What does the acronym LASER stand for?
What does the acronym LASER stand for?

Light Amplification by Stimulated Emission of Radiation
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?
Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called **photons**.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons?
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by [Light Amplification by Stimulated Emission of Radiation].
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons?
Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

Light Amplification by Stimulated Emission of Radiation

Lasers: Pew! Pew!
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons

OK, what are photons?

Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy.

And when that photon strikes another electron, it imparts the energy to the second electron, causing

How much energy is carried away?
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How much energy is carried away? This is proportional to the frequency of the light.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases ('radiates') a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How much energy is carried away? This is proportional to the frequency of the light.

Light Amplification by Stimulated Emission of Radiation (LASER)
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons?

Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases ('radiates') a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How much energy is carried away?

This is proportional to the frequency of the light, as per the following formula:

\[E = h \nu \]

Light Amplification by Stimulated Emission of Radiation
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?
Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called **photons**

OK, what are photons?
Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing **Lasers: Pew! Pew!**

How much energy is carried away?
This is proportional to the frequency of the light, as per the following formula:

\[E = h \nu \]

Amount of energy carried away
Frequency of the light

Light Amplification by Stimulated Emission of Radiation
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called **photons**

OK, **what are photons?**

Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy orbit, it releases ('radiates') a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

tl;dr The greater the frequency of the light, the greater the energy.

How much energy is carried away?

This is proportional to the frequency of the light, as per the following formula:

\[E = h \nu \]

Amount of energy carried away

Frequency of the light

Planck’s constant

Light Amplification by Stimulated Emission of Radiation
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called **photons**.

OK, what are photons?

Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes *another* electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers?
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called **photons**.

OK, what are photons?

Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers?

Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system. (See what I did there?)

Light Amplification by Stimulated Emission of Radiation
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons?
Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases ('radiates') a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers?
Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system. (See what I did there?)

Light Amplification by Stimulated Emission of Radiation

Lasers: Pew! Pew!
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system. (See what I did there?)

Light Amplification by Stimulated Emission of Radiation (LASEM)
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

What sort of substance can serve as the active medium in a laser? Lots of different sorts. It can be a gas (e.g., argon), a liquid (e.g., dye), a solid (e.g., Nd:YAG), or it can also be a manufactured item (e.g., diode).

Argon, dye, YAG, diode—these sound familiar, where have I heard them before?
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons?
Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers?
 Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

What sort of substance can serve as the active medium in a laser?
Lots of different sorts. It can be a gas (e.g., argon), a liquid (e.g., dye), a solid (e.g., Nd:YAG), or it can also be a manufactured item (e.g., diode).

Argon, dye, YAG, diode—these sound familiar, where have I heard them before?
They are all the names of lasers commonly employed in ophthalmology (lasers are often named after their active medium).
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called **photons**.

OK, what are photons?

Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers?

Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

What sort of substance can serve as the active medium in a laser?

Lots of different sorts. It can be a gas (eg, argon), a liquid (dye), a solid (eg, Nd:YAG); it can also be a manufactured item (eg, diode).

What does Nd:YAG stand for?

Neodymium: Yttrium-Aluminum-Garnet

Have I heard them before?

They are all the names of lasers commonly employed in ophthalmology (lasers are often named after their active medium).
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons?
Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers?
Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

What sort of substance can serve as the active medium in a laser?
Lots of different sorts. It can be a gas (e.g., argon), a liquid (e.g., dye), a solid (e.g., Nd:YAG), or a manufactured item (e.g., diode).

What does Nd:YAG stand for?
Neodymium: Yttrium-Aluminum-Garnet.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

What sort of substance can serve as the active medium in a laser? Lots of different sorts. It can be a gas (e.g., argon), a liquid (dye), a solid (e.g., Nd:YAG), or it can also be a manufactured item (e.g., diode).

Are all four substances the active medium (media)? No, only the neodymium is; the other substances play a supporting role.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?
Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons?
Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does this relate to lasers?
Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

What sort of substance can serve as the active medium in a laser?
Lots of different sorts. It can be a gas (e.g., argon), a liquid (e.g., dye), a solid (e.g., Nd:YAG), or it can also be a manufactured item (e.g., diode).

What does Nd:YAG stand for?
Neodymium: Yttrium-Aluminum-Garnet

Are all four substances the active medium (media)?
No, only the neodymium is; the other substances play a supporting role.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be

In general terms, how much energy is ‘enough’?
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons

OK, what are photons?
Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers?
Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be

In general terms, how much energy is ‘enough’?
In general terms, a lot. Lasers are very inefficient systems in that a lot more energy goes in than comes out.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be...

In general terms, how much energy is ‘enough’? In general terms, a lot. Lasers are very inefficient systems in that a lot more energy goes in than comes out.

What can be done to get more ‘bang for the buck’ from a laser?
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

In general terms, how much energy is ‘enough’? In general terms, a lot. Lasers are very inefficient systems in that a lot more energy goes in than comes out.

What can be done to get more ‘bang for the buck’ from a laser? By releasing the energy over a very brief period of time, the laser’s power (power = energy/time) can be ramped up.

Laser: Pew! Pew!
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be

In general terms, how much energy is ‘enough’? In general terms, a lot. Lasers are very inefficient systems in that a lot more energy goes in than comes out.

What can be done to get more ‘bang for the buck’ from a laser? By releasing the energy over a very brief period of time, the laser’s power (power = energy/time) can be ramped up.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be...

In general terms, how much energy is ‘enough’? In general terms, a lot. Lasers are very inefficient systems in that a lot more energy goes in than comes out.

What can be done to get more ‘bang for the buck’ from a laser? By releasing the energy over a very brief period of time, the laser’s power (power = energy/time) can be ramped up...

tl;dr The shorter the pulse, the greater the power per pulse
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases ('radiates') a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

In general terms, how much energy is ‘enough’? In general terms, a lot. Lasers are very inefficient systems in that a lot more energy goes in than comes out.

What can be done to get more ‘bang for the buck’ from a laser? By releasing the energy over a very brief period of time, the laser’s power (power = energy/time) can be ramped up. The shorter the pulse, the greater the power per pulse.

The greater the frequency of the light, the greater the energy. This is proportional to the frequency of the light, as per the following formula: $E = h\nu$.

Take-home points: One can increase the power of a laser by increasing the frequency of the emitted light, and/or by shortening the pulse-time.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called **photons**

OK, what are photons?

Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

As an important aside: What other step can be taken to increase the intensity of laser energy?

What can be done to get more ‘bang for the buck’ from a laser?

By releasing the energy over a very brief period of time, the laser’s **power** (power = energy/time) can be ramped up.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

As an important aside: What other step can be taken to increase the intensity of laser energy? Reduce the size of the area to which the laser is being applied; ie, concentrate/focus the laser energy on a smaller area.

What can be done to get more ‘bang for the buck’ from a laser? By releasing the energy over a very brief period of time, the laser’s power (power = energy/time) can be ramped up.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

As an important aside: What other step can be taken to increase the intensity of laser energy? Reduce the size of the area to which the laser is being applied; ie, concentrate/focus the laser energy on a smaller area.

We saw that power is ‘energy over time.’ Now we’re talking about ‘energy over area.’ What is the name for this variable?

What can be done to get more ‘bang for the buck’ from a laser? By releasing the energy over a very brief period of time, the laser’s power (power = energy/time) can be ramped up.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

As an important aside: What other step can be taken to increase the intensity of laser energy? Reduce the size of the area to which the laser is being applied; ie, concentrate/focus the laser energy on a smaller area.

We saw that power is ‘energy over time.’ Now we’re talking about ‘energy over area.’ What is the name for this variable? **Fluence** = energy/area. (We will soon see that one laser procedure is known for being ‘low fluence.’)

What can be done to get more ‘bang for the buck’ from a laser? By releasing the energy over a very brief period of time, the laser’s power (power = energy/time) can be ramped up.
Lasers: Pew! Pew!

What is the essence of laser-tissue interaction?
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- Tissue-related factors
- Laser-related factors

Composition

Chromophores
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related** factors
- **Laser-related** factors
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**

?
?
?
What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
Lasers: Pew! Pew!

What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

Tissue-related factors
- Composition
- Chromophores

Laser-related factors
- ?
- ?
- ?
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy? There are two categories of factors affecting laser-energy transfer:

Tissue-related factors
- Composition
- Chromophores

Laser-related factors
- Energy
- Power
- Fluence
What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophore

- **Laser-related factors**
 - Energy
 - Power

What is a chromophore in this context?
A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?
Hemoglobin and melanin.
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - **Chromophore**

- **Laser-related factors**
 - Energy
 - Power

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).
Lasers: Pew! Pew!

What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophore

- **Laser-related factors**
 -Energy
 -Power

What is a chromophore in this context?
A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophore

- **Laser-related factors**
 - Energy
 - Power

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.
What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophore

- **Laser-related factors**
 - Energy
 - Power

What is a chromophore in this context?
A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores in the eye are exploited in ophthalmic laser procedures?
Hemoglobin and melanin.

There is another chromophore, found only in the macula, we should mention. What is it?
Xanthophyll (Note: The latest iteration of the Retina book also refers to xanthophyll as "oxygenated carotenoids, in particular lutein and zeaxanthin").
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophore

- **Laser-related factors**
 - Energy
 - Power

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

There is another chromophore, found only in the macula, we should mention. What is it?

Xanthophyll

(Note: The latest iteration of the *Retina* book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”.)
Lasers: Pew! Pew!

