ‘clefts’
- **Fibrovascular**: Sub-RPE space ‘empty’
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

In this context, what does PED stand for?
Pigment epithelium detachment.

Drusen are categorized by their size:
- Small: <63 μm diameter
- Intermediate: 63–124
- Large: ≥125
- Drusenoid PED: >350

Drusen are categorized by their boundaries.

Drusen are categorized by the retinal layer in which they're located.

In this context, what does PED stand for?
Pigment epithelium detachment.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

In this context, what does PED stand for?
Pigment epithelium detachment.

What does it mean to say the RPE is ‘detached’?
Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

Drusen are categorized by:
- Size:
 - Small: <63 μm diameter
 - Intermediate: 63–124
 - Large: ≥125
 - Drusenoid PED: >350

Drusen are categorized by their boundaries:
- Inner: On RPE
- Outer: On photoreceptors

In this context, what does PED stand for?
Pigment epithelium detachment.

What does it mean to say the RPE is ‘detached’?
Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

There are three basic forms of PED:
- Drusenoid: Uniformly hyperreflective
- Serous/hemorrhagic: Solid with ‘clefts’
- Fibrovascular: Sub-RPE space ‘empty’
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen? Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material? Proteins and lipids—detritus shed by photoreceptors, mainly.

Drusen are categorized by their size:
- Small: <63 μm diameter
- Intermediate: 63–124
- Large: ≥125
- Drusenoid PED: >350

Drusen are categorized by their boundaries:

Drusen are categorized by the retinal layer in which they're located.

In this context, what does PED stand for? Pigment epithelium detachment.

What does it mean to say the RPE is ‘detached’? It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

There are three basic forms of PED—what are the other two? Each is identifiable via the appearance of the sub-RPE space on OCT. What is this appearance for each?
- Drusenoid: Uniformly hyperreflective
- Serous/hemorrhagic: Solid with ‘clefts’
- Fibrovascular: Sub-RPE space ‘empty’
Coalescence of large soft drusen over time to form a drusenoid PED with increasing accumulation of vitelliform material (red arrow) and overlying pigmentary changes, as seen on color fundus photograph (CFP) and OCT.

OCT: Drusenoid PED
Age-related macular degeneration (ARMD) is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

Drusen are categorized by their size:

- **Small**: $< 63 \, \mu m$
- **Intermediate**: $63 - 124$
- **Large**: ≥ 125
- **Drusenoid PED**: > 350

Drusen are categorized by their boundaries.

Drusen are categorized by the retinal layer in which they’re located.

In this context, what does PED stand for?
Pigment epithelium detachment.

What does it mean to say the RPE is ‘detached’?
It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

There are three basic forms of PED—what are the other two? Each is identifiable via the appearance of the sub-RPE space on OCT. What is this appearance for each?

- Drusenoid: Uniformly hyperreflective
- Serous/hemorrhagic: Solid with ‘clefts’
- Fibrovascular: Sub-RPE space ‘empty’
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

What does it mean to say the RPE is ‘detached’?
It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Drusen are categorized by their:
--Small: <63 μm diameter
--Intermediate: 63–124 μm
--Large: ≥125 μm
--Drusenoid PED: >350 μm

Drusen are categorized by the retinal layer in which they’re located.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

Drusen are categorized by their:
--Small: <63 μm diameter
--Intermediate: 63–124 μm
--Large: ≥125 μm
--Drusenoid PED: >350 μm

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors.
Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, which results in vision loss.

In this context, what does PED stand for?
Pigment epithelium detachment.
Age-related macular degeneration (ARMD) is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen? Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material? Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized? There are several ways:

- **Small**: <63 μm diameter
- **Intermediate**: 63–124
- **Large**: ≥125
- **DrusenoidPED**: >350

What do the terms 'size' and 'boundaries' refer to? Drusen are categorized by the retinal layer in which they're located. In this context, what does PED stand for? Pigment epithelium detachment.

What does it mean to say the RPE is 'detached'? It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Why is it a big deal if the RPE is separated from its BM, or deeper structures? Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:
- **Small**: <63 μm diameter
- **Intermediate**: 63–124
- **Large**: ≥125
- **Drusenoid PED**: >350

In this context, what does PED stand for?
Pigment epithelium detachment.

What does it mean to say the RPE is ‘detached’?
It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, resulting in vision loss.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

Drusen are categorized by their size:
- **Small**: <63 μm diameter
- **Intermediate**: 63–124
- **Large**: ≥125
- **Drusenoid PED**: >350

Drusen are categorized by their boundaries.

In this context, what does PED stand for?
Pigment epithelium detachment.

What does it mean to say the RPE is ‘detached’?
It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets *its* metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, resulting in vision loss.

There are three basic forms of PED—what are the other two?
- Drusenoid
- ?
- ?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

In this context, what does PED stand for?
Pigment epithelium detachment.

What does it mean to say the RPE is ‘detached’?
It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, resulting in vision loss.

There are three basic forms of PED—what are the other two?

--Drusenoid
--Serous
--Fibrovascular
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen? Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material? Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?

Drusen are categorized by their size:

- Small: <63 μm diameter
- Intermediate: 63–124
- Large: ≥125
- Drusenoid PED: >350

Drusen are categorized by their boundaries.

Drusen are categorized by the retinal layer in which they're located.

In this context, what does PED stand for? Pigment epithelium detachment.

What does it mean to say the RPE is ‘detached’?

It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?

Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, resulting in vision loss.

There are three basic forms of PED—what are the other two? Each is identifiable via the appearance of the sub-RPE space on OCT. What is this appearance for each?

- Drusenoid: ?
- Serous
- Fibrovascular
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Small**: <63 μm diameter
- **Intermediate**: 63–124
- **Large**: ≥125
- **Drusenoid PED**: >350

In this context, what does PED stand for?
Pigment epithelium detachment.

What does it mean to say the RPE is ‘detached’?
It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, resulting in vision loss.

There are three basic forms of PED—what are the other two?
Each is identifiable via the appearance of the sub-RPE space on OCT. What is this appearance for each?

- **Drusenoid**: Uniformly hyperreflective
- **Serous**
- **Fibrovascular**
Drusenoid PEDs have a uniform (aka ‘homogenous’), mildly hyper-reflective interior.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

In this context, what does PED stand for?
Pigment epithelium detachment.

What does it mean to say the RPE is ‘detached’?
It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, resulting in vision loss.

There are three basic forms of PED—what are the other two? Each is identifiable via the appearance of the sub-RPE space on OCT. What is this appearance for each?

--- Drusenoid: Uniformly hyperreflective
--- Serous: ?
--- Fibrovascular
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

Drusen are categorized by their size:
- Small: <63 μm diameter
- Intermediate: 63–124
- Large: ≥125
- Drusenoid PED: >350

Drusen are categorized by their boundaries:
- In this context, what does PED stand for?
 Pigment epithelium detachment.

What does it mean to say the RPE is ‘detached’?
It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, resulting in vision loss.

There are three basic forms of PED—what are the other two? Each is identifiable via the appearance of the sub-RPE space on OCT. What is this appearance for each?
- Drusenoid: Uniformly hyperreflective
- Serous: Sub-RPE space ‘empty’
- Fibrovascular
Serous PEDs are seen on OCT as areas of smooth, sharply demarcated, dome-shaped RPE elevation, typically overlying a homogenously hyporeflective space.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of **drusen** in the macula.

What are drusen?
Aggregates of material within the outer-retinal space

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly

In this context, what does PED stand for?
Pigment epithelium detachment

What does it mean to say the RPE is ‘detached’?
It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, resulting in vision loss.

There are three basic forms of PED—what are the other two? Each is identifiable via the appearance of the sub-RPE space on OCT. What is this appearance for each?

--**Drusenoid**: Uniformly hyperreflective
--**Serous**: Sub-RPE space ‘empty’
--**Fibrovascular**: ?
Age-related macular degeneration (ARMD) is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

In this context, what does PED stand for?
Pigment epithelium detachment.

What does it mean to say the RPE is ‘detached’?
It means the RPE is no longer in direct contact with its basement membrane, or that the RPE/basement membrane complex is separated from the underlying structure.

Why is it a big deal if the RPE is separated from its BM, or deeper structures?
Recall that the RPE plays an indispensable role in the health of the photoreceptors. Recall further that the RPE meets its metabolic needs via blood supplied by the underlying choriocapillaris. Thus, a PED can lead to RPE dysfunction, death and atrophy. This in turn can lead to photoreceptor dysfunction, death and atrophy, resulting in vision loss.

There are three basic forms of PED—what are the other two? Each is identifiable via the appearance of the sub-RPE space on OCT. What is this appearance for each?

- **Drusenoid:** Uniformly hyperreflective
- **Serous:** Sub-RPE space ‘empty’
- **Fibrovascular:** Solid with ‘clefts’
Fibrovascular PEDs appear to be filled with solid layers of material of medium reflectivity separated by hyporeflective clefts.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly

How are drusen categorized?
There are several ways:

Drusen are categorized by their **size**:
- Small: <63 μm diameter
- Intermediate: 63–124
- Large: ≥125
- Drusenoid PED: >350

Drusen are categorized by the **retinal layer** in which they’re located

Drusen are categorized by their **boundaries**:
- ?
- ?
- ?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

Drusen are categorized by their size:
--Small: <63 μm diameter
--Intermediate: 63–124
--Large: ≥125
--Drusenoid PED: >350

*Drusen are categorized by the *retinal layer* in which they’re located*:

Drusen are categorized by their boundaries:
--Hard
--Soft
--Confluent
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

Drusen are categorized by their size:
- **Small:** <63 μm diameter
- **Intermediate:** 63–124
- **Large:** ≥125
- **Drusenoid PED:** >350

Drusen are categorized by their boundaries:
- **Hard:** ?
- **Soft**
- **Confluent**

Drusen are categorized by the retinal layer in which they’re located.

Which are described as being…
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

Drusen are categorized by their size:
- Small: <63 μm diameter
- Intermediate: 63–124
- Large: ≥125
- Drusenoid PED: >350

Drusen are categorized by their boundaries:
- Hard: Discrete, well demarcated
- Soft
- Confluent

Drusen are categorized by the retinal layer in which they’re located
Hard drusen
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

drusen

What are drusen?
Aggregates of material within the outer-retinal space

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly

How are drusen categorized?
There are several ways:

Drusen are categorized by their size:
- Small: <63 μm diameter
- Intermediate: 63–124
- Large: ≥125
- Drusenoid PED: >350

Drusen are categorized by the retinal layer in which they’re located

Drusen are categorized by their boundaries:
- Hard: Discrete, well demarcated
- Soft: ?
- Confluent

Which are described as being...
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

Drusen are categorized by their size:
- Small: <63 μm diameter
- Intermediate: 63–124
- Large: ≥125
- Drusenoid PED: >350

Drusen are categorized by the retinal layer in which they’re located.

Drusen are categorized by their boundaries:
- Hard: Discrete, well demarcated
- Soft: Amorphous, poorly demarcated
- Confluent

Which are described as being...
Soft drusen
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Drusen are categorized by their size:**
 - Small: <63 μm diameter
 - Intermediate: 63–124
 - Large: ≥125
 - Drusenoid PED: >350

- **Drusen are categorized by the retinal layer in which they’re located:**

- **Drusen are categorized by their boundaries:**
 - Hard: Discrete, well demarcated
 - Soft: Amorphous, poorly demarcated
 - Confluent: ?

Which are described as being…
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Drusen are categorized by their size:**
 - Small: <63 μm diameter
 - Intermediate: 63–124
 - Large: ≥125
 - Drusenoid PED: >350

- **Drusen are categorized by the retinal layer in which they’re located**

- **Drusen are categorized by their boundaries:**
 - Hard: Discrete, well demarcated
 - Soft: Amorphous, poorly demarcated
 - Confluent: Contiguous drusen without clear boundaries

Which are described as being…
A, Color fundus photograph shows soft, **confluent**, large drusen in a patient with ARMD. **B**, Corresponding SD-OCT of the soft drusen. **C**, Autofluorescence image of an eye with areas of confluent drusen.
Age-related macular degeneration (ARMD) is the #1 cause of blindness in adults age 50+ in resource-rich nations.

- **Age** is the strongest risk factor for ARMD.
- The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- Drusen are categorized by their **size**:
 -- **Small**: <63 µm diameter
 -- **Intermediate**: 63–124
 -- **Large**: ≥125
 -- **Drusenoid PED**: >350

- Drusen are categorized by their **boundaries**:
 -- **Hard**: Discrete, well demarcated
 -- **Soft**: Amorphous, poorly demarcated
 -- **Confluent**: Contiguous drusen without clear boundaries

Which type(s) carry a greater risk of dz progression?
- Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

- Age is the strongest risk factor for ARMD.

- The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?

Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?

Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?

There are several ways:

Drusen are categorized by their **size**:
- **Small**: <63 μm diameter
- **Intermediate**: 63–124
- **Large**: ≥125
- **Drusenoid PED**: >350

Drusen are categorized by the **retinal layer** in which they’re located.

Drusen are categorized by their **boundaries**:
- **Hard**: Discrete, well demarcated
- **Soft**: Amorphous, poorly demarcated
- **Confluent**: Contiguous drusen without clear boundaries

Which type(s) carry a greater risk of dz progression?

Soft for sure, and probably confluent as well.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen? Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material? Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

Drusen are categorized by their **size**:
- **Small**: <63 μm diameter
- **Intermediate**: 63–124
- **Large**: ≥125
- **Drusenoid PED**: >350

Drusen are categorized by the **retinal layer** in which they’re located:
- ?
- ?
- ?

Drusen are categorized by their **boundaries**:
- **Hard**: Discrete, well demarcated
- **Soft**: Amorphous, poorly demarcated
- **Confluent**: Contiguous drusen without clear boundaries
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Drusen are categorized by their size:**
 - Small: <63 μm diameter
 - Intermediate: 63–124
 - Large: ≥125
 - Drusenoid PED: >350

- **Drusen are categorized by the retinal layer in which they’re located:**
 - Basal
 - Reticular

- **Drusen are categorized by their boundaries:**
 - Hard: Discrete, well demarcated
 - Soft: Amorphous, poorly demarcated
 - Confluent: Contiguous drusen without clear boundaries
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Drusen are categorized by their size:**
 -- **Small**: <63 μm diameter
 -- **Intermediate**: 63–124
 -- **Large**: ≥125
 -- **Drusenoid PED**: >350

- **Drusen are categorized by the retinal layer in which they're located:**
 -- **Basal laminar**
 -- **Basal linear**
 -- **Reticular pseudodrusen**

- **Drusen are categorized by their boundaries:**
 -- **Hard**: Discrete, well demarcated
 -- **Soft**: Amorphous, poorly demarcated
 -- **Confluent**: Contiguous drusen without clear boundaries
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- Drusen are categorized by the retinal layer in which they're located:
 - Basal laminar: ?
 - Basal linear: ?
 - Reticular pseudodrusen: ?

- Drusen are categorized by their size:
 - Small: <63 μm diameter
 - Intermediate: 63–124
 - Large: ≥125
 - Drusenoid PED: >350

- Drusen are categorized by their boundaries:
 - Hard: Discrete, well demarcated
 - Soft: Amorphous, poorly demarcated
 - Confluent: Contiguous drusen without clear boundaries

Before identifying the location for each drusen, let’s review the anatomy of the outer retina
But first:

What are the five layers of Bruch’s membrane?

Bruch’s membrane

1) (Start here)

2)

3)

4)

5)

Innermost

Outermost

ARMD
But first:

What are the five layers of Bruch’s membrane?

1) two words of RPE

1) Innermost

5) Outermost
But first:

What are the five layers of Bruch’s membrane?

1) Basement membrane of RPE

(Note: This line represents the RPE basement membrane)
But first:

What are the five layers of Bruch’s membrane?

1) **Basement membrane** of RPE
2) (next)
3)
4)
5)
But first:

What are the five layers of Bruch’s membrane?

1) Basement membrane of RPE
2) Inner collagenous layer
3) one word
4)
5)
What are the five layers of Bruch’s membrane?

1) Basement membrane of RPE
2) Inner collagenous layer
3) (etc)
4)
5)
What are the five layers of Bruch’s membrane?

1) **Baseline membrane** of RPE
2) Inner **collagenous** layer
3) **diff one word** layer
4)
5)

But first:

ARMD
But first:

What are the five layers of Bruch’s membrane?

1) Basement membrane of RPE
2) Inner collagenous layer
3) Elastic layer
4)
5)
But first:

What are the five layers of Bruch’s membrane?

1) **Basement membrane** of RPE
2) Inner **collagenous** layer
3) **Elastic** layer
4) Outer layer
5) **one familiar word**

Bruch’s membrane

Innermost

Outermost

ARMD
But first:

What are the five layers of Bruch’s membrane?

1) **Basement membrane** of RPE
2) Inner **collagenous** layer
3) **Elastic** layer
4) Outer **collagenous** layer
5)
But first:

What are the five layers of Bruch’s membrane?

1) **Basement membrane** of RPE
2) Inner **collagenous** layer
3) **Elastic** layer
4) Outer **collagenous** layer
5) **two familiar words** of choriocapillaris

ARMD
But first:

What are the five layers of Bruch’s membrane?

1) **Basement membrane** of RPE
2) Inner **collagenous** layer
3) Elastic layer
4) Outer **collagenous** layer
5) **Basement membrane** of choriocapillaris

(Note: This line represents the c’capillaris basement membrane)
But first:

What are the five layers of Bruch’s membrane?

0) ?

1) Basement membrane of RPE
2) Inner collagenous layer
3) Elastic layer
4) Outer collagenous layer
5) Basement membrane of choriocapillaris

What (non-Bruch’s) structure goes here?

ARMD
What are the five layers of Bruch’s membrane?

0) RPE cells
1) Basement membrane of RPE
2) Inner collagenous layer
3) Elastic layer
4) Outer collagenous layer
5) Basement membrane of choriocapillaris

What (non-Bruch’s) structure goes here? The RPE cells themselves
What are the five layers of Bruch’s membrane?

0) RPE cells RPE cells

1) Basement membrane of RPE
2) Inner collagenous layer
3) Elastic layer
4) Outer collagenous layer
5) Basement membrane of choriocapillaris

So, the basal plasma membranes of the RPE cells…
What are the five layers of Bruch’s membrane?

1) Basement membrane of RPE
2) Inner collagenous layer
3) Elastic layer
4) Outer collagenous layer
5) Basement membrane of choriocapillaris

But first:

So, the basal plasma membranes of the RPE cells… sit directly on their BM (as you would expect)
What are the five layers of Bruch’s membrane?

0) RPE cells
1) Basement membrane of RPE
2) Inner collagenous layer
3) Elastic layer
4) Outer collagenous layer
5) Basement membrane of choriocapillaris

But first:

Foreshadowing alert: Another name for the basal plasma membrane of a cell is ‘basal lamina’
What are the five layers of Bruch's membrane?

1. Basement membrane of RPE
2. Inner collagenous layer
3. Elastic layer
4. Outer collagenous layer
5. Basement membrane of choriocapillaris

But first:

What (non-RPE) structures go here?

0) RPE cells
-1) ?

ARMD

Innermost

Outermost
What are the five layers of Bruch's membrane?

1. Basement membrane of RPE
2. Inner collagenous layer
3. Elastic layer
4. Outer collagenous layer
5. Basement membrane of choriocapillaris

But first:

What (non-RPE) structures go here?
The photoreceptor outer segments

ARMD
What are the five layers of Bruch’s membrane?

1) Basement membrane of RPE
2) Inner collagenous layer
3) Elastic layer
4) Outer collagenous layer
5) Basement membrane of choriocapillaris

But first:

0) RPE cells
1) PR outer segs

What cell type is this?

Bipolar cells

PR outer segs
What are the five layers of Bruch’s membrane?

1) Basement membrane of RPE
2) Inner collagenous layer
3) Elastic layer
4) Outer collagenous layer
5) Basement membrane of choriocapillaris
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

Drusen are categorized by their size:
- **Small:** <63 μm diameter
- **Intermediate:** 63–124
- **Large:** ≥125
- **Drusenoid PED:** >350

Drusen are categorized by the retinal layer in which they're located:
- **Basal laminar?:**
- **Basal linear**
- **Reticular pseudodrusen**

Drusen are categorized by their boundaries:
- **Hard:** Discrete, well demarcated
- **Soft:** Amorphous, poorly demarcated
- **Confluent:** Contiguous drusen without clear boundaries
- Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.
- Age is the strongest risk factor for ARMD.
- The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

Drusen are categorized by their size:
- **Small:** <63 μm diameter
- **Intermediate:** 63–124
- **Large:** ≥125
- **Drusenoid PED:** >350

Drusen are categorized by the retinal layer in which they're located:
- **Basal laminar:** Between RPE cells and their BM
- **Basal linear**
- **Reticular pseudodrusen**

Drusen are categorized by their boundaries:
- **Hard:** Discrete, well demarcated
- **Soft:** Amorphous, poorly demarcated
- **Confluent:** Contiguous drusen without clear boundaries
Bruch’s membrane

1) Basement membrane of RPE
2) Inner collagenous layer
3) Elastic layer
4) Outer collagenous layer
5) Basement membrane of choriocapillaris

-2) Bipolar cells

-1) PR outer segs

0) RPE cells RPE cells

basal laminar drusen

ARMD

But first:
Age-related macular degeneration (ARMD) is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Size**:
 - Small: <63 μm diameter
 - Intermediate: 63–124
 - Large: ≥125
 - Drusenoid PED: >350

- **Layer**:
 - Basal laminar: Between RPE cells and their BM
 - Basal linear: ?
 - Reticular pseudodrusen

- **Boundaries**:
 - Hard: Discrete, well demarcated
 - Soft: Amorphous, poorly demarcated
 - Confluent: Contiguous drusen without clear boundaries
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

Drusen are categorized by their size:
- **Small**: <63 μm diameter
- **Intermediate**: 63–124
- **Large**: ≥125
- **Drusenoid PED**: >350

Drusen are categorized by the retinal layer in which they’re located:
- **Basal laminar**: Between RPE cells and their BM
- **Basal linear**: Within inner aspect of Bruch’s membrane
- **Reticular pseudodrusen**

Drusen are categorized by their boundaries:
- **Hard**: Discrete, well demarcated
- **Soft**: Amorphous, poorly demarcated
- **Confluent**: Contiguous drusen without clear boundaries
What are the five layers of Bruch’s membrane?

1) Basement membrane of RPE
2) Inner collagenous layer
3) Elastic layer
4) Outer collagenous layer
5) Basement membrane of choriocapillaris
Age-related macular degeneration is the #1 cause of blindness in adults age **50+** in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of **drusen** in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

- **Drusen are categorized by their size:**
 - **Small:** <63 μm diameter
 - **Intermediate:** 63–124
 - **Large:** ≥125
 - **Drusenoid PED:** >350

- **Drusen are categorized by the retinal layer in which they’re located:**
 - **Basal laminar:** Between RPE cells and their BM
 - **Basal linear:** Within inner aspect of Bruchs membrane
 - **Reticular pseudodrusen:** ?

- **Drusen are categorized by their boundaries:**
 - **Hard:** Discrete, well demarcated
 - **Soft:** Amorphous, poorly demarcated
 - **Confluent:** Contiguous drusen without clear boundaries
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

Drusen are categorized by their size:
- **Small**: <63 μm diameter
- **Intermediate**: 63–124
- **Large**: ≥125
- **Drusenoid PED**: >350

Drusen are categorized by the retinal layer in which they’re located:
- **Basal laminar**: Between RPE cells and their BM
- **Basal linear**: Within inner aspect of Bruchs membrane
- **Reticular pseudodrusen**: Between the apical surface of the RPE cells and the overlying photoreceptors

Drusen are categorized by their boundaries:
- **Hard**: Discrete, well demarcated
- **Soft**: Amorphous, poorly demarcated
- **Confluent**: Contiguous drusen without clear boundaries
What are the five layers of Bruch’s membrane?

1. Basement membrane of RPE
2. Inner collagenous layer
3. Elastic layer
4. Outer collagenous layer
5. Basement membrane of choriocapillaris
Reticular pseudodrusen: Classic distribution in the superior macula
Reticular pseudodrusen can be seen as multiple areas of granular hyperreflectivity between the RPE and photoreceptors
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

What are drusen?
Aggregates of material within the outer-retinal space.

What sorts of substances constitute the material?
Proteins and lipids—detritus shed by photoreceptors, mainly.

How are drusen categorized?
There are several ways:

1. **Drusen are categorized by the retinal layer in which they’re located:**
 - **Basal laminar:** Between RPE cells and their BM.
 - **Basal linear:** Within inner aspect of Bruch’s membrane.
 - **Reticular pseudodrusen:** Between the apical surface of the RPE cells and the overlying photoreceptors.

2. **Drusen are categorized by their size:**
 - **Small:** <63 μm diameter
 - **Intermediate:** 63–124
 - **Large:** ≥125
 - **Drusenoid PED:** >350

3. **Drusen are categorized by their boundaries:**
 - **Hard:** Discrete, well demarcated
 - **Soft:** Amorphous, poorly demarcated
 - **Confluent:** Contiguous drusen without clear boundaries

Circling back to drusenoid PEDs for a moment...
But first:

What are the five layers of Bruch's membrane?

1. Basement membrane of RPE
2. Inner collagenous layer
3. Elastic layer
4. Outer collagenous layer
5. Basement membrane of choriocapillaris

So now we can see how basal laminar drusen, if extensive enough, can cause a drusenoid PED.

-2) Bipolar cells

-1) PR outer segs

0) RPE cells RPE cells

Bruch's membrane
Likewise, we can see that extensive basal linear drusen can also producing a drusenoid PED.
-2) **Bipolar cells**

But first:

-1) **PR outer segs**

0) **RPE cells**

Bruch’s membrane

1) **Basement membrane** of RPE

2) **Inner collagenous layer**

3) **Elastic layer**

4) **Outer collagenous layer**

5) **Basement membrane** of choriocapillaris

However, *reticular pseudodrusen* do not separate the RPE from Bruch’s, so they cannot cause a PED.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of **drusen** in the macula.

There are two types: **nonexudative** and **exudative**.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

- **Age** is the strongest risk factor for ARMD.
- The clinical hallmark of ARMD is the presence of *drusen* in the macula.
- There are two types: *Nonexudative* and *exudative*.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

By what two other names are each condition commonly known?

Nonexudative: ?
Exudative
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
Exudative: ?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?
--?
--?
--?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

--Drusen
--RPE changes
--Geographic atrophy
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

-- Drusen
-- RPE changes
-- Geographic atrophy

We have already discussed drusen, and will look at RPE change in detail a little later in the set.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and Exudative ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

-- Drusen
-- RPE changes
-- Geographic atrophy

What is geographic atrophy (GA)?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**.

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

By what two other names are each condition commonly known?

- **Nonexudative**: Nonneovascular ARMD; ‘dry’ ARMD
- **Exudative**: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

- Drusen
- RPE changes
- **Geographic atrophy**

What is geographic atrophy (GA)?

It is one of # forms of advanced ARMD.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

-- Drusen
-- RPE changes
-- Geographic atrophy

What is geographic atrophy (GA)?
It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.
Geographic atrophy (GA)
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

--Drusen
--RPE changes
--Geographic atrophy

What is geographic atrophy (GA)?
It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

How large must the area of atrophy be to qualify as GA?

By definition, it must have a diameter of at least 175 µm.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

--Drusen
--RPE changes
--**Geographic atrophy**

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

How large must the area of atrophy be to qualify as GA?

By definition, it must have a diameter of at least 175 µm.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative** ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

-- Drusen
-- RPE changes
-- **Geographic atrophy**

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is its typical pattern of progression?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of *drusen* in the macula.

There are two types: *Nonexudative* and *exudative* ARMD.

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

- Drusen
- RPE changes
- **Geographic atrophy**

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is its typical pattern of progression?

It starts in the perifoveal region, expanding over time to eventually involve the foveal center.
Progression of GA over a 2.5 year period. Note the characteristic perifoveal→foveal center pattern.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative** ARMD.

By what two other names are each condition commonly known?

- **Nonexudative**: Nonneovascular ARMD; ‘dry’ ARMD
- **Exudative**: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

- Drusen
- RPE changes
- **Geographic atrophy**

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What does GA look like on…

- **FA?**
 - A well-circumscribed area of hyperfluorescence
- **Autofluorescence?**
 - Dense hypoautofluorescence with a ring of hypofluorescence
- **OCT?**
 - RPE loss; thinning/loss of the outer retinal layers
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**.

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

By what two other names are each condition commonly known?

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

--Drusen

--RPE changes

--**Geographic atrophy**

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What does GA look like on...

FA? A well-circumscribed area of hypo- vs hyperfluorescence

Autofluorescence? Dense hypoautofluorescence with a ring of hypautofluorescence

OCT? RPE loss; thinning/loss of the outer retinal layers

It starts in the perifoveal region, expanding over time to eventually involve the foveal center.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: **Nonexudative** and **exudative** ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?
- Drusen
- RPE changes
- Geographic atrophy

What is geographic atrophy (GA)?
It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris. Its typical pattern of progression starts in the perifoveal region, expanding over time to eventually involve the fovea.

What does GA look like on…

FA? A well-circumscribed area of hyperfluorescence
Geographic atrophy in ARMD: FA
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

Nonexudative and exudative ARMD

Nonexudative ARMD: Nonneovascular ARMD; 'dry' ARMD
Exudative ARMD: Neovascular ARMD; 'wet' ARMD

What are the three hallmark findings in nonexudative ARMD?
--Drusen
--RPE changes
--Geographic atrophy

What is geographic atrophy (GA)?
It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is its typical pattern of progression?
It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

What does GA look like on...
FA? A well-circumscribed area of hyperfluorescence
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

Nonexudative and **exudative** ARMD

Nonexudative
- Nonneovascular ARMD
- 'Dry' ARMD

Exudative
- Neovascular ARMD
- 'Wet' ARMD

What are the three hallmark findings in nonexudative ARMD?
- Drusen
- RPE changes
- Geographic atrophy

Geographic atrophy (GA) is one of the two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior retina manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is the typical pattern of progression of GA?
- It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

Speaking generally: What are the four causes of hyperfluorescence on FA?
- Pooling
- Leaking
- Staining
- Window defect

What does GA look like on FA? A well-circumscribed area of hyperfluorescence
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD in the macula.

