What does the acronym LASER stand for?
What does the acronym LASER stand for?

Light Amplification by Stimulated Emission of Radiation
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

Light Amplification by Stimulated Emission of Radiation (LASER)
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons

OK, what are photons?
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?
Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons?
Think of photons as being little packets of light emitted by...
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases ('radiates') a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How much energy is carried away?
Lasers: Pew! Pew!

In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How much energy is carried away? This is proportional to the frequency of the light.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How much energy is carried away? This is proportional to the frequency of the light.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons?

Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing

How much energy is carried away?

This is proportional to the frequency of the light, as per the following formula:

\[E = h\nu \]
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How much energy is carried away? This is proportional to the frequency of the light, as per the following formula:

\[E = h \nu \]

Amount of energy carried away
Frequency of the light
Planck’s constant

Lasers: Pew! Pew!
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How much energy is carried away? This is proportional to the frequency of the light, as per the following formula:

\[E = h\nu \]

Amount of energy carried away
Frequency of the light
Planck’s constant

Light Amplification by Stimulated Emission of Radiation

Lasers: Pew! Pew!
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons?
Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers?
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system. (See what I did there?)
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system. (See what I did there?)

Light Amplification by Stimulated Emission of Radiation
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called **photons**.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system. (See what I did there?)

What sort of substance can serve as the active medium in a laser?
Lots of different sorts. It can be a gas (eg, argon), a liquid (dye), a solid (eg, Nd:YAG); it can also be a manufactured item (eg, diode).
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

What sort of substance can serve as the active medium in a laser? Lots of different sorts. It can be a gas (e.g., argon); a liquid (e.g., dye); a solid (e.g., Nd:YAG); it can also be a manufactured item (e.g., diode).

Argon, dye, YAG, diode—these sound familiar, where have I heard them before?
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

What sort of substance can serve as the active medium in a laser? Lots of different sorts. It can be a gas (e.g., argon), a liquid (e.g., dye), a solid (e.g., Nd:YAG); it can also be a manufactured item (e.g., diode).

Argon, dye, YAG, diode—these sound familiar, where have I heard them before? They are all the names of lasers commonly employed in ophthalmology (lasers are often named after their active medium).
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons?

Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases ('radiates') a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers?

Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

What sort of substance can serve as the active medium in a laser?

Lots of different sorts. It can be a gas (e.g., argon), a liquid (e.g., dye), a solid (e.g., Nd:YAG). It can also be a manufactured item (e.g., diode).

Nd:YAG—these sound familiar, where have I heard them before? They are all the names of lasers commonly employed in ophthalmology (lasers are often named after their active medium).
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called **photons**.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

What sort of substance can serve as the active medium in a laser? Lots of different sorts. It can be a gas (e.g., argon), a liquid (e.g., dye), a solid (e.g., Nd:YAG); it can also be a manufactured item (e.g., diode).

Have I heard them before? They are all the names of lasers commonly employed in ophthalmology (lasers are often named after their active medium).
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

What sort of substance can serve as the active medium in a laser? Lots of different sorts. It can be a gas (e.g., argon), a liquid (e.g., dye), a solid (e.g., Nd:YAG), or a manufactured item (e.g., diode). If you recognize argon, dye, YAG, and diode, you should also recognize Nd:YAG—these sound familiar, where have I heard them before? They are all names of lasers commonly employed in ophthalmology (lasers are often named after their active medium).

Are all four substances the active medium (media)? No, only neodymium is; the other substances play a supporting role.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

What sort of substance can serve as the active medium in a laser? Lots of different sorts. It can be a gas (e.g., argon), a liquid (e.g., dye), a solid (e.g., Nd:YAG), or it can also be a manufactured item (e.g., diode).

Are all four substances the active medium (media)? No, only the neodymium is; the other substances play a supporting role.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be

In general terms, how much energy is ‘enough’?
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be

In general terms, how much energy is ‘enough’? In general terms, a lot. Lasers are very inefficient systems in that a lot more energy goes in than comes out.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be...

In general terms, how much energy is ‘enough’? In general terms, a lot. Lasers are very inefficient systems in that a lot more energy goes in than comes out.