What is the essence of chromophores in this context?
A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (e.g., a dye)

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?
Hemoglobin and melanin

There is another chromophore, found only in the macula, we should mention. What is it?
Xanthophyll
(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

With regard to wavelength: The visible spectrum runs from what to what?
Lasers: Pew! Pew!

It boils down to transferring the energy emitted by the laser to the target tissue. What factors influence the transference of energy? There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**

The five modes of laser-tissue interaction:

What is the essence?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? Hemoglobin and melanin.

What is another chromophore, found only in the macula, we should mention? Xanthophyll.

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin.”)

With regard to wavelength: The visible spectrum runs from what to what? About 400 to 700 nm.
Lasers: Pew! Pew!

<table>
<thead>
<tr>
<th>Tissue-related factors</th>
<th>Laser-related factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromophore</td>
<td>Energy</td>
</tr>
<tr>
<td></td>
<td>Power</td>
</tr>
<tr>
<td></td>
<td>Fluence</td>
</tr>
</tbody>
</table>

The five modes of laser-tissue interaction: What is the essence?

What is a **chromophore** in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring **chromophores** found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin

There is another **chromophore**, found only in the macula, we should mention. What is it?

Xanthophyll

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
</tr>
</tbody>
</table>

For purposes of understanding lasers, we can divide the visible spectrum into four color segments. What are they?

For purposes of understanding lasers, we can divide the visible spectrum into four color segments. What are they?

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
</tr>
</tbody>
</table>

(Infrared)
Lasers: Pew! Pew!

It boils down to transferring the energy emitted by the laser to the target tissue. What factors influence the transference of energy? There are two categories affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**

Energy
- Power
- Fluence

Composition
- Chromophore

The five modes of laser-tissue interaction are:

- For purposes of understanding lasers, we can divide the visible spectrum into four color segments. What are they? **Blue, green, yellow, red**

There is another chromophore, found only in the macula, we should mention. What is it? **Xanthophyll**

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

What is the essence of a chromophore in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? **Hemoglobin and melanin**
Lasers: Pew! Pew!

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**

Energy
- Power
- Fluence

Composition
- Chromophore

The five modes of laser-tissue interaction:

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

- **Hemoglobin**
- **Melanin**

There is another chromophore, found only in the macula, we should mention. What is it?

Xanthophyll

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Blue</th>
<th>Green</th>
<th>Yellow</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Which portion of the visible spectrum is well absorbed by:

Hemoglobin?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).
Lasers: Pew! Pew!

It boils down to transferring the energy emitted by the laser to the target tissue. What factors influence the transference of energy? There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**

The five modes of laser-tissue interaction: What is the essence?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye) is called a **chromophore**. What are the two naturally-occurring chromophores found in the eye that are exploited in ophthalmic laser procedures? **Hemoglobin** and **melanin**. There is another chromophore, found only in the macula, we should mention. What is it? **Xanthophyll** (Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

For purposes of understanding lasers, we can divide the visible spectrum into four color segments. What are they? **Blue, green, yellow, red**

Which portion of the visible spectrum is well absorbed by: **Hemoglobin**? Everything but red

There is another chromophore, found only in the macula, we should mention. What is it? **Xanthophyll**
Lasers: Pew! Pew!

It boils down to transferring the energy emitted by the laser to the target tissue. What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**

The five modes of laser-tissue interaction:

What is a **chromophore** in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring **chromophores** found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

There is another **chromophore**, found only in the macula, we should mention. What is it? **Xanthophyll**

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

Question:

Which portion of the visible spectrum is well absorbed by: **Melanin**?

Diagram:

- **Blue**
 - Hemoglobin

- **Green**
 - Melanin

- **Yellow**

- **Red**
 - (Infrared)

Wavelength (nm):

- 400
- 700
It boils down to transferring the energy emitted by the laser to the target tissue. What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**

Energy
- Power
- Fluence

Composition
- Chromophore

The five modes of laser-tissue interaction:

What is the essence?

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

There is another chromophore, found only in the macula, we should mention. What is it? Xanthophyll.

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

Which portion of the visible spectrum is well absorbed by:

Melanin? Everything is absorbed fairly well

For purposes of understanding lasers, we can divide the visible spectrum into four color segments. What are they?

- Blue, green, yellow, red

Which portion of the visible spectrum is well absorbed by:

Melanin? Everything is absorbed fairly well

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>700</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Infrared)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ultraviolet)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blue, Green, Yellow, Red
Lasers: Pew! Pew!

It boils down to transferring the energy emitted by the laser to the target tissue. What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**

Energy transfer involves:

- **Power**
- **Fluence**

The five modes of laser-tissue interaction:

What is the essence?

What is a **chromophore** in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring **chromophores** found in the eye are exploited in ophthalmic laser procedures?

- **Hemoglobin**
- **Melanin**

There is another **chromophore**, found only in the macula, we should mention. What is it?

Xanthophyll

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

Which portion of the visible spectrum is well absorbed by: **Xanthophyll**?

- **Hemoglobin**
- **Melanin**
- **Xanthophyll**

For purposes of understanding lasers, we can divide the visible spectrum into four color segments: **Blue, green, yellow, red**.
Lasers: Pew! Pew!

It boils down to transferring the energy emitted by the laser to the target tissue. What factors influence the transference of energy? There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**

Which are:

- **Energy**
- **Power**
- **Fluence**
- **Composition**
- **Chromophore**

The five modes of laser-tissue interaction: What is the essence? What is a chromophore in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? **Hemoglobin** and **melanin**.

There is another chromophore, found only in the macula, we should mention. What is it? **Xanthophyll**.

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

Which portion of the visible spectrum is well absorbed by: **Xanthophyll**? Only **blue**.

What is the essence of this diagram? It illustrates the absorption spectrum of various chromophores across the visible spectrum, showing which wavelengths are absorbed by hemoglobin, melanin, and xanthophyll.

There are four color segments in the visible spectrum: **Blue**, **green**, **yellow**, and **red**.
Lasers: Pew! Pew!

What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor?
What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

We've seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser’s intensity is defined as its power per unit area (usually in cm²).
What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

Intensity = \(\frac{\text{Power}}{\text{Area in cm}^2} \)

We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser’s **intensity** is defined as its **power per unit area** (usually in cm\(^2\))
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- *Tissue*-related factors
 - Composition
 - Chromophores

- *Laser*-related factors
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser’s **intensity** is defined as its power per unit area (usually in cm²).

FYI, another name for ‘intensity’ is "power density."
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

We've seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser's intensity is defined as its power per unit area (usually in cm²).

FYI, another name for ‘intensity’ is *power density*.
Lasers: Pew! Pew!

What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

Power density (Intensity) = \[
\frac{\text{Power}}{\text{Area in cm}^2}
\]

We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser’s intensity is defined as its power density (usually in cm²).

FYI, another name for ‘intensity’ is *power density* (which makes sense, as the factor is ‘power per something’).
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

Tissue-related factors
- Composition
- Chromophores

Laser-related factors
- Energy
- Power = Energy/time
- Fluence = Energy/area

We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser’s **intensity** is defined as its power per unit area (usually in cm²).

A final FYI on the same subject: Still another name for ‘intensity’ and ‘power density’ is **irradiance**.
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser’s **intensity** is defined as its power per unit area (usually in cm²).

A final FYI on the same subject: Still another name for ‘intensity’ and ‘power density’ is **irradiance**.
What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser's **intensity** is defined as its **power per unit area** (usually in cm²)

A **final FYI on the same subject**: Still another name for ‘intensity’ and ‘power density’ is **irradiance** (with the stipulation that irradiance employs area in m², not cm²)
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

Tissue-related factors
- Composition
- Chromophores

Laser-related factors
- Energy
- Power = Energy/time
- Fluence = Energy/area

Note that because power = energy/time, intensity can be written thusly:

\[\text{Intensity} = \frac{\text{Power}}{\text{Area in cm}^2} \]

Indeed there is. A laser’s intensity is defined as its power per unit area (usually in cm²).
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

Note that because power = energy/time, *intensity* can be written thusly:

\[\text{Intensity} = \frac{\text{Power}}{\text{Area in cm}^2} \]

Indeed there is. A laser's *intensity* is defined as its energy density (usually in cm²).

Which can be rewritten as:

\[\text{Intensity} = \frac{\text{Energy}}{\text{Time} \times \text{area}} \]
What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

Intensity = \(\frac{\text{Power}}{\text{Area in cm}^2} \)

This formulation neatly illustrates how intensity can be increased by:

- Increasing pulse energy, or
- Decreasing pulse time, or
- Decreasing pulse area

Note that because power = energy/time, intensity can be written thusly:

Intensity = \(\frac{\text{Energy}}{\text{Time} \times \text{area}} \)
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

Intensity = \[
\frac{\text{Power}}{\text{Area in cm}^2}
\]

Note that because power = energy/time, intensity can be written thusly:

\[
\text{Intensity} = \frac{\text{Energy}}{\text{Time} \times \text{Area}}
\]

This formulation neatly illustrates how intensity can be increased by:
- Increasing pulse energy, or
- Decreasing pulse time, or
- Decreasing pulse area.

So commit this to memory!
Lasers: Pew! Pew!

What are the five modes of laser-tissue interaction?
What are the five modes of laser-tissue interaction?

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-chemical</td>
<td>aka photoactivation</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
</tr>
<tr>
<td>Photo-ablation</td>
<td></td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td>aka plasma-induced disruption</td>
</tr>
<tr>
<td>Photo-disruption</td>
<td></td>
</tr>
</tbody>
</table>
What are the five modes of laser-tissue interaction?