The clinical hallmark of ARMD is the presence of drusen:

- **Nonexudative ARMD (NE-ARMD)**: Nonneovascular ARMD; 'dry' ARMD
- **Exudative ARMD (E-ARMD)**: Neovascular ARMD; 'wet' ARMD

What are the three hallmark findings in nonexudative ARMD?

- Drusen
- RPE changes
- Geographic atrophy

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is its typical pattern of progression?

It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

Speaking generally: What are the four causes of hyperfluorescence on FA?

- Pooling?
- Leaking?
- Staining?
- Window defect?

Which one of these accounts for the hyperfluorescence of GA?

Window defect

What does GA look like on...

- **FA**: A well-circumscribed area of hyperfluorescence
- **Autofluorescence**: Dense hypoautofluorescence with a ring of hyperautofluorescence
- **OCT**: RPE loss; thinning/loss of the outer retinal layers
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

Nonexudative ARMD
- Nonneovascular ARMD; 'dry' ARMD
- There are three hallmark findings:
 - Drusen
 - RPE changes
 - Geographic atrophy
 - Geographic atrophy (GA) is one of the two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.
 - It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

Exudative ARMD
- Neovascular ARMD; 'wet' ARMD
- Which one of these accounts for the hyperfluorescence of GA?
 - Window defect

Speaking generally: What are the four causes of hyperfluorescence on FA?
- Pooling
- Leaking
- Staining
- Window defect

What does GA look like on...
- FA? A well-circumscribed area of hyperfluorescence
- Autofluorescence? Dense hypoautofluorescence with a ring of hyperautofluorescence
- OCT? RPE loss; thinning/loss of the outer retinal layers
Geographic atrophy. A, Fundus photo. B, On fluorescein angiography, there is a “window defect” during the early frames with transmission of choroidal fluorescence. C, Note the absence of leakage in later frames.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative** ARMD.

By what two other names are each condition commonly known?

- **Nonexudative**: Nonneovascular ARMD; ‘dry’ ARMD
- **Exudative**: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

- Drusen
- RPE changes
- **Geographic atrophy**

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What does GA look like on...

- **FA?** A well-circumscribed area of hyperfluorescence
- **Autofluorescence?** Dense hypoautofluorescence with a ring of hypofluorescence
- **OCT?** RPE loss; thinning/loss of the outer retinal layers
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative** ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

-- Drusen
-- RPE changes
-- **Geographic atrophy**

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What does GA look like on…

FA? A well-circumscribed area of **hyperfluorescence**

Autofluorescence? Dense **hypo- vs hyperfluorescence** with a ring of hypo- vs hyperfluorescence eventually involving the foveal center.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative** ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

--- Drusen
--- RPE changes
--- Geographic atrophy

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What does GA look like on…

FA? A well-circumscribed area of hyperfluorescence

Autofluorescence? Dense hypoautofluorescence with a ring of hyperautofluorescence

Eventually involves the foveal center.
Geographic atrophy (GA). Top, Color fundus photographs of right (left panel) and left (right panel) eyes, demonstrating advanced GA. Bottom, Corresponding autofluorescent images of GA in the same patient with atrophic AMD. The areas of RPE atrophy are hypoautofluorescent (dark gray or black), the areas of “sick” RPE are hyperautofluorescent (brighter than background), and the areas of healthy RPE are gray.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative** ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

--Drusen
--RPE changes

Geographic atrophy

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What does GA look like on…

FA? A well-circumscribed area of hyperfluorescence

** Autofluorescence?** Dense hypoautofluorescence with a ring of hyperautofluorescence

OCT? RPE loss; thinning/loss of the outer retinal layers

Eventually involve the fovea, leading to vision loss...
ARMD

- Age-related macular degeneration is the #1 cause of blindness in adults age \(50^+\) in resource-rich nations
- **Age** is the strongest risk factor for ARMD
- The clinical hallmark of ARMD is the presence of drusen in the macula
- There are two types: **Nonexudative** and **exudative**

By what two other names are each condition commonly known?
- **Nonexudative**: Nonneovascular ARMD; ‘dry’ ARMD
- **Exudative**: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?
- Drusen
- RPE changes
- **Geographic atrophy**

What is geographic atrophy (GA)?
- It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What does GA look like on…
- **FA**: A well-circumscribed area of hyperfluorescence
- **Autofluorescence**: Dense hypoautofluorescence with a ring of hyperautofluorescence
- **OCT**: RPE loss; thinning/loss of the outer retinal layers
OCT over the fovea in a patient with non-exudative AMD and geographic atrophy. There is loss of outer retinal layers and RPE.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative** ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

-- Drusen
-- RPE changes
-- **Geographic atrophy**

What is **Geographic atrophy (GA)**?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is its typical pattern of progression?

It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

What is the other form that defines advanced ARMD?

The presence of neovascularization.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?
--Drusen
--RPE changes
--Geographic atrophy

What is geographic atrophy (GA)?
It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole.

What is the other form that defines advanced ARMD?
The presence of neovascularization.

What is its typical pattern of progression?
It starts in the perifoveal region, expanding over time to eventually involve the foveal center.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: nonexudative and exudative.

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

Advanced ARMD: Defined by the presence of either geographic atrophy or a neovascular membrane.

What about early and intermediate ARMD—how are they defined?

Early ARMD: ?

Intermediate ARMD

Advanced ARMD: Defined by the presence of either geographic atrophy or a neovascular membrane.

What are the three hallmark findings in nonexudative ARMD?

--- Drusen
--- RPE changes
--- Geographic atrophy

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is its typical pattern of progression?

It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

What is the other form that defines advanced ARMD?

The presence of neovascularization.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: nonexudative and exudative ARMD.

Nonexudative:
- Drusen
- RPE changes
- Geographic atrophy

Geographic atrophy (GA) is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, overlying photoreceptors, and underlying choriocapillaris. Its typical pattern of progression starts in the perifoveal region, expanding over time to eventually involve the foveal center.

Exudative: Neovascular ARMD; ‘wet’ ARMD

Early ARMD: Defined by the presence of small drusen +/- a “few” intermediate drusen

Intermediate ARMD: Characterized by extensive intermediate drusen, or the presence of any large drusen

Advanced ARMD: Defined by the presence of either geographic atrophy or a neovascular membrane.
Age-related macular degeneration is the #1 cause of blindness in adults older than 50 in the United States, which nations spend more than $9.5 billion a year treating this vision-threatening disease.

There are two types: **nonexudative** and **exudative**

What about early and intermediate ARMD—how are they defined?

Early ARMD: Defined by the presence of small drusen +/- a “few” intermediate drusen

Intermediate ARMD: ?

What are the three hallmark findings in nonexudative ARMD?

--Drusen

--RPE changes

--Geographic atrophy

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is its typical pattern of progression?

It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

What is the other form that defines advanced ARMD?

The presence of neovascularization

Advanced ARMD: Defined by the presence of either geographic atrophy or a neovascular membrane

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: nonexudative and exudative.

Nonexudative

- **Nonneovascular ARMD**
- "dry" ARMD
- Drusen
- RPE changes
- Geographic atrophy

Exudative

- Neovascular ARMD
- ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?
- Drusen
- RPE changes
- Geographic atrophy

What is geographic atrophy (GA)?
It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is the other form that defines advanced ARMD?
The presence of neovascularization.

What is its typical pattern of progression?
It starts in the perifoveal region, expanding over time to eventually involve the foveal center.
Age-related macular degeneration (ARMD) is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: nonexudative and exudative ARMD. By what two other names are each condition commonly known? Nonexudative: Nonneovascular ARMD; 'dry' ARMD Exudative: Neovascular ARMD; 'wet' ARMD

What about early and intermediate ARMD—how are they defined? Early ARMD: Defined by the presence of small drusen +/- a “few” intermediate drusen Intermediate ARMD: Characterized by extensive intermediate drusen, or the presence of any large drusen Advanced ARMD: Defined by the presence of either geographic atrophy or a neovascular membrane

What are the three hallmark findings in nonexudative ARMD? --Drusen --RPE changes --Geographic atrophy

What is geographic atrophy (GA)? It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris. What is its typical pattern of progression? It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

What puts a dry ARMD pt at risk for wet ARMD? In a word, drusen. That is, the damage wrought to Bruch's membrane is felt to create a proangiogenic environment resulting in the development of a NVM.

What is the other form that defines advanced ARMD? The presence of neovascularization.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types:

- **Nonexudative ARMD**: Nonneovascular ARMD; 'dry' ARMD
- **Exudative ARMD**: Neovascular ARMD; 'wet' ARMD

By what two other names are each condition commonly known?

Nonexudative: drusen
Exudative: drusen

What are the three hallmark findings in nonexudative ARMD?

- Drusen
- RPE changes
- Geographic atrophy

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris. Its typical pattern of progression starts in the perifoveal region, expanding over time to eventually involve the foveal center.

What about early and intermediate ARMD—how are they defined?

Early ARMD: Defined by the presence of small drusen +/- a “few” intermediate drusen
Intermediate ARMD: Characterized by extensive intermediate drusen, or the presence of any large drusen
Advanced ARMD: Defined by the presence of either geographic atrophy or a neovascular membrane

What is the other form that defines advanced ARMD?

The presence of neovascularization.

What puts a dry ARMD pt at risk for wet ARMD?

In a word, **drusen**.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

By what two other names are each condition commonly known?

Nonexudative:
- Nonneovascular ARMD
- ‘dry’ ARMD

Exudative:
- Neovascular ARMD
- ‘wet’ ARMD

What about early and intermediate ARMD—how are they defined?

Early ARMD: Defined by the presence of small drusen +/- a “few” intermediate drusen

Intermediate ARMD: Characterized by extensive intermediate drusen, or the presence of any large drusen.

Advanced ARMD: Defined by the presence of either geographic atrophy or a neovascular membrane.

What puts a dry ARMD pt at risk for wet ARMD?

In a word, **drusen.** The damage done to Bruch’s membrane by drusen produces a proangiogenic environment resulting in the development of a NVM.

What are the three hallmark findings in nonexudative ARMD?

--Drusen
--RPE changes
--**Geographic atrophy**

Geographic atrophy (GA)

What is one of two forms of advanced ARMD?

It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is its typical pattern of progression?

It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

Exudative: Neovascular ARMD; ‘wet’ ARMD
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: nonexudative and exudative ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; 'dry' ARMD
Exudative: Neovascular ARMD; 'wet' ARMD

What are the three hallmark findings in nonexudative ARMD?

-- Drusen
-- RPE changes
-- Geographic atrophy

What is geographic atrophy (GA)? It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is its typical pattern of progression? It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

What is the other form that defines advanced ARMD? The presence of neovascularization.

What about early and intermediate ARMD—how are they defined?

Early ARMD: Defined by the presence of small drusen +/- a “few” intermediate drusen
Intermediate ARMD: Characterized by extensive intermediate drusen, or the presence of any large drusen
Advanced ARMD: Defined by the presence of either atrophy or a neovascular membrane

What puts a dry ARMD pt at risk for wet ARMD? In a word, drusen. The damage done to Bruch's membrane by drusen produces a proangiogenic environment resulting in the development of a NVM.

You see a pt whose exam over time seems like typical ARMD. Initially she presents with drusen, which increase in number and size over time. This progresses to GA, and culminates in a CNVM.

When presented with what seems like ARMD in a pt far too young to have it, think Sorsby macular dystrophy. (See R52 for more on this rare condition.)
Age-related macular degeneration is the #1 cause of blindness in adults age 50+. ARMD is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: Nonexudative and exudative ARMD.

By what two other names are each condition commonly known?
- Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
- Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?
- Drusen
- RPE changes
- Geographic atrophy

What is geographic atrophy (GA)?
It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is its typical pattern of progression?
It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

What is the other form that defines advanced ARMD?
The presence of neovascularization.

What puts a dry ARMD pt at risk for wet ARMD?
In a word, drusen. The damage done to Bruch’s membrane by drusen produces a proangiogenic environment resulting in the development of a NVM.

You see a pt whose exam over time seems like typical ARMD. Initially she presents with drusen, which increase in number and size over time. This progresses to GA, and culminates in a CNVM. Trouble is, she developed the drusen and GA in her 30s, and the CNVM at age 40 or so. What tops the DDx for a pt who seems to have ARMD, but is far too young for it?

When presented with what seems like ARMD in a pt far too young to have it, think Sorsby macular dystrophy. (See R52 for more on this rare condition.)
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: nonexudative and exudative ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What about early and intermediate ARMD—how are they defined?

- **Early ARMD**: Defined by the presence of small drusen +/- a few intermediate drusen.
- **Intermediate ARMD**: Characterized by extensive intermediate drusen, or the presence of any large drusen.
- **Advanced ARMD**: Defined by the presence of either geographic atrophy or a neovascular membrane.

What is geographic atrophy (GA)?

It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is its typical pattern of progression?

It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

What is the other form that defines advanced ARMD?

The presence of neovascularization.

What puts a dry ARMD pt at risk for wet ARMD?

In a word, drusen. The damage done to Bruch’s membrane by drusen produces a proangiogenic environment resulting in the development of a NVM.

You see a pt whose exam over time seems like typical ARMD. Initially she presents with drusen, which increase in number and size over time. This progresses to GA, and culminates in a CNVM. Trouble is, she developed the drusen and GA in her 30s, and the CNVM at age 40 or so. What tops the DDx for a pt who seems to have ARMD, but is far too young for it?

When presented with what seems like ARMD in a pt far too young to have it, think **Sorsby macular dystrophy**.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative ARMD.

By what two other names are each condition commonly known?
Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?
--Drusen
--RPE changes
--Geographic atrophy

What is geographic atrophy (GA)? It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is its typical pattern of progression? It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

What is the other form that defines advanced ARMD? The presence of neovascularization.

What puts a dry ARMD pt at risk for wet ARMD? In a word, drusen. The damage done to Bruch’s membrane by drusen produces a proangiogenic environment resulting in the development of a NVM.

You see a pt whose exam over time seems like typical ARMD. Initially she presents with drusen, which increase in number and size over time. This progresses to GA, and culminates in a CNVM. Trouble is, she developed the drusen and GA in her 30s, and the CNVM at age 40 or so. What tops the DDx for a pt who seems to have ARMD, but is far too young for it? When presented with what seems like ARMD in a pt far too young to have it, think Sorsby macular dystrophy.

You see a pt whose exam over time seems like typical ARMD. Initially she presents with drusen, which increase in number and size over time. This progresses to GA, and culminates in a CNVM. Trouble is, she developed the drusen and GA in her 30s, and the CNVM at age 40 or so. What tops the DDx for a pt who seems to have ARMD, but is far too young for it? When presented with what seems like ARMD in a pt far too young to have it, think Sorsby macular dystrophy.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
Exudative: Neovascular ARMD; ‘wet’ ARMD

What are the three hallmark findings in nonexudative ARMD?

-- Drusen
-- RPE changes
-- Geographic atrophy

What is geographic atrophy (GA)? It is one of two forms of advanced ARMD. It is characterized by a sharply defined area in the posterior pole manifesting atrophy of the RPE, the overlying photoreceptors, and the underlying choriocapillaris.

What is its typical pattern of progression? It starts in the perifoveal region, expanding over time to eventually involve the foveal center.

What is the other form that defines advanced ARMD? The presence of neovascularization.

What puts a dry ARMD pt at risk for wet ARMD? In a word, drusen. The damage done to Bruch’s membrane by drusen produces a proangiogenic environment resulting in the development of a NVM.

You see a pt whose exam over time seems like typical ARMD. Initially she presents with drusen, which increase in number and size over time. This progresses to GA, and culminates in a CNVM. Trouble is, she developed the drusen and GA in her 30s, and the CNVM at age 40 or so. What tops the DDx for a pt who seems to have ARMD, but is far too young for it? When presented with what seems like ARMD in a pt far too young to have it, think Sorsby macular dystrophy. (See R52 for more on this rare condition.)
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

Time to tackle exudative ARMD. But before doing so, we must familiarize ourselves with the vascular supply of the retina.
What are the five layers of Bruch’s membrane?

- Baseline membrane of RPE
- Inner collagenous layer
- Elastic layer
- Outer collagenous layer
- Baseline membrane of choriocapillaris

But first:

- PR outer segs
- Bipolar cells

RPE cells RPE cells

0) PR outer segs
1) Basement membrane of RPE
2) Inner collagenous layer
3) Elastic layer
4) Outer collagenous layer
5) Basement membrane of choriocapillaris
6) Chorio capillaris

What structure is this?
What are the five layers of Bruch's membrane?

- Basement membrane of RPE
- Inner collagenous layer
- Elastic layer
- Outer collagenous layer
- Basement membrane of choriocapillaris

But first:

0) RPE cells

1) PR outer segs

2) Bipolar cells

3) Innermost

4) Outermost

What structure is this?
The choriocapillaris
What are the five layers of Bruch’s membrane?

1. Basement membrane of RPE
2. Inner collagenous layer
3. Elastic layer
4. Outer collagenous layer
5. Basement membrane of choriocapillaris

But first:

0) RPE cells, RPE cells
-1) PR outer segs
-2) Bipolar cells

What structure is this?

The choroid

Choriocapillaris

ARMD
What are the five layers of Bruch’s membrane?

- 1) Basement membrane of RPE
- 2) Inner collagenous layer
- 3) Elastic layer
- 4) Outer collagenous layer
- 5) Basement membrane of choriocapillaris
- 6) Choriocapillaris
- 7) Choroid

What structure is this? The choroid

But first:

- 0) RPE cells
- 1) PR outer segs
- 2) Bipolar cells

What is the outermost layer of Bruch’s membrane? The choroid
What are the five layers of Bruch’s membrane?

- 1) Basement membrane of RPE
- 2) Inner collagenous layer
- 3) Elastic layer
- 4) Outer collagenous layer
- 5) Basement membrane of choriocapillaris

What is the deepest retinal layer in which branches of the retinal vasculature can be found?

- 1) PR outer segs
- 2) Bipolar cells

But first:

0) RPE cells

Retinal vessels

RPE cells

Choriocapillaris
What are the five layers of Bruch’s membrane?

- 1) Basement membrane of RPE
- 2) Inner collagenous layer
- 3) Elastic layer
- 4) Outer collagenous layer
- 5) Basement membrane of choriocapillaris

But first:

0) RPE cells

- 1) PR outer segs

- 2) Bipolar cells

- 3) Retinal vessels

What is the deepest retinal layer in which branches of the retinal vasculature can be found? The inner nuclear layer (INL)
What are the five layers of Bruch’s membrane?

- 0) RPE cells
- 1) PR outer segs
- 2) Bipolar cells
- 3) Basement membrane of RPE
- 4) Inner collagenous layer
- 5) Elastic layer
- 6) Outer collagenous layer
- 7) Basement membrane of choriocapillaris

So, the retinal vessels supply the inner retinal layers…

But first:
0) RPE cells
- 1) PR outer segs
- 2) Bipolar cells

Retinal vessels

So, the retinal vessels supply the inner retinal layers…

Outermost

Choriocapillaris

Choroid
What are the five layers of Bruch’s membrane?

- 0) RPE cells

- 1) PR outer segs

- 2) Bipolar cells

- 3) Retinal vessels

- 4) Outer collagenous layer

- 5) Elastic layer

- 6) Basement membrane of choriod/choriocapillaris

- 7) Choroid

So, the retinal vessels supply the inner retinal layers…Whereas the choroid/choriocapillaris supply the outer retina and RPE.
Retinal Layers

- Internal limiting membrane
- Nerve fiber layer
- Ganglion cell layer
- Inner plexiform layer
- Inner nuclear layer
- Outer plexiform layer
- Outer nuclear layer
- External limiting membrane
- Rod & cone inner and outer segments

RPE

Bruch’s membrane

Blood supply:
- Central retinal artery

Which layers are supplied by each blood supply?

Blood supply:
- Choroid/Ch’capillaris
● **Retinal Layers**
 - Internal limiting membrane
 - Nerve fiber layer
 - Ganglion cell layer
 - Inner plexiform layer
 - Inner nuclear layer
 - Outer plexiform layer
 - Outer nuclear layer
 - External limiting membrane
 - Rod & cone inner and outer segments

● **RPE**
● **Bruch’s membrane**

Blood supply: **Central retinal artery**

Blood supply: **Choroid/Ch’capillaris**

Which layers are supplied by each blood supply?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: **Nonexudative** and **exudative** ARMD.

By what two other names are each condition commonly known? **Nonexudative**: Nonneovascular ARMD; ‘dry’ ARMD. **Exudative**: Neovascular ARMD; ‘wet’ ARMD.

What does it mean to say ARMD is ‘exudative’?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?

It means a neovascular membrane, (almost always choroidal in origin) is present.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?

It means a neovascular membrane, (almost always choroidal in origin) is present.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**.

By what two other names are each condition commonly known?

- **Nonexudative**: Nonneovascular ARMD; ‘dry’ ARMD
- **Exudative**: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?

It means a neovascular membrane, (almost always choroidal in origin) is present.

What vessels give rise to the neovascular membrane?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative** ARMD

By what two other names are each condition commonly known?
- **Nonexudative:** Nonneovascular ARMD; ‘dry’ ARMD
- **Exudative:** Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?
It means a neovascular membrane, (almost always choroidal in origin) is present.

What vessels give rise to the neovascular membrane?
The choriocapillaris (with one exception, to be discussed later).
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
Exudative: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?
It means a neovascular membrane, (almost always choroidal in origin) is present.

What vessels give rise to the neovascular membrane?
The choriocapillaris (with one exception, to be discussed later)

What will a pt c/o if a CNVM develops?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: **Nonexudative** and **exudative** ARMD. By what two other names are each condition commonly known? **Nonexudative**: Nonneovascular ARMD; ‘dry’ ARMD. **Exudative**: Neovascular ARMD; ‘wet’ ARMD.

What does it mean to say ARMD is ‘exudative’? It means a neovascular membrane, (almost always choroidal in origin) is present.

What vessels give rise to the neovascular membrane? The choriocapillaris (with one exception, to be discussed later).

What will a pt c/o if a CNVM develops? Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

Three types of neovascular membranes occur in ARMD—what are they called?

Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**

By what two other names are each condition commonly known?
- **Nonexudative**: Nonneovascular ARMD; ‘dry’ ARMD
- **Exudative**: Neovascular ARMD; ‘wet’ ARMD

Three types of neovascular membranes occur in ARMD—what are they called?

-- Type 1
-- Type 2
-- Type 3

Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and Exudative.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

Three types of neovascular membranes occur in ARMD—what are they called? What are the defining features of each?

--Type 1: ?

--Type 2

--Type 3

Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: Nonexudative and Exudative.

Nonexudative: Nonneovascular ARMD; 'dry' ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

By what two other names are each condition commonly known?
- Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
- Exudative: Neovascular ARMD; ‘wet’ ARMD

Three types of neovascular membranes occur in ARMD—what are they called? What are the defining features of each?

--- Type 1: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space.

--- Type 2: CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE).

--- Type 3: NVM arises from the deep capillary plexus of the retina and grows down toward the RPE.

Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; 'dry' ARMD

Exudative: Neovascular ARMD; 'wet' ARMD

Three types of neovascular membranes occur in ARMD—what are they called?

What are the defining features of each?

--Type 1: CNVM originates from the choriocapillaris and extends into Bruch's membrane and/or the sub-RPE space

--Type 2

--Type 3

Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma.
- 0) **RPE cells**
- 1) **Inner collagenous layer**
- 2) **Inner collagenous layer**
- 3) **Elastic layer**
- 4) **Outer collagenous layer**
- 5) **Basement membrane of choriocapillaris**
- 6) **Choriocapillaris**
- 7) **Choroid**

Type 1 with the CNVM in Bruchs membrane

- 1) **PR outer segs**
- 2) **Bipolar cells**

ARMD
What are the five layers:

- Basement membrane of RPE
- Inner collagenous layer
- Elastic layer
- Outer collagenous layer
- Basement membrane of choriocapillaris

Type 1 with the CNVM in the sub-RPE space
Type 1 CNVM with hyperreflective material visible in the PED. Note that the RPE can be seen to ride above the lesion.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
Exudative: Neovascular ARMD; ‘wet’ ARMD

Three types of neovascular membranes occur in ARMD—what are they called?

What are the defining features of each?

--Type 1: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space
--Type 2: ?
--Type 3: Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

Three types of neovascular membranes occur in ARMD—what are they called?

What are the defining features of each?

--Type 1: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space

--Type 2: CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE)

--Type 3: NVM arises from the deep capillary plexus of the retina and grows down toward the RPE

Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

Three types of neovascular membranes occur in ARMD—what are they called? What are the defining features of each?

--- Type 1: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space

--- Type 2: CNVM originates from the choriocapillaris and extends into the sub-retinal space

--- Type 3: Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: **Nonexudative** and **exudative** ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

Three types of neovascular membranes occur in ARMD—what are they called? What are the defining features of each?

--- Type 1: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space
--- Type 2: CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE)
--- Type 3

Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma
What are the five layers of Bruch's membrane?

1. Basement membrane of RPE
2. Inner collagenous layer
3. Elastic layer
4. Outer collagenous layer
5. Basement membrane of choriocapillaris

Type 2 with the CNVM in the sub-retinal space
Type 2 CNVM located above the RPE with subretinal fluid (SRF) adjacent to the lesion. Note the RPE can be seen below the lesion.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**.

By what two other names are each condition commonly known?

- **Nonexudative:** Nonneovascular ARMD; ‘dry’ ARMD
- **Exudative:** Neovascular ARMD; ‘wet’ ARMD

Three types of neovascular membranes occur in ARMD—what are they called? **What are the defining features of each?**

- **Type 1:** CNVM originates from the choriocapillaris and extends into Bruch’s membrane and/or the sub-RPE space
- **Type 2:** CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE)
- **Type 3:** ?

Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma.
Age-related macular degeneration (ARMD) is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: Nonexudative and Exudative.

By what two other names are each condition commonly known?
Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
Exudative: Neovascular ARMD; ‘wet’ ARMD

Three types of neovascular membranes occur in ARMD—what are they called? What are the defining features of each?
--Type 1: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space
--Type 2: CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE)
--Type 3: NVM arises from the deep capillary plexus of the retina and grows down toward the RPE

Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma
What are the five layers of Bruch's membrane?

1) Basement membrane of RPE
2) Inner collagenous layer
3) Elastic layer
4) Outer collagenous layer
5) Basement membrane of choriocapillaris

Type 3 with the NVM growing down from retinal vessels
- 1) PR outer segs
- 2) Bipolar cells
- 3) Retinal vessels
- 4) Type 3 with the NVM growing down from retinal vessels

1) Basement membrane of RPE
2) Inner collagenous layer
3) Elastic layer
4) Outer collagenous layer
5) Basement membrane of choriocapillaris
6) Choriocapillaris
7) Choroid
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?

It means a neovascular membrane, (almost always choroidal in origin) is present.

What vessels give rise to the neovascular membrane?

The choriocapillaris (with one exception, to be discussed later).

What will a pt c/o if a CNVM develops?

Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma

What vessels give rise to the neovascular membrane?

The choriocapillaris (with one exception, to be discussed later).

Type 3 is the exception to the statement ‘CNVM originate in the choriocapillaris’ referred to a few slides ago.

---Type 3: **NVM arises from the deep capillary plexus of the retina**
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen.

So we’re referring to something as a ‘choroidal’ NVM when it doesn’t originate in the choroid? Make it make sense.

Type 3 is the exception to the statement ‘CNVM originate in the choriocapillaris’ referred to a few slides ago.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?

It means a neovascular membrane, (almost always choroidal in origin), is present.

What vessels give rise to the neovascular membrane?

The choriocapillaris (with one exception, to be discussed later)

What will a pt c/o if a CNVM develops?

Blurry vision, metamorphopsia and/or a paracentral scotoma

Type 3 is the exception to the statement ‘CNVM originate in the choriocapillaris’ referred to a few slides ago.

What vessels give rise to the neovascular membrane?

The choriocapillaris (with one exception, to be discussed later)

--Type 3: NVM arises from the deep capillary plexus of the retina

What will a pt c/o if a CNVM develops?

Blurry vision, metamorphopsia and/or a paracentral scotoma
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen.

So we’re referring to something as a ‘choroidal’ NVM when it doesn’t originate in the choroid? Make it make sense.

I can’t, and the BCSC no longer tries.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD
Exudative: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?

It means a neovascular membrane, (almost always choroidal in origin), is present.

What vessels give rise to the neovascular membrane?
The choriocapillaris (with one exception, to be discussed later).

What will a pt c/o if a CNVM develops?
Blurry vision, metamorphopsia and/or a paracentral scotoma.

Type 3 is the exception to the statement ‘CNVM originate in the choriocapillaris’ referred to a few slides ago.

What vessels give rise to the neovascular membrane?
The choriocapillaris (with one exception, to be discussed later).

What will a pt c/o if a CNVM develops?
Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma.

Type 3 is the exception to the statement ‘CNVM originate in the choriocapillaris’ referred to a few slides ago.

What vessels give rise to the neovascular membrane?
The choriocapillaris (with one exception, to be discussed later).

What will a pt c/o if a CNVM develops?
Blurry vision, metamorphopsia and/or a paracentral scotoma.

--Type 3: NVM arises from the deep capillary plexus of the retina.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen. There are two types: nonexudative and exudative ARMD. By what two other names are each condition commonly known? Nonexudative: Nonneovascular ARMD; 'dry' ARMD. Exudative: Neovascular ARMD; 'wet' ARMD.

What does it mean to say ARMD is 'exudative'? It means a neovascular membrane, almost always choroidal in origin, is present. What vessels give rise to the neovascular membrane? The choriocapillaris (with one exception, to be discussed later). What will a pt c/o if a CNVM develops? Sudden decrease in vision, metamorphopsia, and/or a paracentral scotoma.

Type 3 is the exception to the statement ‘CNVM originate in the choriocapillaris’ referred to a few slides ago. What vessels give rise to the neovascular membrane? The choriocapillaris (with one exception, to be discussed later). What will a pt c/o if a CNVM develops? Blurry vision, metamorphopsia, and/or a paracentral scotoma. Three types of neovascular membranes occur in ARMD—what are they called? What are the defining features of each?

--Type 1: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space.
--Type 2: CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE).
--Type 3: NVM arises from the deep capillary plexus of the retina and grows down toward the RPE.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen.

So we’re referring to something as a ‘choroidal’ NVM when it doesn’t originate in the choroid? Make it make sense.

I can’t, and the BCSC no longer tries. Instead, they now prefer *macular neovascularization* (MNV) as the general term for neovascularization associated with ARMD.