What can be done to get more ‘bang for the buck’ from a laser?
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be

\[\text{In general terms, how much energy is ‘enough’?} \]
In general terms, a lot. Lasers are very inefficient systems in that a lot more energy goes in than comes out.

What can be done to get more ‘bang for the buck’ from a laser? By releasing the energy over a very brief period of time, the laser’s power \(\text{power} = \text{energy/time} \) can be ramped up.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be...
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons?
Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers?
Certain substances have electron orbits that are energetically close to one another. **If such substances are hit with enough energy**, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

In general terms, how much energy is ‘enough’?
In general terms, a lot. Lasers are very inefficient systems in that a lot more energy goes in than comes out.

What can be done to get more ‘bang for the buck’ from a laser?
By releasing the energy over a very brief period of time, the laser’s **power** (power = energy/time) can be ramped up

tl;dr The shorter the pulse, the greater the power per pulse
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy orbit, it releases ('radiates') a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

How does all this relate to lasers? Certain substances have electron orbits that are energetically close to one another. If such substances are hit with enough energy, electrons in these orbits can be induced to all jump from one orbit to the next at the same time, with each radiating an identical photon simultaneously. In this way, the stimulated emission of radiation leads to the amplification of light leaving the system.

In general terms, how much energy is ‘enough’? In general terms, a lot. Lasers are very inefficient systems in that a lot more energy goes in than comes out.

What can be done to get more ‘bang for the buck’ from a laser? By releasing the energy over a very brief period of time, the laser’s power (power = energy/time) can be ramped up. The greater the frequency of the light, the greater the energy carried away. This is proportional to the frequency of the light, as per the following formula: $E = h\nu$.

Take-home points: One can increase the power of a laser by increasing the frequency of the emitted light, and/or by shortening the pulse-time. The shorter the pulse, the greater the power per pulse.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

As an important aside: What other step can be taken to increase the intensity of laser energy?

What can be done to get more ‘bang for the buck’ from a laser? By releasing the energy over a very brief period of time, the laser’s power (power = energy/time) can be ramped up.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers? Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons? Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

As an important aside: What other step can be taken to increase the intensity of laser energy? Reduce the size of the area to which the laser is being applied; ie, concentrate/focus the laser energy on a smaller area.

What can be done to get more ‘bang for the buck’ from a laser? By releasing the energy over a very brief period of time, the laser’s power (power = energy/time) can be ramped up.
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons

OK, what are photons?

Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

As an important aside: What other step can be taken to increase the intensity of laser energy?

Reduce the size of the area to which the laser is being applied; ie, concentrate/focus the laser energy on a smaller area

We saw that power is ‘energy over time.’ Now we’re talking about ‘energy over area.’ What is the name for this variable?

What can be done to get more ‘bang for the buck’ from a laser?

By releasing the energy over a very brief period of time, the laser’s power (power = energy/time) can be ramped up
In clinical optics, we think of light almost exclusively as waves traveling in a given direction (usually represented by a ray). Does this model suffice to understand lasers?

Unfortunately no—understanding lasers obligates us to consider light as being comprised of particle(-like) entities called photons.

OK, what are photons?

Think of photons as being little packets of light emitted by electrons. In a ludicrously oversimplified nutshell: When an electron jumps from a higher-energy orbit to a lower-energy one, it releases (‘radiates’) a photon that carries the excess energy. And when that photon strikes another electron, it imparts the energy to the second electron, causing it to jump to a higher-energy orbit.

As an important aside: What other step can be taken to increase the intensity of laser energy?
Reduce the size of the area to which the laser is being applied; i.e., concentrate/focus the laser energy on a smaller area.

We saw that power is ‘energy over time.’ Now we’re talking about ‘energy over area.’ What is the name for this variable?

Fluence = energy/area. (We will soon see that one laser procedure is known for being ‘low fluence.’)

What can be done to get more ‘bang for the buck’ from a laser?
By releasing the energy over a very brief period of time, the laser’s power (power = energy/time) can be ramped up.
Lasers: Pew! Pew!

What is the essence of laser-tissue interaction?
Lasers: Pew! Pew!

What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue
What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- ?
- ?
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

- Tissue-related factors
- Laser-related factors
Lasers: Pew! Pew!