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-chemical</td>
<td>Thermal</td>
</tr>
<tr>
<td>aka photoactivation</td>
<td>Plasmatic ablation</td>
</tr>
<tr>
<td>Photo-ablation</td>
<td>Plasma-induced ablation</td>
</tr>
<tr>
<td>aka plasma-induced disruption</td>
<td></td>
</tr>
</tbody>
</table>

Are these thrown up here rando, or are they in an order of some sort?
What are the five modes of laser-tissue interaction?

- Photo-chemical aka photoactivation
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption aka plasma-induced disruption

Are these thrown up here rando, or are they in an order of some sort?
Not rando. Although there is some overlap (especially between plasma-induced ablation and photodisruption), overall these are listed in order of increasing...
What are the five modes of laser-tissue interaction?

- Photo-chemical
 aka photoactivation
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption
 aka plasma-induced disruption

Are these thrown up here rando, or are they in an order of some sort? Not rando. Although there is some overlap (especially between plasma-induced ablation and photodisruption), overall these are listed in order of increasing intensity.
Lasers: Pew! Pew!

What are the five modes of laser-tissue interaction?

- Photo-chemical
 aka photoactivation

- Thermal

- Photo-ablation

- Plasma-induced ablation

- Photo-disruption
 aka plasma-induced disruption

Are these thrown up here rando, or are they in an order of some sort?
Not rando. Although there is some overlap (especially between plasma-induced ablation and photodisruption), overall these are listed in order of increasing intensity.

How is intensity ramped up from one mode to the next?
What are the five modes of laser-tissue interaction?

- Photo-chemical
 aka photoactivation
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption
 aka plasma-induced disruption

Are these thrown up here rando, or are they in an order of some sort?
Not rando. Although there is some overlap (especially between plasma-induced ablation and photodisruption), overall these are listed in order of increasing intensity.

How is intensity ramped up from one mode to the next?
All three variables are manipulated to some extent, but probably account for the lion’s share of the differences
Lasers: Pew! Pew!

What are the five modes of laser-tissue interaction?

- Photo-chemical (aka photoactivation)
- Thermal
- Photo-ablation
- Plasma-induced ablation (aka plasma-induced disruption)
- Photo-disruption

Are these thrown up here rando, or are they in an order of some sort? Not rando. Although there is some overlap (especially between plasma-induced ablation and photodisruption), overall these are listed in order of increasing intensity.

How is intensity ramped up from one mode to the next? All three variables are manipulated to some extent, but pulse time probably account for the lion’s share of the differences.
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>aka photoactivation</td>
<td></td>
<td></td>
<td></td>
<td>aka plasma-induced disruption</td>
</tr>
</tbody>
</table>

Briefly, what steps are involved in a photochemical laser procedure?

1)

2)

3)

4)
The five modes of laser-tissue interaction:

Photochemical
aka photoactivation

Thermal

Photoablation

Plasma-induced ablation

Photo-disruption
aka plasma-induced disruption

 Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2)
Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3)
4)
Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species which cause local...
4)
The five modes of laser-tissue interaction:

Photochemical
aka **photoactivation**

Thermal

Photo-ablation

Plasma-induced ablation

Photo-disruption
aka **plasma-induced disruption**

Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation
4)
Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation
4) Platelet activation produces of the lesion’s vasculature.

The five modes of laser-tissue interaction:

- Photo-chemical
 aka photoactivation

- Thermal

- Photo-ablation

- Plasma-induced ablation

- Photo-disruption
 aka plasma-induced disruption
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>aka photoactivation</td>
<td></td>
<td></td>
<td></td>
<td>aka plasma-induced disruption</td>
</tr>
</tbody>
</table>

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation
4) Platelet activation produces thrombosis of the lesion’s vasculature.
The five modes of laser-tissue interaction:

- **Photo-chemical** aka *photoactivation*
- **Thermal**
- **Photo-ablation**
- **Plasma-induced ablation**
- **Photo-disruption** aka *plasma-induced disruption*

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation.
4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photo-chemical**
 - aka photoactivation

- Thermal

- Photo-ablation

- Plasma-induced ablation

- Photo-disruption
 - aka plasma-induced disruption

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species, which...

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)
The five modes of laser-tissue interaction:

- **Photochemical** aka photoactivation
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption aka plasma-induced disruption

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species, which

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)

What is PDT used to treat?
The five modes of laser-tissue interaction:

- **Photo-chemical**
 - aka photoactivation

<table>
<thead>
<tr>
<th>Photo-chemical</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>aka photoactivation</td>
<td></td>
<td></td>
<td></td>
<td>aka plasma-induced disruption</td>
</tr>
</tbody>
</table>

Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species, which

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)

What is PDT used to treat?
Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of three words, as well as for some intraocular tumors.
The five modes of laser-tissue interaction:

- Photochemical
 aka photoactivation
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption
 aka plasma-induced disruption

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation
4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)

What is PDT used to treat?
Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
The five modes of laser-tissue interaction:

- **Photochemical**
 - aka *photoactivation*

- **Thermal**
- **Photoablation**
- **Plasma-induced ablation**
- **Photo-disruption**
 - aka *plasma-induced disruption*

Briefly, what steps are involved in a photochemical laser procedure?
1) A **photosensitizing dye** is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to 'light up' the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation.
4) Platelet activation produces thrombosis of the lesion's vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

What is the name of the dye used in PDT?

Verteporfin
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photochemical**
 - aka *photoactivation*

- **Thermal**

- **Photoablation**

- **Plasma-induced ablation**

- **Photo-disruption**
 - aka *plasma-induced disruption*

Briefly, what steps are involved in a photochemical laser procedure?

1) A **photosensitizing dye** is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.

2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.

3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation.

4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

What is the name of the dye used in PDT?

Verteporfin
The five modes of laser-tissue interaction:

- Photochemical
 - aka photoactivation
- Thermal
- Photocoagulation
- Plasma-induced ablation
- Photo-disruption
 - aka plasma-induced disruption

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and **time sufficient to allow concentration of the dye in the target lesion is allowed to pass**.
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation.
4) Platelet activation produces thrombosis of the lesion's vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?
Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
The five *modes of laser-tissue interaction*:

Photochemical

aka *photoactivation*

Thermal

Photoablation

Plasma-induced ablation

Photo-disruption

aka *plasma-induced disruption*

Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and **time sufficient to allow concentration of the dye in the target lesion is allowed to pass**

2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye

3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation

4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
Photochemical

aka *photoactivation*

The five modes of laser-tissue interaction:

- **Photochemical**
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption
 aka *plasma-induced disruption*

Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass

2) **The laser is then used to ‘light up’ the lesion** with light of a wavelength that will activate the dye

3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation

4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
The five modes of laser-tissue interaction:

- **Photochemical**
 - aka *photoactivation*

- **Thermal**

- **Photoablation**

- **Plasma-induced ablation**

- **Photo-disruption**
 - aka *plasma-induced disruption*

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) **The laser is then used to ‘light up’ the lesion** with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation.
4) Platelet activation produces thrombosis of the lesion's vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?
Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?

PRP laser

Plasma-induced ablation

Photo-disruption aka plasma-induced disruption

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation.
4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

The five modes of laser-tissue interaction:

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?

Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser.

Fluence = Energy/area

The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Before the next PDT question…What does PRP stand for in this context?

Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.

Several thousand laser burns are placed throughout the retinal periphery.

Briefly: What is the most common indication for PRP?

Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?

The goal is to kill most of the cells in the peripheral retina.

Finally (and also briefly): What is the therapeutic rationale?

Why kill the peripheral retina?

DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). OTOH, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VRGF burden is reduced, neovascularization is halted, and SVL is avoided.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

Before the next PRP question…What does PRP stand for in this context?
Panretinal photocoagulation

Broadly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to 'light up' the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation
4) Platelet activation produces thrombosis of the lesion's vasculature.

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)

What is PDT used to treat?
Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

The five modes of laser-tissue interaction:

Plasma-induced ablation
aka plasma-induced disruption

Why doesn't the PDT laser cause thermal damage like, say, a PRP laser does?
Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser

Fluence = Energy/area

The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery.

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina

Finally (and also briefly): What is the therapeutic rationale?
Why kill the peripheral retina?
DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). OTOH, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.
The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina

Finally (and also briefly): What is the therapeutic rationale?
Why kill the peripheral retina?
DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). OTOH, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.

Why doesn't the PDT laser cause thermal damage like, say, a PRP laser does?
Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser.

Fluence = Energy/area

The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina

Finally (and also briefly): What is the therapeutic rationale?
Why kill the peripheral retina?
DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). OTOH, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.
The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?
Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser

Fluence = Energy/area

The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?
Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser

Fluence = Energy/area

The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.
The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?
The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photochemical ablation**
- **Plasma-induced ablation**
- **Photo-disruption** aka **plasma-induced disruption**

Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to 'light up' the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation
4) Platelet activation produces thrombosis of the lesion's vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

The five modes of laser-tissue interaction:

Briefly: What does PRP stand for in this context?

Panretinal photocoagulation

Briefly, describe the PRP procedure.

Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?

Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?

The goal is to kill most of the cells in the peripheral retina

Again, briefly: What is the therapeutic rationale? Why kill the peripheral retina?

DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). OTOH, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.
The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

1. **Light**
2. **Heat**
3. **Chemistry**
4. **Thermooptics**
5. **Photochemical**

The classic example of photochemical laser is **Photodynamic therapy (PDT)**.

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

The five modes of laser-tissue interaction:

- **Photochemical**
- **Thermal**
- **Photoablation**
- **Photodisruption**
- **Plasma-induced disruption**

Before the next PDT question…What does PRP stand for in this context?

Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.

Several thousand laser burns are placed throughout the retinal periphery.