Type 3 is the exception to the statement ‘CNVM originate in the choriocapillaris’ referred to a few slides ago

What vessels give rise to the neovascular membrane?

The choriocapillaris (with one exception, to be discussed later)

What will a pt c/o if a CNVM develops?

Blurry vision, metamorphopsia and/or a paracentral scotoma

Type 3: NVM arises from the deep capillary plexus of the retina
Age-related macular degeneration (ARMD) is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and Exudative.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?

It means a neovascular membrane, (almost always choroidal in origin), is present.

What vessels give rise to the neovascular membrane?

The choriocapillaris (with one exception, to be discussed later).

What will a pt c/o if a CNVM develops?

Blurry vision, metamorphopsia and/or a paracentral scotoma.

Three types of neovascular membranes occur in ARMD—what are they called? What are the defining features of each?

--Type 1: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space.

--Type 2: CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE).

--Type 3: NVM arises from the deep capillary plexus of the retina and grows down toward the RPE.

Of the three, which occurs most frequently in ARMD?

Type 1

Type 2 CNVM is strongly associated with what condition (it’s not ARMD)?

Ocular histoplasmosis

By what other name is Type 3 known?

Retinal angiomatous proliferation (RAP)
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and Exudative.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?

It means a neovascular membrane, (almost always choroidal in origin) is present.

What vessels give rise to the neovascular membrane?

The choriocapillaris (with one exception, to be discussed later).

What will a pt c/o if a CNVM develops?

Blurry vision, metamorphopsia and/or a paracentral scotoma.

Three types of neovascular membranes occur in ARMD—what are they called?

Type 1: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space.

Type 2: CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE).

Type 3: NVM arises from the deep capillary plexus of the retina and grows down toward the RPE.

Of the three, which occurs most frequently in ARMD?

Type 1.

Type 2 CNVM is strongly associated with what condition (it’s not ARMD)?

Ocular histoplasmosis.

By what other name is Type 3 known?

Retinal angiomatous proliferation (RAP).
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

Three types of neovascular membranes (CNVMs) occur in ARMD—what are they called? What are the defining features of each?

-- **Type 1**: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space.

-- **Type 2**: CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE).

-- **Type 3**: NVM arises from the deep capillary plexus of the retina and grows down toward the RPE.

Of the three, which occurs most frequently in ARMD?

Type 1

Type 2 CNVM is strongly associated with what condition (it’s not ARMD)?

Ocular histoplasmosis

By what other name is Type 3 known?

Retinal angiomatous proliferation (RAP)
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **Exudative**

By what two other names are each condition commonly known?

- **Nonexudative**: Non-neovascular ARMD; ‘dry’ ARMD
- **Exudative**: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?

It means a neovascular membrane, (almost always choroidal in origin) is present.

What vessels give rise to the neovascular membrane?

The choriocapillaris (with one exception, to be discussed later).

What will a pt c/o if a CNVM develops?

Blurry vision, metamorphopsia and/or a paracentral scotoma

Of the three, which occurs most frequently in ARMD?

Type 1

Type 2 CNVM is strongly associated with what condition (it’s not ARMD)?

Ocular histoplasmosis (OHS)

By what other name is Type 3 known?

Retinal angiomatous proliferation (RAP)

Three types of neovascular membranes (CNVM) occur in ARMD—

--- Type 1: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space.

--- Type 2: CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE).

--- Type 3: NVM arises from the deep capillary plexus of the retina and grows down toward the RPE.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; ‘dry’ ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?

It means a neovascular membrane, (almost always choroidal in origin) is present.

What vessels give rise to the neovascular membrane?

The choriocapillaris (with one exception, to be discussed later).

What will a pt c/o if a CNVM develops?

Blurry vision, metamorphopsia and/or a paracentral scotoma

Three types of neovascular membranes occur in ARMD—what are they called? What are the defining features of each?

--Type 1: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space.

--Type 2: CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE).

--Type 3: NVM arises from the deep capillary plexus of the retina and grows downward toward the RPE.

Of the three, which occurs most frequently in ARMD?

Type 1

Type 2 CNVM is strongly associated with what condition (it’s not ARMD)?

Ocular histoplasmosis (OHS)

By what other name is Type 3 known?

Retinal angiomatous proliferation (RAP)
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. **Age** is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative** ARMD.

By what two other names are each condition commonly known?

- **Nonexudative**: Nonneovascular ARMD; ‘dry’ ARMD
- **Exudative**: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?

It means a neovascular membrane, almost always choroidal in origin, is present.

What vessels give rise to the neovascular membrane?

The choriocapillaris (with one exception, to be discussed later).

What will a pt c/o if a CNVM develops?

Blurry vision, metamorphopsia and/or a paracentral scotoma.

Three types of neovascular membranes occur in ARMD—what are they called? What are the defining features of each?

- **Type 1**: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space.
- **Type 2**: CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE).
- **Type 3**: NVM arises from the deep capillary plexus of the retina and grows downward toward the RPE.

Of the three, which occurs most frequently in ARMD?

Type 1

Type 2 CNVM is strongly associated with what condition (it’s not ARMD)?

Ocular histoplasmosis (OHS)

By what other name is Type 3 known?

Retinal angiomatous proliferation (RAP)
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**

By what two other names are each condition commonly known?

- **Nonexudative**: Nonneovascular ARMD; ‘dry’ ARMD
- **Exudative**: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is ‘exudative’?

It means a neovascular membrane, (almost always choroidal in origin), is present.

What vessels give rise to the neovascular membrane?

The choriocapillaris (with one exception, to be discussed later).

What will a pt c/o if a CNVM develops?

Blurry vision, metamorphopsia and/or a paracentral scotoma

Of the three, which occurs most frequently in ARMD?

Type 1

Type 2 CNVM is strongly associated with what condition (it’s not ARMD)?

Ocular histoplasmosis

What are the defining features of each type?

- **Type 1**: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space.
- **Type 2**: CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE).
- **Type 3**: NVM arises from the deep capillary plexus of the retina and grows down toward the RPE.

Ocular histo is high on the DDx for CNVM. What other non-ARMD conditions are important causes of CNVM?

By what other name is Type 3 known?

Retinal angiomatous proliferation (RAP)

Three types of neovascular membranes will occur in ARMD—what are they called? What are the defining features of each?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and Exudative ARMD.

By what two other names are each condition commonly known?

Nonexudative: Nonneovascular ARMD; 'dry' ARMD

Exudative: Neovascular ARMD; ‘wet’ ARMD

What does it mean to say ARMD is 'exudative'?

It means a neovascular membrane, (almost always choroidal in origin) is present.

What vessels give rise to the neovascular membrane?

The choriocapillaris (with one exception, to be discussed later).

What will a pt c/o if a CNVM develops?

Blurry vision, metamorphopsia and/or a paracentral scotoma.

Three types of neovascular membranes occur in ARMD, what are they called? What are the defining features of each?

Type 1: CNVM originates from the choriocapillaris and extends into Bruchs membrane and/or the sub-RPE space.

Type 2: CNVM originates from the choriocapillaris and extends into the sub-retinal space (ie, just above the RPE).

Type 3: NVM arises from the deep capillary plexus of the retina and grows down toward the RPE.

Of the three, which occurs most frequently in ARMD?

Type 1

Type 2 CNVM is strongly associated with what condition (it’s not ARMD)?

Ocular histoplasmosis

By what other name is Type 3 known?

Retinal angiomatous proliferation (RAP)

Ocular histo is high on the DDx for CNVM. What other non-ARMD conditions are important causes of CNVM?

Coming in hot…
(This is a good point in the set to take a break)
CNVM DDx:

- **ARMD**
- **OHS**
- ?
- ?
- ?
- ?
- ?
- ?
- ?
- ?
- ?

Other than these two, what is the DDx for causes of CNVM?
CNVM DDx:

- **ARMD** *Other than these two, what is the DDx for causes of CNVM?*
- **OHS**
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

Let me stress, these are all important clinical alternatives that must come to mind when contemplating CNVM.

No question—advance when ready
Let me stress, these are all important clinical alternatives that must come to mind when contemplating CNVM. That being said, three are discussed in detail in the ARMD chapter of the Retina book, and thus are probably deserving of special attention. Which three?

(Sorsby, discussed earlier, is not one of them)
Let me stress, these are all important clinical alternatives that must come to mind when contemplating CNVM. That being said, three are discussed in detail in the ARMD chapter of the Retina book, and thus are probably deserving of special attention. Which three?
Is there a racial predilection in OHS?

Yes, OHS occurs almost exclusively among whites of Northern European heritage.

Is there a geographic predilection?

Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US.

Does OHS manifest unilaterally, or bilaterally?

Bilaterally (although it can be somewhat asymmetric).

Is OHS associated with vitritis?

Never. If vitritis is present, it's not OHS.

What about AC cell?

Never. If AC cell is present, it's not OHS.
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

Is there a racial predilection in OHS? Yes, OHS occurs almost exclusively among whites of Northern European heritage.

Is there a geographic predilection? Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US.

Does OHS manifest unilaterally, or bilaterally? Bilaterally (although it can be somewhat asymmetric).

Is OHS associated with vitritis? Never. If vitritis is present, it's not OHS.

What about AC cell? Never. If AC cell is present, it's not OHS.
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

Is there a racial predilection in OHS?
Yes, OHS occurs almost exclusively among whites of Northern European heritage

Is there a geographic predilection?
Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US

Does OHS manifest unilaterally, or bilaterally?
Bilaterally (although it can be somewhat asymmetric)

Is OHS associated with vitritis?
Never. If vitritis is present, it's not OHS.

What about AC cell?
Never. If AC cell is present, it's not OHS.
Is there a racial predilection in OHS?
Yes, OHS occurs almost exclusively among whites of Northern European heritage

Is there a geographic predilection?

ARMD
Is there a racial predilection in OHS?
Yes, OHS occurs almost exclusively among whites of Northern European heritage.

Is there a geographic predilection?
Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US.

ARMD

OHS

Angioid streaks
Pathologic myopia
Idiopathic
Sorsby macular dystrophy
Traumatic choroidal rupture
Iatrogenic
Central serous chorioretinopathy
Pattern dystrophy
Adult-onset vitelliform dystrophy
Is there a racial predilection in OHS?
Yes, OHS occurs almost exclusively among whites of Northern European heritage

Is there a geographic predilection?
Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

Is there a racial predilection in OHS?
Yes, OHS occurs almost exclusively among whites of Northern European heritage

Is there a geographic predilection?
Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US

Does OHS manifest unilaterally, or bilaterally?
Never. If AC cell is present, it's not OHS.
CNVM DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

Is there a racial predilection in OHS?
Yes, OHS occurs almost exclusively among whites of Northern European heritage

Is there a geographic predilection?
Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US

Does OHS manifest unilaterally, or bilaterally?
Bilaterally (although it can be somewhat asymmetric)
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

ARMD

OHS

Is there a racial predilection in OHS?
Yes, OHS occurs almost exclusively among whites of Northern European heritage

Is there a geographic predilection?
Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US

Does OHS manifest unilaterally, or bilaterally?
Bilaterally (although it can be somewhat asymmetric)

Is OHS associated with vitritis?
Never. If vitritis is present, it's not OHS.
CNVM DDx:

- **ARMD**
- **OHS**
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

ARMD

Is there a racial predilection in OHS?
Yes, OHS occurs almost exclusively among whites of Northern European heritage.

Is there a geographic predilection?
Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US.

Does OHS manifest unilaterally, or bilaterally?
Bilaterally (although it can be somewhat asymmetric).

Is OHS associated with vitritis?
Never. If vitritis is present, it’s not OHS.
CNVM DDx:

- ARMD
- **OHS**
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

Is there a racial predilection in OHS?
Yes, OHS occurs almost exclusively among whites of Northern European heritage.

Is there a geographic predilection?
Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US.

Does OHS manifest unilaterally, or bilaterally?
Bilaterally (although it can be somewhat asymmetric).

Is OHS associated with vitritis?
Never. If vitritis is present, it’s not OHS.

What about AC cell?
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

Is there a racial predilection in OHS?
Yes, OHS occurs almost exclusively among whites of Northern European heritage

Is there a geographic predilection?
Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US

Does OHS manifest unilaterally, or bilaterally?
Bilaterally (although it can be somewhat asymmetric)

Is OHS associated with vitritis?
Never. If vitritis is present, it’s not OHS.

What about AC cell?
Never. If AC cell is present, it’s not OHS.
How is the diagnosis of OHS made?

It is a clinical diagnosis based on DFE findings.

What are you looking for on DFE?

The so-called 'classic triad' of OHS:

-- Histo spots
-- Peripapillary atrophy
-- Disciform macular lesion(s)

Is OHS associated with vitritis?

Never. If vitritis is present, it’s not OHS.

What about AC cell?

Never. If AC cell is present, it’s not OHS.

Is OHS manifest unilaterally, or bilaterally?

Bilaterally (although it can be somewhat asymmetric).

Does OHS manifest almost exclusively in whites?

Yes, OHS occurs almost exclusively among whites of Northern European heritage.

Is there a geographic predilection?

Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US.

Does OHS manifest unilaterally, or bilaterally?

Bilaterally (although it can be somewhat asymmetric).

Is OHS associated with vitritis?

Never. If vitritis is present, it’s not OHS.

What about AC cell?

Never. If AC cell is present, it’s not OHS.

How is the diagnosis of OHS made?

It is a clinical diagnosis based on DFE findings.

What are you looking for on DFE?

The so-called 'classic triad' of OHS:

-- Histo spots
-- Peripapillary atrophy
-- Disciform macular lesion(s)

Is OHS associated with vitritis?

Never. If vitritis is present, it’s not OHS.

What about AC cell?

Never. If AC cell is present, it’s not OHS.
CNVM DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

ARMD

How is the diagnosis of OHS made?
It is a clinical diagnosis based on DFE findings.

Is there a racial predilection in OHS?
Yes, OHS occurs almost exclusively among whites of Northern European heritage.

Is there a geographic predilection?
Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US.

Does OHS manifest unilaterally, or bilaterally?
Bilaterally (although it can be somewhat asymmetric).

Is OHS associated with vitritis?
Never. If vitritis is present, it's not OHS.

What about AC cell?
Never. If AC cell is present, it's not OHS.
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

OHS

- **Is there a racial predilection in OHS?**
 - Yes, OHS occurs almost exclusively among whites of Northern European heritage.

- **Is there a geographic predilection?**
 - Yes, the majority of cases are found in people who reside in the Mississippi/Ohio River valleys of the US.

- **Does OHS manifest unilaterally, or bilaterally?**
 - Bilaterally (although it can be somewhat asymmetric).

- **Is OHS associated with vitritis?**
 - **Never.** If vitritis is present, it’s not OHS.

- **What about AC cell?**
 - **Never.** If AC cell is present, it’s not OHS.

How is the diagnosis of OHS made?

It is a clinical diagnosis based on DFE findings.

What are you looking for on DFE?

- **Does OHS manifest unilaterally, or bilaterally?**
 - Bilaterally (although it can be somewhat asymmetric).

- **Is OHS associated with vitritis?**
 - **Never.** If vitritis is present, it’s not OHS.

- **What about AC cell?**
 - **Never.** If AC cell is present, it’s not OHS.
- **CNVM DDx:**
 - ARMD
 - **OHS**
 - Angioid streaks
 - Pathologic myopia
 - Idiopathic
 - Sorsby macular dystrophy
 - Traumatic choroidal rupture
 - Iatrogenic
 - Central serous chorioretinopathy
 - Pattern dystrophy
 - Adult-onset vitelliform dystrophy

- How is the diagnosis of OHS made?
 - It is a clinical diagnosis based on DFE findings.

- What are you looking for on DFE?
 - The so-called ‘classic triad’ of OHS:
 - --?
 - --?
 - --?

- Does OHS manifest unilaterally, or bilaterally?
 - Bilaterally (although it can be somewhat asymmetric).

- Is OHS associated with vitritis?
 - **Never**. If vitritis is present, it’s not OHS.

- What about AC cell?
 - **Never**. If AC cell is present, it’s not OHS.
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

How is the diagnosis of OHS made?
It is a clinical diagnosis based on DFE findings.

What are you looking for on DFE?
The so-called ‘classic triad’ of OHS:
- Histo spots
- Peripapillary atrophy
- Disciform macular lesion(s)

Does OHS manifest unilaterally, or bilaterally?
Bilaterally (although it can be somewhat asymmetric)

Is OHS associated with vitritis?
Never. If vitritis is present, it’s not OHS.

What about AC cell?
Never. If AC cell is present, it’s not OHS.
OHS: The classic triad
OHS: The classic triad

For more on OHS, see slide-set U21
CNVM DDx:

- ARMD
- OHS
- **Angioid streaks**

What is the classic DFE appearance of angioid streaks?

Adult-onset vitelliform dystrophy
What is the classic DFE appearance of angioid streaks?

Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in retinal structure.
What is the classic DFE appearance of angioid streaks?
Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane
Angioid streaks (arrowheads). Note that only a few of the many present have been marked.
CNVM DDx:

- ARMD
- OHS
- Angioid streaks

What is the classic DFE appearance of angioid streaks? Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities? About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations? Pseudoxanthoma elasticum (PXE), Ehlers-Danlos syndrome, Paget’s disease of bone, Sickle-cell disease, Idiopathic (ie, no association).
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

What is the classic DFE appearance of angioid streaks?

Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities?

About half.
CNVM DDx:

- ARMD
- OHS
- **Angioid streaks**

What is the classic DFE appearance of angioid streaks?

Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities?

About half.

What is the well-known mnemonic for angioid streak’s associations?

- P
- E
- P
- S
- I
What is the classic DFE appearance of angioid streaks? Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities? About half.

What is the well-known mnemonic for angioid streak’s associations? PEP S I

Adult-onset vitelliform dystrophy
What is the classic DFE appearance of angioid streaks? Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities? About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations? P E P S I.
Angioid streaks

What is the classic DFE appearance of angioid streaks? Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities? About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations? Pseudoxanthoma elasticum (PXE), Ehlers-Danlos syndrome, Paget’s disease of bone, Sickle-cell disease, Idiopathic (ie, no association).

Adult-onset vitelliform dystrophy
What is the classic DFE appearance of angioid streaks?
Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities? About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations?
- Pseudoxanthoma elasticum (PXE)
- Ehlers-Danlos syndrome
- Paget’s disease of bone
- Sickle-cell disease
- Idiopathic (ie, no association)

~# of cases are associated with one of these
~# of cases have no known systemic association.

Adult-onset vitelliform dystrophy
CNVM DDx:

- **ARMD**

OHS

Angioid streaks

What is the classic DFE appearance of angioid streaks?
Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities?
About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations?
- **P**seudoxanthoma elasticum (PXE)
- **E**hlers-Danlos syndrome
- **P**aget’s disease of bone
- **S**ickle-cell disease
- **I**diopathic (ie, no association)

~50% of cases are associated with one of these
~50% of cases have no known systemic association

- **Adult-onset vitelliform dystrophy**
What is the classic DFE appearance of angioid streaks?
Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane

What proportion of angioid streaks are associated with systemic abnormalities?
About half

What is the well-known mnemonic for angioid streak’s associations? What are these associations?
Pseudoxanthoma elasticum (PXE)?
Ehlers-Danlos syndrome?
Paget’s disease of bone?
Sickle-cell disease?
Idiopathic (ie, no association)

Which condition has the strongest association with angioid streaks?
What is the classic DFE appearance of angioid streaks? **Reddish-brown** lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities? About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations? **P**seudoxanthoma **E**lasticum (PXE), **E**hlers-Danlos syndrome, **P**aget’s disease of bone, **S**ickle-cell disease, **I**diopathic (ie, no association).

Which condition has the strongest association with angioid streaks? **PXE**, by a mile.
What is the classic DFE appearance of angioid streaks? Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities? About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations? Pseudoxanthoma elasticum (PXE), Ehlers-Danlos syndrome, Paget’s disease of bone, Sickle-cell disease, Idiopathic (ie, no association).

Which condition has the strongest association with angioid streaks? PXE, by a mile.

What other organ-systems are affected in PXE? Eye.

What is the classic DFE appearance of angioid streaks? Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities? About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations? Pseudoxanthoma elasticum (PXE), Ehlers-Danlos syndrome, Paget’s disease of bone, Sickle-cell disease, Idiopathic (ie, no association).

Which condition has the strongest association with angioid streaks? PXE, by a mile.

What other organ-systems are affected in PXE? Eye.
What is the classic DFE appearance of angioid streaks?
Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities?
About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations?
Pseudoxanthoma elasticum (PXE), Ehlers-Danlos syndrome, Paget’s disease of bone, Sickle-cell disease, Idiopathic (ie, no association).

Which condition has the strongest association with angioid streaks? PXE, by a mile.

What other organ-systems are affected in PXE?
--Skin
--Vascular system
--GI tract
--Eye

Adult-onset vitelliform dystrophy
CNVM DDx:

- ARMD

Angioid streaks

What is the classic DFE appearance of angioid streaks?
Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities?
About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations?
Pseudoxanthoma elasticum (PXE) **E**hlers-Danlos syndrome **P**aget’s disease of bone **S**ickle-cell disease **I**diopathic (ie, no association)

Which condition has the strongest association with angioid streaks?
PXE, by a mile

What is the appearance of affected skin?
An area of waxy-yellow, papule-like lesions. Known as ‘chicken skin’.

Adult-onset vitelliform dystrophy
CNVM DDx:

- ARMD
- OHS

Angioid streaks

- What is the classic DFE appearance of angioid streaks?
 - Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch's membrane.

- What proportion of angioid streaks are associated with systemic abnormalities?
 - About half.

- What is the well-known mnemonic for angioid streak's associations? What are these associations?
 - **P**seudoxanthoma elasticum (PXE)
 - **E**hlers-Danlos syndrome
 - **P**aget's disease of bone
 - **S**ickle-cell disease
 - **I**diopathic (ie, no association)

- Which condition has the strongest association with angioid streaks?
 - PXE, by a mile.

- What is the appearance of affected skin?
 - An area of waxy-yellow, papule-like lesions.

- What other organ-systems are affected in PXE?
 - Skin
 - Vascular
 - GI tract
 - Eye

- What is the classic informal descriptor for this appearance?
 - 'Chicken skin'
Angioid streaks

What is the classic DFE appearance of angioid streaks? Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities? About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations? Pseudoxanthoma elasticum (PXE), Ehlers-Danlos syndrome, Paget’s disease of bone, Sickle-cell disease, Idiopathic (ie, no association).

Which condition has the strongest association with angioid streaks? PXE, by a mile.

Adult-onset vitelliform dystrophy
- **CNVM DDx:**
 - ARMD
 - OHS

Angioid streaks

- **What is the classic DFE appearance of angioid streaks?**
 - Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

- **What proportion of angioid streaks are associated with systemic abnormalities?**
 - About half

- **What is the well-known mnemonic for angioid streak’s associations? What are these associations?**
 - Pseudoxanthoma elasticum (PXE)
 - Ehlers-Danlos syndrome
 - Paget’s disease of bone
 - Sickle-cell disease
 - Idiopathic (ie, no association)

- **Which condition has the strongest association with angioid streaks?**
 - PXE, by a mile

- **What is the appearance of affected skin?**
 - An area of waxy-yellow, papule-like lesions

- **What is the classic informal descriptor for this appearance?**
 - ‘Chicken skin’
PXE skin
CNVM DDx:

- ARMD
- OHS

Angioid streaks

What is the classic DFE appearance of angioid streaks?

Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities?

About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations?

Pseudoxanthoma elasticum (PXE), Ehlers-Danlos syndrome, Paget’s disease of bone, Sickle-cell disease, Idiopathic (ie, no association).

Which condition has the strongest association with angioid streaks? PXE, by a mile.

There are three classic eye findings in PXE, one of which is angioid streaks. What are the other two?

--- Angioid streaks
--- ?
--- ?

- Skin
- Vascular system
- GI tract
- Eye

There are three classic eye findings in PXE, one of which is angioid streaks. What are the other two?

--- Angioid streaks
--- ?
--- ?
Angioid streaks

What is the classic DFE appearance of angioid streaks? Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch's membrane.

What proportion of angioid streaks are associated with systemic abnormalities? About half.

What is the well-known mnemonic for angioid streak's associations? What are these associations?

- **Pseudoxanthoma elasticum (PXE)**
- Ehlers-Danlos syndrome
- Paget's disease of bone
- Sickle-cell disease
- Idiopathic (ie, no association)

There are three classic eye findings in PXE, one of which is angioid streaks. What are the other two?

- Angioid streaks
- RPE mottling
- Optic disc drusen

Which condition has the strongest association with angioid streaks? PXE, by a mile.
CNVM DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

What is the classic DFE appearance of angioid streaks?
Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch's membrane.

What proportion of angioid streaks are associated with systemic abnormalities?
About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations?
Pseudoxanthoma elasticum (PXE), Ehlers-Danlos syndrome, Paget’s disease of bone, Sickle-cell disease, Idiopathic (ie, no association).

Which condition has the strongest association with angioid streaks?
PXE, by a mile.

What is the classic DFE appearance of angioid streaks? Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What other organ-systems are affected in PXE?
- Skin
- Vascular system
- GI tract
- Eye

There are three classic eye findings in PXE, one of which is angioid streaks. What are the other two?
- Angioid streaks
- RPE mottling
- Optic disc drusen

What mellifluous name is used to describe the RPE mottling?
Peau d’orange.

Which condition has the strongest association with angioid streaks? PXE, by a mile.
CNVM DDx:

- ARMD
- OHS
- Angioid streaks

What is the classic DFE appearance of angioid streaks?
Reddish-brown lines radiating out from the peripapillary region; these lines represent breaks in Bruch’s membrane.

What proportion of angioid streaks are associated with systemic abnormalities?
About half.

What is the well-known mnemonic for angioid streak’s associations? What are these associations?
Pseudoxanthoma elasticum (PXE), Ehlers-Danlos syndrome, Paget’s disease of bone, Sickle-cell disease, Idiopathic (ie, no association), Central serous chorioretinopathy, Pattern dystrophy, Adult-onset vitelliform dystrophy.

Which condition has the strongest association with angioid streaks?
PXE, by a mile.

What mellifluous name is used to describe the RPE mottling?
Peau d’orange.

There are three classic eye findings in PXE, one of which is angioid streaks. What are the other two?
RPE mottling, Optic disc drusen.

What other organ-systems are affected in PXE?
--Skin
--Vascular system
--GI tract
--Eye

There are three classic eye findings in PXE, one of which is angioid streaks. What are the other two?
RPE mottling, Optic disc drusen.

What is the well-known mnemonic for angioid streak’s associations? What are these associations?
Pseudoxanthoma elasticum (PXE), Ehlers-Danlos syndrome, Paget’s disease of bone, Sickle-cell disease, Idiopathic (ie, no association), Central serous chorioretinopathy, Pattern dystrophy, Adult-onset vitelliform dystrophy.
PXE: *Peau d’orange* fundus
PXE: Peau d’orange fundus

For more on angioid streaks, see slide-set R61
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- **Pathologic myopia**
 - Idiopathic
 - Sorsby macular dystrophy
 - Traumatic choroidal rupture
 - Iatrogenic
 - Central serous chorioretinopathy
 - Pattern dystrophy
 - Adult-onset vitelliform dystrophy

Per the Retina book, what axial length serves as a useful cutoff for defining pathologic myopia?
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

Per the Retina book, what axial length serves as a useful cutoff for defining pathologic myopia? 26.5 mm
• **CNVM DDx:**
 - ARMD
 - OHS
 - Angioid streaks
 - **Pathologic myopia**
 - Idiopathic
 - Sorsby macular dystrophy
 - Traumatic choroidal rupture
 - Iatrogenic
 - Central serous chorioretinopathy
 - Pattern dystrophy
 - Adult-onset vitelliform dystrophy

Per the Retina book, what axial length serves as a useful cutoff for defining pathologic myopia?
26.5 mm

What is the classic finding on DFE that puts high myopes at risk for CNVM?
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- **Pathologic myopia**
 - Idiopathic
 - Sorsby macular dystrophy
 - Traumatic choroidal rupture
 - Iatrogenic
 - Central serous chorioiditis
 - Pattern dystrophy
 - Adult-onset vitelliform dystrophy

Per the Retina book, what axial length serves as a useful cutoff for defining pathologic myopia?

26.5 mm

What is the classic finding on DFE that puts high myopes at risk for CNVM?

Lacquer cracks
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- **Pathologic myopia**
 - Idiopathic
 - Sorsby macular dystrophy
 - Traumatic choroidal rupture
 - Iatrogenic
 - Central serous chorioretinopathy
 - Pattern dystrophy
 - Adult-onset vitelliform dystrophy

Per the Retina book, what axial length serves as a useful cutoff for defining pathologic myopia?

26.5 mm

What is the classic finding on DFE that puts high myopes at risk for CNVM?

Lacquer cracks

What are lacquer cracks?
CNVM DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

Per the Retina book, what axial length serves as a useful cutoff for defining pathologic myopia?
- 26.5 mm

What is the classic finding on DFE that puts high myopes at risk for CNVM?
- Lacquer cracks

What are lacquer cracks?
- Breaks in Bruch’s membrane, in color, usually found in the retinal area.
CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- **Pathologic myopia**
 - Idiopathic
 - Sorsby macular dystrophy
 - Traumatic choroidal rupture
 - Iatrogenic
 - Central serous choroiditis
 - Pattern dystrophy
 - Adult-onset vitelliform dystrophy

Per the Retina book, what axial length serves as a useful cutoff for defining pathologic myopia?
26.5 mm

What is the classic finding on DFE that puts high myopes at risk for CNVM?
Lacquer cracks

What are lacquer cracks?
Breaks in Bruch’s membrane, yellowish in color, usually found in the macula.
Lacquer cracks
CNVM DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous choroidopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

Per the Retina book, what axial length serves as a useful cutoff for defining pathologic myopia? 26.5 mm

What is the classic finding on DFE that puts high myopes at risk for CNVM? Lacquer cracks

What are lacquer cracks? Breaks in Bruch’s membrane, yellowish in color, usually found in the macula. These breaks are the nidus for CNVM ingress in pathologic myopia.
CNVM DDx:

- ARMD
- OHS?
- Angioid streaks?
- Pathologic myopia?
- Idiopathic?
- Sorsby macular dystrophy?
- Traumatic choroidal rupture?
- Iatrogenic?
- Central serous chorioretinopathy?
- Pattern dystrophy?
- Adult-onset vitelliform dystrophy?