What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores
- **Laser-related factors**
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - ?
 - ?
 - ?
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

Tissue-related factors
- Composition
- Chromophores

Laser-related factors
- Energy
- Power
- Fluence
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophore

- **Laser-related factors**
 - Energy
 - Power

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophore

- **Laser-related factors**
 - Energy
 - Power

What is a chromophore in this context?
A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophore

- **Laser-related factors**
 - Energy
 - Power

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?
What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophore

- **Laser-related factors**
 - Energy
 - Power

What is a chromophore in this context?
A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?
Hemoglobin and melanin.
What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophore

- **Laser-related factors**
 - Energy
 - Power

What is a chromophore in this context?
A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?
Hemoglobin and melanin.

There is another chromophore, found only in the macula, we should mention. What is it?
Xanthophyll (Note: The latest iteration of the Retina book also refers to xanthophyll as "oxygenated carotenoids, in particular lutein and zeaxanthin").
What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

Tissue-related factors
- Composition
- Chromophore

Laser-related factors
- Energy
- Power

What is a chromophore in this context?
A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?
Hemoglobin and melanin

There is another chromophore, found only in the macula, we should mention. What is it?
Xanthophyll
(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

Lasers: Pew! Pew!

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:
- **Tissue-related factors**
- **Laser-related factors**

The five modes of laser-tissue interaction:

What is the essence?

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye)

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin

There is another chromophore, found only in the macula, we should mention. What is it?

Xanthophyll

(Original: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

With regard to wavelength: The visible spectrum runs from what to what?

<table>
<thead>
<tr>
<th>(Ultraviolet)</th>
<th>Visible spectrum</th>
<th>(Infrared)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (nm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is a chromophore?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye)

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin

There is another chromophore, found only in the macula, we should mention. What is it?

Xanthophyll

(Original: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

With regard to wavelength: The visible spectrum runs from what to what?

<table>
<thead>
<tr>
<th>(Ultraviolet)</th>
<th>Visible spectrum</th>
<th>(Infrared)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (nm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is a chromophore?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye)

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin

There is another chromophore, found only in the macula, we should mention. What is it?

Xanthophyll

(Original: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

With regard to wavelength: The visible spectrum runs from what to what?

<table>
<thead>
<tr>
<th>(Ultraviolet)</th>
<th>Visible spectrum</th>
<th>(Infrared)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (nm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is a chromophore?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye)

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin

There is another chromophore, found only in the macula, we should mention. What is it?

Xanthophyll

(Original: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

With regard to wavelength: The visible spectrum runs from what to what?

<table>
<thead>
<tr>
<th>(Ultraviolet)</th>
<th>Visible spectrum</th>
<th>(Infrared)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (nm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lasers: Pew! Pew!

It boils down to transferring the energy emitted by the laser to the target tissue. What factors influence the transference of energy? There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**

 - **Energy**
 - **Power**
 - **Fluence**
 - **Composition**
 - **Chromophore**

The five modes of laser-tissue interaction: What is the essence? What is a chromophore in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? **Hemoglobin** and **melanin**.

There is another chromophore, found only in the macula, we should mention. What is it? **Xanthophyll**!

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

With regard to wavelength: The visible spectrum runs from what to what? **About 400 to 700 nm**.
Lasers: Pew! Pew!

Tissue-related factors

Laser-related factors

Energy
Power
Fluence
Composition
Chromophore

The five modes of laser-tissue interaction:

- What is the essence?
- What is a chromophore in this context?
- A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye)

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?
- Hemoglobin
- Melanin

There is another chromophore, found only in the macula, we should mention. What is it?
- Xanthophyll

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

For purposes of understanding lasers, we can divide the visible spectrum into four color segments. What are they?

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>(Ultraviolet)</th>
<th>400</th>
<th>?</th>
<th>?</th>
<th>?</th>
<th>(Infrared)</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>(Infrared)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromophore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is a chromophore? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).
Lasers: Pew! Pew!

What is a chromophore in this context?
A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?
Hemoglobin and melanin.

There is another chromophore, found only in the macula, that we should mention. What is it?
Xanthophyll.

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

For purposes of understanding lasers, we can divide the visible spectrum into four color segments. What are they?
Blue, green, yellow, red

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Blue</th>
<th>Green</th>
<th>Yellow</th>
<th>Red</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Ultraviolet) (Infrared)
Lasers: Pew! Pew!

