What it is…

• A modality for treating choroidal neovascular membranes (CNVM) and other conditions

Photodynamic Therapy (PDT)
What it is…

- A modality for treating choroidal neovascular membranes (CNVM) and other conditions
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to for the treatment of CNVM
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM? The Macular Photocoagulation Study (MPS)
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM? The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated? Argon (blue-green) and krypton (red)

Did the MPS find one modality to be superior to the other?
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

Did the MPS find one modality to be superior to the other?
No
What it is…

- A modality for treating **choroidal neovascular membranes (CNVM)**
- It was developed to be an alternative to **thermal laser** for the treatment of **subfoveal** CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?

The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?

Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable?
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM? The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated? Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable? Percent of eyes experiencing severe vision loss (SVL) from baseline
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable?
Percent of eyes experiencing severe vision loss (SVL) from baseline

How was SVL defined in the MPS?
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM? The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated? Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable? Percent of eyes experiencing severe vision loss (SVL) from baseline

How was SVL defined in the MPS? As a loss of 6 or more lines from initial presentation
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable?
Percent of eyes experiencing severe vision loss (SVL) from baseline

There were a number of subgroup analyses in the MPS. Important subgroup analyses were based on:
--
--
--
Photodynamic Therapy (PDT)

What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable?
Percent of eyes experiencing severe vision loss (SVL) from baseline

There were a number of subgroup analyses in the MPS. Important subgroup analyses were based on:
--Lesion location
--The specific underlying condition responsible for the CNVM occurrence
--Whether the lesion was new, or recurrent
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM? The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated? Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable? Percent of eyes experiencing severe vision loss (SVL) from baseline

There were a number of subgroup analyses in the MPS. Important subgroup analyses were based on:

- Lesion location
- The specific underlying condition responsible for the CNVM occurrence
- Whether the lesion was new, or recurrent

How was lesion location defined; ie, in terms of what structure?

- Extrafoveal: Posterior edge of the CNVM >200 mm from foveal center
- Juxtafoveal: Posterior edge 1-200 mm from foveal center
- Subfoveal: Some portion of the CNVM was directly below the fovea
- Papillomacular bundle: The CNVM was between the fovea and the ONH

Photodynamic Therapy (PDT)
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable?
Percent of eyes experiencing severe vision loss (SVL) from baseline

There were a number of subgroup analyses in the MPS. Important subgroup analyses were based on:
- Lesion location
- The specific underlying condition responsible for the CNVM occurrence
- Whether the lesion was new, or recurrent

How was lesion location defined; ie, in terms of what structure?
With respect to distance from the foveal center
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable?
Percent of eyes experiencing severe vision loss (SVL) from baseline

There were a number of subgroup analyses in the MPS. Important subgroup analyses were based on:
- Lesion location
- The specific underlying condition responsible for the CNVM occurrence
- Whether the lesion was new, or recurrent

How was lesion location defined; ie, in terms of what structure?
With respect to distance from the foveal center

Four locations were used. What were they?
- Extrafoveal: Posterior edge of the CNVM >200 mm from foveal center
- Juxtafoveal: Posterior edge 1-200 mm from foveal center
- Subfoveal: Some portion of the CNVM was directly below the foveal center
- Papillomacular bundle: The CNVM was between the fovea and the ONH

Photodynamic Therapy (PDT)
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable?
Percent of eyes experiencing severe vision loss (SVL) from baseline

There were a number of subgroup analyses in the MPS. Important subgroup analyses were based on:

- Lesion location
- The specific underlying condition responsible for the CNVM occurrence
- Whether the lesion was new, or recurrent

How was lesion location defined; ie, in terms of what structure?
With respect to distance from the foveal center

Four locations were used. What were they?
- Extrafoveal
- Juxtafoveal
- Subfoveal
- Papillomacular bundle
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM? The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable?
Percent of eyes experiencing severe vision loss (SVL) from baseline

There were a number of subgroup analyses in the MPS. Important subgroup analyses were based on:

- Lesion location
- The specific underlying condition responsible for the CNVM occurrence
- Whether the lesion was new, or recurrent

How was lesion location defined; ie, in terms of what structure?
With respect to distance from the foveal center

Four locations were used. What were they? How were they defined?

