

- β blockers

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues

```
    The 'big three' FDA-approved PGA that dominate the American market
    ( ) ← An FDA-approved PGA, much less well-known than the big three
    ( ) ← A PGA 'combo drug'
```


- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost

 - Bimataprost
 - (Tafluprost) ← An FDA-approved PGA, much less well-known than the big three
 - (Latanaprostene bunod)
 ← A PGA 'combo drug'

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost ├ The three FDA-approved PGA that dominate the American market
 - Bimatapros
 - (Tafluprost) What is the brand name of tafluprost?

(Latanaprosteno buriou)

ne big three

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost ├ The three FDA-approved PGA that dominate the American market
 - Bimatapros
 - (Tafluprost) What is the brand name of tafluprost?

Zioptan (and that's all we'll have to say about it)

(Latanaprostene bunda)

6

ne big three

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost ├ The three FDA-approved PGA that dominate the American market
 - Bimataprost
 - (Tafluprost) ← An FDA approv
 - (Latanaprostene bunod)

What is the brand name of latanaprostene bunod?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost ├ The three FDA-approved PGA that dominate the American market
 - Bimataprost
 - (Tafluprost) ← An FBA approx
 - (Latanaprostene bunod)

What is the brand name of latanaprostene bunod? Vyzulta

(We'll have more to say about this drug later)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin

(This drove me **nuts** when I was a med student—how could the same disease be treated by two different medicines with the *exact opposite effect*? The first time I read it, I assumed it was a typo.)

11

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI (carbonic anhydrase inhibitors)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide

There is another, less well-known CAI—what is it?

•

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide There is another, less well-known CAI—what is it?
 - Methazolamide
 Methazolamide

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilocarpine (*Pilo* for short)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- β blockers
 - **Timolol**
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - **Travaprost**
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - **Dorzolamide**
 - **Brinzolamide**
 - **Acetazolamide**
- Selective α agonists
 - **Apraclonidine**
 - **Brimonidine**
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - **Netarsudil**

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Brand Name?

Timoptic

XXXXX

XXXXX

Xalatan

Travatan

Lumigan

XXXXX

XXXXX

Trusopt

Azopt

Diamox

lopidine

Alphagan

XXXXX

Rhopressa

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

24

What is the name of the equation that describes the factors determining IOP?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

25

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

26

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

What is the Goldmann equation? (Meaning, write it out)

27

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

What is the Goldmann equation? (Meaning, write it out)

$$IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$$

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

28

What is the Goldmann equation? (Meaning, write it out)

$$IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + \text{EVP}$$

Note:

- 1) EVP = write it out
- 2) In the interest of simplicity, I fudged a little on the denominator—technically, it's outflow not outflow rate

29

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

What is the Goldmann equation? (Meaning, write it out)

$$IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$$

Note:

- 1) EVP = episcleral venous pressure
- 2) In the interest of simplicity, I fudged a little on the denominator—technically, it's outflow **facility**, not outflow **rate**

Q

Ocular Hypotensives: List the common agents

30

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CA
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

What is the Goldmann equation? (Meaning, write it out)

$$IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$$

Note:

- 1) EVP = episcleral venous pressure
- 2) In the interest of simplicity, I fudged a little on the denominator—technically, it's outflow **facility**, not outflow **rate**

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- --
- __
- --

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

What is the Goldmann equation? (Meaning, write it out)

$$IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$$

Note:

- 1) EVP = episcleral venous pressure
- 2) In the interest of simplicity, I fudged a little on the denominator—technically, it's outflow **facility**, not outflow **rate**

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

32

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

What is the Goldmann equation? (Meaning, write it out)

$$IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + \text{EVP}$$

Note:

- 1) EVP = episcleral venous pressure
- 2) In the interest of simplicity, I fudged a little on the denominator—technically, it's outflow **facility**, not outflow **rate**

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

There is another commonly-employed means of decreasing IOP that is **not** implied by the Goldmann equation. What is it?

33

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

What is the Goldmann equation? (Meaning, write it out)

$$IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + \text{EVP}$$

Note:

- 1) EVP = episcleral venous pressure
- 2) In the interest of simplicity, I fudged a little on the denominator—technically, it's outflow **facility**, not outflow **rate**

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- --Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

There is another commonly-employed means of decreasing IOP that is **not** implied by the Goldmann equation. What is it? Dehydration of the vitreous

Q

Ocular Hypotensives: List the common agents

34

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

Where, specifically, is aqueous formed?

IOP = Rate of aqueous formation
Rate of aqueous outflew
EVP

Note:

- 1) EVP = episcleral venous pressure
- 2) In the interest of simplicity, I fudged a little on the denominator—technically, it's outflow **facility**, not outflow **rate**

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

There is another commonly-employed means of decreasing IOP that is **not** implied by the Goldmann equation. What is it? Dehydration of the vitreous

35

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

Where, specifically, is aqueous formed? In the nonpigmented epithelium of the pars plicata portion of the ciliary body

IOP = Rate of aqueous formation
Rate of aqueous outflew
EVP

Note:

- 1) EVP = episcleral venous pressure
- 2) In the interest of simplicity, I fudged a little on the denominator—technically, it's outflow **facility**, not outflow **rate**

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- --Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

There is another commonly-employed means of decreasing IOP that is **not** implied by the Goldmann equation. What is it? Dehydration of the vitreous

36

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

What is the Goldmann equation? (Meaning, write it out)

Moto:

What are the two types/pathways of aqueous outflow?

-

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

What is the Goldmann equation? (Meaning, write it out)

Noto:

What are the two types/pathways of aqueous outflow?

- --Trabecular meshwork (TM)
- --Uveoscleral (U/S)

38

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

What is the Goldmann equation? (Meaning, write it out)

Noto:

What are the two types/pathways of aqueous outflow?

- --Trabecular meshwork (TM)
- -- Uveoscleral (U/S)

One of these is referred to as **conventional** outflow; the other, **unconventional**. Which is which?

- --TM =
- --U/S =

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

What is the Goldmann equation? (Meaning, write it out)

Noto:

What are the two types/pathways of aqueous outflow?

- --Trabecular meshwork (TM)
- -- Uveoscleral (U/S)

One of these is referred to as **conventional** outflow; the other, **unconventional**. Which is which?

- --TM = conventional
- --U/S = unconventional

40

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

What is the Goldmann equation? (Meaning, write it out)

Noto:

What are the two types/pathways of aqueous outflow?

- --Trabecular meshwork (TM)
- --Uveoscleral (U/S)

One of these is referred to as **conventional** outflow; the other, **unconventional**. Which is which?

- --TM = conventional
- --U/S = unconventional

One outflow pathway is pressure **dependent**; the other, pressure **independent**. Which is which?

- --TM = conventional =
- --U/S = unconventional =

41

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the name of the equation that describes the factors determining IOP?

The Goldmann equation

What is the Goldmann equation? (Meaning, write it out)

Noto:

What are the two types/pathways of aqueous outflow?

- --Trabecular meshwork (TM)
- -- Uveoscleral (U/S)

One of these is referred to as **conventional** outflow; the other, **unconventional**. Which is which?

- --TM = conventional
- --U/S = unconventional

One outflow pathway is pressure **dependent**; the other, pressure **independent**. Which is which?

- --TM = conventional = pressure-dependent
- --U/S = unconventional = pressure-independent

42

- β blockers
 - **Timolol**
 - **Betaxolol**
 - **Carteolol**
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

The Goldmann equation implies three means by which IOP can be lowered. What are they?

Rate of aqueous formation

Rate of aqueous outflow

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do β blockers lower IOP? (Note: It could be more than one)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CA
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do β blockers lower IOP? (Note: It could be more than one)

By decreasing the rate of aqueous formation

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do β blockers lower IOP? (Note: It could be more than one)

By decreasing the rate of aqueous formation

By what mechanism do they reduce aqueous formation?

A

Ocular Hypotensives

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do β blockers lower IOP? (Note: It could be more than one)

By decreasing the rate of aqueous formation

By what mechanism do they reduce aqueous formation?
By inhibiting production of cAMP in the ciliary epithelium

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do β blockers lower IOP? (Note: It could be more than one)

By decreasing the rate of aqueous formation

By what mechanism do they reduce aqueous formation?
By inhibiting production of cAMP in the ciliary epithelium

By how much do they lower IOP?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do β blockers lower IOP? (Note: It could be more than one)

By decreasing the rate of aqueous formation

By what mechanism do they reduce aqueous formation?
By inhibiting production of cAMP in the ciliary epithelium

By how much do they lower IOP? 20-30%

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **PGAs** lower IOP? (Note: It could be more than one)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **PGAs** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **PGAs** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **PGAs** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway? Mainly via the U/S pathway

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **PGAs** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase U/S outflow?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **PGAs** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase U/S outflow? It is unknown at this time

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **PGAs** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase U/S outflow? It is unknown at this time

By how much do they lower IOP?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- -- Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **PGAs** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase U/S outflow? It is unknown at this time

By how much do they lower IOP? 25-33%

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **CAIs** lower IOP? (Note: It could be more than one)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **CAIs** lower IOP? (Note: It could be more than one)

By decreasing the rate of aqueous formation

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **CAIs** lower IOP? (Note: It could be more than one)

By decreasing the rate of aqueous formation

By what mechanism do they reduce aqueous formation?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **CAIs** lower IOP? (Note: It could be more than one)

By decreasing the rate of aqueous formation

By what mechanism do they reduce aqueous formation? By inhibiting the enzyme carbonic anhydrase

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- -- Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **CAIs** lower IOP? (Note: It could be more than one)

By decreasing the rate of aqueous formation

By what mechanism do they reduce aqueous formation? By inhibiting the enzyme carbonic anhydrase

By how much do they lower IOP?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- -- Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **CAIs** lower IOP? (Note: It could be more than one)

By decreasing the rate of aqueous formation

By what mechanism do they reduce aqueous formation? By inhibiting the enzyme carbonic anhydrase

By how much do they lower IOP? 15-20%

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

62

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **selective** α **agonists** lower IOP? (Note: It could be more than one)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **selective** α **agonists** lower IOP? (Note: It could be more than one)

Both meds decrease aqueous formation *and* increase outflow. Additionally, apra vs brimo reduces EVP.

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure (apra)

Of the three means implied by the Goldmann equation, how do **selective** α **agonists** lower IOP? (Note: It could be more than one)

Both meds decrease aqueous formation *and* increase outflow. Additionally, apraclonidine reduces EVP.

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure (apra)

Of the three means implied by the Goldmann equation, how do **selective** α **agonists** lower IOP? (Note: It could be more than one)

Both meds decrease aqueous formation *and* increase outflow. Additionally, apraclonidine reduces EVP.

By what mechanism do they reduce aqueous formation?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure (apra)

Of the three means implied by the Goldmann equation, how do **selective** α **agonists** lower IOP? (Note: It could be more than one)

Both meds decrease aqueous formation *and* increase outflow. Additionally, apraclonidine reduces EVP.

By what mechanism do they reduce aqueous formation? This is not addressed in the BCSC

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure (apra)

Of the three means implied by the Goldmann equation, how do **selective** α **agonists** lower IOP? (Note: It could be more than one)

Both meds decrease aqueous formation *and* increase outflow. Additionally, apraclonidine reduces EVP.

By what mechanism do they reduce aqueous formation? This is not addressed in the BCSC

By what mechanism do they increase aqueous outflow?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure (apra)

Of the three means implied by the Goldmann equation, how do **selective** α **agonists** lower IOP? (Note: It could be more than one)

Both meds decrease aqueous formation *and* increase outflow. Additionally, apraclonidine reduces EVP.

By what mechanism do they reduce aqueous formation? This is not addressed in the BCSC

By what mechanism do they increase aqueous outflow?

- --Apraclonidine increases outflow
- --Brimonidine increases outflow

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure (apra)

Of the three means implied by the Goldmann equation, how do **selective** α **agonists** lower IOP? (Note: It could be more than one)

Both meds decrease aqueous formation *and* increase outflow. Additionally, apraclonidine reduces EVP.

By what mechanism do they reduce aqueous formation? This is not addressed in the BCSC

By what mechanism do they increase aqueous outflow?

- --Apraclonidine increases TM outflow
- --Brimonidine increases U/S outflow

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure (apra)

Of the three means implied by the Goldmann equation, how do **selective** α **agonists** lower IOP? (Note: It could be more than one)

Both meds decrease aqueous formation *and* increase outflow. Additionally, apraclonidine reduces EVP.

By what mechanism do they reduce aqueous formation? This is not addressed in the BCSC

By what mechanism do they increase aqueous outflow?

- --Apraclonidine increases TM outflow
- --Brimonidine increases U/S outflow

Mnemonic for remembering their outflow pathways:

Apraclonidine: 'ATM' Brimonidine: 'BUS'

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure (apra)

Of the three means implied by the Goldmann equation, how do **selective** α **agonists** lower IOP? (Note: It could be more than one)

Both meds decrease aqueous formation *and* increase outflow. Additionally, apraclonidine reduces EVP.

By what mechanism do they reduce aqueous formation? This is not addressed in the BCSC

By what mechanism do they increase aqueous outflow?