<table>
<thead>
<tr>
<th>Tissue-related factors</th>
<th>Laser-related factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Fluence</td>
</tr>
<tr>
<td>Power</td>
<td>Composition</td>
</tr>
<tr>
<td>Chromophore</td>
<td></td>
</tr>
</tbody>
</table>

The five modes of laser-tissue interaction:

What is the essence?

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin

There is another chromophore, found only in the macula, we should mention. What is it?

Xanthophyll

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

Wavelength (nm)

400: Blue

Green

Yellow

Red: (Infrared)

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Hemoglobin?</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
</tr>
</tbody>
</table>

Which portion of the visible spectrum is well absorbed by: Hemoglobin?
Lasers: Pew! Pew!

Transferring energy from the laser to the target tissue.

Factors influencing energy transfer:
- **Tissue-related factors**
- **Laser-related factors**

Energy transfer modes:
- **Energy**
- **Power**
- **Fluence**

A chromophore absorbs light of a certain wavelength, leading to heat generation (e.g., a dye).

Two naturally-occurring chromophores in the eye:
- **Hemoglobin**
- **Melanin**

Another chromophore found in the macula:
- **Xanthophyll**

Visible spectrum colors and absorption:
- Blue, green, yellow, red
- Hemoglobin absorbs everything but red.

Wavelength ranges:
- Ultraviolet: 100-400 nm
- Infrared: 700-1400 nm
- Ultraviolet: 100-400 nm
- Infrared: 700-1400 nm
Lasers: Pew! Pew!

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:
- **Tissue-related factors**
- **Laser-related factors**

The five modes of laser-tissue interaction:

What is the essence?

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin

There is another chromophore, found only in the macula, we should mention. What is it?

Xanthophyll

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

Which portion of the visible spectrum is well absorbed by: **Melanin**?
Lasers: Pew! Pew!

It boils down to transferring the energy emitted by the laser to the target tissue. What factors influence the transference of energy? There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**

The five modes of laser-tissue interaction: What is the essence? What is a *chromophore* in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye). What two naturally-occurring *chromophores* found in the eye are exploited in ophthalmic laser procedures? *Hemoglobin* and *melanin*. There is another *chromophore*, found only in the macula, we should mention. What is it? *Xanthophyll* (Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutetin and zeaxanthin”).

Which portion of the visible spectrum is well absorbed by: *Melanin*? Everything is absorbed fairly well.

For purposes of understanding lasers, we can divide the visible spectrum into four color segments. What are they? Blue, green, yellow, red.

Which portion of the visible spectrum is well absorbed by: *Melanin*? Everything is absorbed fairly well.

There is another *chromophore*, found only in the macula, we should mention. What is it? *Xanthophyll*.

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutetin and zeaxanthin”).

The wavelength (nm) range is from 400 to 700. Hemoglobin and melanin are absorbs more in blue and green wavelengths.

There is a blue dye that is absorbed by the blue wavelength and it is melanin.
Lasers: Pew! Pew!

It boils down to transferring the energy emitted by the laser to the target tissue. What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**

Energy transfer can be influenced by:

- **Power**
- **Fluence**
- **Composition**

The five modes of laser-tissue interaction: What is the essence?

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

There is another chromophore, found only in the macula, that we should mention. What is it?

Xanthophyll

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin.”)
Lasers: Pew! Pew!

It boils down to transferring the energy emitted by the laser to the target tissue. What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
- **Laser-related factors**

Energy
- Power
- Fluence

Composition
- Chromophore

The five modes of laser-tissue interaction: What is the essence?

What is a chromophore in this context?
A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?
- Hemoglobin
- Melanin

There is another chromophore, found only in the macula, we should mention. What is it?
Xanthophyll

(Note: The latest iteration of the Retina book also refers to xanthophyll as “oxygenated carotenoids, in particular lutein and zeaxanthin”)

Which portion of the visible spectrum is well absorbed by: Xanthophyll? Only **blue**
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor?
Lasers: Pew! Pew!