The ARMD chapter of the Retina book mentions one of these as being particularly likely to be misdiagnosed as CNVM, ie, to produce the impression that a CNVM is present when it isn’t—which one?
The ARMD chapter of the Retina book mentions one of these as being particularly likely to be misdiagnosed as CNVM, ie, to produce the impression that a CNVM is present when it isn’t—which one?
In two words, what is the underlying cause of CSC?

Central serous chorioretinopathy

- Pattern dystrophy
- Adult-onset vitelliform dystrophy
In two words, what is the underlying cause of CSC?
- Choroidal hyperpermeability

Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy
In two words, what is the underlying cause of CSC?

Choroidal hyperpermeability (choriocapillaris hyperpermeability is correct as well, and may even be preferred)

Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy
In two words, what is the underlying cause of CSC?
- Choroidal hyperpermeability (choriocapillaris hyperpermeability is correct as well, and may even be preferred)

To be clear: Is CNVM associated with CSC?

🌟 Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy
In two words, what is the underlying cause of CSC?
Choroidal hyperpermeability (*choriocapillaris hyperpermeability* is correct as well, and may even be preferred)

To be clear: Is CNVM associated with CSC?
Yes—2ndry CNVM can and does occur in CSC, albeit uncommonly.

Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy
In two words, what is the underlying cause of CSC?

Choroidal hyperpermeability (choriocapillaris hyperpermeability is correct as well, and may even be preferred)

To be clear: Is CNVM associated with CSC?
Yes—2ndry CNVM can and does occur in CSC, albeit uncommonly.
The takeaway point: CSC can both cause CNVM and masquerade as it.

Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy
In two words, what is the underlying cause of CSC?

Choroidal hyperpermeability (choriocapillaris hyperpermeability is correct as well, and may even be preferred)

To be clear: Is CNVM associated with CSC?

Yes—2ndry CNVM can and does occur in CSC, albeit uncommonly.

The takeaway point: CSC can both cause CNVM and masquerade as it.

For the CSC cases in which no CNVM is present: What clinical finding, common to both wet ARMD and CSC, is responsible for the misdiagnosis?

Central serous chorioretinopathy

- Pattern dystrophy
- Adult-onset vitelliform dystrophy
In two words, what is the underlying cause of CSC?

Choroidal hyperpermeability (*choriocapillaris hyperpermeability* is correct as well, and may even be preferred)

To be clear: Is CNVM associated with CSC?

Yes—2ndry CNVM can and does occur in CSC, albeit uncommonly.
The takeaway point: CSC can both cause CNVM *and* masquerade as it.

For the CSC cases in which no CNVM is present: What clinical finding, common to both wet ARMD and CSC, is responsible for the misdiagnosis?
The presence of SRF on OCT

Central serous chorioretinopathy

- Pattern dystrophy
- Adult-onset vitelliform dystrophy
In two words, what is the underlying cause of CSC?
Choroidal hyperpermeability (*choriocapillaris hyperpermeability* is correct as well, and may even be preferred)

To be clear: Is CNVM associated with CSC?
Yes—2ndry CNVM can and does occur in CSC, albeit uncommonly. The takeaway point: CSC can both cause CNVM and masquerade as it.

For the CSC cases in which no CNVM is present: What clinical finding, common to both wet ARMD and CSC, is responsible for the misdiagnosis?
The presence of SRF on OCT

What distinguishes SRF seen on OCT in CNVM from that seen in CSC?

★ **Central serous chorioretinopathy**
- Pattern dystrophy
- Adult-onset vitelliform dystrophy
In two words, what is the underlying cause of CSC?
Choroidal hyperpermeability (*choriocapillaris hyperpermeability* is correct as well, and may even be preferred)

To be clear: Is CNVM associated with CSC?
Yes—2ndry CNVM can and does occur in CSC, albeit uncommonly.
The takeaway point: CSC can both cause CNVM and masquerade as it.

For the CSC cases in which no CNVM is present: What clinical finding, common to both wet ARMD and CSC, is responsible for the misdiagnosis?
The presence of SRF on OCT

What distinguishes SRF seen on OCT in CNVM from that seen in CSC?
In CNVM there is usually a concomitant subretinal hemorrhage, whereas this will not be present in CSC (absent a 2ndry CNVM)

Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy
In two words, what is the underlying cause of CSC?

Choroidal hyperpermeability *(choriocapillaris hyperpermeability is correct as well, and may even be preferred)*

To be clear: Is CNVM associated with CSC?

Yes—2ndry CNVM can and does occur in CSC, albeit uncommonly.

The takeaway point: CSC can both cause CNVM and masquerade as it.

For the CSC cases in which no CNVM is present: What clinical finding, common to both wet ARMD and CSC, is responsible for the misdiagnosis?

The presence of SRF on OCT

What distinguishes SRF seen on OCT in CNVM from that seen in CSC?

In CNVM there is usually a concomitant subretinal hemorrhage, whereas this will not be present in CSC (absent a 2ndry CNVM)

Central serous chorioretinopathy

- Pattern dystrophy
- Adult-onset vitelliform dystrophy
ARMD: PED (Δ) and SRF (↓), along with subretinal hemorrhage (*)

CSC: PED and SRF, but no hemorrhage
In two words, what is the underlying cause of CSC?

Choroidal hyperpermeability (choriocapillaris hyperpermeability is correct as well, and may even be preferred)

To be clear: Is CNVM associated with CSC?

Yes—2ndry CNVM can and does occur in CSC, albeit uncommonly.
The takeaway point: CSC can both cause CNVM and masquerade as it.

For the CSC cases in which no CNVM is present: What clinical finding.

There is another important OCT finding that distinguishes CSC from ARMD—what is it?

Central serous chorioretinopathy

• Pattern dystrophy
• Adult-onset vitelliform dystrophy
CNVM DDx:

In two words, what is the underlying cause of CSC?
Choroidal hyperpermeability (choriocapillaris hyperpermeability is correct as well, and may even be preferred)

To be clear: Is CNVM associated with CSC?
Yes—2ndry CNVM can and does occur in CSC, albeit uncommonly.
The takeaway point: CSC can both cause CNVM and masquerade as it.

For the CSC cases in which no CNVM is present: What clinical finding.
There is another important OCT finding that distinguishes CSC from ARMD—what is it?
The thickness of the choroid

Central serous chorioretinopathy

- Pattern dystrophy
- Adult-onset vitelliform dystrophy
In two words, what is the underlying cause of CSC?
Choroidal hyperpermeability (*choriocapillaris hyperpermeability* is correct as well, and may even be preferred)

To be clear: Is CNVM associated with CSC?
Yes—2ndry CNVM can and does occur in CSC, albeit uncommonly.
The takeaway point: CSC can both cause CNVM and masquerade as it.

For the CSC cases in which no CNVM is present: What clinical finding, common to both wet ARMD and CSC, is responsible for the misdiagnosis?
The presence of SRF on OCT

What distinguishes SRF seen on OCT in CNVM from that seen in CSC?
In CNVM there is usually a concomitant subretinal hemorrhage, whereas this will not be present in CSC (absent a 2ndry CNVM)

There is another important OCT finding that distinguishes CSC from ARMD—what is it?
The thickness of the choroid. It tends to be normal or thinned in ARMD, but thickened in CSC.

Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy
ARMD

CNVM DDx:

In two words, what is the underlying cause of CSC?
Choroidal hyperpermeability (choriocapillaris hyperpermeability is correct as well, and may even be preferred)

To be clear: Is CNVM associated with CSC?
Yes—2ndry CNVM can and does occur in CSC, albeit uncommonly.
The takeaway point: CSC can both cause CNVM and masquerade as it.

For the CSC cases in which no CNVM is present: What clinical finding, common to both wet ARMD and CSC, is responsible for the misdiagnosis?
The presence of SRF on OCT

What distinguishes SRF seen on OCT in CNVM from that seen in CSC?
In CNVM there is usually a concomitant subretinal hemorrhage, whereas this will not be present in CSC (absent a 2ndry CNVM)

There is another important OCT finding that distinguishes CSC from ARMD—what is it?
The thickness of the choroid. It tends to be normal or thinned in ARMD, but thickened in CSC.

Central serous chorioretinopathy

Pattern dystrophy
Adult-onset vitelliform dystrophy
The choroid is seen in cross section. Subfoveal choroidal thickness was measured vertically from the outer border of the RPE to the inner border of the sclera (*brackets*) in a healthy eye in a 55-year-old man (A) and in 3 representative eyes with CSC: in a 44-year-old man (B), a 57-year-old man (C), and a 63-year-old man (D).
ARMD

CNVM DDx:

In two words, what is the underlying cause of CSC?

Choroidal hyperpermeability (*choriocapillaris hyperpermeability* is correct as well, and may even be preferred)

To be clear: Is CNVM associated with CSC?

Yes—2ndry CNVM can and does occur in CSC, albeit uncommonly.

The takeaway point: CSC can both cause CNVM and masquerade as it.

For the CSC cases in which no CNVM is present: What clinical finding, common to both wet ARMD and CSC, is responsible for the misdiagnosis?

The presence of SRF on OCT

What distinguishes SRF seen on OCT in CNVM from that seen in CSC?

In CNVM there is usually a concomitant subretinal hemorrhage, whereas this will not be present in CSC (absent a 2ndry CNVM)

There is another important OCT finding that distinguishes CSC from ARMD—what is it?

The thickness of the choroid. It tends to be normal or thinned in ARMD, but thickened in CSC.

Choroidal thickness may not be readily interpretable on spectral-domain OCT (SD-OCT). What OCT modality is preferred for assessing the choroid?

Central serous chorioretinopathy

- Pattern dystrophy
- Adult-onset vitelliform dystrophy
ARMD

CNVM DDx:

In two words, what is the underlying cause of CSC?
Choroidal hyperpermeability (choriocapillaris hyperpermeability is correct as well, and may even be preferred)

To be clear: Is CNVM associated with CSC?
Yes—2ndry CNVM can and does occur in CSC, albeit uncommonly.
The takeaway point: CSC can both cause CNVM and masquerade as it.

For the CSC cases in which no CNVM is present: What clinical finding.
There is another important OCT finding that distinguishes CSC from ARMD—what is it?
The thickness of the choroid. It tends to be normal or thinned in ARMD, but thickened in CSC.

Choroidal thickness may not be readily interpretable on spectral-domain OCT (SD-OCT).
What OCT modality is preferred for assessing the choroid?
Enhanced-depth imaging OCT (EDI-OCT)

Central serous chorioretinopathy

Pattern dystrophy
Adult-onset vitelliform dystrophy
Dry ARMD

CNVM DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

Regarding conditions that can be misdiagnosed as dry ARMD—what feature do they have in common?

Abnormalities of the RPE
Dry ARMD

CNVM

DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

Regarding conditions that can be misdiagnosed as dry ARMD—what feature do they have in common?
Abnormalities of the RPE
The ARMD chapter of the Retina book mentions three of these as being particularly likely to produce a misdiagnosis of dry ARMD—which three?
Dry ARMD

The ARMD chapter of the Retina book mentions three of these as being particularly likely to produce a misdiagnosis of dry ARMD—which three?

(Yes, CSC is a prominent member of the DDx for both wet and dry ARMD!)

★ Central serous chorioretinopathy
★ Pattern dystrophy
★ Adult-onset vitelliform dystrophy
Dry ARMD

DNVM DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

How does CSC—a choroidal condition that produces serous detachments—acquire the RPE abnormalities that characterize dry ARMD masqueraders?
Dry ARMD

- CNVM
- DDx:
 - ARMD
 - OHS
 - Angioid streaks
 - Pathologic myopia
 - Idiopathic
 - Sorsby macular dystrophy
 - Traumatic choroidal rupture
 - Iatrogenic
 - Central serous chorioretinopathy
 - Pattern dystrophy
 - Adult-onset vitelliform dystrophy

How does CSC—a choroidal condition that produces serous detachments—acquire the RPE abnormalities that characterize dry ARMD masqueraders? If the SRF is chronic, it can produce RPE mottling.
CSC: RPE mottling
\begin{itemize}
\item ARMD
\item OHS
\item Angioid streaks
\item Pathologic myopia
\item Idiopathic
\item Sorsby macular dystrophy
\item Traumatic choroidal rupture
\item Iatrogenic
\item Central serous chorioretinopathy
\end{itemize}

Central serous chorioretinopathy

★ Pattern dystrophy
★ Adult-onset vitelliform dystrophy

Dry ARMD

How does CSC—a choroidal condition that produces serous detachments—acquire the RPE abnormalities that characterize dry ARMD masqueraders?

If the SRF is chronic, it can produce RPE mottling

Because SRF is subject to gravity-induced downward migration, the RPE changes often demonstrate a particular pattern. What are the formal and informal names for this pattern?
Dry ARMD

- ARMD
- OHS
- Angioid streaks

Central serous chorioretinopathy

- Pattern dystrophy
- Adult-onset vitelliform dystrophy
CSC: Descending tracts. These are best seen via fundus autofluorescence imaging.
CSC: Descending tracts. These are best seen via fundus autofluorescence imaging.

For more on CSC, see slide-set R47
Dry ARMD

Pattern dystrophy

★ Adult-onset vitelliform dystrophy

Briefly, what is a pattern dystrophy?

An inherited macular dystrophy that has a characteristic appearance (ie, a particular "pattern")

What is the inheritance pattern?

AD

Are pattern dystrophies associated with severe vision loss?

Generally no—vision is only slightly affected

Do the macular 'patterns' appear early in life?

Generally no—they usually show up in middle adulthood

The BCSC Retina book identifies four pattern dystrophies by name—what are they?

-- Butterfly dystrophy

-- Adult-onset foveomacular vitelliform dystrophy

-- Reticular dystrophy

-- Fundus pulverulentus
Briefly, what is a pattern dystrophy?
An inherited macular dystrophy that has a characteristic appearance (ie, a particular ‘pattern’)

Pattern dystrophy
Adult-onset vitelliform dystrophy
Briefly, what is a pattern dystrophy?
An inherited macular dystrophy that has a characteristic appearance (ie, a particular ‘pattern’)

What is the inheritance pattern?

Pattern dystrophy
★ Adult-onset vitelliform dystrophy
Briefly, what is a pattern dystrophy?
An inherited macular dystrophy that has a characteristic appearance (ie, a particular ‘pattern’)

What is the inheritance pattern?
AD

Pattern dystrophy
Adult-onset vitelliform dystrophy
Briefly, what is a pattern dystrophy?
An inherited macular dystrophy that has a characteristic appearance (ie, a particular ‘pattern’)

What is the inheritance pattern?
AD

Are pattern dystrophies associated with severe vision loss?

Pattern dystrophy
Adult-onset vitelliform dystrophy
Pattern dystrophy

★ Adult-onset vitelliform dystrophy

Briefly, what is a pattern dystrophy?
An inherited macular dystrophy that has a characteristic appearance (ie, a particular ‘pattern’)

What is the inheritance pattern?
AD

Are pattern dystrophies associated with severe vision loss?
Generally no--vision is only slightly affected
Briefly, what is a pattern dystrophy?
An inherited macular dystrophy that has a characteristic appearance (ie, a particular ‘pattern’)

What is the inheritance pattern?
AD

Are pattern dystrophies associated with severe vision loss?
Generally no--vision is only slightly affected

Do the macular ‘patterns’ appear early in life?
Briefly, what is a pattern dystrophy?
An inherited macular dystrophy that has a characteristic appearance (ie, a particular ‘pattern’)

What is the inheritance pattern?
AD

Are pattern dystrophies associated with severe vision loss?
Generally no--vision is only slightly affected

Do the macular ‘patterns’ appear early in life?
Generally no--they usually show up in middle adulthood

★ Pattern dystrophy
★ Adult-onset vitelliform dystrophy
Dry ARMD

Pattern dystrophy

★ Adult-onset vitelliform dystrophy
Briefly, what is a pattern dystrophy? An inherited macular dystrophy that has a characteristic appearance (ie, a particular ‘pattern’)

What is the inheritance pattern? AD

Are pattern dystrophies associated with severe vision loss? Generally no--vision is only slightly affected

Do the macular ‘patterns’ appear early in life? Generally no--they usually show up in middle adulthood

The BCSC Retina book identifies four pattern dystrophies by name--what are they?

The mnemonic is…

Pattern dystrophy

Adult-onset vitelliform dystrophy
Dry ARMD

Briefly, what is a pattern dystrophy?
An inherited macular dystrophy that has a characteristic appearance (ie, a particular ‘pattern’)

What is the inheritance pattern?
AD

Are pattern dystrophies associated with severe vision loss?
Generally no--vision is only slightly affected

Do the macular ‘patterns’ appear early in life?
Generally no--they usually show up in middle adulthood

The BCSC Retina book identifies four pattern dystrophies by name--what are they?
-B
-A
-R
-F

The mnemonic is…BARF?

Pattern dystrophy
Adult-onset vitelliform dystrophy
Dry ARMD

ARMD

CNVM DDx:

Briefly, what is a pattern dystrophy?
An inherited macular dystrophy that has a characteristic appearance (ie, a particular ‘pattern’)

What is the inheritance pattern?
AD

Are pattern dystrophies associated with severe vision loss?
Generally no--vision is only slightly affected

Do the macular ‘patterns’ appear early in life?
Generally no--they usually show up in middle adulthood

The BCSC Retina book identifies four pattern dystrophies by name--what are they?
--Butterfly dystrophy
--Adult-onset foveomacular vitelliform dystrophy
--Reticular dystrophy
--Fundus pulverulentus

Pattern dystrophy
★ Adult-onset vitelliform dystrophy
Butterfly dystrophy

Adult-onset foveomacular vitelliform dystrophy

Reticular dystrophy

Fundus pulverulentus
Dry ARMD

Briefly, what is a pattern dystrophy?
An inherited macular dystrophy that has a characteristic appearance (ie, a particular ‘pattern’)

What is the inheritance pattern?
AD

Are pattern dystrophies associated with severe vision loss?
Generally no--vision is only slightly affected

Do the macular ‘patterns’ appear early in life?
Generally no--they usually show up in middle adulthood

The BCSC Retina book identifies four pattern dystrophies by name--what are they?
--Butterfly dystrophy
--Adult-onset foveomacular vitelliform dystrophy
--Reticular dystrophy
--Fundus pulverulentus

These terms are awfully similar…Do they refer to the same, or different conditions?

Pattern dystrophy

Adult-onset vitelliform dystrophy
Briefly, what is a pattern dystrophy?
An inherited macular dystrophy that has a characteristic appearance (ie, a particular ‘pattern’)

What is the inheritance pattern?
AD

Are pattern dystrophies associated with severe vision loss?
Generally no--vision is only slightly affected

Do the macular ‘patterns’ appear early in life?
Generally no--they usually show up in middle adulthood

The BCSC Retina book identifies four pattern dystrophies by name--what are they?
--Butterfly dystrophy
--Adult-onset foveomacular vitelliform dystrophy
--Reticular dystrophy
--Fundus pulverulentus

These terms are awfully similar…Do they refer to the same, or different conditions?
The same (the Retina book uses both)
At what age do AOVD lesions appear?

30s to 50s

What do pts c/o initially?

Not much—maybe a little blurring or metamorphopsia

What does DFE reveal?

Bilateral vitelliform (which means egg-yolk like) lesions

How might such a lesion lead to a misdiagnosis of dry ARMD?

Its DFE and OCT appearance could be misinterpreted as representative of a drusenoid PED

Adult-onset vitelliform dystrophy
Dry ARMD

CNVM DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic

★ Central serous chorioretinopathy
★ Pattern dystrophy
★ Adult-onset vitelliform dystrophy

At what age do AOVD lesions appear?
30s to 50s
At what age do AOVD lesions appear?
30s to 50s

What do pts c/o initially?

What does DFE reveal?
Bilateral vitelliform (which means egg-yolk like) lesions

How might such a lesion lead to a misdiagnosis of dry ARMD?
Its DFE and OCT appearance could be misinterpreted as representative of a drusenoid PED
Dry ARMD

DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic

At what age do AOVD lesions appear?
30s to 50s

What do pts c/o initially?
Not much—maybe a little blurring or metamorphopsia

Central serous chorioretinopathy
Pattern dystrophy

Adult-onset vitelliform dystrophy
Dry ARMD

CNVM \(\wedge \) DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic

Central serous chorioretinopathy
Pattern dystrophy

Adult-onset vitelliform dystrophy

At what age do AOVD lesions appear?
30s to 50s

What do pts c/o initially?
Not much—maybe a little blurring or metamorphopsia

What does DFE reveal?
Bilateral vitelliform (which means egg-yolk like) lesions

How might such a lesion lead to a misdiagnosis of dry ARMD?
Its DFE and OCT appearance could be misinterpreted as representative of a drusenoid PED
Dry ARMD

CNVM DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
★ Central serous chorioretinopathy
★ Pattern dystrophy
★ Adult-onset vitelliform dystrophy

At what age do AOVD lesions appear?
30s to 50s

What do pts c/o initially?
Not much—maybe a little blurring or metamorphopsia

What does DFE reveal?
Bilateral vitelliform (which means \textit{egg-yolk like}) lesions

Its DFE and OCT appearance could be misinterpreted as representative of a drusenoid PED.
Dry ARMD

DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

At what age do AOVD lesions appear?
30s to 50s

What do pts c/o initially?
Not much—maybe a little blurring or metamorphopsia

What does DFE reveal?
Bilateral vitelliform (which means egg-yolk like) lesions
Dry ARMD

CNVM

ARMD

OHS

Angioid streaks

Pathologic myopia

Idiopathic

Sorsby macular dystrophy

Traumatic choroidal rupture

Iatrogenic

Central serous chorioretinopathy

Pattern dystrophy

Adult-onset vitelliform dystrophy

At what age do AOVD lesions appear?
30s to 50s

What do pts c/o initially?
Not much—maybe a little blurring or metamorphopsia

What does DFE reveal?
Bilateral vitelliform (which means egg-yolk-like) lesions

Because they’re egg-yolk-like, what can you infer about the vitelliform lesion’s:
--Color?
Yellow(ish)

--Shape?
Round

--Contour?
Domed
Dry ARMD

CNVM

ARMD
OHS
Angioid streaks
Pathologic myopia
Idiopathic
Sorsby macular dystrophy
Traumatic choroidal rupture
Iatrogenic

Central serous chorioretinopathy
Pattern dystrophy

Adult-onset vitelliform dystrophy

At what age do AOVD lesions appear?
30s to 50s

What do pts c/o initially?
Not much—maybe a little blurring or metamorphopsia

What does DFE reveal?
Bilateral vitelliform (which means egg-yolk-like) lesions

Because they’re egg-yolk-like, what can you infer about the vitelliform lesion’s:
--Color? Yellow(ish)
--Shape?
--Contour? Domed
Dry ARMD

- **CNVM DDx:**
 - ARMD
 - OHS
 - Angioid streaks
 - Pathologic myopia
 - Idiopathic
 - Sorsby macular dystrophy
 - Traumatic choroidal rupture
 - Iatrogenic
 - Central serous chorioretinopathy
 - Pattern dystrophy
 - **Adult-onset vitelliform dystrophy**

At what age do AOVD lesions appear?
30s to 50s

What do pts c/o initially?
Not much—maybe a little blurring or metamorphopsia

What does DFE reveal?
Bilateral vitelliform (which means egg-yolk-like) lesions

Because they’re egg-yolk-like, what can you infer about the vitelliform lesion’s:
- **Color?** Yellow(ish)
- **Shape?** Domed
Dry ARMD

CNVM DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy

Adult-onset vitelliform dystrophy

At what age do AOVD lesions appear?
- 30s to 50s

What do pts c/o initially?
- Not much—maybe a little blurring or metamorphopsia

What does DFE reveal?
- Bilateral vitelliform (which means egg-yolk-like) lesions

Because they're egg-yolk-like, what can you infer about the vitelliform lesion’s:
- **Color?** Yellow(ish)
- **Shape?** Round

ARMD
Typical round, yellow lesion of AOVD
Dry ARMD

CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Adult-onset vitelliform dystrophy

At what age do AOVD lesions appear?
30s to 50s

What do pts c/o initially?
Not much—maybe a little blurring or metamorphopsia

What does DFE reveal?
Bilateral vitelliform (which means 'egg-yolk-like') lesions

Because they’re egg-yolk-like, what can you infer about the vitelliform lesion’s:

--Color? Yellow(ish)
--Shape? Round
--Contour?
Dry ARMD

At what age do AOVD lesions appear? 30s to 50s

What do pts c/o initially? Not much—maybe a little blurring or metamorphopsia

What does DFE reveal? Bilateral vitelliform (which means 'egg-yolk-like') lesions

Because they’re egg-yolk-like, what can you infer about the vitelliform lesion’s:

--Color? Yellow(ish)
--Shape? Round
--Contour? Domed

---central serous chorioretinopathy
---Pattern dystrophy
---Adult-onset vitelliform dystrophy
OCT showing dome-like lesion in AOVD
Dry ARMD

CNVM DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic

At what age do AOVD lesions appear?
30s to 50s

What do pts c/o initially?
Not much—maybe a little blurring or metamorphopsia

What does DFE reveal?
Bilateral vitelliform (which means egg-yolk like) lesions

How might such a lesion lead to a misdiagnosis of dry ARMD?
Dry ARMD

CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic

Central serous chorioretinopathy

Pattern dystrophy

Adult-onset vitelliform dystrophy

At what age do AOVD lesions appear?

30s to 50s

What do pts c/o initially?

Not much—maybe a little blurring or metamorphopsia

What does DFE reveal?

Bilateral vitelliform (which means *egg-yolk like*) lesions

How might such a lesion lead to a misdiagnosis of dry ARMD?

Its DFE and OCT appearance could be misinterpreted as representative of a drusenoid PED
Here's a clinical challenge: AOVD in a patient with extensive drusen. Fundus photo demonstrates drusen, and an ill-defined vitelliform lesion. OCT shows the material over the soft drusen (yellow arrow) that could be misinterpreted as a CNVM related to wet ARMD.
Here’s a clinical challenge: AOVD in a patient with extensive drusen. Fundus photo demonstrates drusen, and an ill-defined vitelliform lesion. OCT shows the material over the soft drusen (yellow arrow) that could be misinterpreted as a CNVM related to wet ARMD.

For more on the pattern dystrophies, see slide-set R11.
Dry ARMD

CNVM DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Vitelliform dystrophy

Finally: The book emphasizes another condition (not on this list—yet) as being high on the DDx for dry ARMD—what is it?
Dry ARMD

CNVM DDx:

- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic

★ Central serous chorioretinopathy
★ Pattern dystrophy
★ Vitelliform dystrophy
★ Drug toxicity

Finally: The book emphasizes another condition (not on this list—yet) as being high on the DDx for dry ARMD—what is it?
Dry ARMD

CNVM

DDx:
- ARMD
- OHS
- Angioid streaks
- Pathologic myopia
- Idiopathic
- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic

★ Central serous chorioretinopathy
★ Pattern dystrophy
★ Vitelliform dystrophy
★ **Drug toxicity, especially…**

Finally: The book emphasizes another condition (not on this list—yet) as being high on the DDx for dry ARMD—what is it?
Dry ARMD

ARMD

OHS

Angioid streaks

Pathologic myopia

Idiopathic

Sorsby macular dystrophy

Traumatic choroidal rupture

Iatrogenic

Central serous chorioretinopathy

Pattern dystrophy

Vitelliform dystrophy

Drug toxicity, especially...hydroxychloroquine

Finally: The book emphasizes another condition (not on this list—yet) as being high on the DDx for dry ARMD—what is it?
Dry ARMD

- CNVM
- DDx:
 - ARMD
 - OHS
 - Angioid streaks
 - Pathologic myopia

Finally: The book emphasizes another condition (not on this list—yet) as being high on the DDx for dry ARMD—what is it?

Plaquenil maculopathy is covered in slide-set R25

- Sorsby macular dystrophy
- Traumatic choroidal rupture
- Iatrogenic
- Central serous chorioretinopathy
- Pattern dystrophy
- Vitelliform dystrophy
- Drug toxicity, especially...hydroxychloroquine
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations

Age is the strongest risk factor for ARMD

The clinical hallmark of ARMD is the presence of drusen in the macula

There are two types: Nonexudative and exudative

Abnormalities in ARMD are typical
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

- **Age** is the strongest risk factor for ARMD.
- The clinical hallmark of ARMD is the presence of drusen in the macula.
- There are two types: *Nonexudative* and *exudative*.
- RPE abnormalities in ARMD are typical.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

The two RPE changes most typical of ARMD are:
--Atrophy (we knew this one already because of GA)
--Focal
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

The two RPE changes most typical of ARMD are:
-- Atrophy (we knew this one already because of GA)
-- Focal hyperpigmentation
ARMD: RPE hyperpigmentation
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

- **Age** is the strongest risk factor for ARMD.
- The clinical hallmark of ARMD is the presence of drusen in the macula.
- There are two types: Nonexudative and exudative.
- RPE abnormalities in ARMD are typical.
- in ARMD are abnormal as well.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

What’s abnormal about the photoreceptors (PRs) in ARMD?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

What’s abnormal about the photoreceptors (PRs) in ARMD? They are reduced in density (ie, they die off).
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types:

- Nonexudative
- Exudative

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

What’s abnormal about the photoreceptors (PRs) in ARMD?
They are reduced in density (ie, they die off).

Do the RPE abnormalities cause the PR abnormalities?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

What’s abnormal about the photoreceptors (PRs) in ARMD?
They are reduced in density (ie, they die off)

Do the RPE abnormalities cause the PR abnormalities?
I’s not clear how changes in the RPE and PR are causally linked to one another.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

What’s abnormal about the photoreceptors (PRs) in ARMD?
They are reduced in density (ie, they die off)

Do the RPE abnormalities cause the PR abnormalities?
I’s not clear how changes in the RPE and PR are causally linked to one another. That is, we don’t know for certain whether RPE damage leads to PR damage, or PR to RPE, or whether both result from some other cause.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: Nonexudative and exudative. RPE abnormalities in ARMD are typical. Photoreceptors in ARMD are abnormal as well.

What’s abnormal about the photoreceptors (PRs) in ARMD?
They are reduced in density (ie, they die off)

Do the RPE abnormalities cause the PR abnormalities?
It’s not clear how changes in the RPE and PR are causally linked to one another. That is, we don’t know for certain whether RPE damage leads to PR damage, or PR to RPE, or whether both result from some other cause.