Briefly: What is the most common indication for PRP?

Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?

The goal is to kill most of the cells in the peripheral retina.

Finally (and also briefly): What is the therapeutic rationale? Why kill the peripheral retina?

DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). OTOH, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina

Finally (and also briefly): What is the therapeutic rationale?
Why kill the peripheral retina?
DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL).
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

1. **Photochemical**
2. **Thermal**
3. **Photoablation**
4. **Plasma-induced ablation**
5. **Photo-disruption** aka **plasma-induced disruption**

Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to 'light up' the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation
4) Platelet activation produces thrombosis of the lesion's vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?

Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.

Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?

Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?

The goal is to kill most of the cells in the peripheral retina

Finally (and also briefly): What is the therapeutic rationale? Why kill the peripheral retina?

DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL).
The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina

Finally (and also briefly): What is the therapeutic rationale? Why kill the peripheral retina?
DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). On the other hand, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.
Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to 'light up' the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation
4) Platelet activation produces thrombosis of the lesion's vasculature.

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)

What is PDT used to treat?
Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

The five modes of laser-tissue interaction:

- Plasma-induced ablation
- Photo-induced disruption aka plasma-induced disruption
- Photo-disruption
- Briefly, what does PRP stand for in this context?
 Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery.

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina.

Finally (and also briefly): What is the therapeutic rationale? Why kill the peripheral retina?
DM retinopathy renders the peripheral retina hypoxic, which leads to seve vision loss (SVL). On the other hand, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

What does VEGF stand for in this context?
Vascular endothelial growth factor
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina

Finally (and also briefly): What is the therapeutic rationale?
Why kill the peripheral retina?
DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to severe vision loss (SVL). On the other hand, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.

What does VEGF stand for in this context?
Vascular endothelial growth factor
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photochemical** aka photoactivation
- Thermal
- **Photoablation**
- **Plasma-induced ablation**
- **Photo-disruption** aka plasma-induced disruption

Briefly, what steps are involved in a photochemical laser procedure?

1) A **photosensitizing dye** is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?

Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser. Fluence = Energy/area. The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photochemical**
 -aka photoactivation

- Thermal

- **Photoablation**

- Plasma-induced ablation

- **Photo-disruption**
 -aka plasma-induced disruption

Briefly, what steps are involved in a photochemical laser procedure?

1) A **photosensitizing dye** is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?
Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser.

Fluence = Energy/area

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>aka photoactivation</td>
<td></td>
<td></td>
<td></td>
<td>aka plasma-induced disruption</td>
</tr>
</tbody>
</table>

Briefly, what steps are involved in a photochemical laser procedure?

1) A **photosensitizing dye** is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?

Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser.

Fluence = Energy/area

The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

intraocular tumors.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photo-chemical** aka *photoactivation*
- **Thermal**
- **Photo-ablation**
- **Plasma-induced ablation**
- **Photo-disruption** aka *plasma-induced disruption*

Briefly, what steps are involved in a photochemical laser procedure?
1) A **photosensitizing dye** is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.

Of course, another reason PDT doesn’t produce thermal effects like PRP is because the PDT laser is a low power laser, whereas PRP employs a high power laser.

\[\text{Power} = \frac{\text{Energy}}{\text{Time}} \]

The tx time in PRP is measured in **ms**, whereas the tx time in PDT is measured in **seconds**. Thus, for a given amount of energy delivered, the **power** of PRP is orders of magnitude higher than the **power** of PDT.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.

2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.

3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation.

4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?

Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser. Fluence = Energy/area. The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Note: All PDT is of low fluence compared to most other laser procedures. However, there is a PDT variant called low- or half-fluence PDT in which the amount of energy delivered is half of the standard PDT dose (there is some evidence that half-fluence PDT is more effective than full-fluence)
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photochemical</th>
<th>Thermal</th>
<th>Photothermic Ablation</th>
<th>Plasma-induced Ablation</th>
<th>Photodisruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>aka photoactivation</td>
<td></td>
<td></td>
<td></td>
<td>aka plasma-induced disruption</td>
</tr>
</tbody>
</table>

Note: All PDT is of low fluence compared to most other laser procedures. However, there is a PDT variant called *low-fluence PDT*, in which the amount of energy delivered is half of the standard PDT dose (there is some evidence that half-fluence PDT is more effective than full-fluence).

\[\text{half-fluence PDT} \]

Could you produce half-fluence by doubling the denominator instead of halving the numerator?
The five modes of laser-tissue interaction:

- **Photochemical**
 aka photoactivation

- Thermal

- Photo-ablation

- Plasma-induced ablation

- Photo-disruption
 aka plasma-induced disruption

Note: All PDT is of low fluence compared to most other laser procedures. However, there is a PDT variant called *low-fluence PDT* in which the amount of energy delivered is half of the standard PDT dose (there is some evidence that half-fluence PDT is more effective than full-fluence).

half-fluence PDT?

half - Fluence = Energy/area \times 2

Could you produce half-fluence by doubling the denominator instead of halving the numerator?

Well, you could, but doing so wouldn’t be prudent. In PDT, we’re treating a lesion of a certain size/extent. It would make no therapeutic sense to reduce fluence by doubling the treatment area, because this would entail ‘treating’ the healthy tissue surrounding the lesion.*
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photo-chemical**
 - aka photoactivation
 - Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn

- **Thermal**
- **Photo-ablation**
- **Plasma-induced ablation**
- **Photo-disruption**
 - aka plasma-induced disruption

PDT

No question—proceed when ready
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical</td>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
</tr>
<tr>
<td>Thermal</td>
<td>Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?</td>
</tr>
<tr>
<td>Photo- ablation</td>
<td></td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td></td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>aka plasma-induced disruption</td>
</tr>
</tbody>
</table>

PDT
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-chemical</td>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
</tr>
<tr>
<td>Thermal</td>
<td>Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?</td>
</tr>
<tr>
<td>Photo-ablation</td>
<td>--Hyperthermia</td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td>--Coagulation</td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>--Vaporization</td>
</tr>
<tr>
<td>aka plasma-induced disruption</td>
<td>--Carbonization</td>
</tr>
<tr>
<td>aka photoactivation</td>
<td>--Melting</td>
</tr>
</tbody>
</table>

PDT
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photo-chemical**
 - aka *photoactivation*
 - Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn
 - *PDT*

- **Thermal**
 - Photo-ablation
 - Plasma-induced ablation

 Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?
 - *Hyperthermia?*
 - *Coagulation?*
 - *Vaporization?*
 - *Carbonization?*
 - *Melting?*

 Which thermal effect is employed most frequently?
The five modes of laser-tissue interaction:

- **Thermal**
- Photo-chemical (aka **photoactivation**)
 - Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn
 - **PDT**
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption (aka **plasma-induced disruption**)

Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?

- Hyperthermia
- **Coagulation**
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently?

Coagulation
The five modes of laser-tissue interaction:

Photo-chemical
aka *photoactivation*

- Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn
- PDT

Thermal

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Photo-ablation

Plasma-induced ablation

Photo-disruption
aka *plasma-induced disruption*

Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?)

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

What does it mean to say that tissue has ‘coagulated’?

Which thermal Coagulation

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
The five modes of laser-tissue interaction:

- **Thermal**
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Thermal effects on tissue exist on a continuum.

- **Photo-chemical**
 - Photo-activation
- **Photo-ablation**
- **Plasma-induced ablation**
- **Photo-disruption**
 - Plasma-induced disruption

Which thermal effect is employed most frequently?

- Coagulation

What does it mean to say that tissue has ‘coagulated’?

- It means the proteins have been denatured

Can you give an example of protein denaturation?

- Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Thermal</th>
<th>Photo-</th>
<th>Plasma-induced</th>
<th>Photo-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulation</td>
<td>ablation</td>
<td>ablation</td>
<td>disruption</td>
</tr>
</tbody>
</table>

Thermal effects on tissue exist on a continuum. What are the five degrees?

- Hyperthermia
- Vaporization
- Carbonization
- Melting

Which thermal Coagulation

What does it mean to say that tissue has ‘coagulated’?
It means the proteins have been denatured.

OK, what does it mean to say a protein has been ‘denatured’?

Because a protein’s function is inextricably tied to its native conformation, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?
Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Thermal</th>
<th>Photo-chemical</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulation</td>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
<td>Photochemical reaction (PDT, aka photoactivation)</td>
<td>Plasma-induced ablation</td>
<td>Photo-disruption aka plasma-induced disruption</td>
</tr>
</tbody>
</table>

Thermal effects on tissue exist on a continuum. What are the five degrees? (see what I did there?)

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

What does it mean to say that tissue has ‘coagulated’?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been ‘denatured’?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat). Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical aka photoactivation</th>
<th>Thermal</th>
<th>Photo-</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption aka plasma-induced disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
<td>Thermal effects on tissue exist on a continuum. What are the five degrees?</td>
<td>Hyperthermia</td>
<td>Coagulation</td>
<td>Coagulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coagulation</td>
</tr>
</tbody>
</table>

Coagulation:

What does it mean to say that tissue has ‘coagulated’?
It means the proteins have been denatured.

OK, what does it mean to say a protein has been ‘denatured’?
It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat). Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photo-chemical (aka photoactivation)
 - Very-low-power laser energy causes a photosensitive dye to undergo a chemical reaction
 - PDT

- Thermal effects on tissue exist on a continuum. What are the five degrees?
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

- Plasma-induced ablation

- Photo-disruption (aka plasma-induced disruption)

What does it mean to say that tissue has ‘coagulated’?
It means the proteins have been denatured.