What is the essence of laser-tissue interaction?
It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?
There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

We've seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser’s intensity is defined as its power per unit area (usually in cm²).
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**

 - **Energy**
 - **Power** = Energy/time
 - **Fluence** = Energy/area

\[
\text{Intensity} = \frac{\text{Power}}{\text{Area in cm}^2}
\]

*We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser’s **intensity** is defined as its **power per unit area** (usually in cm\(^2\)).*
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

\[
\text{Intensity} = \frac{\text{Power}}{\text{Area in cm}^2}
\]

We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser’s intensity is defined as its power per unit area (usually in cm²).

FYI, another name for ‘intensity’ is two words.
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**

 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

 \[
 \text{Power density (intensity)} = \frac{\text{Power}}{\text{Area in cm}^2}
 \]

We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor?

Indeed there is. A laser's **intensity** is defined as its power per unit area (usually in cm²).

FYI, another name for ‘intensity’ is **power density**.
Lasers: Pew! Pew!

What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

Power density (intensity) is defined as the power per unit area (usually in cm²).

We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser’s **intensity** is defined as its power per unit area.

FYI, another name for ‘intensity’ is **power density** (which makes sense, as the factor is ‘power per something’).
Lasers: Pew! Pew!

What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser's intensity is defined as its power per unit area (usually in cm²)

A final FYI on the same subject: Still another name for ‘intensity’ and ‘power density’ is

one word
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**

\[
\text{Intensity} = \frac{\text{Power}}{\text{Area in cm}^2}
\]

\[
\text{Irradiance} = \frac{\text{Power density}}{\text{Intensity}} = \frac{\text{Power}}{\text{Area in cm}^2}
\]

We've seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser's intensity is defined as its power density (usually in cm²).

A final FYI on the same subject: Still another name for 'intensity' and 'power density' is *irradiance*.
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

We’ve seen that power is energy per unit time, and fluence is energy per unit area. Is there any way to put this all together as a single factor? Indeed there is. A laser’s **intensity** is defined as its power per unit area (usually in cm²).

A final FYI on the same subject: Still another name for ‘intensity’ and ‘power density’ is **irradiance** (with the stipulation that irradiance employs area in m², not cm²)
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

Tissue-related factors
- Composition
- Chromophores

Laser-related factors
- Energy
- Power = Energy/time
- Fluence = Energy/area

\[
\text{Intensity} = \frac{\text{Power}}{\text{Area in cm}^2}
\]

Note that because power = energy/time, *intensity* can be written thusly:

\[
\text{Intensity} = \frac{\text{Energy}}{\text{Time}}
\]

Indeed there is. A laser’s *intensity* is defined in this manner (usually in cm²).

Lasers: Pew! Pew!
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are two categories of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

Note that because power = energy/time, intensity can be written thusly:

\[\text{Intensity} = \frac{\text{Power}}{\text{Area in cm}^2} \]

Which can be rewritten as:

\[\text{Intensity} = \frac{\text{Energy}}{\text{Time} \times \text{Area}} \]
Lasers: Pew! Pew!

What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

\[
\text{Intensity} = \frac{\text{Power}}{\text{Area in cm}^2} = \frac{\text{Energy}}{\text{Time} \times \text{area}}
\]

This formulation neatly illustrates how intensity can be increased by:

- Increasing pulse energy, or
- Decreasing pulse time, or
- Decreasing pulse area
What is the essence of laser-tissue interaction?

It boils down to transferring the energy emitted by the laser to the target tissue.

What factors influence the transference of energy?

There are **two categories** of factors affecting laser-energy transfer:

- **Tissue-related factors**
 - Composition
 - Chromophores

- **Laser-related factors**
 - Energy
 - Power = Energy/time
 - Fluence = Energy/area

This formulation neatly illustrates how intensity can be increased by:

- Increasing pulse energy, or
- Decreasing pulse time, or
- Decreasing pulse area

So commit this to memory!
What are the five modes of laser-tissue interaction?
What are the five modes of laser-tissue interaction?

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-chemical</td>
<td>aka photoactivation</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
</tr>
<tr>
<td>Photo-ablation</td>
<td></td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td>aka plasma-induced disruption</td>
</tr>
<tr>
<td>Photo-disruption</td>
<td></td>
</tr>
</tbody>
</table>
What are the five modes of laser-tissue interaction?