Speaking of being unsure about causality in ARMD…
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations

Age is the strongest risk factor for ARMD

The clinical hallmark of ARMD is the presence of drusen in the macula

There are two types: *Nonexudative* and *exudative*

RPE abnormalities in ARMD are typical

Photoreceptors in ARMD are abnormal as well

So, changes in ARMD include:
--Basal laminar/linear deposits accumulate
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: **Nonexudative** and **exudative**.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

So, changes in ARMD include:
--Basal laminar/linear deposits accumulate
--Ultrastructural changes in the pigment epithelium include loss of melanin granules, formation of lipofuscin granules, and accumulation of residual bodies.

No question—advance when ready.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

So, changes in ARMD include:
- Basal laminar/linear deposits accumulate
- Ultrastructural changes in the pigment epithelium include loss of melanin granules, formation of lipofuscin granules, and accumulation of residual bodies
- Photoreceptors are reduced in density and distribution
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

So, changes in ARMD include:
--Basal laminar/linear deposits accumulate
--Ultrastructural changes in the pigment epithelium include loss of melanin granules, formation of lipofuscin granules, and accumulation of residual bodies
--Photoreceptors are reduced in density and distribution

Which if any of these can occur as part of the normal aging process?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

So, changes in ARMD include:
--Basal laminar/linear deposits accumulate
--Ultrastructural changes in the pigment epithelium include loss of melanin granules, formation of lipofuscin granules, and accumulation of residual bodies
--Photoreceptors are reduced in density and distribution.

Which if any of these can occur as part of the normal aging process?
All of them. This is one of the challenges of ARMD—finding a bright line between its pathologic changes and those associated with normal aging.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of **drusen** in the macula.

There are two types: **Nonexudative** and **exudative**.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

So, changes in ARMD include:

-- Basal laminar/linear deposits accumulate
-- Ultrastructural changes in the pigment epithelium include loss of melanin granules, formation of lipofuscin granules, and accumulation of residual bodies
-- Photoreceptors are reduced in density and distribution.

Which if any of these can occur as part of the normal aging process? All of them. This is one of the challenges of ARMD—finding a bright line between its pathologic changes and those associated with normal aging. Normal aging changes can be observed in the outer retina, RPE, Bruch’s membrane, and choriocapillaris, and many of these changes are difficult to separate from those seen in ARMD.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: *Nonexudative* and *exudative*.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

The pathogenesis of ARMD is not well understood; that said, the complement system is strongly implicated in it.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations

Age is the strongest risk factor for ARMD

The clinical hallmark of ARMD is the presence of drusen in the macula

There are two types: Nonexudative and exudative

RPE abnormalities in ARMD are typical

Photoreceptors in ARMD are abnormal as well

The pathogenesis of ARMD is not well understood; that said, the complement system is strongly implicated in it
Age-related macular degeneration (ARMD) is the #1 cause of blindness in adults age 50+ in resource-rich nations. Age is the strongest risk factor for ARMD. The clinical hallmark of ARMD is the presence of drusen in the macula. There are two types: Nonexudative and exudative. Retinal pigment epithelial (RPE) abnormalities in ARMD are typical. Photoreceptors in ARMD are abnormal as well. The pathogenesis of ARMD is not well understood; that said, the complement system is strongly implicated in it.

What is the complement system?
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

The pathogenesis of ARMD is not well understood; that said, the complement system is strongly implicated in it.

What is the complement system?
To answer this, we need to unpack the notion of the immune response...
What are the two fundamental immune responses?
What are the two fundamental immune responses?
Immune response

Innate
aka... immunity

Adaptive
aka... immunity

What word is used to capture the essence of each?
Immune response

Innate
aaka...natural immunity

Adaptive
aka...acquired immunity

What word is used to capture the essence of each?
Immune response

Innate
aka...**natural** immunity
provide immediate protection

Adaptive
aka...**acquired** immunity
provide immediate protection

Which provides immediate protection against antigens deemed threatening?
Immune response

Innate
aka…natural immunity
Does **not** provide immediate protection

Adaptive
aka…acquired immunity
Does **not** provide immediate protection

Which provides immediate protection against antigens deemed threatening?
Immune response

Innate
aka **natural** immunity

Adaptive
aka **acquired** immunity

Does provide immediate protection

Does not provide immediate protection

 require previous contact with the threat

 require previous contact with the threat

Which must have previous experience with an antigen to gain the capacity to neutralize it?
<table>
<thead>
<tr>
<th>Innate</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>aka...natural immunity</td>
<td>aka...acquired immunity</td>
</tr>
<tr>
<td>Does provide immediate protection</td>
<td>Does not provide immediate protection</td>
</tr>
<tr>
<td>Does not require previous contact with the threat</td>
<td>Does require previous contact with the threat</td>
</tr>
</tbody>
</table>

Which must have previous experience with an antigen to gain the capacity to neutralize it?
Immune response

Innate
aka…natural immunity

Does **not** provide immediate protection

Does **not** require previous contact with the threat

Primary effector cells:
--?
--?

Adaptive
aka…acquired immunity

Does **not** provide immediate protection

Does **require** previous contact with the threat

Primary effector cells:
--?
--?

What are the primary effector cells for each?
Immune response

Innate

aka...natural immunity

Does not provide immediate protection

Does not require previous contact with the threat

Primary effector cells:
--PMNs
--Monocytes/macrophages

Adaptive

aka...acquired immunity

Does not provide immediate protection

Does require previous contact with the threat

Primary effector cells:
--T cells
--B cells

What are the primary effector cells for each?
Immune response

Innate

aka... **natural** immunity

- PMNs
- Monocytes/macrophages

Adaptive

aka... **acquired** immunity

- T cells
- B cells

The *innate* (or *natural*) *immune response* relies on ‘preprogrammed’ immune cells to recognize foreign material encountered in tissue or blood, whereas the *adaptive* (or *acquired*) *immune response* involves ‘education,’ with surveillance cells learning to recognize and remember foreign material.
The innate (or natural) immune response relies on ‘preprogrammed’ immune cells to recognize foreign material encountered in tissue or blood, whereas the adaptive (or acquired) immune response involves ‘education,’ with surveillance cells learning to recognize and remember foreign material. All that said, neither response type is adequate in and of itself to produce an effective immune response. Instead, both rely on inflammatory mediator—host-generated substances that act as force-multipliers for innate and/or adaptive immune responses.

Primary effector cells:
- PMNs
- Monocytes/macrophages

Primary effector cells:
- T cells
- B cells
The *innate* (or *natural*) *immune response* relies on ‘preprogrammed’ immune cells to recognize foreign material encountered in tissue or blood, whereas the *adaptive* (or *acquired*) *immune response* involves ‘education,’ with surveillance cells learning to recognize and remember foreign material. All that said, neither response type is adequate in and of itself to produce an effective immune response. Instead, both rely on *inflammatory mediators*—host-generated substances that act as force-multipliers for innate and/or adaptive immune responses.

Primary effector cells:
- PMNs
- Monocytes/macrophages

Primary effector cells:
- T cells
- B cells
The *innate* (or *natural*) immune response relies on ‘preprogrammed’ immune cells to recognize foreign material encountered in tissue or blood, whereas the *adaptive* (or *acquired*) immune response involves ‘education,’ with surveillance cells learning to recognize and remember foreign material. All that said, *neither* response type is adequate in and of itself to produce an effective immune response. Instead, both rely on *inflammatory mediators*—host-generated substances that act as force-multipliers for innate and/or adaptive immune responses. Inflammatory mediators can be a single molecule, or a complex enzymatic cascade.

Primary effector cells:
--PMNs
--Monocytes/macrophages

Primary effector cells:
--T cells
--B cells
The *innate* (or *natural*) immune response relies on ‘preprogrammed’ immune cells to recognize foreign material encountered in tissue or blood, whereas the *adaptive* (or *acquired*) immune response involves ‘education,’ with surveillance cells learning to recognize and remember foreign material. All that said, *neither* response type is adequate in and of itself to produce an effective immune response. Instead, both rely on *inflammatory mediators*—host-generated substances that act as force-multipliers for innate and/or adaptive immune responses. *Inflammatory mediators can be a single molecule.*

What would be an example of a single-molecule inflammatory mediator?

--?

--?

--?

(list not exhaustive obv)
The innate (or natural) immune response relies on ‘preprogrammed’ immune cells to recognize foreign material encountered in tissue or blood, whereas the adaptive (or acquired) immune response involves ‘education,’ with surveillance cells learning to recognize and remember foreign material. All that said, neither response type is adequate in and of itself to produce an effective immune response. Instead, both rely on inflammatory mediators—host-generated substances that act as force-multipliers for innate and/or adaptive immune responses. **Inflammatory mediators can be a single molecule**

What would be an example of a single-molecule inflammatory mediator?

--Histamine
--Cytokines
--PMN degranulation products
(list not exhaustive obv)
The innate (or natural) immune response relies on ‘preprogrammed’ immune cells to recognize foreign material encountered in tissue or blood, whereas the adaptive (or acquired) immune response involves ‘education,’ with surveillance cells learning to recognize and remember foreign material. All that said, neither response type is adequate in and of itself to produce an effective immune response. Instead, both rely on inflammatory mediators—host-generated substances that act as force-multipliers for innate and/or adaptive immune responses. Inflammatory mediators can be a single molecule, or a complex enzymatic cascade.

What would be an example of a single-molecule inflammatory mediator?

What is the classic example of a complex, enzymatic-cascade inflammatory mediator (and the reason for this long detour on our ARMD journey)?
The innate (or natural) immune response relies on ‘preprogrammed’ immune cells to recognize foreign material encountered in tissue or blood, whereas the adaptive (or acquired) immune response involves ‘education,’ with surveillance cells learning to recognize and remember foreign material. All that said, neither response type is adequate in and of itself to produce an effective immune response. Instead, both rely on inflammatory mediators—host-generated substances that act as force-multipliers for innate and/or adaptive immune responses. Inflammatory mediators can be a single molecule, or a complex enzymatic cascade.

What would be an example of a single-molecule inflammatory mediator?

- Histamine
- Cytokines
- PMN degranulation products

What is the classic example of a complex, enzymatic-cascade inflammatory mediator (and the reason for this long detour on our ARMD journey)?

The complement cascade
The innate (or natural) immune response relies on ‘preprogrammed’ immune cells to recognize foreign material encountered in tissue or blood, whereas the adaptive (or acquired) immune response involves ‘education,’ with surveillance cells learning to recognize and remember foreign material. All that said, neither response type is adequate in and of itself to produce an effective immune response. Instead, both rely on inflammatory mediators—host-generated substances that act as force-multipliers for innate and/or adaptive immune responses. Inflammatory mediators can be a single molecule, or a complex enzymatic cascade.

What would be an example of a single-molecule inflammatory mediator? **Histamine**

What is the classic example of a complex, enzymatic-cascade inflammatory mediator (and the reason for this long detour on our ARMD journey)? **The complement cascade.** Activation of the complement cascade results in cellular damage that is central in the pathogenesis of both dry and wet forms of ARMD.
The innate (or natural) immune response relies on ‘preprogrammed’ immune cells to recognize foreign material encountered in tissue or blood, whereas the adaptive (or acquired) immune response involves ‘education,’ with surveillance cells learning to recognize and remember foreign material. All that said, neither response type is adequate in and of itself to produce an effective immune response. Instead, both rely on inflammatory mediators—host-generated substances that act as force-multipliers for innate and/or adaptive immune responses. Inflammatory mediators can be a single molecule, or a complex enzymatic cascade.

What would be an example of a single-molecule inflammatory mediator?

--Histamine
--Cytokines
--PMN degranulation products (list not exhaustive obv)

What is the classic example of a complex, enzymatic-cascade inflammatory mediator (and the reason for this long detour on our ARMD journey)?

The complement cascade. Activation of the complement cascade results in cellular damage that is central in the pathogenesis of both dry and wet forms of ARMD.

The complement cascade is indeed complex, with components comprising different pathways.
The innate (or natural) immune response relies on ‘preprogrammed’ immune cells to recognize foreign material encountered in tissue or blood, whereas the adaptive (or acquired) immune response involves ‘education,’ with surveillance cells learning to recognize and remember foreign material. All that said, neither response type is adequate in and of itself to produce an effective immune response. Instead, both rely on inflammatory mediators—host-generated substances that act as force-multipliers for innate and/or adaptive immune responses. Inflammatory mediators can be a single molecule, or a complex enzymatic cascade.

What would be an example of a single-molecule inflammatory mediator?

--Histamine
--Cytokines
--PMN degranulation products
(list not exhaustive obv)

What is the classic example of a complex, enzymatic-cascade inflammatory mediator (and the reason for this long detour on our ARMD journey)?

The complement cascade. Activation of the complement cascade results in cellular damage that is central in the pathogenesis of both dry and wet forms of ARMD.

The complement cascade is indeed complex, with 30+ components comprising three different pathways.
The innate (or natural) immune response relies on ‘preprogrammed’ immune cells to recognize foreign material encountered in tissue or blood, whereas the adaptive (or acquired) immune response involves ‘education,’ with surveillance cells learning to recognize and remember foreign material. All that said, neither response type is adequate in and of itself to produce an effective immune response. Instead, both rely on inflammatory mediators—host-generated substances that act as force-multipliers for innate and/or adaptive immune responses. Inflammatory mediators can be a single molecule, or a complex enzymatic cascade.

What would be an example of a single-molecule inflammatory mediator?

What is the classic example of a complex, enzymatic-cascade inflammatory mediator (and the reason for this long detour on our ARMD journey)?

The complement cascade. Activation of the complement cascade results in cellular damage that is central in the pathogenesis of both dry and wet forms of ARMD.

The complement cascade is indeed complex, with 30+ components comprising three different pathways. But of all these, there is one specific factor particularly important in ARMD pathogenesis. The point being, if you remember nothing else from this sidebar, remember this factor. Which one?
The innate (or natural) immune response relies on ‘preprogrammed’ immune cells to recognize foreign material encountered in tissue or blood, whereas the adaptive (or acquired) immune response involves ‘education,’ with surveillance cells learning to recognize and remember foreign material. All that said, neither response type is adequate in and of itself to produce an effective immune response. Instead, both rely on inflammatory mediators—host-generated substances that act as force-multipliers for innate and/or adaptive immune responses. Inflammatory mediators can be a single molecule, or a complex enzymatic cascade.

What would be an example of a single-molecule inflammatory mediator?
- Histamine
- Cytokines
- PMN degranulation products

What is the classic example of a complex, enzymatic-cascade inflammatory mediator (and the reason for this long detour on our ARMD journey)?
The complement cascade. Activation of the complement cascade results in cellular damage that is central in the pathogenesis of both dry and wet forms of ARMD.

The complement cascade is indeed complex, with 30+ components comprising three different pathways. But of all these, there is one specific factor particularly important in ARMD pathogenesis. The point being, if you remember nothing else from this sidebar, remember this factor. Which one? Complement factor H (CFH).
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

The pathogenesis of ARMD is not well understood; that said, the complement system is strongly implicated in it.

VEGF plays a key role in exudative ARMD.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

The pathogenesis of ARMD is not well understood; that said, the complement system is strongly implicated in it.

VEGF plays a key role in exudative ARMD.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

The pathogenesis of ARMD is not well understood; that said, the complement system is strongly implicated in it.

VEGF plays a key role in exudative ARMD.

Let's drill down on VEGF for a bit...
What does VEGF stand for?

VEGF-A$_{165}$
What does VEGF stand for?
Vascular endothelial growth factor

VEGF-A$_{165}$
What does VEGF stand for?
Vascular endothelial growth factor

What is a growth factor?
One of a diverse group of proteins that affect cell function, including cell proliferation and tissue differentiation.

What are some other growth factors of note regarding ocular development and health?
-- Epidermal growth factor
-- Fibroblast growth factor(s)
-- Transforming growth factor β(s)
-- Insulin-like growth factor(s)
What does VEGF stand for?
Vascular endothelial growth factor

What is a growth factor?
One of a diverse group of proteins that affect cell function, including cell proliferation and tissue differentiation
What does VEGF stand for?
Vascular endothelial growth factor

What is a growth factor?
One of a diverse group of proteins that affect cell function, including cell proliferation and tissue differentiation

What are some other growth factors of note regarding ocular development and health?
--?
--?
--?
--?
What does VEGF stand for?
Vascular endothelial growth factor

What is a growth factor?
One of a diverse group of proteins that affect cell function, including cell proliferation and tissue differentiation

What are some other growth factors of note regarding ocular development and health?
--Epidermal growth factor
--Fibroblast growth factor(s)
--Transforming growth factor β(s)
--Insulin-like growth factor(s)

VEGF-A₁₆₅
What does VEGF stand for?
Vascular endothelial growth factor

What is a growth factor?
One of a diverse group of proteins that affect cell function, including cell proliferation and tissue differentiation.

What are some other growth factors of note regarding ocular development and health?
--Epidermal growth factor
--Fibroblast growth factor(s)
--Transforming growth factor β(s)
--Insulin-like growth factor(s)

When you hear ‘transforming growth factor β,’ a particular type of condition should spring to mind.

hint
What does VEGF stand for?
Vascular endothelial growth factor

What is a growth factor?
One of a diverse group of proteins that affect cell function, including cell proliferation and tissue differentiation

What are some other growth factors of note regarding ocular development and health?
-- Epidermal growth factor
-- Fibroblast growth factor(s)
-- **Transforming growth factor β(s)**
-- Insulin-like growth factor(s)

When you hear ‘transforming growth factor β,’ a particular type of corneal condition should spring to mind.
What does VEGF stand for?
Vascular endothelial growth factor

What is a growth factor?
One of a diverse group of proteins that affect cell function, including cell proliferation and tissue differentiation

What are some other growth factors of note regarding ocular development and health?
--Epidermal growth factor
--Fibroblast growth factor(s)
--Transforming growth factor β(s)
--Insulin-like growth factor(s)

When you hear ‘transforming growth factor β,’ a particular type of corneal condition should spring to mind. Which one?
What does VEGF stand for?
Vascular endothelial growth factor

What is a growth factor?
One of a diverse group of proteins that affect cell function, including cell proliferation and tissue differentiation

What are some other growth factors of note regarding ocular development and health?
--Epidermal growth factor
--Fibroblast growth factor(s)
--Transforming growth factor β(s)
--Insulin-like growth factor(s)

When you hear ‘transforming growth factor β,’ a particular type of corneal condition should spring to mind. Which one?
Corneal dystrophy, specifically, the so-called transforming growth factor β–induced (TGFBI) dystrophies

There are # TGFBI dystrophies
What does VEGF stand for?
Vascular endothelial growth factor

What is a growth factor?
One of a diverse group of proteins that affect cell function, including cell proliferation and tissue differentiation

What are some other growth factors of note regarding ocular development and health?
--Epidermal growth factor
--Fibroblast growth factor(s)
--Transforming growth factor β(s)
--Insulin-like growth factor(s)

When you hear ‘transforming growth factor β,’ a particular type of corneal condition should spring to mind. Which one?
Corneal dystrophy, specifically, the so-called transforming growth factor β-induced (TGFBI) dystrophies

There are six TGFBI dystrophies
What does VEGF stand for?
Vascular endothelial growth factor

What is a growth factor?
One of a diverse group of proteins that affect cell function, including cell proliferation and tissue differentiation.

What are some other growth factors of note regarding ocular development and health?
--Epidermal growth factor
--Fibroblast growth factor(s)
--Transforming growth factor β(s)
--Insulin-like growth factor(s)

When you hear ‘transforming growth factor β,’ a particular type of corneal condition should spring to mind. Which one?
Corneal dystrophy, specifically, the so-called transforming growth factor β–induced (TGFBI) dystrophies

There are six TGFBI dystrophies—what are they? (Note: The Cornea book treats four subtypes as a single dystrophy, and they are treated the same way in the list below.)
1)
2)
3)
4)
5)
6)

What does VEGF stand for?
Vascular endothelial growth factor

What is a growth factor?
One of a diverse group of proteins that affect cell function, including cell proliferation and tissue differentiation.

What are some other growth factors of note regarding ocular development and health?
--Epidermal growth factor
--Fibroblast growth factor(s)
--Transforming growth factor β(s)
--Insulin-like growth factor(s)

When you hear ‘transforming growth factor β,’ a particular type of corneal condition should spring to mind. Which one?
Corneal dystrophy, specifically, the so-called transforming growth factor β–induced (TGFBI) dystrophies

There are six TGFBI dystrophies—what are they? (Note: The Cornea book treats four subtypes as a single dystrophy, and they are treated the same way in the list below.)
1) Reis-Bücklers
2) Thiel-Behnke
3) Lattice, type 1
4) Lattice, variant types (III, IIIA, I/IIIA, IV)
5) Granular type 1
6) Granular type 2
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

Does VEGF do anything besides grow new blood vessels?
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

Does VEGF do anything besides grow new blood vessels?
Yes, it also is a potent vasodilator (it was known originally as vascular permeability factor).
What does VEGF stand for? Vascular endothelial growth factor

Broadly speaking, what is VEGF? An extracellular signaling protein involved in vascular development

Does VEGF do anything besides grow new blood vessels? Yes, it also is a potent vasodilator (it was known originally as vascular permeability factor). This property is important in the development of diabetic macular edema, which explains the effectiveness of anti-VEGF therapies in the treatment of this condition.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?

VEGF-A$_{165}$
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells

In a nutshell, what sort of structure is the VEGFR?

Are there multiple subtypes of VEGFRs?
Yes. VEGF-A binds to two: VEGFR-1 and VEGFR-2.

Is one of these more important in the pathogenesis of ARMD?
Yes, VEGFR-2 seems to be responsible for all of the findings in ARMD.
The function of VEGFR-1 is unclear at this time.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR)

In a nutshell, what sort of structure is the VEGFR?
It is a so-called ‘transmembrane receptor tyrosine kinase structures’ (if nothing else, make sure you hold onto the term tyrosine kinase in connection to the VEGFRs)

Are there multiple subtypes of VEGFRs?
Yes. VEGF-A binds to two: VEGFR-1 and VEGFR-2.
Is one of these more important in the pathogenesis of ARMD?
Yes, VEGFR-2 seems to be responsible for all of the findings in ARMD.
The function of VEGFR-1 is unclear at this time.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development.

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells.

In a nutshell, what sort of structure is the VEGFR?
It is a so-called ‘transmembrane receptor tyrosine kinase structures’ (if nothing else, make sure you hold onto the term tyrosine kinase in connection to the VEGFRs).

Are there multiple subtypes of VEGFRs?
Yes. VEGF-A binds to two: VEGFR-1 and VEGFR-2. One of these is more important in the pathogenesis of ARMD.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells

In a nutshell, what sort of structure is the VEGFR?
It is a so-called ‘transmembrane receptor tyrosine kinase structures’ (if nothing else, make sure you hold onto the term tyrosine kinase in connection to the VEGFRs)

Are there multiple subtypes of VEGFRs?
Yes. VEGF-A binds to two: VEGFR-1 and VEGFR-2.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development.

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR).

In a nutshell, what sort of structure is the VEGFR?
It is a so-called ‘transmembrane receptor tyrosine kinase structures’ (if nothing else, make sure you hold onto the term tyrosine kinase in connection to the VEGFRs).

Are there multiple subtypes of VEGFRs?
Yes. VEGF-A binds to two: VEGFR-1 and VEGFR-2.

Is one of these more important in the pathogenesis of ARMD?
Yes, VEGFR-2 seems to be responsible for all of the findings in ARMD.
The function of VEGFR-1 is unclear at this time.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development.

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells.

In a nutshell, what sort of structure is the VEGFR?
It is a so-called ‘transmembrane receptor tyrosine kinase structures’ (if nothing else, make sure you hold onto the term tyrosine kinase in connection to the VEGFRs).

Are there multiple subtypes of VEGFRs?
Yes. VEGF-A binds to two: VEGFR-1 and VEGFR-2.

Is one of these more important in the pathogenesis of ARMD?
Yes, VEGFR-2 seems to be responsible for all of the findings in ARMD.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR).

In a nutshell, what sort of structure is the VEGFR?
It is a so-called ‘transmembrane receptor tyrosine kinase structures’
(if nothing else, make sure you hold onto the term tyrosine kinase in connection to the VEGFRs)

Are there multiple subtypes of VEGFRs?
Yes. VEGF-A binds to two: VEGFR-1 and VEGFR-2.

Is one of these more important in the pathogenesis of ARMD?
Yes, VEGFR-2 seems to be responsible for all of the findings in ARMD.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development.

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells.

In a nutshell, what sort of structure is the VEGFR?
It is a so-called ‘transmembrane receptor tyrosine kinase structures’ (if nothing else, make sure you hold onto the term tyrosine kinase in connection to the VEGFRs).

Are there multiple subtypes of VEGFRs?
Yes. VEGF-A binds to two: VEGFR-1 and VEGFR-2.

Is one of these more important in the pathogenesis of ARMD?
Yes, VEGFR-2 seems to be responsible for all of the findings in ARMD. The function of VEGFR-1 is unclear at this time.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells

What does the A signify?
VEGF is not a single entity—a number of similar-but-different proteins comprise the ‘VEGF family.’ These are differentiated as VEGF-A through VEGF-F.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells

What does the A signify?
VEGF is not a single entity—a number of similar-but-different proteins comprise the ‘VEGF family.’ These are differentiated as VEGF-A through VEGF-F.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells

What does the A signify?
VEGF is not a single entity—a number of similar-but-different proteins comprise the ‘VEGF family.’ These are differentiated as VEGF-A through VEGF-F. (One family member, placental growth factor [PlGF], is the exception to the naming rule.)
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells

What does the A signify?
VEGF is not a single entity—a number of similar-but-different proteins comprise the ‘VEGF family.’ These are differentiated as VEGF-A through VEGF-F. (One family member, placental growth factor [PIGF], is the exception to the naming rule.)
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells

What does the A signify?
VEGF is not a single entity—a number of similar-but-different proteins comprise the ‘VEGF family.’ These are differentiated as VEGF-A through VEGF-F. (One family member, placental growth factor [PlGF], is the exception to the naming rule.) When the term VEGF is used in the ophthalmology literature without a sub-family designation, it is understood to mean VEGF-A.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells

What does the A signify?
VEGF is not a single entity—a number of similar-but-different proteins comprise the ‘VEGF family.’ These are differentiated as VEGF-A through VEGF-F. (One family member, *placental growth factor* [PlGF], is the exception to the naming rule.) When the term VEGF is used in the ophthalmology literature without a sub-family designation, it is understood to mean VEGF-A.

What does 165 signify?
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells

What does the A signify?
VEGF is not a single entity—a number of similar-but-different proteins comprise the ‘VEGF family.’ These are differentiated as VEGF-A through VEGF-F. (One family member, *placental growth factor* [PlGF], is the exception to the naming rule.) When the term VEGF is used in the ophthalmology literature without a sub-family designation, it is understood to mean VEGF-A.

What does VEGF-A 165 signify?
VEGF-A is not a single entity either. At least 4 isoforms exist; these differ in the number of peptides they contain, and that number is used as a subscript to identify specific isoforms.
What does **VEGF** stand for?
Vascular endothelial growth factor

Broadly speaking, what is **VEGF**?
An extracellular signaling protein involved in vascular development

How does **VEGF** work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells

What does the **A** signify?
VEGF is not a single entity—a number of similar-but-different proteins comprise the ‘VEGF family.’ These are differentiated as VEGF-A through VEGF-F. (One family member, *placental growth factor* [PlGF], is the exception to the naming rule.) When the term **VEGF** is used in the ophthalmology literature without a sub-family designation, it is understood to mean VEGF-A.

What does **165** signify?
VEGF-A is not a single entity either. At least 4 isoforms exist; these differ in the number of peptides they contain, and that number is used as a subscript to identify specific isoforms.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells

What does the A signify?
VEGF is not a single entity—a number of similar-but-different proteins comprise the ‘VEGF family.’ These are differentiated as VEGF-A through VEGF-F. (One family member, *placental growth factor* [PlGF], is the exception to the naming rule.) When the term *VEGF* is used in the ophthalmology literature without a sub-family designation, it is understood to mean VEGF-A.

What does 165 signify?
VEGF-A is not a single entity either. At least 4 isoforms exist; these differ in the number of peptides they contain, and that number is used as a subscript to identify specific isoforms.

Why focus on isoform 165?
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells

What does the A signify?
VEGF is not a single entity—a number of similar-but-different proteins comprise the ‘VEGF family.’ These are differentiated as VEGF-A through VEGF-F. (One family member, placental growth factor [PlGF], is the exception to the naming rule.) When the term VEGF is used in the ophthalmology literature without a sub-family designation, it is understood to mean VEGF-A.

VEGF-A_{165}

What does 165 signify?
VEGF-A is not a single entity either. At least 4 isoforms exist; these differ in the number of peptides they contain, and that number is used as a subscript to identify specific isoforms.

Why focus on isoform 165?
It seems to be the most important with respect to pathologic angiogenesis in the human eye.
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors on target cells

How strong is the evidence implicating VEGF in ARMD?
Very. Elevated VEGF levels are found within the RPE and vitreous of eyes with early ARMD, and within excised choroidal neovascular membranes. The Retina book goes so far as to say the evidence suggests “a causal role for VEGF in the initiation of neovascularization” in ARMD.

What does the A signify?
VEGF is not a single entity—a number of similar-but-different proteins comprise the ‘VEGF family.’ These are differentiated as VEGF-A through VEGF-F. (One family member, placental growth factor [PlGF], is the exception to the naming rule.) When the term VEGF is used in the ophthalmology literature without a sub-family designation, it is understood to mean VEGF-A.

What does 165 signify?
VEGF-A is not a single entity either. At least 4 isoforms exist; these differ in the number of peptides they contain, and that number is used as a subscript to identify specific isoforms.

Why focus on isoform 165?
It seems to be the most important with respect to pathologic angiogenesis in the human eye.

VEGF-A

ARMD
What does VEGF stand for?
Vascular endothelial growth factor

Broadly speaking, what is VEGF?
An extracellular signaling protein involved in vascular development

How does VEGF work?
Extracellular VEGF binds to VEGF receptors (VEGFR) on target cells

How strong is the evidence implicating VEGF in ARMD?
Very. Elevated VEGF levels are found within the RPE and vitreous of eyes with early ARMD, and within excised choroidal neovascular membranes.