---Extrafoveal
---Juxtafoveal
---Subfoveal
---Papillomacular bundle
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

What was the primary outcome variable?
Percent of eyes experiencing severe vision loss (SVL) from baseline

There were a number of subgroup analyses. Important subgroup analyses were based on:
- Lesion location
- The specific underlying condition responsible for the CNVM occurrence
- Whether the lesion was new, or recurrent

How was lesion location defined; ie, in terms of what structure?
With respect to distance from the foveal center

Four locations were used. What were they? How were they defined?
- Extrafoveal: Posterior edge of the CNVM >200 mm from foveal center
- Juxtafoveal
- Subfoveal
- Papillomacular bundle

Photodynamic Therapy (PDT)
A/Q

What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable?
Percent of eyes experiencing severe vision loss (SVL) from baseline

There were a number of subgroup analyses in the MPS. Important subgroup analyses were based on:

- Lesion location
- The specific underlying condition responsible for the CNVM occurrence
- Whether the lesion was new, or recurrent

How was lesion location defined; ie, in terms of what structure?
With respect to distance from the foveal center

Four locations were used. What were they? How were they defined?

- Extrafoveal: Posterior edge of the CNVM >200 mm from foveal center
- Juxtafoveal: Posterior edge 1-200 mm from foveal center
- Subfoveal
- Papillomacular bundle

Photodynamic Therapy (PDT)
What it is…
- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

What was the primary outcome variable?
Percent of eyes experiencing severe vision loss (SVL) from baseline

There were a number of subgroup analyses in the MPS. Important subgroup analyses were based on:
- Lesion location
- The specific underlying condition responsible for the CNVM occurrence
- Whether the lesion was new, or recurrent

How was lesion location defined; ie, in terms of what structure?
With respect to distance from the foveal center

Four locations were used. What were they? How were they defined?
- Extrafoveal: Posterior edge of the CNVM >200 mm from foveal center
- Juxtafoveal: Posterior edge 1-200 mm from foveal center
- Subfoveal: Some portion of the CNVM was directly below the foveal center
- Papillomacular bundle:

A/Q

Photodynamic Therapy (PDT)
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable?
Percent of eyes experiencing severe vision loss (SVL) from baseline

There were a number of subgroup analyses in the MPS. Important subgroup analyses were based on:
- Lesion location
 - Extrafoveal: Posterior edge of the CNVM >200 mm from foveal center
 - Juxtafoveal: Posterior edge 1-200 mm from foveal center
 - Subfoveal: Some portion of the CNVM was directly below the foveal center
 - Papillomacular bundle: The CNVM was between the fovea and the ONH

How was lesion location defined; ie, in terms of what structure?
With respect to distance from the foveal center

Four locations were used. What were they? How were they defined?
- Extrafoveal: Posterior edge of the CNVM >200 mm from foveal center
- Juxtafoveal: Posterior edge 1-200 mm from foveal center
- Subfoveal: Some portion of the CNVM was directly below the foveal center
- Papillomacular bundle: The CNVM was between the fovea and the ONH
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable?
Percent of eyes experiencing severe vision loss (SVL) from baseline

There were a number of subgroup analyses in the MPS. Important subgroup analyses were based on:
- Lesion location
- The specific underlying condition responsible for the CNVM occurrence
- Whether the lesion was new, or recurrent

Photodynamic Therapy (PDT)
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

What two laser modalities were evaluated?
Argon (blue-green) and krypton (red)

What was the primary endpoint/outcome variable?
Percent of eyes experiencing severe vision loss (SVL) from baseline

There were a number of subgroup analyses in the MPS. Important subgroup analyses were based on:
- Lesion location
- The specific underlying condition responsible for the CNVM occurrence
- Whether the lesion was new, or recurrent

Three conditions were studied. What were they?
--ARMD
--Ocular histoplasmosis syndrome
--Idiopathic CNVM
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

In a nutshell, what were the findings of the MPS?
- The specific underlying condition responsible for the CNVM occurrence
- Whether the lesion was new, or recurrent

Photodynamic Therapy (PDT)
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM? The Macular Photocoagulation Study (MPS)

In a nutshell, what were the findings of the MPS?
The basic finding was that treated eyes had a better long-term visual outcome than untreated eyes. Unfortunately, recurrences were commonplace.