OK, what does it mean to say a protein has been ‘denatured’?
It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).
Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?
Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
The five modes of laser-tissue interaction:

- **Photo-chemical**
 - aka *photoactivation*
 - Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn
 - PDT

- **Thermal**
 - Hyperthermia
 - Vaporization
 - Carbonization
 - Melting

- **Photo-ablation**
 - What does it mean to say that tissue has ‘coagulated’?
 - It means the proteins have been denatured
 - OK, what does it mean to say a protein has been ‘denatured’?
 - It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).
 - Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

- **Plasma-induced ablation**
 - At what temperature does retinal tissue start to coagulate?

- **Photo-disruption**
 - aka *plasma-induced disruption*

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photocchemical</th>
<th>Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>aka photoactivation</td>
<td>Coagulation</td>
</tr>
</tbody>
</table>

- Photochemical
- Thermal:
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Thermal effects on tissue exist on a continuum. What are the five degrees?

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently?

- Coagulation

What does it mean to say that tissue has ‘coagulated’?

It means the proteins have been denatured.

What does it mean to say a protein has been ‘denatured’?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat). Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

At what temperature does retinal tissue start to coagulate?

65°C

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal</td>
<td>Thermal effects on tissue exist on a continuum. What are the five degrees?</td>
</tr>
<tr>
<td>- Hyperthermia</td>
<td>- Coagulation</td>
</tr>
<tr>
<td>- Vaporization</td>
<td>- Melting</td>
</tr>
<tr>
<td>Photo-chemical</td>
<td>Photo-chemical reaction occurs when a photosensitive dye undergoes a chemical reaction.</td>
</tr>
<tr>
<td>aka photoactivation</td>
<td></td>
</tr>
<tr>
<td>Thermal ablation</td>
<td></td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td></td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>Photo-disruption reaction occurs when tissue is disrupted by plasma.</td>
</tr>
<tr>
<td>aka plasma-induced disruption</td>
<td></td>
</tr>
</tbody>
</table>

Coagulation

What does it mean to say that tissue has ‘coagulated’?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been ‘denatured’?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein’s function is inextricably tied to is shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

At what temperature does retinal tissue start to coagulate?

65°C

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Thermal</th>
<th>Photo-chemical</th>
<th>Plasma-induced ablation</th>
<th>Photo-ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal effects on tissue exist on a continuum. What are the five degrees?</td>
<td>Coagulation</td>
<td>What does it mean to say that tissue has ‘coagulated’?</td>
<td>Hyperthermia</td>
<td>At what temperature does retinal tissue start to coagulate?</td>
</tr>
</tbody>
</table>

Coagulation

It means the proteins have been denatured.

OK, what does it mean to say a protein has been ‘denatured’?

Because a protein’s function is inextricably tied to its native conformation, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

At what temperature does retinal tissue start to coagulate?

65°C

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
</tr>
</thead>
<tbody>
<tr>
<td>thermal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>photoactivation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Very-low-power laser energy causes a photosensitive dye to undergo photochemical reaction (PDT, aka photoactivation).

Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

What does it mean to say that tissue has ‘coagulated’?

- It means the proteins have been denatured.

OK, what does it mean to say a protein has been ‘denatured’?

- It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

At what temperature does retinal tissue start to coagulate?

- 65°C

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

- PRP

That’s convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas.

(No question yet—proceed when ready)
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
<td>Thermal effects on tissue exist on a continuum. What are the five degrees?</td>
<td>Hyperthermia</td>
<td>Coagulation</td>
<td>Plasma-induced disruption</td>
</tr>
<tr>
<td>Photo-disruption aka plasma-induced disruption</td>
<td>What does it mean to say that tissue has ‘coagulated’?</td>
<td>It means the proteins have been denatured</td>
<td>Coagulation</td>
<td>OK, what does it mean to say a protein has been ‘denatured’?</td>
</tr>
<tr>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
<td>What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?</td>
<td>PRP</td>
<td>At what temperature does retinal tissue start to coagulate?</td>
<td>65°C</td>
</tr>
<tr>
<td>Photo-chemical aka photoactivation</td>
<td>Coagulation</td>
<td>Vaporization</td>
<td>Carbonization</td>
<td>Melting</td>
</tr>
<tr>
<td>Photo-chemical aka photoactivation</td>
<td>Thermal</td>
<td>Photo-ablation</td>
<td>Plasma-induced ablation</td>
<td>Photo-disruption</td>
</tr>
</tbody>
</table>

PRP

That’s convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal</td>
<td>Thermal effects on tissue exist on a continuum.</td>
</tr>
<tr>
<td>Photochemical</td>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
</tr>
<tr>
<td>Thermal ablation</td>
<td>Hyperthermia, coagulation, vaporization, carbonization, melting</td>
</tr>
<tr>
<td>Plasma-induced</td>
<td>Photoablation</td>
</tr>
<tr>
<td>disruption</td>
<td>Photoablation</td>
</tr>
<tr>
<td>Photo-induced</td>
<td>Plasma-induced disruption</td>
</tr>
</tbody>
</table>

What does it mean to say that tissue has ‘coagulated’?

It means the proteins have been denatured.

At what temperature does retinal tissue start to coagulate?

65°C

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That’s convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.
The five modes of laser-tissue interaction:

Thermal
- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

What are the five degrees of tissue effects? Hyperthermia, coagulation, vaporization, carbonization, and melting.

What does it mean to say tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'? It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photo-chemical**
 - aka photoablation
 - Very-low power laser energy causes a photosensitive dye to undergo a chemical reaction (aka photoactivation or plasma-induced disruption)

- **Thermal**
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

The five degrees of tissue effects are on a continuum.

- **What does it mean to say that tissue has ‘coagulated’?**
 - The proteins have been denatured.

- **What does it mean to say a protein has been ‘denatured’?**
 - It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

- **Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.**

- **Can you give an example of protein denaturation?**
 - Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

- **What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?**
 - **PRP**

 That’s convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

 Both procedures employ a **dye** of sorts to produce the desired therapeutic effect.

Tissue-related factors

- **Composition**
- **Chromophore**

What is a **chromophore** in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).
The five modes of laser-tissue interaction:

- **Thermal**
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

What tissue-related factors exist on a continuum? What are they?

- **Tissue-related factors**
 - Composition
 - Chromophore

What is a chromophore in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? Hemoglobin and melanin.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

Which thermal effect is employed most frequently? Coagulation.

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

1. Thermal
2. Photochemical
3. Plasma-induced ablation
4. Photoablation
5. Photo-disruption

Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?

--Hyperthermia--

Coagulation

--Vaporization--Carbonization--Melting

Which thermal effect is employed most frequently? Coagulation

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.)

From 400 to 580 nm. However, wavelengths below 500 nm are avoided, as they are too readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green

(As noted earlier in the slide-set)
The five modes of laser-tissue interaction:

- **Thermal**
- **Photo-chemical**
- **Photothermal**
- **Photo-ablation**
- **Plasma-induced ablation**

Photo-disruption

Very low laser energy causes a photosensitive dye to undergo chemical rxn aka **photoactivation** aka plasma-induced disruption.

The five degrees of tissue effects:

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green
The five modes of laser-tissue interaction:

- **Thermal**

Photochemical and thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It’s a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

1. **Photothermolysis**
 - Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Which thermal effect is employed most frequently?
- Coagulation

What does it mean to say that tissue has 'coagulated'?
- It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?
- It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?
- Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?
- PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?
- Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?
- Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What is a chromophore in this context?
- A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?
- Hemoglobin and melanin

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?
- Argon

What color is the light produced by an argon laser?
- Green
The five modes of laser-tissue interaction:

- **Thermal**
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

What does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That’s convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I’ve seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as ‘natural dyes.’ That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It’s a range, BTW.)

From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green
The five modes of laser-tissue interaction:

- **Thermal**
 - Composition
 - **Chromophore**
 - **Tissue**-related factors

What is a chromophore in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? **Hemoglobin** and **melanin**.

What wavelength of light is readily absorbed by **hemoglobin** and **melanin**? (It’s a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the **xanthophyll** pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance? **Argon**.

What color is the light produced by an argon laser? Green.
The five modes of laser-tissue interaction:

- **Thermal** effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Which thermal effect is employed most frequently? Coagulation.

What does it mean to say that tissue has 'coagulated'? It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'? It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation? Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome? PRP.

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor? Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about? Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What is a chromophore in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? Hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance? Argon.

What color is the light produced by an argon laser? Green.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photothermal/thermal
- Photomechanical
- Photochemical
- Photoablation
- Plasma-induced ablation

Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn aka photoactivation aka plasma-induced disruption.

Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?

--Hyperthermia--
--Coagulation--
--Vaporization--
--Carbonization--
--Melting--

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known?

Diode laser

What is the most common usage of the diode laser in ophthalmology?

Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma.

During CPC, the diode laser probe is held against the conjunctiva. Why doesn't the laser energy burn the conj and sclera en route to the CB epithelium?

The laser's wavelength is set so as to be absorbed by melanin, which isn't encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.
The five modes of laser-tissue interaction:

Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?

-- Hyperthermia -- Coagulation -- Vaporization -- Carbonization -- Melting

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known?

Diode laser

What is the most common usage of the diode laser in ophthalmology?

Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma.

During CPC, the diode laser probe is held against the conjunctiva. Why doesn't the laser energy burn the conj and sclera en route to the CB epithelium?

The laser's wavelength is set so as to be absorbed by melanin, which isn't encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Thermal

Hyperthermia -- Coagulation -- Vaporization -- Carbonization -- Melting

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat.

Recall also that the eye contains two chromophores in abundance — hemoglobin and melanin.

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It’s a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known?