What does the A signify?
VEGF is not a single entity—a number of similar-but-different proteins comprise the ‘VEGF family.’ These are differentiated as VEGF-A through VEGF-F. (One family member, placental growth factor [PlGF], is the exception to the naming rule.) When the term VEGF is used in the ophthalmology literature without a sub-family designation, it is understood to mean VEGF-A.

What does 165 signify?
VEGF-A is not a single entity either. At least 4 isoforms exist; these differ in the number of peptides they contain, and that number is used as a subscript to identify specific isoforms.

Why focus on isoform 165?
It seems to be the most important with respect to pathologic angiogenesis in the human eye.
What does VEGF stand for? Vascular endothelial growth factor

Broadly speaking, what is VEGF? An extracellular signaling protein involved in vascular development

How strong is the evidence implicating VEGF in ARMD? Very. Elevated VEGF levels are found within the RPE and vitreous of eyes with early ARMD, and within excised choroidal neovascular membranes. The Retina book goes so far as to say the evidence suggests “a causal role for VEGF in the initiation of neovascularization” in ARMD.

What does 165 signify? VEGF-A is not a single entity either. At least 4 isoforms exist; these differ in the number of peptides they contain, and that number is used as a subscript to identify specific isoforms.

Why focus on isoform 165? It seems to be the most important with respect to pathologic angiogenesis in the human eye.
Age-related macular degeneration (ARMD) affects 1 million Americans ages 65 and older and is the leading cause of adult blindness. The most significant risk factor is age, with the risk increasing as individuals age. The first symptom usually involves the presence of drusen in the macula, the central part of the retina that controls central vision. There are two types of ARMD: nonexudative and exudative. Nonexudative ARMD is more common and can cause vision loss over time, while exudative ARMD is less common but can cause sudden vision loss. Retinal pigment epithelium (RPE) abnormalities and photoreceptor abnormalities are typical in ARMD. The pathogenesis of ARMD is not well understood, but the complement system and vascular endothelial growth factor (VEGF) play important roles. Interdicting VEGF is key in managing exudative ARMD.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations

Age is the strongest risk factor for ARMD

The clinical hallmark of ARMD is the presence of drusen in the macula

There are two types: *Nonexudative* and *exudative*

RPE abnormalities in ARMD are typical

Photoreceptors in ARMD are abnormal as well

The pathogenesis of ARMD is not well understood; that said, the *complement* system is strongly implicated in it

VEGF plays a key role in exudative ARMD; likewise, interdicting **VEGF** is key in managing it
(This is a good point in the set to take a break)
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

The pathogenesis of ARMD is not well understood; that said, the complement system is strongly implicated in it.

VEGF plays a key role in exudative ARMD; likewise, interdicting VEGF is key in managing it.

Next let’s drill down on anti-VEGF therapy…
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.
Ranibizumab *is a* recombinant, humanized, affinity-matured, monoclonal antibody fragment.
Ranibizumab is the generic, nonproprietary name. What is the brand name for this drug?

Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.
Ranibizumab is the generic, nonproprietary name. What is the brand name for this drug? Lucentis

Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean?

Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean? That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean?
That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean?
Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean?
That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean?
Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such.

ARMD
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean?
That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean?
Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean? That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean? Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What does affinity-matured mean? Affinity maturation is a process in which antibody-producing cells are repeatedly exposed to the antigen of interest, resulting in antibody crops with progressively greater affinity for the antigen.

ARMD
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean?
That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean?
Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What does affinity-matured mean?
Affinity maturation is a process in which antibody-producing cells are repeatedly exposed to the antigen of interest, resulting in antibody crops with progressively greater affinity for the antigen.

ARMD
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean? That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean? Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What does affinity-matured mean? Affinity maturation is a process in which antibody-producing cells are repeatedly exposed to the antigen of interest, resulting in antibody crops with progressively greater affinity for the antigen.

What is a monoclonal antibody? Antibodies produced by a set of immune cells that all derived from (i.e., clones of) the same parent cell.

ARMD
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean? That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean? Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What is a monoclonal antibody? Antibodies produced by a set of immune cells that all derived from (i.e., clones of) the same parent cell.

What does affinity-matured mean? Affinity maturation is a process in which antibody-producing cells are repeatedly exposed to the antigen of interest, resulting in antibody crops with progressively greater affinity for the antigen.

ARMD
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean?
That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean?
Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What does affinity-matured mean?
Affinity maturation is a process in which antibody-producing cells are repeatedly exposed to the antigen of interest, resulting in antibody crops with progressively greater affinity for the antigen.

What is a monoclonal antibody?
Antibodies produced by a set of immune cells that all derived from (i.e., clones of) the same parent cell.

What does fragment mean in this context?
Ranibizumab is not a complete antibody; rather, it consists of a portion—or fragment—of an antibody.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean?
That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean?
Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What does affinity-matured mean?
Affinity maturation is a process in which antibody-producing cells are repeatedly exposed to the antigen of interest, resulting in antibody crops with progressively greater affinity for the antigen.

What is a monoclonal antibody?
Antibodies produced by a set of immune cells that all derived from (i.e., clones of) the same parent cell.

What does fragment mean in this context?
Ranibizumab is not a complete antibody; rather, it consists of a portion—or fragment—of an antibody.

What does ARMD mean?
Age-related macular degeneration.
What does recombinant mean? That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean? Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What does the suffix –mab indicate? That the drug is a monoclonal antibody.

What is a monoclonal antibody? Antibodies produced by a set of immune cells that all derived from (i.e., clones of) the same parent cell.

What does affinity-matured mean? Affinity maturation is a process in which antibody-producing cells are repeatedly exposed to the antigen of interest, resulting in antibody crops with progressively greater affinity for the antigen.

Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does fragment mean in this context? Ranibizumab is not a complete antibody; rather, it consists of a portion—or fragment—of an antibody.
Ranibizumab (mab) is a recombinant, humanized, affinity-matured monoclonal antibody fragment.

What does recombinant mean?
That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean?
Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What does the suffix –mab indicate?
That the drug is a monoclonal antibody.

What does affinity-matured mean?
Affinity maturation is a process in which antibody-producing cells are repeatedly exposed to the antigen of interest, resulting in antibody crops with progressively greater affinity for the antigen.

What is a monoclonal antibody?
Antibodies produced by a set of immune cells that all derived from (i.e., clones of) the same parent cell.

What does fragment mean in this context?
Ranibizumab is not a complete antibody; rather, it consists of a portion—or fragment—of an antibody.

What does ARMD mean?
Age-related macular degeneration.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean?
That the substance was produced via recombinant DNA; i.e., DNA created by recombining portions of 2+ different DNA molecules.

What does humanized mean?
Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What does the suffix –mab indicate?
That the drug is a monoclonal antibody.

What does the infix (yes, infix) –zu- indicate?
That the monoclonal antibody has been humanized.

What is a monoclonal antibody?
Antibodies produced by a set of immune cells that all derived from (i.e., clones of) the same parent cell.

What does fragment mean in this context?
Ranibizumab is not a complete antibody; rather, it consists of a portion—or fragment—of an antibody.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean?
That the substance was produced via recombinant DNA; i.e., DNA created by recombining portions of 2+ different DNA molecules.

What does humanized mean?
Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What does the suffix –mab indicate?
That the drug is a monoclonal antibody.

What does the infix (yes, infix) –zu- indicate?
That the monoclonal antibody has been humanized.

What is a monoclonal antibody?
Antibodies produced by a set of immune cells that all derived from (i.e., clones of) the same parent cell.

What does fragment mean in this context?
Ranibizumab is not a complete antibody; rather, it consists of a portion—or fragment—of an antibody.

What does affinity-matured mean?
Affinity maturation is a process in which antibody-producing cells are repeatedly exposed to the antigen of interest, resulting in antibody crops with progressively greater affinity for the antigen.

What does the suffix –mab indicate?
That the drug is a monoclonal antibody.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean? That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean? Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What does affinity-matured mean? Affinity maturation is a process in which antibody-producing cells are repeatedly exposed to the antigen of interest, resulting in antibody crops with progressively greater affinity for the antigen.

What does the suffix –mab indicate? That the drug is a monoclonal antibody.

What does the infix –zu- indicate? That the monoclonal antibody has been humanized.

What does fragment mean in this context? Ranibizumab is not a complete antibody; rather, it consists of a portion—or fragment—of an antibody.

Next we will take a deep dive into the key clinical trials that established the safety and effectiveness of ranibizumab in the tx of wet ARMD.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean?
That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean?
Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What does affinity-matured mean?
Affinity maturation is a process in which antibody-producing cells are repeatedly exposed to the antigen of interest, resulting in antibody crops with progressively greater affinity for the antigen.

What does the infix (yes, infix) –zu- indicate?
That the monoclonal antibody has been humanized.

What does the suffix –mab indicate?
That the drug is a monoclonal antibody.

What is a monoclonal antibody?
Antibodies produced by a set of immune cells that all derived from (i.e., clones of) the same parent cell.

What does the suffix –mab indicate?
That the drug is a monoclonal antibody.

What does the infix (yes, infix) –zu- indicate?
That the monoclonal antibody has been humanized.

What does fragment mean in this context?
Ranibizumab is not a complete antibody; rather, it consists of a portion—or fragment—of an antibody.

Next we will take a deep dive into the key clinical trials that established the safety and effectiveness of ranibizumab in the tx of wet ARMD. Dr Flynn, are we expected (by the authors of the OKAP, WQE and Boards) to know these trial by name? Yes you are. **Are we expected to be familiar with their outcomes, as well as the implications of those outcomes?** Yes you are.
What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?
What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?
What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

MARINA

What does MARINA stand for?

ANCHOR

What does ANCHOR stand for?
What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

What does MARINA stand for? Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab In the Treatment of Neovascular Age-Related Macular Degeneration

What does ANCHOR stand for? ANti-VEGF Antibody for the Treatment of Predominantly Classic CHORoidal Neovascularization in Age-Related Macular Degeneration
What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

MARINA

What does MARINA stand for?
Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab In the Treatment of Neovascular Age-Related Macular Degeneration

ANCHOR

What does ANCHOR stand for?
ANti-VEGF Antibody for the Treatment of Predominantly Classic CHORoidal Neovascularization in Age-Related Macular Degeneration

What was the dosing schedule?

ARMD
What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

MARINA

What does MARINA stand for? **Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab In the Treatment of Neovascular Age-Related Macular Degeneration**

One injection every month for 24 months

What was the dosing schedule?

ANCHOR

What does ANCHOR stand for? **ANti-VEGF Antibody for the Treatment of Predominantly Classic CHORoidal Neovascularization in Age-Related Macular Degeneration**

One injection every month for 24 months
What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

MARINA

What does MARINA stand for? Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab In the Treatment of Neovascular Age-Related Macular Degeneration

One injection every month for 24 months

What was the dosing schedule?

Was another intervention involved?

ANCHOR

What does ANCHOR stand for? ANti-VEGF Antibody for the Treatment of Predominantly Classic CHORoidal Neovascularization in Age-Related Macular Degeneration

One injection every month for 24 months

?
MARINA

What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

ANCHOR

What does MARINA stand for?
Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab In the Treatment of Neovascular Age-Related Macular Degeneration

What does ANCHOR stand for?
ANTI-VEGF Antibody for the Treatment of Predominantly Classic CHORoidal Neovascularization in Age-Related Macular Degeneration

One injection every month for 24 months

What was the dosing schedule?

One injection every month for 24 months

Was another intervention involved?

No (other than a sham inj group)

Yes—PDT. Participants received either sham injections + real PDT or sham PDT + real injections
MARINA

What was the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

What does MARINA stand for?
Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab In the Treatment of Neovascular Age-Related Macular Degeneration

<table>
<thead>
<tr>
<th>Dosing Schedule</th>
<th>Primary Outcome Measure</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>One injection every month for 24 months</td>
<td>?</td>
<td>Yes—PDT. Participants received either sham injections + real PDT or sham PDT + real injections</td>
</tr>
<tr>
<td>No (other than a sham inj group)</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

ANCHOR

What does ANCHOR stand for?
ANti-VEGF Antibody for the Treatment of Predominantly Classic CHORoidal Neovascularization in Age-Related Macular Degeneration

<table>
<thead>
<tr>
<th>Dosing Schedule</th>
<th>Primary Outcome Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>One injection every month for 24 months</td>
<td>?</td>
</tr>
</tbody>
</table>
What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

MARINA

What does MARINA stand for?
Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab In the Treatment of Neovascular Age-Related Macular Degeneration

One injection every month for 24 months

No (other than a sham inj group)

Proportion of patients losing <15 ETDRS letters

ANCHOR

What does ANCHOR stand for?
ANti-VEGF Antibody for the Treatment of Predominantly Classic CHORoidal Neovascularization in Age-Related Macular Degeneration

One injection every month for 24 months

Yes—PDT. Participants received either sham injections + real PDT or sham PDT + real injections

Proportion of patients losing <15 ETDRS letters

What was the dosing schedule?

Was another intervention involved?

What was the primary outcome measure?
MARINA: What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

What does MARINA stand for?
Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab In the Treatment of Neovascular Age-Related Macular Degeneration

ANCHOR: What does ANCHOR stand for?
ANti-VEGF Antibody for the Treatment of Predominantly Classic CHORoidal Neovascularization in Age-Related Macular Degeneration

One injection every month for 24 months

What was the dosing schedule?

One injection every month for 24 months

Was another intervention involved?

Yes—PDT. Participants received either sham injections + real PDT or sham PDT + real injections

Proportion of patients losing <15 ETDRS letters

What was the primary outcome measure?

Proportion of patients losing <15 ETDRS letters

What was the secondary outcome measure?

?
What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

MARINA

What does MARINA stand for?
Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab In the Treatment of Neovascular Age-Related Macular Degeneration

One injection every month for 24 months

No (other than a sham inj group)

Proportion of patients losing <15 ETDRS letters

Proportion of patients gaining >15 ETDRS letters

ANCHOR

What does ANCHOR stand for?
ANti-VEGF Antibody for the Treatment of Predominantly Classic CHORoidal Neovascularization in Age-Related Macular Degeneration

One injection every month for 24 months

Yes—PDT. Participants received either sham injections + real PDT or sham PDT + real injections

Proportion of patients losing <15 ETDRS letters

Proportion of patients gaining >15 ETDRS letters

What was the primary outcome measure?

What was the secondary outcome measure?

What was the dosing schedule?

Was another intervention involved?
MARINA

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YEAR ONE

RESULTS

ANCHOR

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARMD
MARINA

Evaluated ranibizumab for the treatment of minimally classic/occult CNVM. Either 0.3 and 0.5 mg by intravitreal injection (or sham injections). One injection every month for 24 months.

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>95%</td>
<td>95%</td>
<td>62%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANCHOR

Evaluated ranibizumab for the treatment of predominantly classic CNVM. Either 0.3 and 0.5 mg by intravitreal injection (or PDT injections). One injection every month for 24 months.

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>94%</td>
<td>96%</td>
<td>64%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Marina evaluated ranibizumab for the treatment of minimally classic/occult CNVM. Either 0.3 and 0.5 mg by intravitreal injection (or sham injections). One injection every month for 24 months. 0.3 mg 0.5 mg Sham

Loss <15 letters 95% 95% 62%

Gained >15 letters

Note: Only 1 in 20 tx’d pts lost >15 letters of VA

Anchor evaluated ranibizumab for the treatment of predominantly classic CNVM. Either 0.3 and 0.5 mg by intravitreal injection (or PDT). One injection every month for 24 months. 0.3 mg 0.5 mg PDT

Loss <15 letters 94% 96% 64%

Gained >15 letters
Evaluated ranibizumab for the treatment of predominantly classic CNVM.
Either 0.3 and 0.5 mg by intravitreal injection (or sham injections).
One injection every month for 24 months.

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>95%</td>
<td>95%</td>
<td>62%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Evaluated ranibizumab for the treatment of minimally classic/occult CNVM.
Either 0.3 and 0.5 mg by intravitreal injection (or sham injections).
One injection every month for 24 months.

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>94%</td>
<td>96%</td>
<td>64%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

ARMD
Evaluated ranibizumab for the treatment of predominantly classic CNVM. Either 0.3 and 0.5 mg by intravitreal injection (or sham injections). One injection every month for 24 months.

0.3 mg 0.5 mg PDT
Loss <15 letters 94% 96% 64%
Gained >15 letters 36% 40% 6%

Evaluated ranibizumab for the treatment of minimally classic/occult CNVM. Either 0.3 and 0.5 mg by intravitreal injection (or sham injections). One injection every month for 24 months.

0.3 mg 0.5 mg Sham
Loss <15 letters 95% 95% 62%
Gained >15 letters 25% 34% 5%
MARINA RESULTS ANCHOR

ARMD

<table>
<thead>
<tr>
<th></th>
<th>MARINA</th>
<th>ANCHOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RESULTS</td>
<td>YEAR ONE</td>
</tr>
<tr>
<td>0.3 mg</td>
<td>Loss <15 letters: 95%</td>
<td>Loss <15 letters: 94%</td>
</tr>
<tr>
<td>0.5 mg</td>
<td>Gained >15 letters: 25%</td>
<td>Gained >15 letters: 36%</td>
</tr>
<tr>
<td>Sham</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3 mg</td>
<td>Loss <15 letters: 95%</td>
<td>Loss <15 letters: 96%</td>
</tr>
<tr>
<td>0.5 mg</td>
<td>Gained >15 letters: 34%</td>
<td>Gained >15 letters: 40%</td>
</tr>
<tr>
<td>PDT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
--30 to 40% of (0.5) pts gained 15+ letters of VA, compared to only ~5% of sham/PDT pts
Marina Anchor evaluated ranibizumab for the treatment of minimally classic/occult and predominantly classic CNVM. Either 0.3 and 0.5 mg by intravitreal injection (or sham injections) with one injection every month for 24 months.

Results

<table>
<thead>
<tr>
<th></th>
<th>YEAR ONE</th>
<th></th>
<th>YEAR TWO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARINA</td>
<td></td>
<td>ANCHOR</td>
<td></td>
</tr>
<tr>
<td>Loss <15 letters</td>
<td>95%</td>
<td>95%</td>
<td>62%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>25%</td>
<td>34%</td>
<td>5%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
MARINA

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>95%</td>
<td>95%</td>
<td>62%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>25%</td>
<td>34%</td>
<td>5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>92%</td>
<td>90%</td>
<td>53%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

YEAR ONE

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>94%</td>
<td>96%</td>
<td>64%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>36%</td>
<td>40%</td>
<td>6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>90%</td>
<td>90%</td>
<td>66%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>34%</td>
<td>41%</td>
<td>8%</td>
</tr>
</tbody>
</table>

YEAR TWO

ARMD
MARINA

<table>
<thead>
<tr>
<th>Group</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>95%</td>
<td>95%</td>
<td>62%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>25%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANCHOR

<table>
<thead>
<tr>
<th>Group</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>94%</td>
<td>96%</td>
<td>64%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td></td>
<td>40%</td>
<td>6%</td>
</tr>
</tbody>
</table>

RESULTS

YEAR ONE

<table>
<thead>
<tr>
<th>Group</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>92%</td>
<td>90%</td>
<td>53%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YEAR TWO

<table>
<thead>
<tr>
<th>Group</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>90%</td>
<td>90%</td>
<td>66%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>34%</td>
<td>41%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Note:
--The vast majority of ranibizumab-tx’d pts still hadn’t lost >15 letters at the 24-month mark
MARINA

<table>
<thead>
<tr>
<th>Year</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>95%</td>
<td>95%</td>
<td>62%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>25%</td>
<td>34%</td>
<td>5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>94%</td>
<td>96%</td>
<td>64%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>36%</td>
<td>40%</td>
<td>6%</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Year</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>92%</td>
<td>90%</td>
<td>53%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>90%</td>
<td>90%</td>
<td>66%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
ARMD

MARINA

RESULTS

ANCHOR

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR ONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss <15 letters</td>
<td>95%</td>
<td>95%</td>
<td>62%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>25%</td>
<td>34%</td>
<td>5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR ONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss <15 letters</td>
<td>94%</td>
<td>96%</td>
<td>64%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>36%</td>
<td>40%</td>
<td>6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR TWO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss <15 letters</td>
<td>92%</td>
<td>90%</td>
<td>53%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>26%</td>
<td>33%</td>
<td>4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>YEAR TWO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss <15 letters</td>
<td>90%</td>
<td>90%</td>
<td>66%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>34%</td>
<td>41%</td>
<td>6%</td>
</tr>
</tbody>
</table>
MARINA

RESULTS

ANCHOR

<table>
<thead>
<tr>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>95%</td>
<td>95%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>25%</td>
<td>34%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>94%</td>
<td>96%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>36%</td>
<td>40%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>92%</td>
<td>90%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>26%</td>
<td>33%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>PDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss <15 letters</td>
<td>50%</td>
<td>90%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>34%</td>
<td>41%</td>
</tr>
</tbody>
</table>

Note: --And the (0.5) pts maintained their VA gains

ARMD
MARINA and ANCHOR tl;dr:
1) Both were strong Phase III clinical trials
2) Both evaluated monthly injections of ranibizumab for 2 years
3) The studies found that only 1 in 20 (5%) of treated pts lost more than 15 letters of VA at 1 yr, and 1 in 10 (10%) at 2 yrs
4) 30-40% of treated pts gained 15+ letters
What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

MARINA

What does MARINA stand for?
Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab In the Treatment of Neovascular Age-Related Macular Degeneration

What significant ocular and/or systemic safety issues manifested in the MARINA and/or ANCHOR trials?
Nothing too concerning. The rates of endophthalmitis, RD, uveitis, etc., were comparable between the ranibizumab and sham groups, although there was a trend toward higher rates with ranibizumab. The same was true of possible systemic side effects: There was a trend toward higher rates of HTN, CVA and MI, but these differences were not significant either.

ANCHOR

What does ANCHOR stand for?
ANti-VEGF Antibody for the Treatment of Predominantly Classic CHORoidal Neovascularization in Age-Related Macular Degeneration

What was the primary outcome measure?
Proportion of patients losing <15 ETDRS letters

What was the secondary outcome measure?
Proportion of patients gaining >15 ETDRS letters

One injection every month for 24 months

Did another intervention involve?
Yes—PDT. Participants received either sham injections + real PDT or sham PDT + real injections

Proportion of patients losing <15 ETDRS letters
Proportion of patients gaining >15 ETDRS letters
What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

What does MARINA stand for?
Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab In the Treatment of Neovascular Age-Related Macular Degeneration

What does ANCHOR stand for?
ANti-VEGF Antibody for the Treatment of Predominantly Classic CHORoidal Neovascularization in Age-Related Macular Degeneration

What was the primary outcome measure?
Proportion of patients losing <15 ETDRS letters

What was the secondary outcome measure?
Proportion of patients gaining >15 ETDRS letters

What significant ocular and/or systemic safety issues manifested in the MARINA and/or ANCHOR trials?
Nothing too concerning. The rates of endophthalmitis, RD, uveitis, etc., were comparable between the ranibizumab and sham groups, although there was a trend toward higher rates with ranibizumab. The same was true of possible systemic side effects: There was a trend toward higher rates of HTN, CVA and MI, but these differences were not significant either.
What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

MARINA

What does MARINA stand for? Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab In the Treatment of Neovascular Age-Related Macular Degeneration

One injection every month for 24 months

What was the dosing schedule?

ANCHOR

What does ANCHOR stand for? ANti-VEGF Antibody for the Treatment of Predominantly Classic CHORoidal Neovascularization in Age-Related Macular Degeneration

One injection every month for 24 months

The MARINA and ANCHOR trials left little doubt re the safety and efficacy of ranibizumab therapy for wet ARMD. But what was in doubt was the treatment schedule, ie, was it really necessary to inject every month?

gaining >15 ETDRS letters

outcome measure?

gaining >15 ETDRS letters
What were the 2 key clinical trials demonstrating the safety and efficacy of ranibizumab in the treatment of ARMD?

What does MARINA stand for?
Minimally Classic/Occult Trial of the Anti-VEGF Antibody Ranibizumab In the Treatment of Neovascular Age-Related Macular Degeneration

One injection every month for 24 months

What was the dosing schedule?

What does ANCHOR stand for?
ANti-VEGF Antibody for the Treatment of Predominantly Classic CHORoidal Neovascularization in Age-Related Macular Degeneration

One injection every month for 24 months

The MARINA and ANCHOR trials left little doubt re the safety and efficacy of ranibizumab therapy for wet ARMD. But what was in doubt was the treatment schedule, ie, was it really necessary to inject every month? Clearly, a monthly continuous schedule such as this was not sustainable indefinitely—the burden imposed (both in cost and labor) would overwhelm the resources of any healthcare system. To address this very important issue, several clinical trials were initiated, including…

gaining >15 ETDRS letters

outcome measure?

gaining >15 ETDRS letters
What are 2 key studies addressing the **dosing schedule** of ranibizumab in the treatment of ARMD?
What are 2 key studies addressing the **dosing schedule** of ranibizumab in the treatment of ARMD?

(Other acceptable answers: SAILOR; SUSTAIN; HORIZON; HARBOR)
What are 2 key studies addressing the dosing schedule of ranibizumab in the treatment of ARMD?

What does PIER stand for?

What does PrONTO stand for?
What are 2 key studies addressing the dosing schedule of ranibizumab in the treatment of ARMD?

What does PIER stand for?
Phase IIIb, Multicenter, Randomized, Double-Masked, Sham-Injection-Controlled Study of the Efficacy and Safety of Ranibizumab in Subjects with Subfoveal Choroidal Neovascularization with or without Classic CNV Secondary to Age-Related Macular Degeneration

What does PrONTO stand for?
Prospective Optical Coherence Tomography Imaging of Patients with Neovascular AMD Treated with Intra-Ocular Ranibizumab
What are 2 key studies addressing the dosing schedule of ranibizumab in the treatment of ARMD?

What does PIER stand for?

Phase IIIb, Multicenter, Randomized, Double-Masked, Sham-Injection-Controlled Study of the Efficacy and Safety of Ranibizumab in Subjects with Subfoveal Choroidal Neovascularization with or without Classic CNV Secondary to Age-Related Macular Degeneration

What does PrONT0 stand for?

Prospective Optical Coherence Tomography Imaging of Patients with Neovascular AMD Treated with Intra-Ocular Ranibizumab

What were the dosing schedules?
What are 2 key studies addressing the dosing schedule of ranibizumab in the treatment of ARMD?

What does PIER stand for?
Phase IIIb, Multicenter, Randomized, Double-Masked, Sham-Injection-Controlled Study of the Efficacy and Safety of Ranibizumab in Subjects with Subfoveal Choroidal Neovascularization with or without Classic CNV Secondary to Age-Related Macular Degeneration

What does PrONTO stand for?
Prospective Optical Coherence Tomography Imaging of Patients with Neovascular AMD Treated with Intra-Ocular Ranibizumab

One injection every month for 3 months, then PRN as indicated by OCT, VA and DFE findings at monthly exams.

One injection every month for 3 months, then every 3 months to 12 months.

What were the dosing schedules?
One injection every month for 3 months, then every 3 months to 12 months.

What were the dosing schedules?

Three Months

<table>
<thead>
<tr>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Average VA change (ETDRS letters)

(Note the different outcome variable)

What were the three-month results?

Focus your attention on the 0.5 outcome.
One injection every month for 3 months, then every 3 months to 12 months.

What were the dosing schedules?

<table>
<thead>
<tr>
<th>Three Months</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average VA change (ETDRS letters)</td>
<td>↑2.9</td>
<td>↑4.3</td>
<td>↓8.7</td>
</tr>
</tbody>
</table>

What were the three-month results?
Consistent with MARINA and ANCHOR, monthly ranibizumab injections led to improved visual acuity.
One injection every month for 3 months, then every 3 months to 12 months

What were the dosing schedules?

<table>
<thead>
<tr>
<th>Three Months</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average VA change (ETDRS letters)</td>
<td>↑2.9</td>
<td>↑4.3</td>
<td>↓8.7</td>
</tr>
</tbody>
</table>

What were the three-month results?
Consistent with MARINA and ANCHOR, monthly ranibizumab injections led to improved visual acuity. Which makes sense, because the first three months of PIER were identical to the first three months of MARINA and ANCHOR (ie, a shot every month).
PIER: Results at 3 months
One injection every month for 3 months, then every 3 months to 12 months.

What were the dosing schedules?

<table>
<thead>
<tr>
<th>One Year</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average VA change (ETDRS letters)</td>
<td>↓1.6</td>
<td>?</td>
<td>↓16.3</td>
</tr>
</tbody>
</table>

What about the one-year results?
One injection every month for 3 months, then every 3 months to 12 months.

What were the dosing schedules?

<table>
<thead>
<tr>
<th>One Year</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average VA change (ETDRS letters)</td>
<td>↓1.6</td>
<td>↓0.2</td>
<td>↓16.3</td>
</tr>
</tbody>
</table>

What about the one-year results?
These are much less encouraging—after dropping to q3-month injections, VA had returned to baseline levels.
PIER: Results at 12 months
One injection every month for 3 months, then every 3 months to 12 months.

What were the dosing schedules?

What about the one-year results? These are much less encouraging—after dropping to q3-month injections, VA had returned to baseline levels. So while better than no treatment (ie, the sham arm), this was a dramatically worse outcome than what was achieved via monthly injections in MARINA and ANCHOR.

No question—advance when ready.
One injection every month for 3 months, then every 3 months to 12 months.

What were the dosing schedules?

<table>
<thead>
<tr>
<th>One Year</th>
<th>0.3 mg</th>
<th>0.5 mg</th>
<th>Sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average VA change (ETDRS letters)</td>
<td>↓1.6</td>
<td>↓0.2</td>
<td>↓16.3</td>
</tr>
</tbody>
</table>

What about the one-year results?
These are much less encouraging—after dropping to q3-month injections, VA had returned to baseline levels. So while better than no treatment (ie, the sham arm), this was a dramatically worse outcome than what was achieved via monthly injections in MARINA and ANCHOR. Clearly, a q3 month schedule was not going to be acceptable.

No question—advance when ready.
What were the dosing schedules?

One injection every month for 3 months, then PRN as indicated by OCT, VA and DFE findings at monthly exams.

So if the PIER schedule isn’t effective, what about the PRN PrONTO schedule? Recall these pts received a monthly injection x 3, after which they were examined (not injected!) monthly, receiving an injection only if evidence of worsening was found.
For comparison purposes, here are the year-one results from the MARINA and ANCHOR trials.