- --Apraclonidine increases TM outflow
- --Brimonidine increases U/S outflow

By how much do they lower IOP?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure (apra)

Of the three means implied by the Goldmann equation, how do **selective** α **agonists** lower IOP? (Note: It could be more than one)

Both meds decrease aqueous formation *and* increase outflow. Additionally, apraclonidine reduces EVP.

By what mechanism do they reduce aqueous formation? This is not addressed in the BCSC

By what mechanism do they increase aqueous outflow?

- --Apraclonidine increases TM outflow
- --Brimonidine increases U/S outflow

By how much do they lower IOP? 20-30%

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **miotics** lower IOP? (Note: It could be more than one)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

74

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **miotics** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **miotics** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase outflow?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- -- Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **miotics** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase outflow?

They stimulate contraction of the muscle.

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- -- Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **miotics** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase outflow? They stimulate contraction of the longitudinal portion of the ciliary muscle.

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **miotics** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase outflow?
They stimulate contraction of the longitudinal portion of the ciliary muscle. These muscle fibers attach to the

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **miotics** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase outflow? They stimulate contraction of the longitudinal portion of the ciliary muscle. These muscle fibers attach to the scleral spur.

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **miotics** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase outflow?

They stimulate contraction of the longitudinal portion of the ciliary muscle. These muscle fibers attach to the scleral spur . Tension on the scleral spur produces tightness in the wow words to egress more efficiently.

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **miotics** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase outflow? They stimulate contraction of the longitudinal portion of the ciliary muscle. These muscle fibers attach to the scleral spur. Tension on the scleral spur produces tightness in the trabecular meshwork, thereby allowing aqueous to egress more efficiently.

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- -- Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **miotics** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase outflow? They stimulate contraction of the longitudinal portion of the ciliary muscle. These muscle fibers attach to the scleral spur . Tension on the scleral spur produces tightness in the trabecular meshwork, thereby allowing aqueous to egress more efficiently.

tl;dr They increase outflow through the TM pathway

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **miotics** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase outflow? They stimulate contraction of the longitudinal portion of the ciliary muscle. These muscle fibers attach to the scleral spur . Tension on the scleral spur produces tightness in the trabecular meshwork, thereby allowing aqueous to egress more efficiently.

By how much do they lower IOP?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **miotics** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

By what mechanism do they increase outflow? They stimulate contraction of the longitudinal portion of the ciliary muscle. These muscle fibers attach to the scleral spur. Tension on the scleral spur produces tightness in the trabecular meshwork, thereby allowing aqueous to egress more efficiently.

By how much do they lower IOP? 15-20%

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- -- Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how do **Rho kinase inhibitors** lower IOP? (Note: It could be more than one)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- --Decrease the rate of aqueous formation?
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure?

Of the three means implied by the Goldmann equation, how do **Rho kinase inhibitors** lower IOP? (Note: It could be more than one)

Primarily by increasing the rate of aqueous outflow (they may also reduce aqueous formation as well as decrease EVP, but these are thought to make minor contributions to their IOP-lowering effect)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation?
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure?

Of the three means implied by the Goldmann equation, how do **Rho kinase inhibitors** lower IOP? (Note: It could be more than one)

(they may also reduce aqueous formation as well as decrease Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAL
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Rate of aqueous formation + EVP Rate of aqueous outflow

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- --Decrease the rate of aqueous formation?
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure?

Of the three means implied by the Goldmann equation, how do Rho kinase inhibitors lower IOP? (Note: It could be more than one)

Primarily by increasing the rate of aqueous outflow (they may also reduce aqueous formation as well as

contribution

decrease Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway? Mainly via the TM pathway

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- --Decrease the rate of aqueous formation?
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure?

Of the three means implied by the Goldmann equation, how do **Rho kinase inhibitors** lower IOP? (Note: It could be more than one)

Primarily by increasing the rate of aqueous outflow (they may also reduce aqueous formation as well as decrease EVP, but these are thought to make minor contributions to their IOP-lowering effect)

By what mechanism do they increase TM outflow?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- --Decrease the rate of aqueous formation?
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure?

Of the three means implied by the Goldmann equation, how do **Rho kinase inhibitors** lower IOP? (Note: It could be more than one)

Primarily by increasing the rate of aqueous outflow (they may also reduce aqueous formation as well as decrease EVP, but these are thought to make minor contributions to their IOP-lowering effect)

By what mechanism do they increase TM outflow?
By inducing relaxation of cytoskeletal elements found within TM cells

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- --Decrease the rate of aqueous formation?
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure?

Of the three means implied by the Goldmann equation, how do **Rho kinase inhibitors** lower IOP? (Note: It could be more than one)

Primarily by increasing the rate of aqueous outflow (they may also reduce aqueous formation as well as decrease EVP, but these are thought to make minor contributions to their IOP-lowering effect)

By what mechanism do they increase TM outflow?
By inducing relaxation of cytoskeletal elements found within TM cells

By how much do they lower IOP?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- --Decrease the rate of aqueous formation?
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure?

Of the three means implied by the Goldmann equation, how do **Rho kinase inhibitors** lower IOP? (Note: It could be more than one)

Primarily by increasing the rate of aqueous outflow (they may also reduce aqueous formation as well as decrease EVP, but these are thought to make minor contributions to their IOP-lowering effect)

By what mechanism do they increase TM outflow?
By inducing relaxation of cytoskeletal elements found within TM cells

By how much do they lower IOP?
By my reading of the research, in the 20-25% range

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

- Latanaprostene bunod
- Travaprost
- Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CA
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does **latanaprostene bunod** lower IOP? (Note: It could be more than one)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

- Latanaprostene bunod
- Travaprost
- Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CA
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- -- Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does **latanaprostene bunod** lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

- Latanaprostene bunod
- Travaprost
- Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

- Latanaprostene bunod
- Travaprost
- Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway? Via **both**

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

- Latanaprostene bunod
- Travaprost
- Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It could be more than one)

By increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway?

Via **both**

How does manage to affect both outflow pathways?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

- Latanaprostene bunod
- Travapros
- **Bimataprost**
- Epinephrine
 - Dipivefrin
- - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Rate of aqueous formation + EVP Rate of aqueous outflow

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It uld be more than one)

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway? Via both

How does manage to affect both outflow pathways? The latanaprostene bunod molecule is cleaved into two moieties: and

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

- Latanaprostene bunod
- Travaprost
- Bimataprost
- **▶ ∧ Latanaprost**
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- --Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does **latanaprostene bunod** lower IOP? (Note: It uld be more than one)

Nitric oxide increasing the rate

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway?

Via **both**

How does manage to affect both outflow pathways?
The latanaprostene bunod molecule is cleaved into two moieties: latanaprost and nitric oxide (NO).

- B blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

Latanaprostene bunod

Travapros

Bimatanrost Latanaprost

Nitric oxide

- Epinephrine

U/S vs TM

- U/S vs TM
- Dorzolamide
- Brinzolamide
- Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Rate of aqueous formation + EVP Rate of aqueous outflow

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It uld be more than one)

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway? Via both

How does manage to affect both outflow pathways? The latanaprostene bunod molecule is cleaved into two moieties: latanaprost and nitric oxide (NO). In turn, these increase outflow, respectively. and

A

Ocular Hypotensive:

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

Latanaprostene bunod

Travaprost

Bimataprost

 Latanaprost

Latanaprost α/β a Nitric oxide

Epinephrine

↑ U/S outflow

↑ TM outflow

- Dorzolamide
- Brinzolamide
- Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It

uld be more than one)

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway?

Via **both**

How does manage to affect both outflow pathways? The latanaprostene bunod molecule is cleaved into two moieties: latanaprost and nitric oxide (NO). In turn, these increase U/S and TM outflow, respectively.

Q

Ocular Hypotensive:

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

Latanaprostene bunod

Travaprost

Bimataprost

Latanaprost α/β a

Epinephrine

↑ U/S outflow

↑ TM outflow

Nitric oxide

- Dorzolamide
- Brinzolamide
- Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- -- Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It

uld be more than one)

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway? Via **both**

How does manage to affect both outflow pathways? The latanaprostene bunod molecule is cleaved into two moieties: latanaprost and nitric oxide (NO). In turn, these increase U/S and TM outflow, respectively.

How do the constituent moieties accomplish their effects? --Latanaprost:

--NO

A

Ocular Hypotensives

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

Latanaprostene bunod

Travaprost

Bimataprost

Latanaprost α/β a

Epinephrine

↑ U/S outflow

↑ TM outflow

Nitric oxide

- Dorzolamide
- Brinzolamide
- Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It

uld be more than one)

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway? Via **both**

How does manage to affect both outflow pathways? The latanaprostene bunod molecule is cleaved into two moieties: latanaprost and nitric oxide (NO). In turn, these increase U/S and TM outflow, respectively.

How do the constituent moieties accomplish their effects?
--Latanaprost: Mechanism unknown (as noted previously)
--NO

Q

Ocular Hypotensive:

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

Latanaprostene bunod

TravaprostBimataprost

Latanaprost α /

/ß a Nitric oxide

Epinephrine

↑ U/S outflow

↑ TM outflow

- Dorzolamide
- Brinzolamide
- Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It

uld be more than one)

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway? Via **both**

How does manage to affect both outflow pathways?
The latanaprostene bunod molecule is cleaved into two moieties: latanaprost and nitric oxide (NO). In turn, these increase U/S and TM outflow, respectively.

How do the constituent moieties accomplish their effects?
--Latanaprost: Mechanism unknown (as noted previously)
--NO:

A

Ocular Hypotensive:

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

Latanaprostene bunod

TravaprostBimataprost

Latanaprost

st α/β a Nitric oxide

Epinephrine

↑ U/S outflow

↑ TM outflow

- Dorzolamide
- Brinzolamide
- Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It

uld be more than one)

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway? Via **both**

How does manage to affect both outflow pathways? The latanaprostene bunod molecule is cleaved into two moieties: latanaprost and nitric oxide (NO). In turn, these increase U/S and TM outflow, respectively.

How do the constituent moieties accomplish their effects?

- --Latanaprost: Mechanism unknown (as noted previously)
- --NO: By inducing relaxation of cytoskeletal elements found within TM cells

+ EVP

Q

Ocular Hypotensives

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprostene bunod

Travaprost

Bimataprost

Latanaprost α/β a

Epihephrine

↑ U/S outflow

↑ TM outflow

Nitric oxide

 $OP = \frac{Rate \text{ of aqueous formation}}{Rate OP}$

Rate of aqueous outflow

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does **latanaprostene bunod** lower IOP? (Note: It uld be more than one)

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway?

- DOTZ "By inducing relaxation of cytoskeletal elements found within TM cells"...Where have I heard
- Brinz that before? (No cheating by looking back)
- Aceta
- Selective
 - Apra
 - Brimomaine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

atanaprost: Mechanism unknown (as noted previously)

--NO: By inducing relaxation of cytoskeletal elements found within TM cells

+ EVP

Ocular Hypotensives

- B blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

Latanaprostene bunod

Travapros **Rimataprost**

Latanaprost

Epihephrine

U/S outflow

↑ TM outflow

Nitric oxide

Rate of aqueous formation

Rate of aqueous outflow

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It uld be more than one

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway. or the unconventional (U/S) pathway?

- "By inducing relaxation of cytoskeletal elements found within TM cells"...Where have I heard
- that before? (No cheating by looking back)
 - This phrase was used to characterize the mechanism of action of the Aceta
- Selective
 - Apra
 - Brimoniume
- **Miotics**
- Rho kinase inhibitor
 - Netarsudil

maprost: Mechanism unknown (as noted previ

--NO: By inducing relaxation of cytoskeletal elements found within TM cells

+ EVP

Ocular Hypotensives

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

Latanaprostene bunod

Travapros **Rimataprost**

Latanaprost

Epihephrine

U/S outflow

↑ TM outflow

Nitric oxide

Rate of aqueous formation

Rate of aqueous outflow

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- --Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It uld be more than one

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway. or the unconventional (U/S) pathway?

- "By inducing relaxation of cytoskeletal elements found within TM cells"...Where have I heard
- that before? (No cheating by looking back)
- This phrase was used to characterize the mechanism of action of the Rho kinase inhibitors Aceta
- Selective
 - Apra
 - Brimoniume
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

naprost: Mechanism unknown (as noted previ

--NO: By inducing relaxation of cytoskeletal elements found within TM cells

+ EVP

Q

Ocular Hypotensive:

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprostene bunod

Travaprost

Bimataprost

Latanaprost α/β a Nitric oxide

Epinephrine

↑ U/S outflow

↑ TM outflow

 $OP = \frac{\text{Rate of aqueous formation}}{}$

Rate of aqueous outflow

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It

uld be more than one)

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway?

- DOTZ "By inducing relaxation of cytoskeletal elements found within TM cells"...Where have I heard
- Brinz that before? (No cheating by looking back)
- This phrase was used to characterize the mechanism of action of the Rho kinase inhibitors
- Selective Does this mean NO and RhoKIs have the same mechanism of action?
 - Apra
 - Brimomaine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

atanaprost: Mechanism unknown (as noted previously

--NO: By inducing relaxation of cytoskeletal elements found within TM cells

Ocular Hypotensives

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprostene bunod

 - Travapros **Rimataprost**
 - Latanaprost
 - Epinephrine
- **U/S** outflow

↑ TM outflow

Rate of aqueous formation

Rate of aqueous outflow

110

+ EVP

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- --Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It

uld be more than one) Nitric oxide

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway. or the unconventional (U/S) pathway?