- Photo-chemical
 aka *photoactivation*
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption
 aka *plasma-induced disruption*

Are these thrown up here rando, or are they in an order of some sort?
What are the five modes of laser-tissue interaction?

- Photo-chemical
 aka *photoactivation*
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption
 aka *plasma-induced disruption*

Are these thrown up here rando, or are they in an order of some sort?
Not rando. Although there is some overlap (especially between *plasma-induced ablation* and *photodisruption*), overall these are listed in order of increasing **intensity**.
What are the five modes of laser-tissue interaction?

- Photo-chemical
 aka photoactivation
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption
 aka plasma-induced disruption

Intensity

Energy

\[
\text{Time} \times \text{area}
\]

Are these thrown up here rando, or are they in an order of some sort? Not rando. Although there is some overlap (especially between plasma-induced ablation and photodisruption), overall these are listed in order of increasing intensity.
What are the five modes of laser-tissue interaction?

1. Photo-chemical
 aka photoactivation

2. Thermal

3. Photo-ablation

4. Plasma-induced ablation

5. Photo-disruption
 aka plasma-induced disruption

Are these thrown up here rando, or are they in an order of some sort?
Not rando. Although there is some overlap (especially between plasma-induced ablation and photodisruption), overall these are listed in order of increasing intensity.

How is intensity ramped up from one mode to the next?
What are the five modes of laser-tissue interaction?

Photo-chemical
aka *photoactivation*

Thermal

Photo-ablation

Plasma-induced ablation

Photo-disruption
aka *plasma-induced disruption*

Are these thrown up here rando, or are they in an order of some sort?
Not rando. Although there is some overlap (especially between *plasma-induced ablation* and *photodisruption*), overall these are listed in order of increasing **intensity**.

How is intensity ramped up from one mode to the next?
All three variables are manipulated to some extent, but **energy** probably account for the lion’s share of the differences.
What are the five modes of laser-tissue interaction?

- Photo-chemical (aka photoactivation)
- Thermal
- Photo- ablation
- Plasma-induced ablation (aka plasma-induced disruption)
- Photo-disruption

Are these thrown up here rando, or are they in an order of some sort? Not rando. Although there is some overlap (especially between plasma-induced ablation and photodisruption), overall these are listed in order of increasing intensity.

How is intensity ramped up from one mode to the next? All three variables are manipulated to some extent, but pulse time probably account for the lion’s share of the differences.
The five modes of laser-tissue interaction:

- **Photo-chemical** aka photoactivation
 - Thermal
 - Photo-ablation
 - Plasma-induced ablation
 - Photo-disruption aka plasma-induced disruption

Briefly, what steps are involved in a photochemical laser procedure?

1)

2)

3)

4)
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical
 aka photoactivation

- Thermal

- Photo-ablation

- Plasma-induced ablation

- Photo-disruption
 aka plasma-induced disruption

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2)
3)
4)
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photochemical** aka *photoactivation*
- **Thermal**
- **Photo-ablation**
- **Plasma-induced ablation**
- **Photo-disruption** aka *plasma-induced disruption*

Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3)

4)
The five modes of laser-tissue interaction:

- **Photochemical** aka *photoactivation*
- **Thermal**
- **Photoablation**
- **Plasma-induced ablation**
- **Photo-disruption** aka *plasma-induced disruption*

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species which cause local element.
4)
The five modes of laser-tissue interaction:

- **Photochemical** aka *photoactivation*
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption aka *plasma-induced disruption*

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation
4)
Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation
4) Platelet activation produces thrombosis of the lesion’s vasculature.
The five modes of laser-tissue interaction:

- Photo-chemical (aka photoactivation)
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption (aka plasma-induced disruption)

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation.
4) Platelet activation produces thrombosis of the lesion’s vasculature.
Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species, which

What therapy is the classic example of photochemical laser?

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-chemical</td>
<td>aka photoactivation</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
</tr>
<tr>
<td>Photo-ablation</td>
<td></td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td></td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>aka plasma-induced disruption</td>
</tr>
</tbody>
</table>
Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species which

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photochemical**
 - aka **photoactivation**

- **Thermal**
- **Photo-ablation**
- **Plasma-induced ablation**
- **Photo-disruption**
 - aka **plasma-induced disruption**

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species, which

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photochemical</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>aka photoactivation</td>
<td></td>
<td></td>
<td></td>
<td>aka plasma-induced disruption</td>
</tr>
</tbody>
</table>

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation.