Diode laser

What is the most common usage of the diode laser in ophthalmology?

Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma.

During CPC, the diode laser probe is held against the conjunctiva. Why doesn't the laser energy burn the conj and sclera en route to the CB epithelium?

The laser's wavelength is set so as to be absorbed by melanin, which isn't encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.
The five modes of laser-tissue interaction:

Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?

--Hyperthermia--
--Coagulation--
--Vaporization--
--Carbonization--
--Melting--

Which thermal effect is employed most frequently? Coagulation

What does it mean to say that tissue has 'coagulated'? It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'? It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation? Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome? PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about? Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance? Argon

What color is the light produced by an argon laser? Green

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known? Diode laser

What is the most common usage of the diode laser in ophthalmology? Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Thermal**
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Which thermal effect is employed most frequently? Coagulation

What does it mean to say that tissue has 'coagulated'? It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'? It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation? Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome? PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What is a chromophore in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? Hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 nm are avoided, as they are too readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance? Argon.

What color is the light produced by an argon laser? Green.

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known? Diode laser.

What is the most common usage of the diode laser in ophthalmology? Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma.

During CPC, the diode laser probe is held against the conjunctiva. Why doesn't the laser energy burn the conj and sclera en route to the CB epithelium?

The laser's wavelength is set so as to be absorbed by melanin, which isn't encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too readily absorbed.

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known?

Diode laser

What is the most common usage of the diode laser in ophthalmology?

Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma

During CPC, the diode laser probe is held against the conjunctiva. Why doesn't the laser energy burn the conj and sclera en route to the CB epithelium?

The laser's wavelength is set so as to be absorbed by melanin, which isn't encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too readily absorbed.

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known?

Diode laser

What is the most common usage of the diode laser in ophthalmology?

Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma

During CPC, the diode laser probe is held against the conjunctiva. Why doesn't the laser energy burn the conj and sclera en route to the CB epithelium?

The laser's wavelength is set so as to be absorbed by melanin, which isn't encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too readily absorbed.

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known?

Diode laser

What is the most common usage of the diode laser in ophthalmology?

Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma

During CPC, the diode laser probe is held against the conjunctiva. Why doesn't the laser energy burn the conj and sclera en route to the CB epithelium?

The laser's wavelength is set so as to be absorbed by melanin, which isn't encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too readily absorbed.

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known?

Diode laser

What is the most common usage of the diode laser in ophthalmology?

Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma

During CPC, the diode laser probe is held against the conjunctiva. Why doesn't the laser energy burn the conj and sclera en route to the CB epithelium?

The laser's wavelength is set so as to be absorbed by melanin, which isn't encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too readily absorbed.

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known?

Diode laser

What is the most common usage of the diode laser in ophthalmology?

Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma

During CPC, the diode laser probe is held against the conjunctiva. Why doesn't the laser energy burn the conj and sclera en route to the CB epithelium?

The laser's wavelength is set so as to be absorbed by melanin, which isn't encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-chemical</td>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
</tr>
<tr>
<td>aka photoactivation</td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td>Laser energy is absorbed → transforms into heat → local thermal damage</td>
</tr>
<tr>
<td>Photo-ablation</td>
<td></td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td></td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>aka plasma-induced disruption</td>
</tr>
<tr>
<td>PDT</td>
<td>Argon, diode</td>
</tr>
</tbody>
</table>

No question—proceed when ready
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photo-chemical
- Thermal
- Photo-ablation (aka photoactivation, plasma-induced disruption)
- Plasma-induced ablation
- Photo-disruption

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser?

You'd think so, but no—photoablation involves essentially no energy transfer in the form of heat. How is it possible to have greater intensity but less thermal damage? The pulse durations are too brief to induce molecular motion (which is what heat is). If not via thermal effects, how does photoablation alter tissue? By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds. What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (e.g., LASIK).
The five modes of laser-tissue interaction:

- Photo-chemical
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser?

Yes, significantly so.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photochemical</td>
<td>Requires very-low-power laser energy causes a photosensitive dye to undergo chemical reaction</td>
</tr>
<tr>
<td>Thermal</td>
<td>Laser energy is absorbed → transforms into heat → local thermal damage</td>
</tr>
<tr>
<td>Photoablation</td>
<td></td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td></td>
</tr>
<tr>
<td>Photo-disruption</td>
<td></td>
</tr>
</tbody>
</table>

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photo-chemical
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption

Are the laser intensities (power densities; irradiiances) employed during photoablation greater than those employed during thermal laser?

Yes, significantly so

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?

You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat.
The five modes of laser-tissue interaction:

- **Photochemical**
- **Thermal**
- **Photoablation**
- **Plasma-induced ablation**
- **Photo-disruption**

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so.

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case? You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat.

How is it possible to have greater intensity but less thermal damage?
The five modes of laser-tissue interaction:

- **Photochemical**
- **Thermal**
- **Photoablation**
- **Plasma-induced ablation**
- **Photo-disruption**

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser?
Yes, significantly so

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?
You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat

How is it possible to have greater intensity but less thermal damage?
The pulse durations are too brief to induce molecular motion (which is what heat is)
The five modes of laser-tissue interaction:

- **Photo-chemical**
- **Thermal**
- **Photo-ablation**
- **Plasma-induced ablation**
- **Photo-disruption**

Lasers: Pew! Pew!

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser?

Yes, significantly so.

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?

You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat.

How is it possible to have greater intensity but less thermal damage?

The pulse durations are too brief to induce molecular motion (which is what heat is).

If not via thermal effects, how does photoablation alter tissue?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photochemical**
- **Thermal**
- **Photoablation**
- **Plasma-induced ablation**
- **Photo-disruption**

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser?
Yes, significantly so

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?
You'd think so, but no—photoablation involves essentially no energy transfer in the form of heat

How is it possible to have greater intensity but less thermal damage?
The pulse durations are too brief to induce molecular motion (which is what heat is)

If not via thermal effects, how does photoablation alter tissue?
By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption aka plasma-disruption

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so.

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case? You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat.

How is it possible to have greater intensity but less thermal damage? The pulse durations are too brief to induce molecular motion (which is what heat is).

If not via thermal effects, how does photoablation alter tissue? By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds.

What therapy is the classic example of photoablation?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photodisruption
- aka plasma-induced disruption

\[\text{PDT Argon} \]
aka photoactivation
aka plasma-induced disruption

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?

You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat

How is it possible to have greater intensity but less thermal damage?
The pulse durations are too brief to induce molecular motion (which is what heat is)

If not via thermal effects, how does photoablation alter tissue?
By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds

What therapy is the classic example of photoablation?
Photoablative keratorefractive surgery (eg, LASIK)
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

1. Photo-chemical
2. Thermal
3. Plasma-induced ablation
4. Photo-ablation
5. Photo-disruption

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so.

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?

You'd think so, but no—photoablation involves essentially no energy transfer in the form of heat. How is it possible to have greater intensity but less thermal damage?

The pulse durations are too brief to induce molecular motion (which is what heat is). If not via thermal effects, how does photoablation alter tissue?

By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds.

What therapy is the classic example of photoablation?

Photoablative keratorefractive surgery (eg, LASIK)

What sort of laser is used to ablate the corneal tissue?

An excimer laser

What is the origin of the word excimer?

It is a portmanteau of the term excited dimer.

What is the wavelength of light employed?

193 nm

Is 193 nm in the UV range, or the infrared range?

UV

Does light of this wavelength penetrate tissue?

Hardly at all (which makes it perfect for surface ablation).

Is this wavelength mutagenic?

No.

Photoablative keratorefractive surgery
The five modes of laser-tissue interaction:

- Photo-chemical ablation
- Thermal ablation
- Plasma-induced ablation
- Photo-disruption
- Photo-activated plasma

Lasers: Pew! Pew!

What sort of laser is used to ablate the corneal tissue? An excimer laser.

What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (e.g., LASIK).

What is the origin of the word excimer? It is a portmanteau of the term excited di-mer.

Is 193 nm in the UV range, or the infrared range? UV.

Does light of this wavelength penetrate tissue? Hardly at all (which makes it perfect for surface ablation).

Is this wavelength mutagenic? No.

What are the processes involved in photoablation? Breaking covalent carbon-carbon bonds and carbon-nitrogen bonds.

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so.

Given this, it would seem that photoablation must cause even greater heat-mediated tissue damage than does thermal laser. Is this the case? You'd think so, but no—photoablation involves essentially no energy transfer in the form of heat.

How is it possible to have greater intensity but less thermal damage? The pulse durations are too brief to induce molecular motion (which is what heat is).

What is the wavelength of light employed? 193 nm.

Is 193 nm in the UV range, or the infrared range? UV.
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photochemical</td>
<td>chemical rxn of photosensitive dye transformed into heat</td>
<td>Lasers: Pew! Pew!</td>
</tr>
<tr>
<td>Thermal</td>
<td>laser energy absorbed and transformed into heat</td>
<td>Lasers: Pew! Pew!</td>
</tr>
<tr>
<td>Photoablation</td>
<td>laser energy absorbed and transforms into local thermal damage</td>
<td>Lasers: Pew! Pew!</td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td>energy employed during photoablation is significantly greater than thermal</td>
<td>Lasers: Pew! Pew!</td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>extremely brief pulse durations prevent molecular motion</td>
<td>Lasers: Pew! Pew!</td>
</tr>
</tbody>
</table>

What sort of laser is used to ablate the corneal tissue?

An **excimer** laser.

What is the origin of the word excimer?

It is a portmanteau of the term **exci**-ited di-mer.

What is the wavelength of light employed?

193 nm.