- "By inducing relaxation of cytoskeletal elements found within TM cells"...Where have I heard
- that before? (No cheating by looking back)
- This phrase was used to characterize the mechanism of action of the Rho kinase inhibitors Aceta
- Does this mean NO and RhoKIs have the same mechanism of action? Selective
 - In one sense yes—they both interfere with the Rho signaling cascade that stiffens cytoskeletal elements. However, the two agents act at very different points in that signaling cascade.
- **Miotics**
- Rho kinase inhibitor
 - Netarsudil

naprost: Mechanism unknown (as noted previ

--NO: By inducing relaxation of cytoskeletal elements found within TM cells

within TM cells

Brinzolan

Brimonidine

Rho kinase inhibitor

Netarsudil

Selec

Miotics

Pilo

↓ IOP by ?

By how much does latanaprostene bunod lower IOP?

Latanaprost: wechanism unknown (as noted previously)
 NO: By inducing relaxation of cytoskeletal elements found.

Ocular Hypotensives

Nitric oxide

↑ TM outflow

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

Latanaprostene bunod

Travapros

Rimataprost

Latanaprost

Epihephrine

U/S outflow

Dorzolamide

Brinzolan

↓ IOP by ? Selec

- Brimonidine
- **Miotics**
- Rho kinase inhibitor
 - Netarsudil

Rate of aqueous formation + EVP

Rate of aqueous outflow

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It

uld be more than one)

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway? Via both

By how much does latanaprostene bunod lower IOP? That's not the right question. The right question is, by how much more does it lower IOP compared to latanaprost alone?

-- Latanaprost. Wechanism unknown (as noted previously) --NO: By inducing relaxation of cytoskeletal elements found within TM cells

Q

Ocular Hypotensive:

Nitric oxide

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprostene bunod
 - TravaprostBimataprost
 - Latanaprost
 - Epihephrine
- ↑ U/S outflow

↑ TM outflow

- Dorzolamide
- Brinzolamide
- A ↓ IOP mmHg vs
- latanaprost alone
 - Apracionidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $IOP = \frac{\text{Rate of aqueous formation}}{\text{Rate of aqueous outflow}} + EVP$

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It

uld be more than one)

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway?

Via both

By how much does latanaprostene bunod lower IOP? That's not the right question. The right question is, by how much more does it lower IOP compared to latanaprost alone?

OK then, by how much more does it lower IOP compared to latanaprost alone?

-- Latanaprost: wechanism unknown (as noted previously)
-- NO: By inducing relaxation of cytoskeletal elements found within TM cells

+ EVP

A

Ocular Hypotensives

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol

Prostaglandin analogues

Latanaprostene bunod

Travaprost

• Bimataprost Latanaprost

Enibonbrino

Epinephrine

↑ U/S outflow

↑ TM outflow

Nitric oxide

- Dorzolamide
- Brinzolamide
- IOP 1.2 mmHg vs latanaprost alone
- Auracioniumo
- Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

 $OP = \frac{\text{Rate of aqueous formation}}{}$

Rate of aqueous outflow

The Goldmann equation implies three means by which IOP can be lowered. What are they?

- -- Decrease the rate of aqueous formation
- --Increase the rate of aqueous outflow
- --Decrease episcleral venous pressure

Of the three means implied by the Goldmann equation, how does latanaprostene bunod lower IOP? (Note: It

uld be more than one)

increasing the rate of aqueous outflow

Does it increase outflow via the conventional (TM) pathway, or the unconventional (U/S) pathway?

Via both

By how much does latanaprostene bunod lower IOP? That's not the right question. The right question is, by how much more does it lower IOP compared to latanaprost alone?

OK then, by how much more does it lower IOP compared to latanaprost alone?

By about 1 mmHg

-- Latanaprost. Mechanism unknown (as noted previously)
-- NO: By inducing relaxation of cytoskeletal elements found within TM cells

- β blockers
 - **Timolol**
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - **Travaprost**
 - **Bimataprost**
- Nonselective of agonist
 - Epinephrine
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - **Apraclonidine**
 - **Brimonidine**
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Rank these four commonly-used drug classes in terms of their IOP-lowering efficacy:

115

- 1)
- 2)
- 3)
- 4)

(Rank the topical formulations)

A

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Rank these four commonly-used drug classes in terms of their IOP-lowering efficacy:

- 1) PGAs
- 2) Beta blockers
- 3) Selective α agonists
- 4) CAIs

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective of agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Rank these four commonly-used drug classes in terms of their IOP-lowering efficacy:

- 1) PGAs
- 2) Beta blockers
- 3) Selective α agonists
- 4) CAIs

Give two reasons the PGAs beat the β blockers:

- 1)
- 2)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Rank these four commonly-used drug classes in terms of their IOP-lowering efficacy:

- 1) PGAs
- 2) Beta blockers
- 3) Selective α agonists
- 4) CAIs

Give two reasons the PGAs beat the β blockers:

- 1) Slightly better IOP reduction on average
- 2) Better 24° IOP control (β blocker efficacy drops during sextivity

A

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective of agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Rank these four commonly-used drug classes in terms of their IOP-lowering efficacy:

- 1) PGAs
- 2) Beta blockers
- 3) Selective α agonists
- 4) CAIs

Give two reasons the PGAs beat the β blockers:

- 1) Slightly better IOP reduction on average
- 2) Better 24° IOP control (β blocker efficacy drops during sleep)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective of agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Rank these four commonly-used drug classes in terms of their IOP-lowering efficacy:

- 1) PGAs
- 2) Beta blockers
- 3) Selective α agonists
- 4) CAIs

Give two reasons the PGAs beat the β blockers:

- 1) Slightly better IOP reduction on average
- 2) Better 24° IOP control (<u>β blocker efficacy drops</u> during sleep)

This is why the second dose should be instilled a number of hours before bedtime!

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective of agonist
 - Epinephron OK, but why are the β blockers ranked ahead of the selective α agonists?
 - Dipivefrir
- CAI
 - Dorzolan
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Rank these four commonly-used drug classes in terms of their IOP-lowering efficacy:

- 1) PGAs
- 2) Beta blockers
- 3) Selective α agonists

As I recall, both reduce IOP in the 20-30% range.

during sleep)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective of agonist

Rank these four commonly-used drug classes in terms of their IOP-lowering efficacy:

122

- 1) PGAs
- 2) Beta blockers
- 3) Selective α agonists
- Epinephr OK, but why are the β blockers ranked ahead of the selective α agonists?
 Dipivefrir As I recall, both reduce IOP in the 20-30% range.
- CAI
 It's true, their efficacies are equal—at one word in the β blockers produce slightly better IOPs at offword in the β blockers in the β blockers

during sleep)

- Brinzolamide
- Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - **Bimataprost**

Epineph

- Nonselective of agonist
- in terms of their IOP-lowering efficacy:
 - 1) PGAs
 - 2) Beta blockers
 - 3) Selective α agonists

As I recall, both reduce IOP in the 20-30% range.

CAI

- It's true, their efficacies are equal—at **peak**. However, the β blockers
- Dorzolan produce slightly better IOPs at trough, so they win.
- Brinzolamide
- Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

OK, but why are the β blockers ranked ahead of the selective α agonists?

Rank these four commonly-used drug classes

123

during sleep)

Some drugs are dispensed as fixed-combination meds. The drugs/classes involved are:

- β blockers
 - **Timolol**
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - **Travaprost**
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin Drug? Drug?
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Drug? Selective α agonists
 - **Apraclonidine**
 - **Brimonidine**
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Class?

124

Drug?

- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Brimonidine Timolol

Latanaprost Netarsudil

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Latanaprost

Netarsudil

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Latanaprost

Netarsudil

Q

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Latanaprost

Netarsudil

A

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Latanaprost

Netarsudil

Q

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Latanaprost

Netarsudil

A

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Latanaprost

Netarsudil

Q

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Latanaprost

What is the brand name of the Latanaprost/Netarsudil combo drop?

Netarsudil

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Latanaprost

What is the brand name of the Latanaprost/Netarsudil combo drop? **Rocklatan**

Netarsudil

Q

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

134

Give five advantages combo drugs provide over simply using the same meds as separate drops.

- 2)
- 2))
- 3)
- 4)
- 5)

A

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

135

Give five advantages combo drugs provide over simply using the same meds as separate drops.

- 1) Convenience
- 2) Costs less (usually)
- **3)** By halving the number of drops, the preservative-load the ocular surface must endure is halved as well, thus making irritation less of an issue
- 4) Improved compliance
- **5)** Eliminates washout (ie, when an impatient pt instills their second drop too soon after the first, thereby washing it out)

136

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the standard dosing frequency for latanaprost?

Latanaprost

Rocklatan

137

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the standard dosing frequency for latanaprost? Daily

Latanaprost Rocklatan Netarsudil

138

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the standard dosing frequency for latanaprost? Daily

What is the standard dosing frequency for netarsudil?

Latanaprost Rocklatan **Netarsudil**

139

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the standard dosing frequency for latanaprost? Daily

What is the standard dosing frequency for netarsudil? Daily

Latanaprost Ro

Rocklatan

140

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the standard dosing frequency for latanaprost? Daily

What is the standard dosing frequency for netarsudil? Daily

What is the preferred/recommended time to take latanaprost?

Latanaprost

Rocklatan

141

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the standard dosing frequency for latanaprost? Daily

What is the standard dosing frequency for netarsudil? Daily

What is the preferred/recommended time to take latanaprost? Bedtime

Latanaprost

Rocklatan

142

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the standard dosing frequency for latanaprost? Daily

What is the standard dosing frequency for netarsudil? Daily

What is the preferred/recommended time to take latanaprost? Bedtime

What is the preferred/recommended time to take netarsudil?

Latanaprost

Rocklatan

143

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is the standard dosing frequency for latanaprost? Daily

What is the standard dosing frequency for netarsudil? Daily

What is the preferred/recommended time to take latanaprost? Bedtime

What is the preferred/recommended time to take netarsudil? Bedtime

Latanaprost

Rocklatan

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

145

Which is the only agent FDA-approved for prophylaxing against post-procedure IOP spikes?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

146

Which is the only agent FDA-approved for prophylaxing against post-procedure IOP spikes? **lopidine**

Q

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which is the only agent FDA-approved for prophylaxing against post-procedure IOP spikes? **lopidine**

Iopidine works well for this indication, with one exception--in those pts already on a particular hypotensive drop for glaucoma. So if a pt is already on the drop in question, don't bother with the pre-procedure lopidine, as it's not going to work. Which drop are we talking about?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which is the only agent FDA-approved for prophylaxing against post-procedure IOP spikes? **lopidine**

lopidine works well for this indication, with one exception—in those pts already on a particular hypotensive drop for glaucoma. So if a pt is already on the drop in question, don't bother with the pre-procedure lopidine, as it's not going to work. Which drop are we talking about?

Brimonidine

Q

Ocular Hypotensives: List the common agents

149

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- ullet Selective lpha agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which is the only agent FDA-approved for prophylaxing against post-procedure IOP spikes? **lopidine**

lopidine works well for this indication, with one exception—in those pts already on a particular hypotensive drop for glaucoma. So if a pt is already on the drop in question, don't bother with the post-procedure lopidine, as it's not going to work. Which drop are we talking about? Brimonidine

So if a pt is on brimonidine, what drop **should** you use to blunt a post-procedure IOP spike?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which is the only agent FDA-approved for prophylaxing against post-procedure IOP spikes? lopidine

lopidine works well for this indication, with one exception--in those pts already on a particular hypotensive drop for glaucoma. So if a pt is already on the drop in question, don't bother with the post-procedure lopidine, as it's not going to work. Which drop are we talking about? **Brimonidine**

So if a pt is on brimonidine, what drop should you use to blunt a post-procedure IOP spike? Pilo

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Speaking of pilo--besides prophylaxing IOP spikes in pts on brimonidine, in what other situations is it useful?

1)

2)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Speaking of pilo--besides prophylaxing IOP spikes in pts on brimonidine, in what other situations is it useful?

- 1) Managing angle closure
- 2) Deepening the angle in plateau-iris syndrome

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Speaking of pilo--besides prophylaxing IOP spikes in pts on brimonidine, in what other situations is it useful?

- 1) Managing angle closure
- 2) Deepening the angle in plateau-iris syndrome

What is the feared side effect of pilo?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Speaking of pilo--besides prophylaxing IOP spikes in pts on brimonidine, in what other situations is it useful?

- 1) Managing angle closure
- 2) Deepening the angle in plateau-iris syndrome

What is the feared side effect of pilo?
Retinal tears

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Speaking of pilo--besides prophylaxing IOP spikes in pts on brimonidine, in what other situations is it useful?

- 1) Managing angle closure
- 2) Deepening the angle in plateau-iris syndrome

What is the feared side effect of pilo?
Retinal tears

Because of its association with retinal tears, what should be done prior to initiation of (non-emergent) pilo therapy?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Speaking of pilo--besides prophylaxing IOP spikes in pts on brimonidine, in what other situations is it useful?

- 1) Managing angle closure
- 2) Deepening the angle in plateau-iris syndrome

What is the feared side effect of pilo?
Retinal tears

Because of its association with retinal tears, what should be done prior to initiation of (non-emergent) pilo therapy?

A careful retina evaluation

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

In the present context, how many subtypes of α receptors are we concerned about?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

In the present context, how many subtypes of α receptors are we concerned about?