- The specific underlying condition responsible for the CNVM occurrence
- Whether the lesion was new, or recurrent
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

In a nutshell, what were the findings of the MPS?
The basic finding was that treated eyes had a better long-term visual outcome than untreated eyes. Unfortunately, recurrences were commonplace. Further, where subfoveal lesions were concerned, treatment extracted a terrible toll on vision. Lasing the foveal center produces an immediate, profound (~5 lines) loss of vision. Thus, pts with subfoveal CNVM faced an awful dilemma--get treated and be guaranteed an immediate, significant and permanent loss of vision, or decline treatment and enjoy better short-term vision, but at the risk of a poorer long-term visual outcome.
What it is…

- A modality for treating choroidal neovascular membranes (CNVM)
- It was developed to be an alternative to thermal laser for the treatment of subfoveal CNVM

What landmark clinical study evaluated the use of thermal laser for the treatment of CNVM?
The Macular Photocoagulation Study (MPS)

In a nutshell, what were the findings of the MPS?
The basic finding was that treated eyes had a better long-term visual outcome than untreated eyes. Unfortunately, recurrences were commonplace. Further, where subfoveal lesions were concerned, treatment extracted a terrible toll on vision. Lasing the foveal center produces an immediate, profound (~5 lines) loss of vision. Thus, pts with subfoveal CNVM faced an awful dilemma--get treated and be guaranteed an immediate, significant and permanent loss of vision, or decline treatment and enjoy better short-term vision, but at the risk of a poorer long-term visual outcome. Clearly, a better alternative for treating subfoveal CNVM was needed, and PDT fit the bill at the time.

- The specific underlying condition responsible for the CNVM occurrence
- Whether the lesion was new, or recurrent
How it works…

- Photosensitizing dye is injected IV.
How it works…

- Photosensitizing dye is injected IV
Photodynamic Therapy (PDT)

How it works…

- Photosensitizing dye is injected IV

What drug is used most commonly as the photosensitizing dye?
How it works…

- Photosensitizing dye is injected IV

What drug is used most commonly as the photosensitizing dye? Verteporfin
How it works...

- Photosensitizing dye is injected IV

What drug is used most commonly as the photosensitizing dye?
Verteporfin

What is the trade name of verteporfin?
How it works…

- **Photosensitizing dye** is injected IV

What drug is used most commonly as the photosensitizing dye?
Verteporfin

What is the trade name of verteporfin?
Visudyne
How it works…

- Photosensitizing dye is injected IV
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass
How it works…

- Photosensitizing dye is injected IV
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass
- CNVM stimulated with specific light to activate the dye
How it works…

- Photosensitizing dye is injected IV
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass
- CNVM stimulated with wavelength of light specific to activate the dye
How it works…

- Photosensitizing dye is **injected IV**
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass
- CNVM stimulated with **wavelength of light** specific to activate the dye
- The dye reacts with O₂ to create [] and [] free radicals
How it works…

- Photosensitizing dye is injected IV
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass
- CNVM stimulated with wavelength of light specific to activate the dye
- The dye reacts with O₂ to create oxygen and hydroxyl free radicals
How it works…

- Photosensitizing dye is injected IV
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass
- CNVM stimulated with wavelength of light specific to activate the dye
- The dye reacts with O_2 to create oxygen and hydroxyl free radicals
- Free radicals \rightarrow intravascular event \rightarrow intravascular result
How it works…

- Photosensitizing dye is injected IV
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass
- CNVM stimulated with wavelength of light specific to activate the dye
- The dye reacts with O$_2$ to create oxygen and hydroxyl free radicals
- Free radicals \rightarrow massive platelet activation \rightarrow thrombosis of pathologic vasculature
Photodynamic Therapy (PDT)

How it works…

- Photosensitizing dye is injected IV.
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass.
- CNVM stimulated with wavelength of light specific to activate the dye.
- The dye reacts with O2 to create oxygen and hydroxyl free radicals.
- Free radicals → massive platelet activation → thrombosis of pathologic vasculature.

What sort of device is used to deliver the light?

A laser.