Is 193 nm in the UV range, or the infrared range?

UV.

Is this wavelength mutagenic?

No.

What therapy is the classic example of photoablation?

Photoablative keratorefractive surgery (eg, LASIK).
The five modes of laser-tissue interaction:

- **Photochemical**
- **Photoablation**
- **Plasma-induced ablation**
- **Photo-disruption**
- **Thermal**

What sort of laser is used to ablate the corneal tissue? An **excimer** laser.

What is the origin of the word excimer? It is a portmanteau of the term ‘**exci**-ted di-**mer**’.

What therapy is the classic example of photoablation? **Photoablative keratorefractive surgery** (e.g., LASIK).

What is the wavelength of light employed? 193 nm. Is this wavelength UV or infrared? **UV**.

Is this wavelength penetrative? Hardly at all (which makes it perfect for **surface** ablation).

Is this wavelength mutagenic? **No**.

Must cause even greater heat-mediated damage? No, essentially no energy transfer in the form of heat.

How is it possible to have greater intensity but less thermal damage? The pulse durations are too brief to induce molecular motion (which is what heat is).

What is the origin of the term **excimer**? It is a portmanteau of the term ‘**exci**-ted di-**mer**’. What is the origin of the term **excimer**? It is a portmanteau of the term ‘**exci**-ted di-**mer**’.

Photoablation involves essentially no energy transfer in the form of heat.
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photochemical</td>
<td>Photoablation</td>
</tr>
<tr>
<td>Thermal</td>
<td>Photoablation</td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td>Photoablation</td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>Photoablation</td>
</tr>
</tbody>
</table>

What sort of laser is used to ablate the corneal tissue? An excimer laser.

What is the origin of the word excimer? It is a portmanteau of the term ‘excited di-mer’.

To what does excited dimer refer in this context? The active medium in an excimer consists of a diatomic combination of two elemental gases.

What gas combo is most commonly used in ophthalmic excimer lasers? Argon-fluoride.

What is the wavelength of light employed? 193 nm.

Is 193 nm in the UV range, or the infrared range? UV.

Does light of this wavelength penetrate tissue? Hardly at all (which makes it perfect for surface ablation).

Is this wavelength mutagenic? No.

What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (e.g., LASIK).
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical ablation
- Thermal ablation
- Plasma-induced ablation
- Photo-disruption
- Photo-chemically induced ablation

What sort of laser is used to ablate the corneal tissue? An excimer laser.

What is the origin of the word excimer? It is a portmanteau of the terms ‘excited dimer’.

To what does excited dimer refer in this context? The active medium in an excimer consists of a diatomic combination of two elemental gases.

What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (e.g., LASIK).

Is 193 nm in the UV range or the infrared range? UV.

Is this wavelength mutagenic? No.
The five modes of laser-tissue interaction:

- Photo-chemical
- Photo-ablation
- Laser energy
- Photochemical rxn
- Photosensitive dye
- Local thermal damage
- Plasma-induced disruption
- Laser energy
- Transforms into heat
- Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn

Lasers: Pew! Pew!

What sort of laser is used to ablate the corneal tissue? An excimer laser

What is the origin of the word excimer? It is a portmanteau of the term ‘exci-ted di-mer’

To what does excited dimer refer in this context? The active medium in an excimer consists of a diatomic combination of two elemental gases

Which gas combo is most commonly used in ophthalmic excimer lasers? Argon-fluoride

What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (e.g., LASIK)
The five modes of laser-tissue interaction:

- **Photochemical ablation**
 - What sort of laser is used to ablate the corneal tissue? An **excimer laser**
 - What is the origin of the word *excimer*? It is a portmanteau of the term ‘**excited di-mer**’
 - To what does excited dimer refer in this context? The active medium in an excimer consists of a diatomic combination of two elemental gases
 - *Which gas combo is most commonly used in ophthalmic excimer lasers? Argon-fluoride* (eg, LASIK)
 - What therapy is the classic example of photoablation? **Photoablative keratorefractive surgery**

- **Plasma-induced ablation**
- **Photo-disruption**
- **Lasers: Pew! Pew!**
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photo-chemical ablation
- Thermal ablation
- Plasma-induced ablation
- Photo-disruption

What sort of laser is used to ablate the corneal tissue? An excimer laser.

What is the origin of the word excimer? It is a portmanteau of the term ‘exci-ted di-mer’.

What is the wavelength of light employed? 193 nm, in the UV range.

What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (e.g., LASIK).

Why must cause even greater heat-mediated damage? If not via thermal effects, how does photoablation alter tissue?

By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds.
The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption

What sort of laser is used to ablate the corneal tissue?
An excimer laser

What is the origin of the word excimer?
It is a portmanteau of the term ‘excited di-mer’

What is the wavelength of light employed?
193 nm

What therapy is the classic example of photoablation?
Photoablative keratorefractive surgery (e.g., LASIK)

What laser is used to ablate the corneal tissue?
An excimer laser

What is the origin of the word excimer?
It is a portmanteau of the term ‘excited di-mer’

What is the wavelength of light employed?
193 nm

Is 193 nm in the UV range, or the infrared range?
UV

Does light of this wavelength penetrate tissue?
Hardly at all (which makes it perfect for surface ablation)

Is this wavelength mutagenic?
No
The five modes of laser-tissue interaction:

Photo-chemical

- What sort of laser is used to ablate the corneal tissue? An excimer laser
- What is the origin of the word excimer? It is a portmanteau of the term ‘exci-ted di-mer’
- What is the wavelength of light employed? 193 nm
- Is 193 nm in the UV range, or the infrared range?

Photo-ablation

- What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (e.g., LASIK)
The five modes of laser-tissue interaction:

Photochemical

Photochemical effects involve the absorption of laser energy by a photosensitive dye, which then undergoes a chemical reaction. The energy is transformed into heat, leading to local thermal damage.

Thermal

Thermal effects occur when laser energy is absorbed by tissue and converted into heat. The intensity of laser energy employed during photoablation is significantly greater than that employed during thermal laser. Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. However, this is not the case. Photoablation involves essentially no energy transfer in the form of heat.

Photoablation

Photoablation is a process where the laser energy is absorbed by tissue and transformed into heat. However, the pulse durations are too brief to induce molecular motion (which is what heat is). Therefore, the energy is not transferred to the tissue in the form of heat. Instead, photoablation involves the breaking of covalent carbon-carbon bonds and carbon-nitrogen bonds.

Plasma-induced ablation

Plasma-induced ablation occurs when laser energy leads to the formation of plasma, which can alter the tissue.

Photo-disruption

Photo-disruption is a process where laser energy is absorbed by tissue and transformed into heat. However, the pulse durations are too brief to induce molecular motion (which is what heat is). Therefore, the energy is not transferred to the tissue in the form of heat. Instead, photo-disruption involves the breaking of covalent carbon-carbon bonds and carbon-nitrogen bonds.

What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (e.g., LASIK) is the classic example of photoablation.

What sort of laser is used to ablate the corneal tissue? An excimer laser.

What is the origin of the word excimer? It is a portmanteau of the term ‘exci-ted di-mer’.

What is the wavelength of light employed? 193 nm.

Is 193 nm in the UV range, or the infrared range? UV.

Is this wavelength mutagenic? No.
The five modes of laser-tissue interaction:

Photo-chemical

- What sort of laser is used to ablate the corneal tissue? An **excimer** laser.
- What is the origin of the word excimer? It is a portmanteau of the term ‘**exci**-ted di-**mer**’.
- What is the wavelength of light employed? 193 nm.
- Is 193 nm in the UV range, or the infrared range? UV.
- Does light of this wavelength penetrate tissue?

Photo-ablation

- How is it possible to have greater intensity but less thermal damage? The pulse durations are too brief to induce molecular motion (which is what heat is).

Plasma-induced ablation

- What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (eg, LASIK).

Photo-disruption

- What is the origin of the word excimer? It is a portmanteau of the term ‘**excsi**-ted di-**mer**’.
- What sort of laser is used to ablate the corneal tissue? An **excimer** laser.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Photo-chemical

Thermal

Photo-ablation

Plasma-induced ablation

Photo-disruption

What sort of laser is used to ablate the corneal tissue?
An **excimer** laser

What is the origin of the word excimer?
It is a portmanteau of the term ‘**exci**-ted di-**mer**’

What is the wavelength of light employed?
193 nm

Is 193 nm in the UV range, or the infrared range?
UV

Does light of this wavelength penetrate tissue?
Hardly at all (which makes it perfect for surface ablation)

What therapy is the classic example of photoablation?
Photoablative keratorefractive surgery (e.g., LASIK)
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption

What sort of laser is used to ablate the corneal tissue? An excimer laser.

What is the origin of the word excimer? It is a portmanteau of the term ‘excited di-mer’.

What is the wavelength of light employed? 193 nm.

Is 193 nm in the UV range, or the infrared range? UV.

Does light of this wavelength penetrate tissue? Hardly at all (which makes it perfect for surface ablation).

Is this wavelength mutagenic? No.

What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (e.g., LASIK).
The five modes of laser-tissue interaction:

- Photo-chemical
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption
- Thermal

What sort of laser is used to ablate the corneal tissue?
An **excimer** laser.

What is the origin of the word excimer?
It is a portmanteau of the term ‘**exci**-ted di-**mer**’.