Two

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

In the present context, how many subtypes of α receptors are we concerned about?

What are these two α receptor subtypes called?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

In the present context, how many subtypes of α receptors are we concerned about?

What are these two α receptor subtypes called? They are called α_1 and α_2

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α /, --?
 - Epinephrine |
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - **Apraclonidine**
 - **Brimonidine**
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

With respect to the eyes, what does activation of each subtype produce?

 α_1 :

α₂:

What are these two α receptor subtypes called? They are called α_1 and α_2

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
- Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α /, --Eyelid
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

With respect to the eyes, what does activation of each subtype produce? α_1 :
--Vasoconstriction
--Pupil one word
--Eyelid one word α_2 :

162

tors

What are these two α receptor subtypes called? They are called α_1 and α_2

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α /, --Eyelid retraction
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - **Apraclonidine**
 - **Brimonidine**
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

With respect to the eyes, what does activation of each subtype produce?

 α_1 :

- --Vasoconstriction
- --Pupil mydriasis

 α_2 :

What are these two α receptor subtypes called? They are called α_1 and α_2

- B blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α / --Eyelid retraction
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - **Apraclonidine**
 - **Brimonidine**
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

With respect to the eyes, what does activation of each subtype produce?

 α_1 :

- --Vasoconstriction
- --Pupil mydriasis

 α_2 :

--Reduced

What are these two α receptor subtypes called? They are called α_1 and α_2

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α / --Eyelid retraction
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - **Apraclonidine**
 - **Brimonidine**
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

With respect to the eyes, what does activation of each subtype produce?

 α_1 :

- --Vasoconstriction
- --Pupil mydriasis

 α_2 :

--Reduced IOP

What are these two α receptor subtypes called?

They are called α_1 and α_2

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues

Note: The Glaucoma book states that neuroprotection is another 'possible' effect of α_2 stimulation

-- Pupii myariasis

Nonselective α /, --Eyelid retraction

Epinephrine

 α_2 :

Dipivefrin

-- Reduced IOP and 'neuroprotection'?

CAI

Dorzolamide

- Brinzolamide
- Acetazolamide
- Selective α agonists
 - **Apraclonidine**
 - **Brimonidine**
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

166

What are these two α receptor subtypes called? They are called α_1 and α_2

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues

Note: The *Glaucoma* book states that **neuroprotection** is another 'possible' effect of α_2 stimulation. That said, it doesn't elaborate on this claim, or explain what is meant by 'neuroprotection' (in fact, the term doesn't even appear in the index)

-- Reduced IOP and 'neuroprotection'?

Nonselective α /, --Eyelid retraction

 α_2 :

- Epinephrine
- Dipivefrin

CAI

- Dorzolamide
- Brinzolamide
- Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

tors

What are these two α receptor subtypes called? They are called α_1 and α_2

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

In the present context, how many subtypes of α receptors are we concerned about?

What are these two α receptor subtypes called? They are called α_1 and α_2

What does it mean to say the selective α agonists are selective? What are they 'selecting'?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

169

In the present context, how many subtypes of α receptors are we concerned about?

What are these two α receptor subtypes called? They are called α_1 and α_2

What does it mean to say the selective α agonists are selective? What are they 'selecting'? It means they preferentially stimulate α_2 receptors more than α_1

Q

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

In the present context, how many subtypes of α receptors are we concerned about?

What are these two α receptor subtypes called? They are called α_1 and α_2

What does it mean to say the selective α agonists are selective? What are they 'selecting'? It means they preferentially stimulate α_2 receptors more than α_1

One agent is significantly **more** α_2 -selective than the other (it is often described as a **'highly** selective α agonist'). Which is it?

171

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

In the present context, how many subtypes of α receptors are we concerned about?

What are these two α receptor subtypes called? They are called α_1 and α_2

What does it mean to say the selective α agonists are selective? What are they 'selecting'? It means they preferentially stimulate α_2 receptors more than α_1

One agent is significantly **more** α_2 -selective than the other (it is often described as a **'highly** selective α agonist'). Which is it?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which agent is notoriously allergenic?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which agent is notoriously allergenic?

lopidine

174

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

How notorious is it, ie, what proportion of pts develop topical sensitivity?

Which agent is notoriously allergenic?

175

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

How notorious is it, ie, what proportion of pts develop topical sensitivity?

Almost half!

Which agent is notoriously allergenic?

176

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

How notorious is it, ie, what proportion of pts develop topical sensitivity?

Almost half!

Which agent is notoriously allergenic? lopidine

There are two classic manifestations of iopidine sensitivity—what are they?

-

__

177

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

How notorious is it, ie, what proportion of pts develop topical sensitivity?

Almost half!

Which agent is notoriously allergenic? lopidine

There are two classic manifestations of iopidine sensitivity—
what are they?

--two words

of the lid and periorbital skin

type (one word) conjunctivitis

tivitio

178

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

How notorious is it, ie, what proportion of pts develop topical sensitivity?

Almost half!

Which agent is notoriously allergenic lopidine

There are two classic manifestations of iopidine sensitivity—what are they?

- -- Contact dermatitis of the lid and periorbital skin
- --Follicular conjunctivitis

179

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

How notorious is it, ie, what proportion of pts develop topical sensitivity?

Almost half!

Which agent is notoriously allergenic lopidine

There are two classic manifestations of iopidine sensitivity—what are they?

-- Contact dermatitis of the lid and periorbital skin

--Follicular conjunctivitis

When you encounter a follicular conjunctivitis, three things (ie, causes) should come to mind. One is reaction to a 'toxin' such as iopidine. What are the other two?
--Toxin

--

--

180

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

How notorious is it, ie, what proportion of pts develop topical sensitivity?

Almost half!

Which agent is notoriously allergenic lopidine

There are two classic manifestations of iopidine sensitivity—what are they?

-- Contact dermatitis of the lid and periorbital skin

--Follicular conjunctivitis

When you encounter a follicular conjunctivitis, three things (ie, causes) should come to mind. One is reaction to a 'toxin' such as iopidine. What are the other two?

- --Toxin
- -- class infection
- specific bug infection

181

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

How notorious is it, ie, what proportion of pts develop topical sensitivity?

Almost half!

Which agent is notoriously allergenic?

lopidine

There are two classic manifestations of iopidine sensitivity—what are they?

-- Contact dermatitis of the lid and periorbital skin

--Follicular conjunctivitis

When you encounter a follicular conjunctivitis, three things (ie, causes) should come to mind. One is reaction to a 'toxin' such as iopidine. What are the other two?

- --Toxin
- --Viral infection
- --Chlamydia infection

182

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β ag
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

How notorious is it, ie, what proportion of pts develop topical sensitivity?

Almost half!

Which agent is notoriously allergenic?

lopidine

As if a high likelihood of topical sensitivity wasn't enough, iopidine has another drawback that also renders it inappropriate for long-term IOP control. What is this second dealbreaker?

When you encounter a follicular conjunctivitis, three things (ie, causes) should come to mind. One is reaction to a 'toxin' such as iopidine. What are the other two?

- --Toxin
- --Viral infection
- -- Chlamydia infection

183

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β ag
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

How notorious is it, ie, what proportion of pts develop topical sensitivity?

Almost half!

Which agent is notoriously allergenic?

lopidine

As if a high likelihood of topical sensitivity wasn't enough, iopidine has another drawback that also renders it inappropriate for long-term IOP control. What is this second dealbreaker? A high propensity for the development of tachyphylaxis

When you encounter a follicular conjunctivitis, three things (ie, causes) should come to mind. One is reaction to a 'toxin' such as iopidine. What are the other two?

- --Toxin
- --Viral infection
- -- Chlamydia infection

184

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β ag
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

How notorious is it, ie, what proportion of pts develop topical sensitivity?

Almost half!

Which agent is notoriously allergenic lopidine

As if a high likelihood of topical sensitivity wasn't enough, iopidine has another drawback that also renders it inappropriate for long-term IOP control. What is this second dealbreaker?

A high propensity for the development of tachyphylaxis

What is tachyphylaxis?

(ie, cau

When v

'toxin' such as iopidine. What are the other two?

- --Toxin
- --Viral infection
- -- Chlamydia infection

185

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β ag
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

How notorious is it, ie, what proportion of pts develop topical sensitivity?

Almost half!

Which agent is notoriously allergenic? lopidine

As if a high likelihood of topical sensitivity wasn't enough, iopidine has another drawback that also renders it inappropriate for long-term IOP control. What is this second dealbreaker?

A high propensity for the development of tachyphylaxis

What is tachyphylaxis?

The tendency of a drug to lose effectiveness over time

'toxin' such as iopidine. What are the other two?

--Toxin

When v

- --Viral infection
- --Chlamydia infection

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

As mentioned above, iopidine is not in common usage as a long-term IOP med. Of the meds that **are** commonly used long-term, which is most notoriously allergenic?

Brimonidine

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

es ist

As mentioned above, iopidine is not in common usage as

a long-term IOP med. Of the meds that are commonly

used long-term, which is most notoriously allergenic?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - La lopidine sensitivity:
 - --Contact dermatitis of the lid and periorbital skin
 - Bi --Follicular conjunctivitis
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

?

Are the manifestations of brimonidine sensitivity the same as those to iopidine?

As mentioned above, iopidine is not in common usage as a long-term IOP med. Of the meds that are commonly used long-term, which is most notorious (v allergenic?)

Brimonidine

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - La lopidine sensitivity:
 - --Contact dermatitis of the lid and periorbital skin
 - Bi --Follicular conjunctivitis
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Yes

Are the manifestations of brimonidine sensitivity the same as those to iopidine?

As mentioned above, iopidine is not in common usage as a long-term IOP med. Of the meds that are commonly used long-term, which is most notorious v allergenic?

Brimonidine

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

As mentioned above, iopidine is not in common usage as a long-term IOP med. Of the meds that are commonly used long-term, which is most notoriously allergenic?

Brimonidine

Almost half of iopidine pts develop sensitivity to it. In this regard, how notorious is brimonidine?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

As mentioned above, iopidine is not in common usage as a long-term IOP med. Of the meds that are commonly used long-term, which is most notoriously allergenic?

Brimonidine

Almost half of iopidine pts develop sensitivity to it. In this regard, how notorious is brimonidine?

Much less so, although still significant—between 10 and 15%

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

As mentioned above, iopidine is not in common usage as a long-term IOP med. Of the meds that are commonly used long-term, which is most notoriously allergenic?

Brimonidine

Almost half of **iopidine** at develop sensitivity to it. In this regard, how notorious is **brimonidine?** Much less so, although still significant—between

If a pt is known to be allergic to iopidine, is it a given that s/he will be allergic to brimonidine?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

As mentioned above, iopidine is not in common usage as a long-term IOP med. Of the meds that are commonly used long-term, which is most notoriously allergenic?

Brimonidine

Almost half of **iopidine** Its develop sensitivity to it. In this regard, how notorious is **brimonidine**? Much less so, although still significant—between

If a pt is known to be allergic to iopidine, is it a given that s/he will be allergic to brimonidine?

Surprisingly no—the cross-sensitivity between these meds is minimal

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which of these is available PO?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide (and methazolamide)
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which of these is available PO?

Acetazolamide and methazolamide

Q

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

196

Which of these is available PO?

Acetazolamide and methazolamide

What are the common systemic side effects of PO CAIs?

- --?
- --2
- --?
- __2
- __2

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What are the common systemic side effects of PO CAIs?

- --Malaise/fatigue/depression
- --Paresthesias

--Nephrolithiasis

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

198

Which of these is available PO?

Acetazolamide and methazolamide

What are the common systemic side effects of PO CAIs?

- --Malaise/fatigue/depression
- --Paresthesias
- --Hematologic issues:
 - --Aplastic anemia
 - --Thrombocytopenia
- --Bitter ('metallic') taste
- --Nephrolithiasis

Q

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which of these is available PO?

Acetazolamide and methazolamide

What are the common systemic side effects of PO CAIs?

- --Malaise/fatigue/depression
- --Paresthesias

How do the parasthesias typically manifest?

-- ппотпросуюреніа

- --Bitter ('metallic') taste
- --Nephrolithiasis

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which of these is available PO?

Acetazolamide and methazolamide

What are the common systemic side effects of PO CAIs?

- --Malaise/fatigue/depression
- --Paresthesias

How do the parasthesias typically manifest?

As tingling of bodypart, bodypart and area

-- THIOTHDOCYTOPEHIA

- --Bitter ('metallic') taste
- --Nephrolithiasis

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which of these is available PO?

Acetazolamide and methazolamide

What are the common systemic side effects of PO CAIs?

- --Malaise/fatigue/depression
- --Paresthesias

How do the parasthesias typically manifest?
As tingling of fingers, toes and perioral area

- --Bitter ('metallic') taste
- --Nephrolithiasis

Q

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which of these is available PO?

Acetazolamide and methazolamide

What are the common systemic side effects of PO CAIs?

- --Malaise/fatigue/depression?
- --Paresthesias?
- --Hematologic issues:
 - --Aplastic anemia?
 - --Thrombocytopenia?
- --Bitter ('metallic') taste?
- --Nephrolithiasis?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which of these is available PO?

Acetazolamide and methazolamide

What are the common systemic side effects of PO CAIs?