So PDT is a laser procedure akin to, say, PRP? Yes and no. They are alike in that both use laser light to produce therapeutic changes in tissue. However, they differ in that they employ very different laser-tissue interactions in order to induce the desired tissue changes—as we’ve seen, PDT employs a photochemical intervention, whereas PRP exploits the ability of a laser to produce intense localized heat (ie, it is a thermal laser).
Photodynamic Therapy (PDT)

How it works…

- Photosensitizing dye is injected IV
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass
- CNVM stimulated with wavelength of light specific to activate the dye
- The dye reacts with O₂ to create oxygen and hydroxyl free radicals
- Free radicals → massive platelet activation → thrombosis of pathologic vasculature

What sort of device is used to deliver the light?
- A laser

So PDT is a laser procedure akin to, say, PRP?
- Yes and no. They are alike in that both use laser light to produce therapeutic changes in tissue. However, they differ in that they employ very different laser-tissue interactions in order to induce the desired tissue changes—as we’ve seen, PDT employs a photochemical intervention, whereas PRP exploits the ability of a laser to produce intense localized heat (ie, it is a thermal laser).
How it works…

- Photosensitizing dye is injected IV.
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass.
- CNVM stimulated with wavelength of light specific to activate the dye.
- The dye reacts with O₂ to create oxygen and hydroxyl free radicals.
- Free radicals → massive platelet activation → thrombosis of pathologic vasculature.

What sort of device is used to deliver the light?

A laser

So PDT is a laser procedure akin to, say, PRP?
Photodynamic Therapy (PDT)

How it works…

- Photosensitizing dye is injected IV
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass
- CNVM stimulated with wavelength of light specific to activating the dye
 - The dye reacts with O₂ to create oxygen and hydroxyl free radicals
 - Free radicals → massive platelet activation → thrombosis of pathologic vasculature

- What sort of device is used to deliver the light?
 - A laser

- So PDT is a laser procedure akin to, say, PRP?
 - Yes and no. They are alike in that both use laser light to produce therapeutic changes in tissue. However, they differ in that they employ very different laser-tissue interactions in order to induce the desired tissue changes—as we’ve seen, PDT employs a photochemical intervention, whereas PRP exploits the ability of a laser to produce intense localized heat (ie, it is a thermal laser).
Photodynamic Therapy (PDT)

How it works...
- Photosensitizing dye is injected IV
- Time sufficient to allow concentration of the dye in the CNVM is allowed
- CNVM stimulated with wavelength of light specific to activate the dye
- The dye reacts with O₂ to create oxygen and hydroxyl free radicals
- Free radicals → massive platelet activation → thrombosis of pathologic vasculature

Why doesn’t the PDT laser cause thermal damage like an argon (commonly used for PRP) does?

Lasers deliver energy in the form of electromagnetic radiation (ie, light). A laser’s fluence is determined by the size of the area over which the energy is delivered—the smaller the area, the greater the fluence:

\[\text{Fluence} = \frac{\text{Energy}}{\text{area}} \]

The spot size (ie, area) in PRP is measured in microns, whereas the ‘spot size’ in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Tissue changes—as we’ve seen, PDT employs a photochemical intervention, whereas PRP exploits the ability of a laser to produce intense localized heat (ie, it is a thermal laser).
Photodynamic Therapy (PDT)

How it works…
- Photosensitizing dye is injected IV
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass
- CNVM stimulated with wavelength of light specific to activate the dye
- The dye reacts with O₂ to create oxygen and hydroxyl free radicals
- Free radicals → massive platelet activation → thrombosis of pathologic vasculature

Why doesn’t the PDT laser cause thermal damage like an argon (commonly used for PRP) does? Because the PDT laser is a low fluence laser, whereas argon PRP is high fluence.

Tissue changes—as we’ve seen, PDT employs a photochemical intervention, whereas PRP exploits the **ability of a laser to produce intense localized heat** (ie, it is a thermal laser).
Photodynamic Therapy (PDT)

How it works…

- Photosensitizing dye is injected IV
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass
- CNVM is stimulated with wavelength of light specific to activate the dye
- The dye reacts with O₂ to create oxygen and hydroxyl free radicals
- Free radicals \rightarrow massive platelet activation \rightarrow thrombosis of pathologic vasculature

Why doesn’t the PDT laser cause thermal damage like an argon (commonly used for PRP) does? Because the PDT laser is a low fluence laser, whereas argon PRP is high fluence

What does fluence refer to in this context?