What is the wavelength of light employed?
193 nm

Is 193 nm in the UV range, or the infrared range?
UV

Does light of this wavelength penetrate tissue?
Hardly at all (which makes it perfect for **surface** ablation)

Is this wavelength mutagenic?
No

What therapy is the classic example of photoablation?
Photoablative keratorefractive surgery (eg, LASIK)
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-chemical</td>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
</tr>
<tr>
<td>Thermal</td>
<td>Laser energy is absorbed → transforms into heat → local thermal damage</td>
</tr>
<tr>
<td>Photo-ablation</td>
<td>Laser energy disrupts covalent bonds</td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td></td>
</tr>
<tr>
<td>Photo-disruption</td>
<td></td>
</tr>
</tbody>
</table>

PDT, Argon, diode

Excimer

No question—proceed when ready
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-chemical ablation</td>
<td>Lasers: Pew! Pew!</td>
</tr>
<tr>
<td>Thermal ablation</td>
<td>The five modes of laser-tissue interaction:</td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td>Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation?</td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation?</td>
</tr>
</tbody>
</table>

PDT Argon aka photoactivation aka plasma-induced disruption
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo disruption

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation? Indeed they are.

How does plasma-induced ablation alter tissue? In addition to breaking covalent bonds, the laser ‘strips’ electrons from molecules (thereby transforming the molecules into ions) and accelerates them. The accelerated electrons fly off and smash into other molecules, in turn ionizing them and accelerating their electrons. This cascade ionization process results in the transformation of tissue into plasma (a gas composed of ions and free electrons). In this manner, the tissue sort of ‘goes away.’

What therapy is the classic example of plasma-induced ablation? The femtosecond laser.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation? Indeed they are.

Are the pulse durations short enough to preclude thermal effects?
The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation? Indeed they are.

Are the pulse durations short enough to preclude thermal effects? Yes (in fact, the durations are significantly shorter than are those of photoablation).
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation? Indeed they are.

Are the pulse durations short enough to preclude thermal effects? Yes (in fact, the durations are significantly shorter than are those of photoablation).

How does plasma-induced ablation alter tissue?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photodisruption

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation?
Indeed they are

Are the pulse durations short enough to preclude thermal effects?
Yes (in fact, the durations are significantly shorter than are those of photoablation)

How does plasma-induced ablation alter tissue?
In addition to breaking covalent bonds, the laser ‘strips’ electrons from molecules (thereby transforming the molecules into ions) and accelerates them. The accelerated electrons fly off and smash into other molecules, in turn ionizing them and accelerating their electrons.
The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption

Plasma-induced ablation

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation? Indeed they are.

Are the pulse durations short enough to preclude thermal effects? Yes (in fact, the durations are significantly shorter than are those of photoablation)

How does plasma-induced ablation alter tissue? In addition to breaking covalent bonds, the laser ‘strips’ electrons from molecules (thereby transforming the molecules into ions) and accelerates them. The accelerated electrons fly off and smash into other molecules, in turn ionizing them and accelerating their electrons. This *cascade ionization* process results in the transformation of tissue into plasma (a gas composed of ions and free electrons). In this manner, the tissue sort of ‘goes away.’
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photochemical**
- **Thermal**
- **Photoablation**
- **Plasma-induced ablation**
- **Photo-disruption**

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation?

Indeed they are.

Are the pulse durations short enough to preclude thermal effects?

Yes (in fact, the durations are significantly shorter than are those of photoablation).

How does plasma-induced ablation alter tissue?

In addition to breaking covalent bonds, the laser ‘strips’ electrons from molecules (thereby transforming the molecules into ions) and accelerates them. The accelerated electrons fly off and smash into other molecules, in turn ionizing them and accelerating **their** electrons. This **cascade ionization** process results in the transformation of tissue into plasma (a gas composed of ions and free electrons). In this manner, the tissue sort of ‘goes away.’

What therapy is the classic example of plasma-induced ablation?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical ablation
- Thermal ablation
- Photoablation
- Plasma-induced ablation
- Photo-disruption ablation

Plasma-induced ablation

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation?

Indeed they are.

Are the pulse durations short enough to preclude thermal effects?

Yes (in fact, the durations are significantly shorter than are those of photoablation).

How does plasma-induced ablation alter tissue?

In addition to breaking covalent bonds, the laser ‘strips’ electrons from molecules (thereby transforming the molecules into ions) and accelerates them. The accelerated electrons fly off and smash into other molecules, in turn ionizing them and accelerating their electrons. This *cascade ionization* process results in the transformation of tissue into plasma (a gas composed of ions and free electrons). In this manner, the tissue sort of ‘goes away.’

What therapy is the classic example of plasma-induced ablation?

The femtosecond laser.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
<td>Laser energy is absorbed → transforms into heat → local thermal damage</td>
<td>Laser energy disrupts covalent bonds</td>
<td>Laser energy produces minute amount of plasma, causing local vaporization of tissue</td>
<td>aka photoactivation</td>
</tr>
</tbody>
</table>

PDT | **Argon, diode** | **Excimer** | **Femtosecond** |

No question—proceed when ready
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical Thermal Ablation
- Photothermal Ablation
- Photoablation
- Plasma-induced Ablation
- Photo-induction of Disruption

Like plasma-induced ablation, photodisruption involves the creation of plasma. How do they differ in that regard?

In plasma-induced ablation, a modest amount of energy is used, resulting in the production of a relatively small amount of plasma. In contrast, photodisruption employs much more energy, resulting in the creation of a great deal more plasma.

OK, so photodisruption involves substantially more plasma. Why does this justify classifying it as a separate mode of laser-tissue interaction?

Because the increased plasma creation results in the production of mechanical forces (shock waves; acoustic waves) that propagate well beyond the laser spot, causing tissue to be torn apart remote from the area of laser application.

What therapy is the classic example of photodisruption?

YAG capsulotomy
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical Thermal Ablation
- Photochemical Disruption
- Plasma-induced Ablation
- Excimer Femtosecond
- Photodisruption

Like plasma-induced ablation, photodisruption involves the creation of plasma. How do they differ in that regard? In plasma-induced ablation, a modest amount of energy is used, resulting in the production of a relatively small amount of plasma. In contrast, photodisruption employs much more energy, resulting in the creation of a great deal more plasma.

What therapy is the classic example of photodisruption? YAG capsulotomy.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photo-thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-chemical
- Photo-disruption

Like plasma-induced ablation, photodisruption involves the creation of plasma. How do they differ in that regard? In plasma-induced ablation, a modest amount of energy is used, resulting in the production of a relatively small amount of plasma. In contrast, photodisruption employs much more energy, resulting in the creation of a great deal more plasma.

OK, so photodisruption involves substantially more plasma. Why does this justify classifying it as a separate mode of laser-tissue interaction?
The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Photo-disruption
- Plasma-induced

Like plasma-induced ablation, photodisruption involves the creation of plasma. How do they differ in that regard?

In plasma-induced ablation, a modest amount of energy is used, resulting in the production of a relatively small amount of plasma. In contrast, photodisruption employs much more energy, resulting in the creation of a great deal more plasma.

OK, so photodisruption involves substantially more plasma. Why does this justify classifying it as a separate mode of laser-tissue interaction? Because the increased plasma creation results in the production of mechanical forces (shock waves; acoustic waves) that propagate well beyond the laser spot, causing tissue to be torn apart remote from the area of laser application.
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-chemical Ablation</td>
<td>Laser energy is absorbed into heat, local thermal damage</td>
</tr>
<tr>
<td>Thermal Ablation</td>
<td>Laser energy produces plasma, causing local vaporization</td>
</tr>
<tr>
<td>Photo-induced Ablation</td>
<td>Laser energy disrupts covalent bonds</td>
</tr>
<tr>
<td>Plasma-induced Ablation</td>
<td>Laser energy produces minute amount of plasma, causing local vaporization</td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>Laser energy produces substantial amount of plasma, mechanical forces</td>
</tr>
</tbody>
</table>

Like plasma-induced ablation, photodisruption involves the creation of plasma. How do they differ in that regard?

In plasma-induced ablation, a modest amount of energy is used, resulting in the production of a relatively small amount of plasma. In contrast, photodisruption employs much more energy, resulting in the creation of a great deal more plasma.

OK, so photodisruption involves substantially more plasma. Why does this justify classifying it as a separate mode of laser-tissue interaction?

Because the increased plasma creation results in the production of mechanical forces (shock waves; acoustic waves) that propagate well beyond the laser spot, causing tissue to be torn apart remote from the area of laser application.

What therapy is the classic example of photodisruption?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical Thermal Ablation
- Photodisruption
- Plasma-induced Ablation
- Photo-dissociation
- Plasmas-Induced Disruption

Like plasma-induced ablation, photodisruption involves the creation of plasma. How do they differ in that regard?

In plasma-induced ablation, a modest amount of energy is used, resulting in the production of a relatively small amount of plasma. In contrast, photodisruption employs much more energy, resulting in the creation of a great deal more plasma.

OK, so photodisruption involves substantially more plasma. Why does this justify classifying it as a separate mode of laser-tissue interaction? Because the increased plasma creation results in the production of mechanical forces (shock waves; acoustic waves) that propagate well beyond the laser spot, causing tissue to be torn apart remote from the area of laser application.

What therapy is the classic example of photodisruption?
YAG capsulotomy
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-chemical</td>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
</tr>
<tr>
<td>Thermal</td>
<td>Laser energy is absorbed → transforms into heat → local thermal damage</td>
</tr>
<tr>
<td>Photo-ablation</td>
<td>Laser energy disrupts covalent bonds</td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td>Laser energy produces minute amount of plasma, causing local vaporization of tissue</td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>Laser energy produces large amount of plasma, causing mechanical disruption of tissue</td>
</tr>
</tbody>
</table>

PDT — Argon, diode

Excimer

Femtosecond

YAG cap

No question—review slide