- --Malaise/fatigue/depression
- --Paresthesias
- --Hematologic issues:

--Aplastic anemia

--Thrombocytopenia

- --Bitter ('metallic') taste
- --Nephrolithiasis

Q

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which of these is available PO?

Acetazolamide and methazolamide

What are the common systemic side effects of PO CAIs?

--Malaise/fatique/depression

Topical dorzolamide is notorious for a particular adverse effect—what is it?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective lpha agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which of these is available PO?

Acetazolamide and methazolamide

What are the common systemic side effects of PO CAIs?

--Malaise/fatique/depression

Topical dorzolamide is notorious for a particular adverse effect—what is it?

It stings

Q

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- ullet Selective lpha agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which of these is available PO?

Acetazolamide and methazolamide

What are the common systemic side effects of PO CAIs?

--Malaise/fatique/denression

Topical dorzolamide is notorious for a particular adverse effect—what is it?

It stings

Why does it sting?

206

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- ullet Selective lpha agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which of these is available PO?

Acetazolamide and methazolamide

What are the common systemic side effects of PO CAIs?

--Malaise/fatique/denression

Topical dorzolamide is notorious for a particular adverse effect—what is it?

It stings

Why does it sting?

The vehicle has to be somewhat acidic to keep the medicine in solution

Q

Ocular Hypotensives: List the common agents

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective lpha agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which of these is available PO?

Acetazolamide and methazolamide

What are the common systemic side effects of PO CAIs?

you do to ease their suffering (other than d/c'ing it)?

--Malaise/fatique/depression

Topical dorzolamide is notorious for a particular

dverse effe If a pt balks at making their eye sting 3x/d, what can

Why does it sting?

stings

The vehicle has to be somewhat acidic to keep the medicine in solution

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective lpha agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which of these is available PO?

Acetazolamide and methazolamide

What are the common systemic side effects of PO CAIs?

--Malaise/fatique/denression

Topical dorzolamide is notorious for a particular

stings

If a pt balks at making their eye sting 3x/d, what can you do to ease their suffering (other than d/c'ing it)? Dose it bid (it is nearly as efficacious bid as it is tid)

Why does it sting?

The vehicle has to be somewhat acidic to keep the medicine in solution

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which two drugs lowers episcleral venous pressure (EVP)?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which two drugs lowers episcleral venous pressure (EVP)?

lopidine and netarsudil (maybe)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Are beta blockers known to cause significant ocular side effects?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Are beta blockers known to cause significant ocular side effects?

No; beta blocker side effects of concern are *systemic*, not ocular

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Are beta blockers known to cause significant ocular side effects?

No; beta blocker side effects of concern are *systemic*, not ocular

What systemic side effects are of particular concern?
1)

2)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Are beta blockers known to cause significant ocular side effects?

No; beta blocker side effects of concern are *systemic*, not ocular

What systemic side effects are of particular concern?

- 1) Cardiac arrhythmias (so avoid in pts with cardiac conduction issues, eg, heart block)
- 2) Bronchospasm (so avoid in pts with lung dz, especially COPD and asthma)

216

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CA!
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

In population-based studies, which prostaglandin analogue is the most efficacious?

217

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CA!
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

In population-based studies, which prostaglandin analogue is the most efficacious?

They are all of very similar efficacy

218

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

In population-based studies, which prostaglandin analogue is the most efficacious?

They are all of very similar efficacy

In population-based studies, which prostaglandin analogue has the best tolerability?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

In population-based studies, which prostaglandin analogue is the most efficacious?

They are all of very similar efficacy

In population-based studies, which prostaglandin analogue has the best tolerability?

They are all of very similar tolerability

220

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine

In population-based studies, which prostaglandin analogue is the most efficacious?

They are all of very similar efficacy

In population-based studies, which prostaglandin analogue has the best tolerability?

They are all of very similar tolerability

So, does this mean they are all therapeutically equal?

- Apraclonidine
- Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

221

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine

In population-based studies, which prostaglandin analogue is the most efficacious?

They are all of very similar efficacy

In population-based studies, which prostaglandin analogue has the best tolerability?

They are all of very similar tolerability

So, does this mean they are all therapeutically equal?

No! The fact that *aggregated* data fail to find differences in efficacy/tolerability does not mean such differences do not exist *for individual pts*. Thus, if you have a pt who either does not respond to, or is intolerant of, one PGA, you should not give up on the class entirely; rather, consider switching to a different PGA.

- Apraclonidine
- Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine

In population-based studies, which prostaglandin analogue is the most efficacious?

They are all of very similar efficacy

In population-based studies, which prostaglandin analogue has the best tolerability?

They are all of very similar tolerability

So, does this mean they are all therapeutically equal?

No! The fact that *aggregated* data fail to find differences in efficacy/tolerability does not mean such differences do not exist *for individual pts*. Thus, if you have a pt who either does not respond to, or is intolerant of, one PGA, you should not give up on the class entirely; rather, consider switching to a different PGA. <u>As a general rule, at least two PGAs should be tried before you give up on the class.</u>

- Apraclonidine
- Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - **Travaprost**
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

223

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1)
- 2) 3)
- 4)
- 5)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

1) Eyelash growth

What's the \$2 term for eyelash growth?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

1) Eyelash growth

What's the \$2 term for eyelash growth? 'Hypertrichosis'

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

1) Eyelash growth

What's the \$2 term for eyelash growth? 'Hypertrichosis'

Other deleterious eyelash changes may occur—what, specifically?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

1) Eyelash growth

What's the \$2 term for eyelash growth? 'Hypertrichosis'

Other deleterious eyelash changes may occur-what, specifically?
Trichiasis and distichiasis

229

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonis
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

1) Eyelash growth

What's the \$2 term for eyelash growth? 'Hypertrichosis'

Other deleterious eyelash changes may occurwhat, specifically?

Trichiasis and distichiasis

What's the difference between trichiasis and distichiasis?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonis
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

1) Eyelash growth

What's the \$2 term for eyelash growth? 'Hypertrichosis'

Other deleterious eyelash changes may occur—what, specifically?

Trichiasis and distichiasis

What's the difference between trichiasis and distichiasis? Trichiasis refers to lashes directed against the ocular surface <u>that</u> originate from their normal anatomic location on the lid margin.

Trichiasis

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonis
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

1) Eyelash growth

What's the \$2 term for eyelash growth? 'Hypertrichosis'

Other deleterious eyelash changes may occur—what, specifically?

Trichiasis and distichiasis

What's the difference between trichiasis and distichiasis?
Trichiasis refers to lashes directed against the ocular surface that originate from their normal anatomic location on the lid margin.
In contrast, distichiasis refers to lashes abutting the surface that are growing from an abnormal location (specifically, the orifices of the

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonis
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

1) Eyelash growth

What's the \$2 term for eyelash growth? 'Hypertrichosis'

Other deleterious eyelash changes may occur—what, specifically?

Trichiasis and distichiasis

What's the difference between trichiasis and distichiasis? Trichiasis refers to lashes directed against the ocular surface that originate from their normal anatomic location on the lid margin. In contrast, distichiasis refers to lashes abutting the surface that are growing from an abnormal location (specifically, the orifices of the meibomian glands).

Distichiasis: Lashes arising from MG orifices

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - **Bimataprost**

Nonselective α/β agonist

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

1) Eyelash growth

the \$2 term for eyelash growth?

Hypertrichosis

- Is the side effect of eyelash growth universally unwelcomed?
- CAI
 - Dorzoranniue
 - Brinzolamide.
 - Acetazolamide
- Selective α agonis
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What's the difference between trichiasis and distichiasis?

Trichiasis refers to lashes directed against the ocular surface that originate from their normal anatomic location on the lid margin.

In contrast, distichiasis refers to lashes abutting the surface that

are growing from an abnormal location (specifically, the orifices

of the meibomian glands).

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonis:

- Prostaglandin analogues have a number of notable side effects. Identify 5 of them:
- 1) Eyelash growth

What's the \$2 term for eyelash growth?

Hypertrichosis

■ Ep Is the side effect of eyelash growth universally unwelcomed?

of the meibomian glands).

- Not by a long shot—some individuals welcome and seek out eyelash growth as a cosmetically desirable outcome
- Dorzoramice
- Brinzolamide
- Acetazolamide
- Selective α agonis
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What's the difference between trichiasis and distichiasis?

Trichiasis refers to lashes directed against the ocular surface that originate from their normal anatomic location on the lid margin.

In contrast, distichiasis refers to lashes abutting the surface that are growing from an abnormal location (specifically, the orifices

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Nonselective α/β agonist

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

1) Eyelash growth

What's the \$2 term for eyelash growth?

Hypertrichosis

- Ep Is the side effect of eyelash growth universally unwelcomed?
- Not by a long shot—some individuals welcome and seek out eyelash growth as a cosmetically desirable outcome. In fact, a dilute formulation of a pga is sold
- under the brand-name as an FDA-approved eyelash growth promoter.
 - Dorzoramice
 - Brinzolamide
 - Acetazolamide
- Selective α agonis
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What's the difference between trichiasis and distichiasis? Trichiasis refers to lashes directed against the ocular surface that originate from their normal anatomic location on the lid margin. In contrast, distichiasis refers to lashes abutting the surface that are growing from an abnormal location (specifically, the orifices of the meibomian glands).

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist

- Prostaglandin analogues have a number of notable side effects. Identify 5 of them:
- 1) Eyelash growth

What's the \$2 term for eyelash growth?

Hypertrichosis

- Ep Is the side effect of eyelash growth universally unwelcomed?
- Not by a long shot—some individuals welcome and seek out eyelash growth as a cosmetically desirable outcome. In fact, a dilute formulation of bimatoprost is sold
- under the brand-name Latisse as an FDA-approved eyelash growth promoter.
 - Dorzoramice
 - Brinzolamide
 - Acetazolamide
- Selective α agonis
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What's the difference between trichiasis and distichiasis? Trichiasis refers to lashes directed against the ocular surface <u>that originate from their normal anatomic location on the lid margin</u>. In contrast, <u>distichiasis</u> refers to lashes abutting the surface that are growing from an abnormal location (specifically, the orifices of the meibomian glands).

Latisse

(Note the active ingredient)

241

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- Nonselective α/β ag Do PGAs cause acute hyperemia, chronic hyperemia, or both?
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- B blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - **Bimataprost**
- Nonselective α/β ag
 - Epinephrine
 - Dipivefrin
- CAL
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

242

243

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective lpha/eta ag
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

Do PGAs cause acute hyperemia, chronic hyperemia, or both?

Both

How can you minimize the cosmetic impact of acute hyperemia?

244

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

- Prostaglandin analogues have a number of notable side effects. Identify 5 of them:
- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

- Nonselective lpha/eta ag
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Do PGAs cause acute hyperemia, chronic hyperemia, or both?

Both

How can you minimize the cosmetic impact of acute hyperemia? By having the pt use their PGA at daily event, when cosmesis is not an issue

245

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β ag
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

Do PGAs cause acute hyperemia, chronic hyperemia, or both?

Both

How can you minimize the cosmetic impact of acute hyperemia? By having the pt use their PGA at bedtime, when cosmesis is not an issue

246

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

What proportion of pts will experience darkening of their irides after 5 years of PGA use? Netarsudil

247

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

• What proportion of pts will experience darkening of their irides after 5 years of PGA use? Overall, as many as a fraction, with some facing a much higher risk (to be explained)

248

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What proportion of pts will experience darkening of their irides after 5 years of PGA use?
 Overall, as many as a third, with some facing a much higher risk (to be explained)

249

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What proportion of pts will experience darkening of their irides after 5 years of PGA use? Overall, as many as a third, with some facing a **much** higher risk (to be explained)
- Will the iris return to its baseline coloration upon discontinuation of the drop?

250

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What proportion of pts will experience darkening of their irides after 5 years of PGA use? Overall, as many as a third, with some facing a **much** higher risk (to be explained)
- Will the iris return to its baseline coloration upon discontinuation of the drop?
 It will not

251

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What proportion of pts will experience darkening of their irides after 5 years of PGA use?
 Overall, as many as a third, with some facing a much higher risk (to be explained)
- Will the iris return to its baseline coloration upon discontinuation of the drop?
 It will not

Now for the 'higher risk' issue: Of the myriad colors the human iris can assume, the BCSC emphasizes **two** that are particularly likely to darken in response to PGA use.

• What are they?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - **Bimataprost**

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What proportion of pts will experience darkening of their irides after 5 years of PGA use? Overall, as many as a third, with some facing a **much** higher risk (to be explained)
- Will the iris return to its baseline coloration upon discontinuation of the drop? It will **not**

Now for the 'higher risk' issue: Of the myriad colors the human iris can assume, the BCSC emphasizes two that are particularly likely to darken in response to PGA use.

What are they? Green-brown and vellow-brown (aka hazel)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - **Bimataprost**

Prostaglandin analogues have a number of

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- notable side effects. Identify 5 of them:
- What proportion of pts will experience darkening of their irides after 5 years of PGA use? Overall, as many as a third, with some facing a **much** higher risk (to be explained)
- Will the iris return to its baseline coloration upon discontinuation of the drop? It will not

Now for the 'higher risk' issue: Of the myriad colors the human iris can assume, the BCSC emphasizes two that are particularly likely to darken in response to PGA use.