Lasers deliver energy in the form of electromagnetic radiation (ie, light). A laser’s fluence is determined by the size of the area over which the energy is delivered—the smaller the area, the greater the fluence:

$\text{Fluence} = \frac{\text{Energy}}{\text{area}}$

The spot size (ie, area) in PRP is measured in microns, whereas the ‘spot size’ in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Tissue changes—as we’ve seen, PDT employs a photochemical intervention, whereas PRP exploits the ability of a laser to produce intense localized heat (ie, it is a thermal laser).
Photodynamic Therapy (PDT)

How it works…

- Photosensitizing dye is injected IV
- Time sufficient to allow concentration of the dye in the CNVM is allowed to pass
- CNVM is stimulated with wavelength of light specific to activate the dye
- The dye reacts with O₂ to create oxygen and hydroxyl free radicals
- Free radicals → massive platelet activation → thrombosis of pathologic vasculature

Why doesn’t the PDT laser cause thermal damage like an argon (commonly used for PRP) does? Because the PDT laser is a low fluence laser, whereas argon PRP is high fluence

What does fluence refer to in this context?
Lasers deliver energy in the form of electromagnetic radiation (ie, light). A laser’s fluence is determined by the size of the area over which the energy is delivered—the smaller the area, the greater the fluence:

\[
\text{Fluence} = \frac{\text{Energy}}{\text{area}}
\]

The spot size (ie, area) in PRP is measured in microns, whereas the ‘spot size’ in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Tissue changes—as we’ve seen, PDT employs a photochemical intervention, whereas PRP exploits the ability of a laser to produce intense localized heat (ie, it is a thermal laser).
Photodynamic Therapy (PDT)

How it works…

- Photosensitizing dye is **injected IV**
- **Time sufficient to allow concentration of the dye in the CNVM is allowed.**
- **CNVM is stimulated with wavelength of light specific to activate the dye.**
- The dye reacts with O₂ to create oxygen and hydroxyl free radicals
 - Free radicals → massive platelet activation
 - Thrombosis of pathologic vasculature

Photodynamic Therapy (PDT)

Why doesn’t the PDT laser cause thermal damage like an argon (commonly used for PRP) does?

Note: All PDT is of low fluence compared to most other laser procedures. However, there is a procedure called *low- or half-fluence PDT* in which the amount of energy delivered is half of the standard PDT dose (there is some evidence that half-fluence PDT is more effective than full-fluence)

\[
\text{half - Fluence} = \frac{\text{Energy/area}}{2}
\]

The spot size (ie, area) in PRP is measured in microns, whereas the ‘spot size’ in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

- Tissue changes—*as we’ve seen, PDT employs a photochemical intervention, whereas PRP exploits the ability of a laser to produce intense localized heat* (ie, it is a thermal laser).
Side effects...

- Transient

ocular (two words)
Side effects…

- Transient vision disturbances
Side effects...

- Transient vision disturbances
- Injection-site adverse effects
Side effects…

- Transient *vision disturbances*
- Injection-site adverse effects
 - Rash
 - Extravasation

Photodynamic Therapy (PDT)
Side effects…

- Transient vision disturbances
- Injection-site adverse effects
 - Rash
 - Extravasation
- Transient skin photosensitivity
● **Side effects…**

 ● Transient *vision disturbances*

 ● Injection-site adverse effects

 ● Rash

 ● Extravasation

 ● Transient skin *photosensitivity*
Side effects...

- Transient vision disturbances
- Injection-site adverse effects
 - Rash
 - Extravasation
- Transient skin photosensitivity
 - Avoid sunlight for a certain amount of time
Side effects…

- Transient vision disturbances
- Injection-site adverse effects
 - Rash
 - Extravasation
- Transient skin photosensitivity
 - Avoid sunlight for 5 days
Side effects...

- Transient vision disturbances
- Injection-site adverse effects
 - Rash
 - Extravasation
- Transient skin photosensitivity
 - Avoid sunlight for 5 days
- Infusion-related
 - surprising but classic (3 words)
Side effects...

- Transient vision disturbances
- Injection-site adverse effects
 - Rash
 - Extravasation
- Transient skin photosensitivity
 - Avoid sunlight for 5 days
- Infusion-related low back pain
Contraindications…

- Pregnancy
- Liver disease
- Porphyria
- Known hypersensitivity
Contraindications…

- Pregnancy
- Liver disease
- Porphyria
- Known hypersensitivity