<table>
<thead>
<tr>
<th></th>
<th>PrONTO RESULTS</th>
<th>MARINA/ANCHOR RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year One</td>
<td>MARINA</td>
</tr>
<tr>
<td>Lost <15 letters</td>
<td>?</td>
<td>95%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>?</td>
<td>34%</td>
</tr>
<tr>
<td>Mean ↑ in letters</td>
<td>?</td>
<td>7.2</td>
</tr>
</tbody>
</table>
For comparison purposes, here are the year-one results from the MARINA and ANCHOR trials. Note that the PrONTO protocol (3 monthly injections, then PRN) produced results essentially identical to those of MARINA and ANCHOR (monthly injections)…
For comparison purposes, here are the year-one results from the MARINA and ANCHOR trials. Note that the PrONTO protocol (3 monthly injections, then PRN) produced results essentially identical to those of MARINA and ANCHOR (monthly injections)… but with fewer than half the number of injections!

<table>
<thead>
<tr>
<th></th>
<th>Year One</th>
<th>MARINA</th>
<th>ANCHOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>95%</td>
<td>95%</td>
<td>96%</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>35%</td>
<td>34%</td>
<td>40%</td>
</tr>
<tr>
<td>Mean ↑ in letters</td>
<td>9.3</td>
<td>7.2</td>
<td>11.3</td>
</tr>
<tr>
<td>Mean # of injections</td>
<td>5.6</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>
The PIER and PrONTO studies (and others) were undertaken to explore alternative tx schedules to the effective-but-impractical ‘continuous monthly’ schedule employed in MARINA and ANCHOR.
For comparison purposes, here are the year-one results from the MARINA and ANCHOR trials. Note that the PrONTO protocol (3 monthly injections, then PRN) produced results essentially identical to those of MARINA and ANCHOR (monthly injections)… but with fewer than half the number of injections!

What doses of ranibizumab were used? What is the dosing schedule? Is another intervention involved? What is the primary outcome measure? What is the secondary outcome measure?

MARINA ANCHOR

<table>
<thead>
<tr>
<th></th>
<th>Lost <15 letters</th>
<th>Gained >15 letters</th>
<th>Mean ↑ in letters</th>
<th>Mean # of injections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>95%</td>
<td>34%</td>
<td>7.2</td>
<td>13</td>
</tr>
<tr>
<td>Gained >15 letters</td>
<td>96%</td>
<td>40%</td>
<td>11.3</td>
<td>13</td>
</tr>
</tbody>
</table>

PRONTO RESULTS

The PIER and PrONTO studies (and others) were undertaken to explore alternative tx schedules to the effective-but-impractical ‘continuous monthly’ schedule employed in MARINA and ANCHOR. The indicated that a ‘continuous q3-month’ schedule was not an effective alternative.
The PIER and PrONTO studies (and others) were undertaken to explore alternative tx schedules to the effective-but-impractical ‘continuous monthly’ schedule employed in MARINA and ANCHOR. The PIER indicated that a ‘continuous q3-month’ schedule was not an effective alternative.
The PIER and PrONTO studies (and others) were undertaken to explore alternative tx schedules to the effective-but-impractical ‘continuous monthly’ schedule employed in MARINA and ANCHOR. The PIER indicated that a ‘continuous q3-month’ schedule was not an effective alternative. However, the PrONTO demonstrated that a PRN tx schedule—in which the pt was examined every month, but injected only if evidence of dz progression was found—could be as effective as monthly injections, with far fewer injections needed.
The PIER and PrONTO studies (and others) were undertaken to explore alternative tx schedules to the effective-but-impractical ‘continuous monthly’ schedule employed in MARINA and ANCHOR. The PIER indicated that a ‘continuous q3-month’ schedule was not an effective alternative. However, the PrONTO demonstrated that a PRN tx schedule—in which the pt was examined every month, but injected only if evidence of dz progression was found—could be as effective as monthly injections, with far fewer injections needed.
The PIER and PrONTO studies (and others) were undertaken to explore alternative tx schedules to the effective-but-impractical ‘continuous monthly’ schedule employed in MARINA and ANCHOR. The PIER indicated that a ‘continuous q3-month’ schedule was not an effective alternative. However, the PrONTO demonstrated that a PRN tx schedule—in which the pt was examined every month, but injected only if evidence of dz progression was found—could be as effective as monthly injections, with far fewer injections needed. Unfortunately, PRN scheduling still required monthly visits, which is very burdensome even if no injection is administered. Thus, an alternative to PRN scheduling was sought.
The PIER and PrONTO studies (and others) were undertaken to explore alternative tx schedules to the effective-but-impractical ‘continuous monthly’ schedule employed in MARINA and ANCHOR. The PIER indicated that a ‘continuous q3-month’ schedule was not an effective alternative. However, the PrONTO demonstrated that a PRN tx schedule—in which the pt was examined every month, but injected only if evidence of dz progression was found—could be as effective as monthly injections, with far fewer injections needed. Unfortunately, PRN scheduling still required monthly visits, which is very burdensome even if no injection is administered. Thus, an alternative to PRN scheduling was sought.

Enter the three words approach.
The PIER and PrONTO studies (and others) were undertaken to explore alternative tx schedules to the effective-but-impractical ‘continuous monthly’ schedule employed in MARINA and ANCHOR. The PIER indicated that a ‘continuous q3-month’ schedule was not an effective alternative. However, the PrONTO demonstrated that a **PRN tx schedule**—in which the pt was examined every month, but injected only if evidence of dz progression was found—could be as effective as monthly injections, with far fewer injections needed. Unfortunately, **PRN scheduling still required monthly visits**, which is very burdensome even if no injection is administered. Thus, an alternative to PRN scheduling was sought.

Enter the **treat-and-extend** approach.
The PIER and PrONTO studies (and others) were undertaken to explore alternative tx schedules to the effective-but-impractical ‘continuous monthly’ schedule employed in MARINA and ANCHOR. The PIER indicated that a ‘continuous q3-month’ schedule was not an effective alternative. However, the PrONTO demonstrated that a PRN tx schedule—in which the pt was examined every month, but injected only if evidence of dz progression was found—could be as effective as monthly injections, with far fewer injections needed. Unfortunately, PRN scheduling still required monthly visits, which is very burdensome even if no injection is administered. Thus, an alternative to PRN scheduling was sought.

Enter the treat-and-extend approach. While specifics vary among clinicians, most do something along these lines: First, the pt is treated monthly until the macula is ‘dry.’ Once dryness has been achieved, the time until the next visit is extended to 6 weeks. At the 6-week visit the pt is both evaluated and injected. If the 6-week evaluation revealed that the macula remained dry, the interval until the next visit is extended to 8 weeks. Again, at the 8-week visit the pt is both evaluated and injected, and if the eval indicates she remained dry, the interval until the next visit is extended by another 2 weeks to 10.
The PIER and PrONTO studies (and others) were undertaken to explore alternative tx schedules to the effective-but-impractical ‘continuous monthly’ schedule employed in MARINA and ANCHOR. The PIER indicated that a ‘continuous q3-month’ schedule was not an effective alternative. However, the PrONTO demonstrated that a PRN tx schedule—in which the pt was examined every month, but injected only if evidence of dz progression was found—could be as effective as monthly injections, with far fewer injections needed. Unfortunately, PRN scheduling still required monthly visits, which is very burdensome even if no injection is administered. Thus, an alternative to PRN scheduling was sought.

Enter the treat-and-extend approach. While specifics vary among clinicians, most do something along these lines: First, the pt is treated monthly until the macula is ‘dry.’ Once dryness has been achieved, the time until the next visit is extended to 6 weeks. At the 6-week visit the pt is both evaluated and injected. If the 6-week evaluation revealed that the macula remained dry, the interval until the next visit is extended to 8 weeks. Again, at the 8-week visit the pt is both evaluated and injected, and if the eval indicates she remained dry, the interval until the next visit is extended by another 2 weeks to 10. If at any point the evaluation revealed the return of edema/heme, the pt’s inter-tx interval is rolled back to whatever was the longest progression-free interval they had achieved. (Many clinicians use an inter-tx interval of 12 weeks as a cap, ie, they don’t try to extend beyond it.)
The PIER and PrONTO studies (and others) were undertaken to explore alternative tx schedules to the effective-but-impractical ‘continuous monthly’ schedule employed in MARINA and ANCHOR. The PIER indicated that a ‘continuous q3-month’ schedule was not an effective alternative. However, the PrONTO demonstrated that a PRN tx schedule—in which the pt was examined every month, but injected only if evidence of dz progression was found—could be as effective as monthly injections, with far fewer injections needed. Unfortunately, PRN scheduling still required monthly visits, which is very burdensome even if no injection is administered. Thus, an alternative to PRN scheduling was sought.

Enter the treat-and-extend approach. While specifics vary among clinicians, most do something along these lines: First, the pt is treated monthly until the macula is ‘dry.’ Once dryness has been achieved, the time until the next visit is extended to 6 weeks. At the 6-week visit the pt is both evaluated and injected. If the 6-week evaluation revealed that the macula remained dry, the interval until the next visit is extended to 8 weeks. Again, at the 8-week visit the pt is both evaluated and injected, and if the eval indicates she remained dry, the interval until the next visit is extended by another 2 weeks to 10. If at any point the evaluation revealed the return of edema/heme, the pt’s inter-tx interval is rolled back to whatever was the longest progression-free interval they had achieved. (Many clinicians use an inter-tx interval of 12 weeks as a cap, ie, they don’t try to extend beyond it.)

At present, most clinicians employ some version of treat-and-extend with most of their pts.
The PIER and PrONTO studies (and others) were undertaken to explore alternative tx schedules to the effective-but-impractical ‘continuous monthly’ schedule employed in MARINA and ANCHOR. The PIER indicated that a ‘continuous q3-month’ schedule was not an effective alternative. However, the PrONTO demonstrated that a PRN tx schedule—in which the pt was examined every month, but injected only if evidence of dz progression was found—could be as effective as monthly injections, with far fewer injections needed. Unfortunately, PRN scheduling still required monthly visits, which is very burdensome even if no injection is administered. Thus, an alternative to PRN scheduling was sought.

Enter the treat-and-extend approach. While specifics vary among clinicians, most do something along these lines: First, the pt is treated monthly until the macula is ‘dry.’ Once dryness has been achieved, the time until the next visit is extended to 6 weeks. At the 6-week visit the pt is both evaluated and injected. If the 6-week evaluation revealed that the macula remained dry, the interval until the next visit is extended to 8 weeks. Again, at the 8-week visit the pt is both evaluated and injected, and if the eval indicates she remained dry, the interval until the next visit is extended by another 2 weeks to 10. If at any point the evaluation revealed the return of edema/heme, the pt’s inter-tx interval is rolled back to whatever was the longest progression-free interval they had achieved. (Many clinicians use an inter-tx interval of 12 weeks as a cap, ie, they don’t try to extend beyond it.)

At present, most clinicians employ some version of treat-and-extend with most of their pts.
The PIER and PrONTO studies (and others) were undertaken to explore alternative tx schedules to the effective-but-impractical ‘continuous monthly’ schedule employed in MARINA and ANCHOR. The PIER indicated that a ‘continuous q3-month’ schedule was not an effective alternative. However, the PrONTO demonstrated that a PRN tx schedule—in which the pt was examined every month, but injected only if evidence of dz progression was found—could be as effective as monthly injections, with far fewer injections needed. Unfortunately, PRN scheduling still required monthly visits, which is very burdensome even if no injection is administered. Thus, an alternative to PRN scheduling was sought.

Enter the treat-and-extend approach. While specifics vary among clinicians, most do something along these lines: First, the pt is treated monthly until the macula is ‘dry.’ Once dryness has been achieved, the time until the next visit is extended to 6 weeks. At the 6-week visit the pt is both evaluated and injected. If the 6-week evaluation revealed that the macula remained dry, the interval until the next visit is extended to 8 weeks. Again, at the 8-week visit the pt is both evaluated and injected, and if the eval indicates she remained dry, the interval until the next visit is extended by another 2 weeks to 10. If at any point the evaluation revealed the return of edema/heme, the pt’s inter-tx interval is rolled back to whatever was the longest progression-free interval they had achieved. (Many clinicians use an inter-tx interval of 12 weeks as a cap, ie, they don’t try to extend beyond it.)

At present, most clinicians employ some version of treat-and-extend with most of their pts.

Anti-VEGF injection scheduling tl;dr

- **Continuous**: Pt evaluated and treated monthly
- **PRN**: Pt evaluated monthly, treated if evidence active dz
- **Treat and extend**: After dz resolution achieved, interval between eval/tx visits gradually increased to the max the pt can sustain w/o recurrence (or 12 weeks, whichever comes first)

But that’s a topic for another slide-set
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean? That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean? Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What is a monoclonal antibody? Antibodies produced by a set of immune cells that all derived from (i.e., clones of) the same parent cell.

What is the ‘parent’ antibody from which the ranibizumab fragment is derived? Bevacizumab.

What does fragment mean in this context? Ranibizumab is not a complete antibody; rather, it consists of a portion—or fragment—of an antibody.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

What does recombinant mean? That the substance was produced via recombinant DNA; i.e., DNA created by re-combining portions of 2+ different DNA molecules.

What does humanized mean? Like many monoclonal antibodies, the parent molecule of ranibizumab was derived from mouse cells. Such murine antibodies would be recognized as foreign by the human immune system and attacked as such. To preclude this, a portion of the mouse antibody is replaced with its human counterpart via recombinant DNA techniques.

What is a monoclonal antibody? Antibodies produced by a set of Affinity which repeatedly exposed to the antigen of interest, resulting in antibody crops with progressively greater affinity for the antigen.

What is the ‘parent’ antibody from which the ranibizumab fragment is derived? Bevacizumab.

What does fragment mean in this context? Ranibizumab is not a complete antibody; rather, it consists of a portion— or fragment—of an antibody.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

Note: Different drug!

Bevacizumab
Bevacizumab is the generic, nonproprietary name. What is the brand name for this drug?

Bevacizumab

Ranibizumab is a **recombinant**, **humanized**, **affinity-matured**, **monoclonal antibody** fragment.

ARMD
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

Bevacizumab is the generic, nonproprietary name. What is the brand name for this drug? Avastin
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

You know bevacizumab is humanized because of the infix, Bevacizumab.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

You know bevacizumab is humanized because of the infix.

You know it is a monoclonal antibody because of the suffix.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment. Why did we lose the term affinity matured?

Bevacizumab is also a recombinant, humanized, monoclonal antibody fragment. Unlike ranibizumab, bevacizumab was not affinity-matured for VEGF-A.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment. Why did we lose the term affinity matured? Unlike ranibizumab, bevacizumab was not affinity-matured for VEGF-A.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

Unlike ranibizumab, which consists of an antibody fragment, bevacizumab is a full-length antibody.

Why did we lose the term affinity matured? Unlike ranibizumab, bevacizumab was not affinity-matured for VEGF-A.

Why did we lose the word fragment?
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.

Unlike ranibizumab, which consists of an antibody fragment, bevacizumab is a full-length antibody.

Why did we lose the word fragment? Unlike ranibizumab, which consists of an antibody fragment, bevacizumab is a full-length antibody.

Why did we lose the term affinity matured? Unlike ranibizumab, bevacizumab was not affinity-matured for VEGF-A.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment. Unlike ranibizumab, which consists of an antibody fragment, bevacizumab is a full-length antibody.

Why did we lose the term affinity matured? Unlike ranibizumab, bevacizumab was not affinity-matured for VEGF-A.

Why did we lose the word fragment? Unlike ranibizumab, which consists of an antibody fragment, bevacizumab is a full-length antibody.

Because it is smaller, ranibizumab clears faster than bevacizumab. What are their systemic half-lives?
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment. Unlike ranibizumab, which consists of an antibody fragment, bevacizumab is a full-length antibody. Bevacizumab's systemic half-life is about 21 days, whereas ranibizumab's is only 2.1 hours.
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment. Why did we lose the word fragment? Unlike ranibizumab, which consists of an antibody fragment, bevacizumab is a full-length antibody.

Bevacizumab

Why did we lose the term affinity matured? Unlike ranibizumab, bevacizumab was not affinity-matured for VEGF-A.

Why go to the trouble of engineering an antibody fragment in the first place?

Because it is smaller, ranibizumab clears faster than bevacizumab. What are their systemic half-lives? Bevacizumab’s is about 21 days, whereas ranibizumab’s is only 2.1 hours.
Why did we lose the term affinity matured? Unlike ranibizumab, bevacizumab was not affinity-matured for VEGF-A.

Why go to the trouble of engineering an antibody fragment in the first place? Researchers initially believed that the full-length bevacizumab molecule was too large to pass through the ILM and enter the sub-retinal space.

Why did we lose the word fragment? Unlike ranibizumab, which consists of an antibody fragment, bevacizumab is a full-length antibody.

Because it is smaller, ranibizumab clears faster than bevacizumab. What are their systemic half-lives? Bevacizumab’s is about 21 days, whereas ranibizumab’s is only 2.1 hours.
Which drug was created first—ranibizumab, or bevacizumab?

Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.
Which drug was created first—ranibizumab, or bevacizumab?

Bevacizumab

Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment
Which drug was created first—ranibizumab, or bevacizumab?
Bevacizumab

Was bevacizumab developed to treat ARMD?

Bevacizumab

Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.
Which drug was created first—ranibizumab, or bevacizumab?
Bevacizumab

Was bevacizumab developed to treat ARMD?
No, it was developed and FDA-approved to treat

Bevacizumab
Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.
Which drug was created first—ranibizumab, or bevacizumab?
Bevacizumab

Was bevacizumab developed to treat ARMD?
No, it was developed and FDA-approved to treat cancer

Bevacizumab

Ranibizumab is a recombinant, humanized, affinity-matured, monoclonal antibody fragment.
What were the key clinical trials demonstrating the safety and efficacy of bevacizumab in the treatment of ARMD?
To date there have been NO randomized, prospective clinical trials of intravitreal bevacizumab for the treatment of wet ARMD.
What were the key clinical trials demonstrating the safety and efficacy of bevacizumab in the treatment of ARMD?

To date there have been NO randomized, prospective clinical trials of intravitreal bevacizumab for the treatment of wet ARMD.

For that matter, there weren’t even any animal trials of intravitreal bevacizumab prior to its use in humans. Clinicians started using it off-label based on what they knew about its ‘next-of-kin’ (ranibizumab).
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

What does CATT stand for?
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

What does CATT stand for? Comparison of Age-related Macular Degeneration Treatments Trial
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

What doses of each were used?

Ranibizumab: Bevacizumab: 0.5 mg

What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

What doses of each were used?

Ranibizumab: 0.5 mg
Bevacizumab: 1.25 mg
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

What doses of each were used?

Ranibizumab: 0.5 mg
Bevacizumab: 1.25 mg

What were the two dosing schedules?
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

What doses of each were used?

Ranibizumab: 0.5 mg
Bevacizumab: 1.25 mg

What were the two dosing schedules?

Continuous, and PRN
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

Ranibizumab: 0.5 mg
Bevacizumab: 1.25 mg

Continuous, and PRN
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

What doses of each were used?

Ranibizumab: 0.5 mg
Bevacizumab: 1.25 mg

What were the two dosing schedules?

Continuous, and PRN

Was another intervention involved?

No
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

What doses of each were used?

Ranibizumab: 0.5 mg
Bevacizumab: 1.25 mg

What were the two dosing schedules?

Continuous, and PRN

Was another intervention involved?

No

What was the primary outcome measure?
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

What doses of each were used?

Ranibizumab: 0.5 mg
Bevacizumab: 1.25 mg

What were the two dosing schedules?

Continuous, and PRN

Was another intervention involved?

No

What was the primary outcome measure?

Mean change in VA
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

What doses of each were used?
- Ranibizumab: 0.5 mg
- Bevacizumab: 1.25 mg

What were the two dosing schedules?
- Continuous
- PRN

Was another intervention involved?
- No

What was the primary outcome measure?
- Mean change in VA

What was the secondary outcome measure?
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

What doses of each were used?
Bevacizumab: 1.25 mg
Ranibizumab: 0.5 mg

What were the two dosing schedules?
Continuous, and PRN

Was another intervention involved?
No

What was the primary outcome measure?
Mean change in VA

What was the secondary outcome measure?
Number of treatments
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

What doses of each were used?

Ranibizumab: 0.5 mg
Bevacizumab: 1.25 mg

What were the two dosing schedules?

Continuous, and PRN

Was another intervention involved?

No

What was the primary outcome measure?

Mean change in VA

What was the secondary outcome measure?

Number of treatments

What was another oft-discussed secondary outcome measure?
What study 1) compared the safety and efficacy of bevacizumab vs ranibizumab, and 2) evaluated dosing schedule of these meds in the treatment of ARMD?

What doses of each were used?
Ranibizumab: 0.5 mg
Bevacizumab: 1.25 mg

What were the two dosing schedules?
Continuous, and PRN

Was another intervention involved?
No

What was the primary outcome measure?
Mean change in VA

What was the secondary outcome measure?
Number of treatments

What was another oft-discussed secondary outcome measure?
Incidence of adverse events
CATT RESULTS

Average Number of Letters Gained at One Year

<table>
<thead>
<tr>
<th></th>
<th>Ranibizumab</th>
<th>Bevacizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Month Dosing</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>PRN Dosing</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

ARMD
CATT RESULTS

Average Number of Letters Gained at One Year

<table>
<thead>
<tr>
<th></th>
<th>Ranibizumab</th>
<th>Bevacizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Month Dosing</td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td>PRN Dosing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CATT RESULTS

Average Number of Letters Gained at One Year

<table>
<thead>
<tr>
<th></th>
<th>Ranibizumab</th>
<th>Bevacizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Month Dosing</td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td>PRN Dosing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These are statistically equivalent
CATT RESULTS

Average Number of Letters Gained at One Year

<table>
<thead>
<tr>
<th>Dosing</th>
<th>Ranibizumab</th>
<th>Bevacizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Month Dosing</td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td>PRN Dosing</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
CATT RESULTS

Average Number of Letters Gained at One Year

<table>
<thead>
<tr>
<th></th>
<th>Ranibizumab</th>
<th>Bevacizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Month Dosing</td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td>PRN Dosing</td>
<td>6.8</td>
<td>5.9</td>
</tr>
</tbody>
</table>

ARMD
CATT RESULTS

Average Number of Letters Gained at One Year

<table>
<thead>
<tr>
<th></th>
<th>Ranibizumab</th>
<th>Bevacizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Month Dosing</td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td>PRN Dosing</td>
<td>6.8</td>
<td>5.9</td>
</tr>
</tbody>
</table>

As are these
CATT RESULTS

Average Number of Letters Gained at One Year

<table>
<thead>
<tr>
<th>Dosing</th>
<th>Ranibizumab</th>
<th>Bevacizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Month</td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Dosing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRN Dosing</td>
<td>6.8</td>
<td>5.9</td>
</tr>
</tbody>
</table>

These are statistically equivalent as well.
CATT RESULTS

Average Number of Letters Gained at One Year

<table>
<thead>
<tr>
<th></th>
<th>Ranibizumab</th>
<th>Bevacizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Month Dosing</td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td>PRN Dosing</td>
<td>6.8</td>
<td>5.9</td>
</tr>
</tbody>
</table>

However, PRN bevacizumab yielded a significantly lower average gain when compared to monthly bevacizumab…
CATT RESULTS

Average Number of Letters Gained at One Year

<table>
<thead>
<tr>
<th>Dosing</th>
<th>Ranibizumab</th>
<th>Bevacizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Month Dosing</td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td>PRN Dosing</td>
<td>6.8</td>
<td>5.9</td>
</tr>
</tbody>
</table>

However, PRN bevacizumab yielded a significantly lower average gain when compared to monthly bevacizumab… or when compared to monthly ranibizumab.
CATT RESULTS

Average Number of Letters Gained at One Year (and average number of injections)

<table>
<thead>
<tr>
<th></th>
<th>Ranibizumab</th>
<th>Bevacizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Month Dosing</td>
<td>8.5(12)</td>
<td>8.0(12)</td>
</tr>
<tr>
<td>PRN Dosing</td>
<td>6.8(?)</td>
<td>5.9(?)</td>
</tr>
</tbody>
</table>

Another important issue concerns the number of injections needed. The fixed-schedule pts received 12 monthly injections over the first year (obviously), but what about in the PRN-dosing conditions?
CATT RESULTS

Average Number of Letters Gained at One Year (and average number of injections)

<table>
<thead>
<tr>
<th></th>
<th>Ranibizumab</th>
<th>Bevacizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Month Dosing</td>
<td>8.5(12)</td>
<td>8.0(12)</td>
</tr>
<tr>
<td>PRN Dosing</td>
<td>6.8(7)</td>
<td>5.9(8)</td>
</tr>
</tbody>
</table>

Another important issue concerns the number of injections needed. The fixed-schedule pts received 12 monthly injections over the first year (obviously), but what about in the PRN-dosing conditions? On average, the PRN ranibizumab and PRN bevacizumab pts received 7 and 8 injections respectively.
What about adverse events?

In terms of these events, no differences obtained between the bevacizumab and the ranibizumab cohorts. However, post hoc analysis of the rates of other adverse events (eg, hospitalization) suggested an association between these events and bevacizumab. Is this finding concerning enough to warrant using ranibizumab preferentially? Probably not. As of this writing, the opinion seems to be that the increased adverse effects were probably happenstance. This opinion is based on two facts:

1) The reported adverse events have not been found in studies involving the systemic administration of bevacizumab. If these events were triggered by the minute amounts of bevacizumab that might have entered the systemic circulation after intravitreal injection, the thinking goes, surely they would have occurred during systemic bevacizumab trials in which systemic concentrations were at least 500 times greater.

2) The reported adverse events did not correlate with bevacizumab dosing, as would be expected if a causal relationship held.
What about adverse events?
Certain events were identified a priori to be tracked; these included MI, CVA and death. In terms of these events, no differences obtained between the bevacizumab and the ranibizumab cohorts.
What about adverse events?
Certain events were identified a priori to be tracked; these included MI, CVA and death. In terms of these events, no differences obtained between the bevacizumab and the ranibizumab cohorts. However, post hoc analysis of the rates of other adverse events (eg, hospitalization) suggested an association between these events and bevacizumab.
What about adverse events?

Certain events were identified a priori to be tracked; these included MI, CVA and death. In terms of these events, no differences obtained between the bevacizumab and the ranibizumab cohorts. However, post hoc analysis of the rates of other adverse events (eg, hospitalization) suggested an association between these events and bevacizumab.

Is this finding concerning enough to warrant using ranibizumab preferentially?
What about adverse events?
Certain events were identified a priori to be tracked; these included MI, CVA and death. In terms of these events, no differences obtained between the bevacizumab and the ranibizumab cohorts. However, post hoc analysis of the rates of other adverse events (eg, hospitalization) suggested an association between these events and bevacizumab.

Is this finding concerning enough to warrant using ranibizumab preferentially?
Probably not. As of this writing, the opinion seems to be that the increased adverse effects were probably happenstance. This opinion is based on two facts:

1)

2)
What about adverse events?
Certain events were identified a priori to be tracked; these included MI, CVA and death. In terms of these events, no differences obtained between the bevacizumab and the ranibizumab cohorts. However, post hoc analysis of the rates of other adverse events (eg, hospitalization) suggested an association between these events and bevacizumab.

Is this finding concerning enough to warrant using ranibizumab preferentially?
Probably not. As of this writing, the opinion seems to be that the increased adverse effects were probably happenstance. This opinion is based on two facts:
1) The reported adverse events have not been found in studies involving the systemic administration of bevacizumab. If these events were triggered by the minute amounts of bevacizumab that might have entered the systemic circulation after intravitreal injection, the thinking goes, surely they would have occurred during systemic bavacizumab trials (in which systemic concentrations were at least 500 times greater).
2)
What about adverse events?
Certain events were identified a priori to be tracked; these included MI, CVA and death. In terms of these events, no differences obtained between the bevacizumab and the ranibizumab cohorts. However, post hoc analysis of the rates of other adverse events (eg, hospitalization) suggested an association between these events and bevacizumab.

Is this finding concerning enough to warrant using ranibizumab preferentially?
Probably not. As of this writing, the opinion seems to be that the increased adverse effects were probably happenstance. This opinion is based on two facts:
1) The reported adverse events have not been found in studies involving the systemic administration of bevacizumab. If these events were triggered by the minute amounts of bevacizumab that might have entered the systemic circulation after intravitreal injection, the thinking goes, surely they would have occurred during systemic bavacizumab trials (in which systemic concentrations were at least 500 times greater).
2) The reported adverse events did not correlate with bevacizumab dosing, as would be expected if a causal relationship held.
What about adverse events?
Certain events were identified a priori to be tracked; these included MI, CVA and death. In terms of these events, no differences obtained between the bevacizumab and the ranibizumab cohorts. However, post hoc analysis of the rates of other adverse events (eg, hospitalization) suggested an association between these events and bevacizumab.

Is this finding concerning enough to warrant using ranibizumab preferentially? Probably not. As of this writing, the opinion seems to be that the increased adverse effects were probably happenstance. This opinion is based on two facts:
1) The reported adverse events have not been found in studies involving the systemic administration of bevacizumab. If these events were triggered by the minute amounts of bevacizumab that might have entered the systemic circulation after intravitreal injection, the thinking goes, surely they would have occurred during systemic bavacizumab trials (in which systemic concentrations were at least 500 times greater).
2) The reported adverse events did not correlate with bevacizumab dosing, as would be expected if a causal relationship held.

Next we drill down on a third drug that has come to play a vital role in the management of wet ARMD.
Aflibercept is a recombinant fusion protein.
Aflibercept is a *recombinant* fusion protein
Aflibercept is a recombinant fusion protein

What is a fusion protein?
Afiblercept is a **recombinant fusion protein**

What is a fusion protein?
A novel protein constructed by joining (fusing) the genetic information coding for two other proteins.
Aflibercept is the generic, nonproprietary name. What is the brand name for this drug?

Aflibercept is a recombinant fusion protein.
Aflibercept is the generic, nonproprietary name. What is the brand name for this drug? Eylea

Aflibercept *is a recombinant fusion protein*
Aflibercept is a recombinant fusion protein.