What are they? Green-brown and yellow-brown (aka haze

> (Full disclosure: Being significantly red-green colorweak myself, I deferred to my wife to select the font color best representing 'hazel.' So if you disagree, take it up with her.)

254

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What proportion of pts will experience darkening of their irides after 5 years of PGA use? Overall, as many as a third, with some facing a much higher risk (to be explained)
- Will the iris return to its baseline coloration upon discontinuation of the drop?

 How likely are green-brown and hazel irides to darken?

the human iris can assume, the darken in response to PGA use.

Green-brown and yellow-brown (aka hazel)

255

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What proportion of pts will experience darkening of their irides after 5 years of PGA use? Overall, as many as a third, with some facing a much higher risk (to be explained)
- Will the iris return to its baseline coloration upon discontinuation of the drop?

How likely are green-brown and hazel irides to darken?

Very—

will do so after 5 years

the human iris can assume, the darken in response to PGA use.

Green-brown and yellow-brown (aka hazel)

256

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What proportion of pts will experience darkening of their irides after 5 years of PGA use? Overall, as many as a third, with some facing a much higher risk (to be explained)
- Will the iris return to its baseline coloration upon discontinuation of the drop?

How likely are green-brown and hazel irides to darken? Very—80%+ will do so after 5 years

the human iris can assume, the darken in response to PGA use.

Green-brown and yellow-brown (aka hazel)

257

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What proportion of pts will experience darkening of their irides after 5 years of PGA use? Overall, as many as a third, with some facing a **much** higher risk (to be explained)
- Will the iris return to its baseline coloration upon discontinuation of the drop?

How likely are green-brown and hazel irides to darken? Very—80%+ will do so after 5 years

What about blue eyes—are they at high risk as well?

the human iris can assume, the darken in response to PGA use.

Green-brown and yellow-brown (aka hazel)

258

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What proportion of pts will experience darkening of their irides after 5 years of PGA use? Overall, as many as a third, with some facing a much higher risk (to be explained)
- Will the iris return to its baseline coloration upon discontinuation of the drop?
 How likely are green-brown and hazel irides to darken?
 Very—80%+ will do so after 5 years

What about **blue eyes**—are they at high risk as well?

Not by comparison—just under will darken

Green-brown and yellow-brown (aka hazel)

the human iris can assume, the darken in response to PGA use.

•

259

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What proportion of pts will experience darkening of their irides after 5 years of PGA use? Overall, as many as a third, with some facing a much higher risk (to be explained)
- Will the iris return to its baseline coloration upon discontinuation of the drop?

 How likely are green-brown and hazel irides to darken?

 Very—80%+ will do so after 5 years
 - What about **blue eyes**—are they at high risk as well?

 Not by comparison—just under 10% will darken

Green-brown and yellow-brown (aka hazel)

the human iris can assume, the darken in response to PGA use.

260

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What proportion of pts will experience darkening of their irides after 5 years of PGA use?
 Overall, as many as a third, with some facing a much higher risk (to be explained)
- Will the iris return to its baseline coloration upon discontinuation of the drop?
 It will not

Now for the 'higher risk' issue: Of the myriad colors the human iris can assume, the BCSC emphasizes **two** that are particularly likely to darken in response to PGA use.

- What are they?
 Green-brown and yellow-brown (aka hazel)
- In addition to the iris, another structure of ophthalmic concern may darken as a result of PGA use—what is it?
 - Netarsudil

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What proportion of pts will experience darkening of their irides after 5 years of PGA use?
 Overall, as many as a third, with some facing a much higher risk (to be explained)
- Will the iris return to its baseline coloration upon discontinuation of the drop?
 It will not

Now for the 'higher risk' issue: Of the myriad colors the human iris can assume, the BCSC emphasizes **two** that are particularly likely to darken in response to PGA use.

- What are they?
 Green-brown and yellow-brown (aka hazel)
- In addition to the iris, another structure of ophthalmic concern may darken as a result of PGA use—what is it?
- The periocular skin
 - Netarsudil

262

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- What I In one word (ending with –tic), what sort of process is responsible for the darkening of the irises and/or periocular skin?

PGA use? ained)

Will the

Now for the higher hisk issue. Or the higher colors the human his can assume, the BCSC emphasizes **two** that are particularly likely to darken in response to PGA use.

- What are they?Green-brown and yellow-brown (aka hazel)
- In addition to the iris, another structure of ophthalmic concern may darken as a result of PGA use—what is it?
- The periocular skin
 - Netarsudil

263

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

What I In one word (ending with –tic), what sort of process is responsible for the darkening of the irises and/or periocular skin?

It is a process

Will the

Now for the higher hisk issue. Or the higher colors the human his can assume, the BCSC emphasizes **two** that are particularly likely to darken in response to PGA use.

- What are they?Green-brown and yellow-brown (aka hazel)
- In addition to the iris, another structure of ophthalmic concern may darken as a result of PGA use—what is it?
- The periocular skin
 - Netarsudil

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - **Travaprost**
 - **Bimataprost**

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

In one word (ending with -tic), what sort of process is responsible for the darkening of the irises and/or periocular skin? It is a melanocytic process

PGA use? ained)

Will the It will n

> Now for the migher risk issue. Or the mynau colors the number his can assume, the BCSC emphasizes two that are particularly likely to darken in response to PGA use.

What are they? **Green-brown** and **yellow-brown** (aka *hazel*)

- In addition to the iris, another structure of ophthalmic concern may darken as a result of PGA use—what is it?
- The periocular skin
 - Netarsudil

265

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

What In one word (ending with –tic), what sort of process is responsible for the darkening of the irises and/or periocular skin?

It is a melanocytic process

PGA use?

Will the

What specific aspect of the melanocytic process is responsible?

Now for the higher hisk issue. Or the higher colors the human his can assume, the BCSC emphasizes **two** that are particularly likely to darken in response to PGA use.

- What are they?
 Green-brown and vellow-brown
 - Green-brown and yellow-brown (aka hazel)
- In addition to the iris, another structure of ophthalmic concern may darken as a result of PGA use—what is it?
- The periocular skin
 - Netarsudil

266

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

Overal In one word (ending with –tic), what sort of process is responsible for the darkening of the irises and/or periocular skin?

It is a melanocytic process

PGA use?

Will the

It will r

What specific aspect of the melanocytic process is responsible? Before we answer, let's sidebar to review this process...

Before we answer, let's sidebar to review this process...

Now for the higher hisk issue. Or the higher colors the human his can assume, the BCSC emphasizes two that are particularly likely to darken in response to PGA use.

What are they?Green-brown and yellow-brown (aka hazel)

- In addition to the iris, another structure of ophthalmic concern may darken as a result of PGA use—what is it?
- The periocular skin
 - Netarsudil

What cell is responsible for melanocytic processes?

What cell is responsible for melanocytic processes? Hurr durr, Imma guess melanocytes?

What cell is responsible for melanocytic processes? Hurr durr, Imma guess melanocytes?

Let's consider the embryology of melanocytes. From which primordial cell do they derive?

What cell is responsible for melanocytic processes? Hurr durr, Imma guess melanocytes?

Let's consider the embryology of melanocytes. From which primordial cell do they derive? Neural crest cells (NCCs)

What cell is responsible for melanocytic processes? Hurr durr, Imma guess melanocytes?

Let's consider the embryology of melanocytes. From which primordial cell do they derive? Neural crest cells (NCCs)

Briefly, what's the backstory on neural crest cells?

What cell is responsible for melanocytic processes? Hurr durr, Imma guess melanocytes?

Let's consider the embryology of melanocytes. From which primordial cell do they derive? Neural crest cells (NCCs)

Briefly, what's the backstory on neural crest cells?

NCCs are a subtype of embryo cell type cells

What cell is responsible for melanocytic processes? Hurr durr, Imma guess melanocytes?

Let's consider the embryology of melanocytes. From which primordial cell do they derive? Neural crest cells (NCCs)

Briefly, what's the backstory on neural crest cells? NCCs are a subtype of neuroectodermal cells

What cell is responsible for melanocytic processes? Hurr durr, Imma guess melanocytes?

Let's consider the embryology of melanocytes. From which primordial cell do they derive? Neural crest cells (NCCs)

What cell is responsible for melanocytic processes? Hurr durr, Imma guess melanocytes?

Let's consider the embryology of melanocytes. From which primordial cell do they derive? Neural crest cells (NCCs)

Briefly, what's the backstory on neural crest cells?

NCCs are a subtype of neuroectodermal cells. Early in embryogenesis, some of the neuroectodermal cells located along the dorsal aspect of the neural tube are induced to transition into NCCs.

What cell is responsible for melanocytic processes? Hurr durr, Imma guess melanocytes?

Let's consider the embryology of melanocytes. From which primordial cell do they derive? Neural crest cells (NCCs)

Briefly, what's the backstory on neural crest cells?

NCCs are a subtype of neuroectodermal cells. Early in embryogenesis, some of the neuroectodermal cells located along the dorsal aspect of the neural tube are induced to transition into NCCs. NCCs then migrate widely across the embryo, and upon arriving at their destination they proliferate and differentiate into specialized tissues and cells, including melanocytes.

277

Neural crest cells...

278

Neural crest cells...and their derivatives

Next let's consider the function of surface melanocytes. What do they do?

Next let's consider the function of surface melanocytes. What do they do?

A surprising number of things, but for our purposes their function is manufacturing, the main pigment of the body surface

Next let's consider the function of surface melanocytes. What do they do?

A surprising number of things, but for our purposes their function is manufacturing melanin, the main pigment of the body surface

Next let's consider the function of surface melanocytes. What do they do?

A surprising number of things, but for our purposes their function is manufacturing melanin, the main pigment of the body surface

What is the name of the membrane-bound structure in which melanin is contained?

Next let's consider the function of surface melanocytes. What do they do?

A surprising number of things, but for our purposes their function is manufacturing melanin, the main pigment of the body surface

What is the name of the membrane-bound structure in which melanin is contained? A melanosome

Next let's consider the function of surface melanocytes. What do they do?

A surprising number of things, but for our purposes their function is manufacturing melanin, the main pigment of the body surface

What is the name of the membrane-bound structure in which melanin is contained? A melanosome

Do melanocytes hang onto their melanosomes?

Next let's consider the function of surface melanocytes. What do they do?

A surprising number of things, but for our purposes their function is manufacturing melanin, the main pigment of the body surface

What is the name of the membrane-bound structure in which melanin is contained? A melanosome

Do melanocytes hang onto their melanosomes?

No—once packaged in melanosomes, melanin is transf

No—once packaged in melanosomes, melanin is transferred to neighboring cells (eg, skin melanocytes transfer their melanin to nearby cell type)

Next let's consider the function of surface melanocytes. What do they do?

A surprising number of things, but for our purposes their function is manufacturing melanin, the main pigment of the body surface

What is the name of the membrane-bound structure in which melanin is contained? A melanosome

Do melanocytes hang onto their melanosomes?

No—once packaged in melanosomes, melanin is transferred to neighboring cells (eg, skin melanocytes transfer their melanin to nearby keratinocytes)

Melanocyte and its keratinocytes

Next let's consider the function of surface melanocytes. What do they do?

A surprising number of things, but for our purposes their function is manufacturing melanin, the main pigment of the body surface

What is the name of the membrane-bound structure in which melanin is contained? A melanosome

Do melanocytes hang onto their melanosomes?

No—once packaged in melanosomes, melanin is transferred to neighboring cells (eg, skin melanocytes transfer their melanin to nearby keratinocytes)

Some people have darker skin than others. (Thanks, Captain Obvious.) Is it the case that darker-complected individuals have more melanocytes?

Next let's consider the function of surface melanocytes. What do they do?

A surprising number of things, but for our purposes their function is manufacturing melanin, the main pigment of the body surface

What is the name of the membrane-bound structure in which melanin is contained? A melanosome

Do melanocytes hang onto their melanosomes?

No—once packaged in melanosomes, melanin is transferred to neighboring cells (eg, skin melanocytes transfer their melanin to nearby keratinocytes)

Some people have darker skin than others. (Thanks, Captain Obvious.) Is it the case that darker-complected individuals have more melanocytes?

No, the number of melanocytes does not vary with degree of pigmentation. People with darker complexion have more melanin in their keratinocytes.

290

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

Overal

In one word (ending with –tic), what sort of process is responsible for the darkening of the irises and/or periocular skin?

It is a melanocytic process

Will the What specific aspect of the melanocytic process is responsible?

Before we answer, let's sidebar to review this process.

Now for the migher has issue. Or the mynau colors the numerical assume, the what specific aspect of the melanocytic process is responsible for the darkening of the iris and periocular skin 2ndry to PGA use?

Netarsudil

The periocular skin

291

of

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

Overal

In one word (ending with –tic), what sort of process is responsible for the darkening of the irises and/or periocular skin?

It is a melanocytic process

What specific aspect of the melanocytic process is responsible?

What specific aspect of the melanocytic process.

Now for the melanocytic process sidebar to review this process.

Now that the melanocytic process sidebar is complete, let's answer this question:

What specific aspect of the melanocytic process is responsible for the darkening of the iris and periocular skin 2ndry to PGA use?

Increased numbers of melanosomes within melanocytes

PGA use—wilat is it?

- The periocular skin
 - Netarsudil

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - **Travaprost**
 - **Bimataprost**

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

In one word (ending with -tic), what sort of process is responsible for the darkening of the irises and/or periocular skin? It is a melanocytic process

PGA use? ined)

292

What specific aspect of the melanocytic process is responsible?

Before we answer, let's sidebar to review this process

Now that the melanocytic process sidebar is complete, let's answer this question: What specific aspect of the melanocytic process is responsible for the darkening of the iris and periocular skin 2ndry to PGA use?

Increased numbers of melanosomes within melanocytes. Worth emphasizing

what's not the cause, and that's melanocyte proliferation (which doesn't occur).

The periocular skin

Netarsudil

293

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- PGA use? In one word (ending with -tic), what sort of process is responsible for ined) the darkening of the irises and/or periocular skin? It is a melanocytic process Will the What specific aspect of the melanocytic process is responsible? Before we answer, let's sidebar to review this process the Does all this melanocytic mischief put PGA users at an increased risk of uestion: developing melanoma of the iris and/or periocular skin? What rkenina of the Increased numbers of melanosomes within melanocytes, worth emphasizing what's **not** the cause, and that's melanocyte proliferation (which doesn't occur). The periocular skin
 - Netarsudil

294

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- PGA use? In one word (ending with -tic), what sort of process is responsible for ined) the darkening of the irises and/or periocular skin? It is a melanocytic process Will the What specific aspect of the melanocytic process is responsible? Before we answer, let's sidebar to review this process the Does all this melanocytic mischief put PGA users at an increased risk of uestion: developing melanoma of the iris and/or periocular skin? rkenina No it doesn't of the Increased numbers of melanosomes within melanocytes, worth emphasizing what's **not** the cause, and that's melanocyte proliferation (which doesn't occur). The periocular skin
 - Netarsudil

295

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides

PGA use? In one word (ending with -tic), what sort of process is responsible for ined) the darkening of the irises and/or periocular skin? It is a melanocytic process Will the What specific aspect of the melanocytic process is responsible? Before we answer, let's sidebar to review this process the Does all this melanocytic mischief put PGA users at an increased risk of uestion: developing melanoma of the iris and/or periocular skin? rkenina No it doesn't, and this shouldn't come as a surprise given that melanocytic of the proliferation is **not** a component of the darkening response. Increased numbers of melanosomes within melanocytes, worth emphasizing what's not the cause, and that's melanocyte proliferation (which doesn't occur). The periocular skin

Netarsudil

Q

Ocular Hypotensives: List the common agents

296

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated neriorhitonathy (PAP)
- Which are more likely to get PGA-associated CME: phakic, or pseudophakic eyes?
- C/

 - - 7401011101110
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

297

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorhitopathy (PAP)
- Which are more likely to get PGA-associated CME: phakic, or pseudophakic eyes?
- Pseudophakic
- C
- Se
 - / /pracionaline
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

298

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated neriorhitonathy (PAP)
- Which are more likely to get PGA-associated CME: phakic, or pseudophakic eyes?
 - Pseudophakic
- C_i
 - What renders a pseudophakic eye even more likely to PGA-associated CME?
- C
 - //pracionamic
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

299

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorhitopathy (PAP)
- Which are more likely to get PGA-associated CME: phakic, or pseudophakic eyes?
- Pseudophakic
- C/
 - What renders a pseudophakic eye even more likely to PGA-associated CME?
 - An open posterior capsule (s/p either intra-op rupture, or YAG)
- Se
 - 7 (praoromanio
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

300

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated neriorhitonathy (PAP)
- Which are more likely to get PGA-associated CME: phakic, or pseudophakic eyes?
- Pseudophakic
- C/
 - What renders a pseudophakic eye even more likely to PGA-associated CME?
 - An open posterior capsule (s/p either intra-op rupture, or YAG)
- Se Does aphakic status also convey an increased risk of CME?
 - 7.10101011101110
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

301

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated neriorhitonathy (PAP)
- Which are more likely to get PGA-associated CME: phakic, or pseudophakic eyes?
- Pseudophakic
- C/
 - What renders a pseudophakic eye even more likely to PGA-associated CME?
 - An open posterior capsule (s/p either intra-op rupture, or YAG)
- Se Does aphakic status also convey an increased risk of CME?
 - Indeed it does
 - 7.praoiomanio
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

302

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)?
A constellation of orbital/periorbital changes 2ndry to

4ish words

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)? A constellation of orbital/periorbital changes 2ndry to atrophy of periorbital fat

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)? A constellation of orbital/periorbital changes 2ndry to atrophy of periorbital fat

- --?
- --2
- --?
- --?
- --?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)? A constellation of orbital/periorbital changes 2ndry to atrophy of periorbital fat

- --Enopththalmos
- --Deepening of the lower vs upper --lid sulcus
- --?
- --?
- --?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)? A constellation of orbital/periorbital changes 2ndry to atrophy of periorbital fat

- --Enopththalmos
- -- Deepening of the upper -lid sulcus
- --?
- --?
- --?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)? A constellation of orbital/periorbital changes 2ndry to atrophy of periorbital fat

- --Enopththalmos
- --Deepening of the upper -lid sulcus
- --Ptosis of the lower vs upper lic
- --?
- --?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)? A constellation of orbital/periorbital changes 2ndry to atrophy of periorbital fat

- --Enopththalmos
- -- Deepening of the upper -lid sulcus
- --Ptosis of the upper lid
- --?
- --?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)? A constellation of orbital/periorbital changes 2ndry to atrophy of periorbital fat

- --Enopththalmos
- --Deepening of the upper -lid sulcus
- --Ptosis of the upper lid
- --Inferior two words
- --?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)? A constellation of orbital/periorbital changes 2ndry to atrophy of periorbital fat

- --Enopththalmos
- --Deepening of the upper -lid sulcus
- --Ptosis of the upper lid
- --Inferior scleral show
- --?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

312

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)? A constellation of orbital/periorbital changes 2ndry to atrophy of periorbital fat

- --Enopththalmos
- --Deepening of the upper -lid sulcus
- --Ptosis of the upper lid
- --Inferior scleral show
- --A one word orbit

313

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)? A constellation of orbital/periorbital changes 2ndry to atrophy of periorbital fat

- --Enopththalmos
- --Deepening of the upper -lid sulcus
- --Ptosis of the upper lid
- --Inferior scleral show
- --A 'tight' orbit

Q

Ocular Hypotensives: List the common agents

314

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)? A constellation of orbital/periorbital changes 2ndry to atrophy of periorbital fat

What are the classic/typical manifestations of PAP?

- --Enopththalmos
- --Deepening of the upper -lid sulcus
- --Ptosis of the upper lid
- --Inferior scleral show
- --A 'tight' orbit

Is PAP reversible with cessation of PGA therapy?

315

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

What is Prostaglandin-Associated Periorbitopathy (PAP)? A constellation of orbital/periorbital changes 2ndry to atrophy of periorbital fat

What are the classic/typical manifestations of PAP?

- --Enopththalmos
- --Deepening of the upper -lid sulcus
- --Ptosis of the upper lid
- --Inferior scleral show
- --A 'tight' orbit

Is PAP reversible with cessation of PGA therapy?
As of this writing, this remains unsettled

316

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

Dipivefrir Note that of the five side effects identified, four are related to cosmesis. This implies that caution should be exercised in long-term use of PGAs

- Dorzolan in one group of pts (other than supermodels). Which pts are these?
- Brinzolan
- Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine

Prostaglandin analogues have a number of notable side effects. Identify 5 of them:

- 1) Eyelash growth
- 2) Conjunctival hyperemia
- 3) Darkening of irides
- 4) Cystoid macular edema (CME)
- 5) PG-associated periorbitopathy (PAP)

Dipivefrir Note that of the five side effects identified, four are related to cosmesis. This implies that caution should be exercised in long-term use of PGAs

- Dorzolan in one group of pts (other than supermodels). Which pts are these?
- Brinzolan Those with unilateral glaucoma
- Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Unilateral hypertrichosis following latanoprost use OS only

The right (A) and left (B) eyes of a patient on unilateral treatment with a topical prostaglandin analogue for the left eye. Left-sided periorbital skin hyperpigmentation, hypertrichosis, deepening of the superior eyelid sulcus, and loss of periorbital fat are evident.

320

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

A small number (~1%) of PGA pts will experience an idiosyncratic reaction significant enough to warrant discontinuation. What is that reaction?

321

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues

Uveitis

- Latanaprost
- Travaprost
- Bimataprost
- Nonselective α/β
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

A small number (~1%) of PGA pts will experience an idiosyncratic reaction significant enough to warrant discontinuation. What is that reaction?

322

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β Uveitis
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

A small number (~1%) of PGA pts will experience an idiosyncratic reaction significant enough to warrant discontinuation. What is that reaction?

Another commonly-used med on the list is notorious for causing a granulomatous anterior uveitis. Which one?

323

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β Uveitis
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

A small number (~1%) of PGA pts will experience an idiosyncratic reaction significant enough to warrant discontinuation. What is that reaction?

Another commonly-used med on the list is notorious for causing a granulomatous anterior uveitis. Which one?

Brimonidine

What corneal condition is a strong contraindication to PGA use?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β ε
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

324

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β a
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What corneal condition is a strong contraindication to PGA use? HSV keratitis

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What corneal condition is a strong contraindication to PGA use? HSV keratitis

Are we talking about active dz only, or does this apply also to a history of HSV keratitis?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What corneal condition is a strong contraindication to PGA use? HSV keratitis

Are we talking about active dz only, or does this apply also to a history of HSV keratitis?

Both

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What corneal condition is a strong contraindication to PGA use? HSV keratitis

Are we talking about active dz only, or does this apply also to a history of HSV keratitis?

Both

Why the contraindication?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What corneal condition is a strong contraindication to PGA use? HSV keratitis

Are we talking about active dz only, or does this apply also to a history of HSV keratitis?

Both

Why the contraindication?

PGA use has been associated with prolongation and/or recurrence

of HSV keratitis

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

These three are **pro-drugs**; i.e., they become activated via cleavage by corneal esterases:

--

--

__

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost Latanaprostene bunod
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

These three are **pro-drugs**; i.e., they become activated via cleavage by corneal esterases:

- --Travaprost
- --Latanaprost
- --Latanaprostene bunod

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which class must be used cautiously in patients who take MAOIs and/or tricyclics?

(Monoamine oxidase inhibitors)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Which class must be used cautiously in patients who take MAOIs and/or tricyclics?

The selective α agonists

334

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β ago
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Topical CAIs are relatively contraindicated in Fuchs dystrophy pts. Why?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - **Bimataprost**
- Nonselective α/β ago
 - Epinephrine
 - Dipivefrin
- CAI
 - **Dorzolamide**
 - **Brinzolamide**
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Topical CAIs are relatively contraindicated in Fuchs dystrophy pts. Why?

Because they may cause/exacerbate corneal edema

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β ago
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Topical CAIs are relatively contraindicated in Fuchs dystrophy pts. Why?

Because they may cause/exacerbate corneal edema

What is the mechanism for CAI-induced corneal edema?

337

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β ago
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Topical CAIs are relatively contraindicated in Fuchs dystrophy pts. Why?

Because they may cause/exacerbate corneal edema

What is the mechanism for CAI-induced corneal edema? Recall that endothelial cells make use of carbonic anhydrase in performing their pump function to maintain K deturgescence. In addition to inhibiting aqueous formation, topical CAIs inhibit K endothelial pump function.

338

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β ago
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Topical CAIs are relatively contraindicated in Fuchs dystrophy pts. Why?

Because they may cause/exacerbate corneal edema

What is the mechanism for CAI-induced corneal edema?

Recall that endothelial cells make use of carbonic anhydrase in performing their pump function to maintain K deturgescence. In addition to inhibiting aqueous formation, topical CAIs inhibit K endothelial pump function. If endothelial pump function is already tenuous (as it is in Fuchs), the addition of a CAI could lead to the occurrence or worsening of edema.

Ocular What is the 'nonresponder' rate for the β blockers, ie, what percent of pts will not manifest a meaningful decrease in IOP?

- β blockers
 - **Timolol**
 - **Betaxolol**
 - **Carteolol**
- Prostaglandin analo
 - Latanaprost
 - Travaprost
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Ocular What is the 'nonresponder' rate for the β blockers, ie, what percent of pts will not manifest a meaningful decrease in IOP? 10-20

- β blockers
 - **Timolol**
 - **Betaxolol**
 - **Carteolol**
- Prostaglandin analo
 - Latanaprost
 - Travaprost
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Ocular What is the 'nonresponder' rate for the β blockers, ie, what percent of pts will not manifest a meaningful decrease in IOP? 10-20

- β blockers
 - **Timolol**
 - **Betaxolol**
 - Carteolol
- Prostaglandin analo
 - Latanaprost
 - Travaprost
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAL
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

What is a well-known cause of nonresponding that should probably keep you from trying a β blocker in the first place?

- β blockers
 - **Timolol**
 - **Betaxolol**
 - Carteolol
- Prostaglandin analo
 - Latanaprost
 - Travaprost
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Ocular What is the 'nonresponder' rate for the β blockers, ie, what percent of pts will not manifest a meaningful decrease in IOP? 10-20

> What is a well-known cause of nonresponding that should probably keep you from trying a β blocker in the first place? If the pt is on a **systemic** β blocker (eg, for HTN). In such pts, a topical β blocker may not move IOP much.

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

With respect to pregnancy, and under the former system of classifying drugs:

(No question yet—proceed when ready)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

344

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?