What does the suffix –cept indicate?
What does the suffix –cept indicate?
That the drug functions by mimicking a receptor molecule

Aflibercept is a recombinant fusion protein
Aflibercept is a recombinant fusion protein.

What does the suffix –cept indicate?
That the drug functions by mimicking a receptor molecule.

What does the infix –ber- indicate?
That the mimicked receptor is the VEGF receptor.

ARMD
Aflibercept is a recombinant fusion protein

What does the suffix –cept indicate?
That the drug functions by mimicking a receptor molecule

ARMD

What does the infix –ber- indicate?
That the mimicked receptor is the VEGF receptor
Afibl**ercept** is a recombinant fusion protein

What does the suffix –cept indicate?
That the drug functions by mimicking a receptor molecule

What does the infix –ber- indicate?
That the mimicked receptor is the VEGF receptor

Spell it out for me—what does it mean to say aflibercept ‘mimics the VEGF receptor’?
Put another way: How does aflibercept work?
Afib**lercept** is a recombinant fusion protein

What does the suffix –**cept** indicate?
That the drug functions by mimicking a receptor molecule

What does the infix –**ber**- indicate?
That the mimicked receptor is the VEGF receptor

Spell it out for me—what does it mean to say aflibercept ‘mimics the VEGF receptor’?
Put another way: How does aflibercept work?
Aflibercept is a **decoy receptor** that locks up unbound VEGF in the retinal space before it (the VEGF) can find an actual VEGF receptor on a target structure.
Afli\textit{bercept} is a recombinant fusion protein

What does the suffix \textit{–cept} indicate?
That the drug functions by mimicking a receptor molecule

What does the infix \textit{–ber-} indicate?
That the mimicked receptor is the VEGF receptor

Spell it out for me—what does it mean to say aflibercept ‘mimics the VEGF receptor’?
Put another way: How does aflibercept work?
Afli\textit{bercept} is a decoy receptor that locks up unbound VEGF in the retinal space before it (the VEGF) can find an actual VEGF receptor on a target structure. This strategy is referred to as 'VEGF trap.'
Afib\(\text{lercept}\) is a recombinant fusion protein

What does the suffix **–cept indicate?**
That the drug functions by mimicking a **receptor molecule**

Afib\(\text{lercept}\) is a recombinant fusion protein

What does the infix **–ber- indicate?**
That the mimicked receptor is the **VEGF receptor**

Spell it out for me—what does it mean to say aflibercept ‘mimics the VEGF receptor’?
Put another way: How does aflibercept work?
Afib\(\text{lercept}\) is a **decoy receptor** that locks up unbound VEGF in the retinal space before it (the VEGF) can find an actual VEGF receptor on a target structure. **This strategy is referred to as ‘VEGF trap.’**
Aflibercept is a recombinant fusion protein.

Which isoforms of VEGF-A does aflibercept bind?

Of bevacizumab, ranibizumab and aflibercept, which binds VEGF-A with the greatest affinity?

Aflibercept

In addition to VEGF-A, aflibercept binds another protein implicated in the pathogenesis of CNVM—what is it?

Placental growth factor (PLGF)
Aflibercept is a **recombinant fusion protein**

Which isoforms of VEGF-A does aflibercept bind?
All of them
Afiblercept is a recombinant fusion protein

Which isoforms of VEGF-A does afiblercept bind?
All of them

Of bevacizumab, ranibizumab and afiblercept, which binds VEGF-A with the greatest affinity?
Aflibercept is a recombinant fusion protein

Which isoforms of VEGF-A does aflibercept bind?
All of them

Of bevacizumab, ranibizumab and aflibercept, which binds VEGF-A with the greatest affinity?
Aflibercept
Afﬁbercept is a recombinant fusion protein

Which isoforms of VEGF-A does afﬁbercept bind?
All of them

Of bevacizumab, ranibizumab and afﬁbercept, which binds VEGF-A with the greatest afﬁnity?
Afﬁbercept

In addition to VEGF-A, afﬁbercept binds another protein implicated in the pathogenesis of CNVM—what is it?
Aflibercept is a recombinant fusion protein

Which isoforms of VEGF-A does aflibercept bind?
All of them

Of bevacizumab, ranibizumab and aflibercept, which binds VEGF-A with the greatest affinity?
Aflibercept

In addition to VEGF-A, aflibercept binds another protein implicated in the pathogenesis of CNVM—what is it?
Placental growth factor (PLGF)
Aflibercept is a **recombinant fusion protein**

Which isoforms of VEGF-A does aflibercept bind?
All of them

Of bevacizumab, ranibizumab and aflibercept, which binds VEGF-A with the greatest affinity?
Aflibercept

This ability to bind PLGF may account for the fact that aflibercept is effective in some cases of **ranibizumab-refractory CNVM**—a pathogenesis of CNVM—what is it?
Placental growth factor (PLGF)
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

Technically, there were two VIEW trials--**VIEW1** was conducted in the US and Canada, **VIEW2** overseas. However, because the results of the two studies were essentially identical, for simplicity's sake we will treat them as if they were a single study.
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

What does VIEW stand for?

VIEW stands for "VEGF Trap-Eye: Investigation of Efficacy and Safety in Wet ARMD".
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

What does VIEW stand for?
The **VEGF Trap-Eye**: **I**nvestigation of **E**fficacy and Safety in **W**et ARMD
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

What doses of aflibercept were used?
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

What doses of aflibercept were used?

Either 0.5 or 2 mg by intravitreal injection.
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

What doses of aflibercept were used?

Either 0.5 or 2 mg by intravitreal injection

What was the dosing schedule?
What were the key clinical trials demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

What doses of aflibercept were used?

Either 0.5 or 2 mg by intravitreal injection.

What was the dosing schedule?

There were 3:

a) 0.5 mg every 4 weeks, or
b) 2 mg every 4 weeks, or

c) 2 mg every 8 weeks after three q4 week loading doses.
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

What doses of aflibercept were used?

Either 0.5 or 2 mg by intravitreal injection

What was the dosing schedule?

There were 3:

- a) 0.5 mg every 4 weeks, or
- b) 2 mg every 4 weeks, or
- c) 2 mg every 8 weeks after three q4 week loading doses

Take note of the q8 week condition. Remember, one of the drawbacks of ranibizumab is its q4 week dosing requirement, which places tremendous financial and structural strain on the healthcare system. (Consider: In 2003, prior to the advent of intravitreal anti-VEGF meds, Medicare was billed for ~3000 intravitreal injections. In 2010, it was billed for over a MILLION.) Thus there was considerable interest in whether a q8 week dosing schedule would work.
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

What doses of aflibercept were used?

Either 0.5 or 2 mg by intravitreal injection

What was the dosing schedule?

There were 3:
- a) 0.5 mg every 4 weeks, or
- b) 2 mg every 4 weeks, or
- c) 2 mg every 8 weeks after three q4 week loading doses

Was another intervention involved?
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

What doses of aflibercept were used?
Either 0.5 or 2 mg by intravitreal injection

What was the dosing schedule?
There were 3:
a) 0.5 mg every 4 weeks, or
b) 2 mg every 4 weeks, or
c) 2 mg every 8 weeks after three q4 week loading doses

Was another intervention involved?
A control group received ranibizumab 0.5 mg every 4 weeks
The VIEW was a *noninferiority trial*, meaning the efficacy/safety of a new treatment was being compared to that of a ‘gold standard’ treatment. In other words, the VIEW had to demonstrate that aflibercept was *at least* as good and *at least* as safe as ranibizumab in order to gain approval.

Was another intervention involved?

A control group received ranibizumab 0.5 mg every 4 weeks
The VIEW was a noninferiority trial, meaning the efficacy/safety of a new treatment was being compared to that of a ‘gold standard’ treatment. In other words, the VIEW had to demonstrate that aflibercept was at least as good and at least as safe as ranibizumab in order to gain approval. To do so required:
1) the presence of a ranibizumab arm in the study, and
2) that patients in the VIEW have lesions similar to those of the participants in the studies used to prove the safety and efficacy of ranibizumab in the first place (ie, the MARINA and ANCHOR studies).

Was another intervention involved?
A control group received ranibizumab 0.5 mg every 4 weeks
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

What doses of aflibercept were used?

Either 0.5 or 2 mg by intravitreal injection

What was the dosing schedule?

There were 3:
 a) 0.5 mg every 4 weeks, or
 b) 2 mg every 4 weeks, or
 c) 2 mg every 8 weeks after three q4 week loading doses

Was another intervention involved?

A control group received ranibizumab 0.5 mg every 4 weeks

What was the primary outcome measure?
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

What doses of aflibercept were used?

Either 0.5 or 2 mg by intravitreal injection

What was the dosing schedule?

There were 3:
- a) 0.5 mg every 4 weeks, or
- b) 2 mg every 4 weeks, or
- c) 2 mg every 8 weeks after three q4 week loading doses

A control group received ranibizumab 0.5 mg every 4 weeks

Was another intervention involved?

What was the primary outcome measure?

Proportion of patients losing <15 ETDRS letters
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

What doses of aflibercept were used?

Either 0.5 or 2 mg by intravitreal injection

What was the dosing schedule?

There were 3:
- a) 0.5 mg every 4 weeks, or
- b) 2 mg every 4 weeks, or
- c) 2 mg every 8 weeks after three q4 week loading doses

Was another intervention involved?

A control group received ranibizumab 0.5 mg every 4 weeks

What was the primary outcome measure?

Proportion of patients losing <15 ETDRS letters

What was the secondary outcome measure?
What was the key clinical trial demonstrating the safety and efficacy of aflibercept in the treatment of ARMD?

What doses of aflibercept were used?

Either 0.5 or 2 mg by intravitreal injection

What was the dosing schedule?

There were 3:
- a) 0.5 mg every 4 weeks, or
- b) 2 mg every 4 weeks, or
- c) 2 mg every 8 weeks after three q4 week loading doses

Was another intervention involved?

A control group received ranibizumab 0.5 mg every 4 weeks

What was the primary outcome measure?

Proportion of patients losing <15 ETDRS letters

What was the secondary outcome measure?

Proportion of patients maintaining (i.e., losing zero ETDRS letters) or gaining ETDRS letters
VIEW study:
Year One Results

<table>
<thead>
<tr>
<th>Lost <15 letters</th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ran-bizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean gain in ETDRS letters read</th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ran-bizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>
VIEW study: Year One Results

<table>
<thead>
<tr>
<th>Lost <15 letters</th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ran-bizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>96%</td>
<td>95%</td>
<td>95%</td>
<td>94%</td>
<td></td>
</tr>
</tbody>
</table>

Mean gain in ETDRS letters read

ARMD
VIEW study: Year One Results

<table>
<thead>
<tr>
<th></th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranbizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>96%</td>
<td>95%</td>
<td>95%</td>
<td>94%</td>
</tr>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
VIEW study:
Year One Results

<table>
<thead>
<tr>
<th></th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranbizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>96%</td>
<td>95%</td>
<td>95%</td>
<td>94%</td>
</tr>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td>8.3</td>
<td>9.2</td>
<td>8.4</td>
<td>8.7</td>
</tr>
</tbody>
</table>

ARMD
VIEW study:
Year One Results

<table>
<thead>
<tr>
<th></th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranibizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>96%</td>
<td>96%</td>
<td>95%</td>
<td>94%</td>
</tr>
<tr>
<td>Mean gain in ETDRS</td>
<td>8.3</td>
<td>9.2</td>
<td>8.4</td>
<td>8.7</td>
</tr>
</tbody>
</table>

The key finding is that q8 weeks aflibercept worked just as well as monthly ranibizumab.
VIEW study:
Year One Results

<table>
<thead>
<tr>
<th>Lost <15 letters</th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranibizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>96%</td>
<td>95%</td>
<td>95%</td>
<td>94%</td>
<td></td>
</tr>
</tbody>
</table>

| Mean gain in ETDRS letters read | 8.3 | 9.2 | 8.4 | 8.7 |

VIEW study:
Year Two Results

The VIEW was carried into a second year. The basic Year 2 study criteria were:
1) Participants remained in the same treatment condition
2) Participants were evaluated monthly and treated PRN
3) All participants were treated at least every 12 weeks
View Study: Year One Results

<table>
<thead>
<tr>
<th>Lost <15 letters</th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranibizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>96%</td>
<td>95%</td>
<td>95%</td>
<td>94%</td>
<td></td>
</tr>
</tbody>
</table>

| Mean gain in ETDRS letters read | 8.3 | 9.2 | 8.4 | 8.7 |

View Study: Year Two Results

<table>
<thead>
<tr>
<th>Lost <15 letters</th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranibizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

| Mean gain in ETDRS letters read | 8.3 | 9.2 | 8.4 | 8.7 |
VIEW study:
Year One Results

<table>
<thead>
<tr>
<th></th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranbizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>96%</td>
<td>95%</td>
<td>95%</td>
<td>94%</td>
</tr>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td>8.3</td>
<td>9.2</td>
<td>8.4</td>
<td>8.7</td>
</tr>
</tbody>
</table>

VIEW study:
Year Two Results

<table>
<thead>
<tr>
<th></th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranbizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>91%</td>
<td>92%</td>
<td>92%</td>
<td>92%</td>
</tr>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5 mg q4 week</td>
<td>2.0 mg q4 week</td>
<td>2.0 mg q8 week</td>
<td>Ranbizumab</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Lost <15 letters</td>
<td>96%</td>
<td>95%</td>
<td>95%</td>
<td>94%</td>
</tr>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td>8.3</td>
<td>9.2</td>
<td>8.4</td>
<td>8.7</td>
</tr>
</tbody>
</table>

View study: Year One Results

View study: Year Two Results

<table>
<thead>
<tr>
<th></th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranbizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>91%</td>
<td>92%</td>
<td>92%</td>
<td>92%</td>
</tr>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
VIEW study: Year One Results

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranbizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>96%</td>
<td>95%</td>
<td>95%</td>
<td>94%</td>
</tr>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td>8.3</td>
<td>9.2</td>
<td>8.4</td>
<td>8.7</td>
</tr>
</tbody>
</table>

VIEW study: Year Two Results

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranbizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>91%</td>
<td>92%</td>
<td>92%</td>
<td>92%</td>
</tr>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td>6.6</td>
<td>7.6</td>
<td>7.6</td>
<td>7.9</td>
</tr>
</tbody>
</table>
VIEW study: Year One Results

<table>
<thead>
<tr>
<th></th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranibizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>96%</td>
<td>95%</td>
<td>95%</td>
<td>94%</td>
</tr>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td>8.3</td>
<td>9.2</td>
<td>8.4</td>
<td>8.7</td>
</tr>
</tbody>
</table>

VIEW study: Year Two Results

<table>
<thead>
<tr>
<th></th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranibizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>91%</td>
<td>92%</td>
<td>92%</td>
<td>92%</td>
</tr>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td>6.6</td>
<td>7.6</td>
<td>7.6</td>
<td>7.9</td>
</tr>
</tbody>
</table>

As with the Year One data, the key finding is that q8 weeks aflibercept worked **just as well** as monthly ranibizumab.
VIEW study:

Year One Results

<table>
<thead>
<tr>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ran-bizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>96%</td>
<td>95%</td>
<td>94%</td>
</tr>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td>8.3</td>
<td>9.2</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Year Two Results

<table>
<thead>
<tr>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ran-bizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lost <15 letters</td>
<td>91%</td>
<td>92%</td>
<td>92%</td>
</tr>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td>6.6</td>
<td>7.6</td>
<td>7.6</td>
</tr>
</tbody>
</table>

Also of note is the fact that the Year Two results are similar to those of Year One.
Another much-anticipated outcome concerned the **average number of treatments** required in the q8 week aflibercept vs ranibizumab conditions.
Another much-anticipated outcome concerned the **average number of treatments** required in the q8 week aflibercept vs ranibizumab conditions.

VIEW study: Year One Results

<table>
<thead>
<tr>
<th>Lost <15 letters (Determined by study protocol)</th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranibizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td>8.3</td>
<td>9.2</td>
<td>8.4</td>
<td>8.7</td>
</tr>
<tr>
<td>Mean number of treatments</td>
<td></td>
<td>7</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

VIEW study: Year Two Results

<table>
<thead>
<tr>
<th>Lost <15 letters (Determined by drug efficacy)</th>
<th>0.5 mg q4 week</th>
<th>2.0 mg q4 week</th>
<th>2.0 mg q8 week</th>
<th>Ranibizumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean gain in ETDRS letters read</td>
<td>6.6</td>
<td>7.6</td>
<td>7.6</td>
<td>7.9</td>
</tr>
<tr>
<td>Mean number of treatments</td>
<td>4.2</td>
<td>4.7</td>
<td>4.2</td>
<td>4.7</td>
</tr>
</tbody>
</table>
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

The pathogenesis of ARMD is not well understood; that said, the complement system is strongly implicated in it.

VEGF plays a key role in exudative ARMD; likewise, interdicting VEGF is key in managing it.

Nonexudative ARMD is treatable at present.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

The pathogenesis of ARMD is not well understood; that said, the complement system is strongly implicated in it.

VEGF plays a key role in exudative ARMD; likewise, interdicting VEGF is key in managing it.

Nonexudative ARMD isn’t treatable at present.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

The pathogenesis of ARMD is not well understood; that said, the complement system is strongly implicated in it.

VEGF plays a key role in exudative ARMD; likewise, interdicting VEGF is key in managing it.

Nonexudative ARMD isn’t treatable at present.

The clinical trial (abb) found that micronutrient supplementation reduces the likelihood of exudative ARMD in at-risk pts.
Age-related macular degeneration is the #1 cause of blindness in adults age 50+ in resource-rich nations.

Age is the strongest risk factor for ARMD.

The clinical hallmark of ARMD is the presence of drusen in the macula.

There are two types: Nonexudative and exudative.

RPE abnormalities in ARMD are typical.

Photoreceptors in ARMD are abnormal as well.

The pathogenesis of ARMD is not well understood; that said, the complement system is strongly implicated in it.

VEGF plays a key role in exudative ARMD; likewise, interdicting VEGF is key in managing it.

Nonexudative ARMD isn’t treatable at present.

The AREDS found that micronutrient supplementation reduces the likelihood of exudative ARMD in at-risk pts.
ARMD: The AREDS

AREDS is the...
ARMD: The AREDS

- AREDS is the Age-Related Eye Disease Study
ARMD: The AREDS

- AREDS is the Age-Related Eye Disease Study
- Looked at dietary supplements and ARMD:
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene 15 mg
 - Zinc 80 mg
 - Cupric oxide 2 mg
- Findings:
 - Patients with intermediate/advanced dry ARMD had a 25% reduced risk of advanced disease and vision loss
 - Patients with no/early ARMD: No benefit

Note: Don't give AREDS supplements to smokers (β-carotene increases the risk of lung Ca in these patients)
ARMD: The AREDS

AREDS is the Age-Related Eye Disease Study

Looked at dietary supplements and ARMD:

- Vitamin C
- Vitamin E
- β-carotene
- antioxidants
- minerals

Findings:
- Patients with intermediate/advanced dry ARMD had a 25% reduced risk of advanced disease and vision loss
- Patients with no/early ARMD: No benefit

Note: Don’t give AREDS supplements to smokers (β-carotene increases the risk of lung Ca in these patients)
ARMD: The AREDS

- AREDS is the *Age-Related Eye Disease Study*
- Looked at dietary supplements and ARMD:
 - Vitamin C *dose?*
 - Vitamin E *dose?*
 - β-carotene *dose?*
 - *antioxidants*
 - *minerals*

Note: Don’t give AREDS supplements to smokers (β-carotene increases the risk of lung Ca in these patients)
ARMD: The AREDS

AREDS is the Age-Related Eye Disease Study

Looked at dietary supplements and ARMD:

- Vitamin C 500 mg
- Vitamin E 400 IU
- β-carotene 15 mg

Findings:
- Patients with intermediate/advanced dry ARMD had a 25% reduced risk of advanced disease and vision loss
- Patients with no/early ARMD: No benefit

Note: Don’t give AREDS supplements to smokers (β-carotene increases the risk of lung Ca in these patients)
ARMD: The AREDS

- AREDS is the Age-Related Eye Disease Study
- Looked at dietary supplements and ARMD:
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene 15 mg
 - ?
 - ?
 - Antioxidants
 - Minerals
ARMD: The AREDS

- AREDS is the Age-Related Eye Disease Study
- Looked at dietary supplements and ARMD:
 - **Vitamin C**: 500 mg
 - **Vitamin E**: 400 IU
 - **β-carotene**: 15 mg
 - **Zinc**
 - **Cupric oxide**
ARMD: The AREDS

- AREDS is the *Age-Related Eye Disease Study*
- Looked at dietary supplements and ARMD:
 - **Vitamin C**: 500 mg
 - **Vitamin E**: 400 IU
 - **β-carotene**: 15 mg
 - **Zinc**: dose?
 - **Cupric oxide**: dose?

Antioxidants

Minerals
ARMD: The AREDS

- AREDS is the Age-Related Eye Disease Study
- Looked at dietary supplements and ARMD:
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene 15 mg
 - Zinc 80 mg
 - Cupric oxide 2 mg

Antioxidants and Minerals
ARMD: The AREDS

- AREDS is the *Age-Related Eye Disease Study*
- Looked at dietary supplements and ARMD:
 - **Vitamin C** 500 mg
 - **Vitamin E** 400 IU
 - **β-carotene** 15 mg
 - **Zinc** 80 mg
 - **Cupric oxide** 2 mg

- **Study findings:**
 - Patients with intermediate/advanced dry ARMD had a 25% reduced risk of advanced disease and vision loss

- Note: Don’t give AREDS supplements to smokers (β-carotene increases the risk of lung Ca in these patients)
ARMD: The AREDS

- AREDS is the Age-Related Eye Disease Study
- Looked at dietary supplements and ARMD:
 - **Vitamin C** 500 mg
 - **Vitamin E** 400 IU
 - **β-carotene** 15 mg
 - **Zinc** 80 mg
 - **Cupric oxide** 2 mg

- **Study findings:**
 - Patients with intermediate/advanced dry ARMD had a **25%** reduced risk of advanced disease and vision loss

Note: Don’t give AREDS supplements to smokers (β-carotene increases the risk of lung Ca in these patients)
ARMD: The AREDS

- AREDS is the **Age-Related Eye Disease Study**
- Looked at dietary supplements and ARMD:
 - **Vitamin C** 500 mg
 - **Vitamin E** 400 IU
 - **β-carotene** 15 mg
 - **Zinc** 80 mg
 - **Cupric oxide** 2 mg

- **Study findings:**
 - Patients with **intermediate/advanced dry** ARMD had a **25%** reduced risk of advanced disease and vision loss
 - Patients with **severity** ARMD: No benefit

Note: Don’t give AREDS supplements to smokers (β-carotene increases the risk of lung Ca in these patients)
ARMD: The AREDS

AREDS is the Age-Related Eye Disease Study

Looked at dietary supplements and ARMD:

- **Vitamin C** 500 mg
- **Vitamin E** 400 IU
- **β-carotene** 15 mg
- **Zinc** 80 mg
- **Cupric oxide** 2 mg

Study findings:

- Patients with **intermediate/advanced dry** ARMD had a **25%** reduced risk of advanced disease and vision loss
- Patients with **no/early** ARMD: No benefit

Note: Don’t give AREDS supplements to smokers (β-carotene increases the risk of lung Ca in these patients)
ARMD: The AREDS

- AREDS is the **Age-Related Eye Disease Study**
- Looked at dietary supplements and ARMD:
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene 15 mg
 - Zinc 80 mg
 - Cupric oxide 2 mg

Study findings:

- Patients with **intermediate/advanced dry** ARMD had a **25%** reduced risk of advanced disease and vision loss
- Patients with **no/early** ARMD: No benefit

Note: Don’t give AREDS supplements to **pt population**
ARMD: The AREDS

AREDS is the Age-Related Eye Disease Study

Looked at dietary supplements and ARMD:

- **Vitamin C** 500 mg
- **Vitamin E** 400 IU
- **β-carotene** 15 mg
- **Zinc** 80 mg
- **Cupric oxide** 2 mg

Study findings:

- Patients with *intermediate/advanced dry* ARMD had a **25%** reduced risk of advanced disease and vision loss
- Patients with *no/early* ARMD: No benefit

Note: Don’t give AREDS supplements to smokers

- **ARMD: The AREDS**
 - AREDS is the Age-Related Eye Disease Study
 - Looked at dietary supplements and ARMD:
 - Vitamin C: 500 mg
 - Vitamin E: 400 IU
 - β-carotene: 15 mg
 - Zinc: 80 mg
 - Cupric oxide: 2 mg
 - *Antioxidants*
 - *Minerals*
 - Study findings:
 - Patients with intermediate/advanced dry ARMD had a 25% reduced risk of advanced disease and vision loss
 - Patients with no/early ARMD: No benefit
 - Note: Don’t give AREDS supplements to smokers
 - an AREDS anti-ox increases the risk of lung Ca in these patients
ARMD: The AREDS

AREDS is the Age-Related Eye Disease Study

Looked at dietary supplements and ARMD:

- Vitamin C 500 mg
- Vitamin E 400 IU
- β-carotene 15 mg
- Zinc 80 mg
- Cupric oxide 2 mg

Study findings:

- Patients with intermediate/advanced dry ARMD had a 25% reduced risk of advanced disease and vision loss
- Patients with no/early ARMD: No benefit

Note: Don’t give AREDS supplements to smokers

β-carotene increases the risk of lung Ca in these patients
ARMD: The AREDS

- AREDS is the Age-Related Eye Disease Study
- Looked at dietary supplements and ARMD:
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene 15 mg
 - Zinc 80 mg
 - Cupric oxide 2 mg

Study findings:
- Patients with intermediate/advanced dry ARMD had a 25% reduced risk of advanced disease and vision loss
- Patients with no/early ARMD: No benefit
- Note: Don’t give AREDS supplements to smokers
- β-carotene increases the risk of lung Ca in these patients

Next, let’s drill down on the AREDS2
ARMD: The AREDS2

Follow-up to the AREDS

- **Vitamin C**: 500 mg
- **Vitamin E**: 400 IU
- **β-carotene**: 15 mg
- **Zinc**: 80 mg
- **Cupric oxide**: 2 mg
ARMD: The ARED S2

- Follow-up to the AREDS
- Subbed xanthophylls for β-carotene

- **Vitamin C** 500 mg
- **Vitamin E** 400 IU
- **β-carotene** ? & ?
- **Zinc** 80 mg
- **Cupric oxide** 2 mg
ARMD: The AREDS 2
- Follow-up to the AREDS
- Subbed **xanthophylls** for β-carotene
 - **Vitamin C** 500 mg
 - **Vitamin E** 400 IU
 - **β-carotene** *Lutein & Zeaxanthin* (These are the two xanthophylls employed)
 - **Zinc** 80 mg
 - **Cupric oxide** 2 mg
ARMD: The AREDS2

- Follow-up to the AREDS
- Subbed xanthophylls for β-carotene; added
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene (Lutein & Zeaxanthin)
 - Zinc 80 mg
 - Cupric oxide 2 mg
ARMD: The AREDS2

- Follow-up to the AREDS
- Subbed xanthophylls for β-carotene; added O3FAs:
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene
 - Zinc 80 mg
 - Cupric oxide 2 mg

Lutein & Zeaxanthin

Omega-3 fatty acids
ARMD: The AREDS2

- Follow-up to the AREDS
- Subbed xanthophylls for β-carotene; added O3FAs:
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene Lutein & Zeaxanthin
 - Zinc 80 mg
 - Cupric oxide 2 mg

- Study findings:
 - Reaffirmed vs Disputed results of the AREDS
ARMD: The AREDS2

- Follow-up to the AREDS
- Subbed xanthophylls for β-carotene; added O3FAs:
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene
 - Zinc 80 mg
 - Cupric oxide 2 mg

- Study findings:
 - Reaffirmed results of the AREDS
ARMD: The AREDS 2

- Follow-up to the AREDS
- Subbed **xanthophylls** for β-carotene; added **O3FAs**:
 - **Vitamin C** 500 mg
 - **Vitamin E** 400 IU
 - **β-carotene** (Lutein & Zeaxanthin)
 - **Zinc** 80 mg
 - **Cupric oxide** 2 mg

Study findings:
- **Reaffirmed** results of the AREDS
- **Xanthophylls** effective vs ineffective substitute for β-carotene
ARMD: The AREDS2

- Follow-up to the AREDS
- Subbed xanthophylls for β-carotene; added O3FAs:
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene
 - Zinc 80 mg
 - Cupric oxide 2 mg

- Study findings:
 - Reaffirmed results of the AREDS
 - Xanthophylls suitable substitute for β-carotene
ARMD: The AREDS2
- Follow-up to the AREDS
- Subbed xanthophylls for β-carotene; added **O3FAs**:
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene
 - Zinc 80 mg
 - Cupric oxide 2 mg
- **Study findings:**
 - Reaffirmed results of the AREDS
 - Xanthophylls **suitable** substitute for β-carotene

Why is this important?
ARMD: The AREDS2

- Follow-up to the AREDS
- Subbed xanthophylls for β-carotene; added O3FAs:
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene
 - Lutein & Zeaxanthin
 - Zinc 80 mg
 - Cupric oxide 2 mg
- Study findings:
 - Reaffirmed results of the AREDS
 - Xanthophylls suitable substitute for β-carotene

Why is this important? Because it means β-carotene can be dropped, obviating this concern.

- Note: Don’t give AREDS supplements to smokers
 - β-carotene increases the risk of lung Ca in these patients
ARMD: The AREDS2

- Follow-up to the AREDS
- Subbed **xanthophylls** for β-carotene; added **O3FAs:**
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene
 - Lutein & Zeaxanthin
 - Zinc 80 mg
 - Cupric oxide 2 mg

- **Study findings:**
 - **Reaffirmed** results of the AREDS
 - Xanthophylls **suitable** substitute for β-carotene
 - O3FAs **effective vs ineffective** at reducing risk of progression
ARMD: The AREDS2

- Follow-up to the AREDS
- Subbed xanthophylls for β-carotene; added O3FAs:
 - Vitamin C 500 mg
 - Vitamin E 400 IU
 - β-carotene
 - Zinc 80 mg
 - Cupric oxide 2 mg

- Study findings:
 - Reaffirmed results of the AREDS
 - Xanthophylls suitable substitute for β-carotene
 - O3FAs ineffective at reducing risk of progression