None of them

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

former system of classifying drugs:

Which are Class A?

None of them

Which are Class B?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

347

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?

None of them

Which are Class B?
Brimonidine. (The rest are all Class C.)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?
None of them

Which are Class B?
Brimonidine. (The rest are all Class C.)

OK then, how should glaucoma be managed during pregnancy?

A

Ocular Hypotensives: List the common agents

- $\backslash \beta$ blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostagland n analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzdlamide
 - Brinzolamide
 - Adetazolamide
- Sele¢tive α\agonists
 - Apraclonidine
 - Brimonidine
- - Pilo
- Rħo kinase inhi\u00e9itor
 - Netarsudil

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?
None of them

Which are Class B?

Primoniding (The rest are all

Brimonidine. (The rest are all Class C.)

Netarsudil

- $\backslash \beta$ blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostagland n analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?

None of them

What treatment options fall under 'none'?

--Suspend all treatment during pregnancy--just monitor the pt, and resume tx after delivery

- - Brihzolamide
 - Adetazolamide
- Sele¢tive α\agonists
 - Apraclonidine
 - Brimonidine
- Mi\u03c4tics
 - / Pilo
- Rho kinase inhibitor
 - Netarsudil

- $\backslash \beta$ blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostagland n analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

• Nonselective α/β agonist

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?

None of them

What treatment options fall under 'none'?

--Suspend all treatment during pregnancy--just monitor the pt, and resume tx after delivery

--If suspending tx seems imprudent, consider

- Brihzolamide
- Adetaz plamide
- Sele¢tive α\agonists
 - Apraclonidine
 - Brimonidine
- Mi\u03c4tics
 - / Pilo
- Rho kinase inhibitor
 - Netarsudil

- $\backslash \beta$ blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostagland n analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

• Nonselective α/β agonist

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?

None of them

What treatment options fall under 'none'?

--Suspend all treatment during pregnancy--just monitor the pt, and resume tx after delivery

--If suspending tx seems imprudent, consider SLT

-- 7

- Brihzo\amide
- Adetazolamide
- Sele¢tive α\agonists
 - Apraclonidine
 - Brimonidine
- Mi\u03c4tics
 - / Pilo
- Rho kinase inhibitor
 - Netarsudil

- $\backslash \beta$ blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostagland n analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

• Nonselective α/β agonist

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?

None of them

What treatment options fall under 'none'?

- --Suspend all treatment during pregnancy--just monitor the pt, and resume tx after delivery
- --If suspending tx seems imprudent, consider SLT
 - -- If conditions warrant it, consider

two words

- Bri/nzo\amide
- Adetazolamide
- Sele¢tive α\agonists
 - Apraclonidine
 - Brimonidine
- Mi\u03c4tics
 - / Pilo
- Rho kinase inhibitor
 - Netarsudil

A

Ocular Hypotensives: List the common agents

- $\backslash \beta$ blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostagland n analogues
 - Latanaprost
 - Travaprost
 - Bimataprost

• Nonselective α/β agonist

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?

None of them

What treatment options fall under 'none'?

- --Suspend all treatment during pregnancy--just monitor the pt, and resume tx after delivery
- --If suspending tx seems imprudent, consider SLT
 - -- If conditions warrant it, consider incisional surgery
 - Brihzolamide
 - Adetazolamide
- Sele¢tive α\agonists
 - Apraclonidine
 - Brimonidine
- Mi
 øtics
 - / Pilo
- Rho kinase inhihitor
 - Netarsudil

356

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?
None of them

Which are Class B?
Brimonidine. (The rest are all Class C.)

OK then, how should glaucoma be managed during pregnancy? With as few meds as possible (preferably **none**)

If meds are to be used, which is the best option?

- β blockers
 - Timolol %?
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?
None of them

Which are Class B?
Brimonidine. (The rest are all Class C.)

OK then, how should glaucoma be managed during pregnancy? With as few meds as possible (preferably **none**)

If meds are to be used, which is the best option?

Most experts would probably recommend timolol, but at the strength rather than the usual %

- β blockers
 - Timolol 0.5/0.25
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?
None of them

Which are Class B?

Brimonidine. (The rest are all Class C.)

OK then, how should glaucoma be managed during pregnancy? With as few meds as possible (preferably **none**)

If meds are to be used, which is the best option?

Most experts would probably recommend timolol, but at the 0.25% strength rather than the usual 0.5%

- β blockers
 - Timolol 0.25
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?
None of them

Which are Class B?
Brimonidine. (The rest are all Class C.)

You probably know that the cap color for $T_{.5}$ is...

OK then, how should glaucoma be managed during pregnancy? With as few meds as possible (preferably **none**)

If meds are to be used, which is the best option?

Most experts would probably recommend timolol, but at the 0.25% strength rather than the usua (0.5%)

- β blockers
 - Timolol 0.25
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

With respect to pregnancy, and former system of classifying dru

Which are Class A?
None of them

Which are Class B?
Brimonidine. (The rest are all Class C.)

You probably know that the cap color for T_{.5} is...**yellow**

OK then, how should glaucoma be managed during pregnancy? With as few meds as possible (preferably **none**)

If meds are to be used, which is the best option?

Most experts would probably recommend timolol, but at the 0.25% strength rather than the usua (0.5%)

Equivalent (Timolol Maleate 6.8 mg/mL)
R only 10 mL Wkom

- β blockers
 - Timolol 0.25
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide

But do you know the cap color for T.25?

- Apraclonidine
- Brimonidine
- **Miotics**
- Rho kinase inhibitor
 - Netarsudil

With respect to pregnancy, and former system of classifying dru

Which are Class A? None of them

Which are Class B?

Brimonidine. (The rest are all Class C.)

You probably know that the cap color for T_{.5} is...**yellow**

Equivalent (Timolol Maleate 6.8 mg/mL) Ronty 10 mL Wakom 361

d glaucoma be managed during pregnancy? new meas as possible (preferably none)

meds are to be used, which is the best option?

experts would probably recommend timolol, but at the 0.25% strength rather than the usua 0.5%

- β blockers
 - Timolol 0.25
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β a
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide

With respect to pregnancy, and former system of classifying dru

Which are Class A?

experts would probably recommend timolol, but at the

You probably know that the cap color for T_{.5} is...**yellow**

But do you know the cap color for T.25? Light blue possible (prefer bly none)

Apraclonidine

- Brimonidine
- **Miotics**
- Rho kinase inhibitor
 - Netarsudil

meds are to be used, which is the best option?

0.25% strength rather than the usua 0.5%

- β blockers
 - Timolol 0.25
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
- **Miotics**
- Rho kinase inhibito
 - Netarsudil

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A? None of them

Which are Class B?

Brimonidine. (The rest are all Class C.)

OK then, how should glaucoma be managed during pregnancy? With as fow made as possible (profesably none).

Won't the 0.25 strength be only half as effective as the 0.5?

st option?

would probably recommend timolol, but at the

0.25% strength rather than the usual 0.5%

- β blockers
 - Timolol 0.25
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists

 - Won't the 0.25 strength be only half as effective as the 0.5?
 - B Far from it. In fact, in many pts, it works just as well
- **Miotics**
 - Pilo
- Rho kinase inhibito
 - Netarsudil

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A? None of them

Which are Class B?

Brimonidine. (The rest are all Class C.)

OK then, how should glaucoma be managed during pregnancy? With as few made as possible (profesably none).

st option?

perts would probably recommend timolol, but at the

0.25% strength rather than the usual 0.5%

- β blockers
 - Timolol 0.25
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - **Brinzolamide**
 - What about nursing mothers—should $T_{.25}$ be used for them as well?
- Selective a agomists

With as few mode as possible (profesably none).

- Won't the 0.25 strength be only half as effective as the 0.5?
- B Far from it. In fact, in many pts, it works just as well
- **Miotics**
- Rho kinase inhibito
 - Netarsudil

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?

None of them

Which are Class B?

Brimonidine. (The rest are all Class C.)

ged during pregnancy?

st option?

sperts would probably recommend timolol, but at the

0.25% strength rather than the usual 0.5%

365

- β blockers
 - Timolol 0.25
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - **Bimataprost**
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAL
 - Dorzolamide
 - **Brinzolamide**
 - What about nursing mothers—should T_{25} be used for them as well?
 - No, because β blocker metabolites get concentrated in breast milk
- With as four mode as possible (professbly none)
 - Won't the 0.25 strength be only half as effective as the 0.5?
 - B Far from it. In fact, in many pts, it works just as well
- **Miotics**
 - Pilo
- Rho kinase inhibito
 - Netarsudil

With respect to pregnancy, and under the former system of classifying drugs:

Which are Class A?

None of them

Which are Class B?

Brimonidine. (The rest are all Class C.)

ged during pregnancy?

st option?

tperts would probably recommend timolol, but at the

0.25% strength rather than the usual 0.5%

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Why not use a PGA in pregnant women?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

368

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Why not use a PGA in pregnant women?
Reach way back to your Ob/Gyn rotation and recall that prostaglandins are involved in inducing labor.

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Why not use a PGA in pregnant women?
Reach way back to your Ob/Gyn rotation and recall that prostaglandins are involved in inducing labor.
Given this, it should not be surprising to learn that one shouldn't give a pregnant woman a prostaglandin analogue.

371

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Why not use a PGA in pregnant women?
Reach way back to your Ob/Gyn rotation and recall that prostaglandins are involved in inducing labor. Given this, it should not be surprising to learn that one shouldn't give a pregnant woman a prostaglandin analogue.

Why not use a CAI?

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Why not use a PGA in pregnant women?

Reach way back to your Ob/Gyn rotation and recall that prostaglandins are involved in inducing labor. Given this, it should not be surprising to learn that one shouldn't give a pregnant woman a prostaglandin analogue.

Why not use a CAI?

CAIs have been shown to be teratogenic in mice. For this reason, the *Glaucoma* book states flatly that "oral CAIs should not be used by women in their childbearing years."

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- **Miotics**
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Why not use a PGA in pregnant women? Reach way back to your Ob/Gyn rotation and recall

Given this, it should not be surprising to learn that one shouldn't give a pregnant woman a

that prostaglandins are involved in inducing labor.

prostaglandin analogue.

Why not use a CAI?

CAIs have been shown to be teratogenic in mice. For this reason, the *Glaucoma* book states flatly that "oral CAIs should not be used by women in their childbearing years."

(That said, the Neuro-Oph book considers oral CAIs to be

first-line tx for both, a condition most commonly found in

women in their childbearing years. Caveat emptor.)

374

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Why not use a PGA in pregnant women?
Reach way back to your Ob/Gyn rotation and recall that prostaglandins are involved in inducing labor. Given this, it should not be surprising to learn that one shouldn't give a pregnant woman a prostaglandin analogue.

Why not use a CAI?

CAIs have been shown to be teratogenic in mice. For this reason, the *Glaucoma* book states flatly that "oral CAIs should not be used by women in their childbearing years." (That said, the *Neuro-Oph* book considers oral CAIs to be <u>first-line tx</u> for IIH, a condition most commonly found in women in their childbearing years. Caveat emptor.)

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Why not use a PGA in pregnant women?

Reach way back to your Ob/Gyn rotation and recall

that prostaglandins are involved in inducing labor. Given this, it should not be surprising to learn that one shouldn't give a pregnant woman a

prostaglandin analogue.

Why not use a CAI?

CAIs have been shown to be teratogenic in mice. For this

should not be used by women in their childhearing years

(That said the Neuro-Catalana in the Catalana in Catal

first-line tx for (IIH) a

What does IIH stand for in this context?

women in their childbearing years. Cavear emplor,

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Why not use a PGA in pregnant women?
Reach way back to your Ob/Gyn rotation and recall that prostaglandins are involved in inducing labor.
Given this, it should not be surprising to learn that

Why not use a CAI?

CAIs have been shown to be teratogenic in mice. For this reason, the Glaucoma book states flatly that "oral CAIs should not be used by women in their childbearing years."

(That said, the Neuro-first-line tx for IIH a line in this context? Idiopathic intracranial hypertension

women in their childbearing years. Cavear empton,

one shouldn't give a pregnant woman a

prostaglandin analogue.

377

- β blockers
 - Timolol
 - Betaxolol
 - Carteolol
- Prostaglandin analogues
 - Latanaprost
 - Travaprost
 - Bimataprost
- Nonselective α/β agonist
 - Epinephrine
 - Dipivefrin
- CAI
 - Dorzolamide
 - Brinzolamide
 - Acetazolamide
- Selective α agonists
 - Apraclonidine
 - Brimonidine
- Miotics
 - Pilo
- Rho kinase inhibitor
 - Netarsudil

Why not use a PGA in pregnant women?

Reach way back to your Ob/Gyn rotation and recall that prostaglandins are involved in inducing labor. Given this, it should not be surprising to learn that one shouldn't give a pregnant woman a prostaglandin analogue.

Why not use a CAI?

CAIs have been shown to be teratogenic in mice. For this reason, the *Glaucoma* book states flatly that "oral CAIs should not be used by women in their childbearing years." (That said, the *Neuro-Oph* book considers oral CAIs to be first-line tx for IIH, a condition most commonly found in women in their childbearing years. Cayeat emptor.)

As for **topical** CAIs in pregnancy, the *Glaucoma* book doesn't address them directly.