4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)

What is PDT used to treat?
Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photochemical**
 - aka *photoactivation*
- **Thermal**
- **Photo-ablation**
- **Plasma-induced ablation**
- **Photo-disruption**
 - aka *plasma-induced disruption*

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation.
4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)

What is PDT used to treat?
Prior to the development of intravitreous anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
Briefly, what steps are involved in a photochemical laser procedure?

1) A **photosensitizing dye** is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to 'light up' the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation.
4) Platelet activation produces thrombosis of the lesion's vasculature.

What is the name of the dye used in PDT?
Verteporfin

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)

What is PDT used to treat?
Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photochemical (aka photoactivation)</th>
<th>Thermal</th>
<th>Photoablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption (aka plasma-induced disruption)</th>
</tr>
</thead>
</table>

Briefly, what steps are involved in a photochemical laser procedure?

1) A **photosensitizing dye** is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to 'light up' the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation.
4) Platelet activation produces thrombosis of the lesion's vasculature.

What is the name of the dye used in PDT?

Verteporfin

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
The five modes of laser-tissue interaction:

- Photo-chemical
 aka photoactivation

- Thermal

- Photo-ablation

- Plasma-induced ablation

- Photo-disruption
 aka plasma-induced disruption

Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and **time sufficient to allow concentration of the dye in the target lesion is allowed to pass**

2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye

3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation

4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
The five modes of laser-tissue interaction:

- Photo-chemical (aka *photoactivation*)
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption (aka *plasma-induced disruption*)

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and **time sufficient to allow concentration of the dye in the target lesion is allowed to pass**
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation
4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?
Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) **The laser is then used to ‘light up’ the lesion** with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation
4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?
- **Photodynamic therapy (PDT)**

What is PDT used to treat?
Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species, which cause local platelet activation
4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)

What is PDT used to treat?
Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?

PRP laser

Why doesn't the PDT laser cause thermal damage like, say, a PRP laser does?

Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser.

Fluence = Energy/area

The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Before the next PDT question…What does PRP stand for in this context?

Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.

Several thousand laser burns are placed throughout the retinal periphery.

What is the most common indication for PRP?

Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

What is the goal, ie, what are we trying to do to the retina?

The goal is to kill most of the cells in the peripheral retina.

Finally (and also briefly): What is the therapeutic rationale?

Why kill the peripheral retina?

DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). OTOH, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

Plasma-induced ablation

Photo-disruption aka plasma-induced disruption

Acal laser procedure?

Breathlessly, and time sufficient to concentration of the dye in the target lesion is allowed to pass

PRP laser

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina

Finally (and also briefly): What is the therapeutic rationale?
Why kill the peripheral retina?
DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). OTOH, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VRGF burden is reduced, neovascularization is halted, and SVL is avoided.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

1. **Photochemical**
2. **Thermal Photoablation**
3. **Plasma-induced ablation**
4. **Photo-disruption** aka **photoactivation**
5. **Plasma-induced disruption**

Briefly, what steps are involved in a photochemical laser procedure?

1) A **photosensitizing dye** is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation.
4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser? **Photodynamic therapy (PDT)**

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of **central serous chorioretinopathy**, as well as for some intraocular tumors.

The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?

Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.

Panretinal photocoagulation is a laser treatment where thousands of laser burns are placed throughout the retinal periphery. The goal is to kill most of the cells in the peripheral retina to reduce the intraocular VEGF burden, halt neovascularization, and avoid severe vision loss.

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?

Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser.

Fluence = Energy/area

The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Before the next PDT question…What does PRP stand for in this context?

Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.

Several thousand laser burns are placed throughout the retinal periphery.

Briefly: What is the most common indication for PRP?

Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?

The goal is to kill most of the cells in the peripheral retina.

Finally (and also briefly): What is the therapeutic rationale?

Why kill the peripheral retina?

DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). OTOH, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.
The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

PRP laser
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical ablation
- Thermal photoablation
- Plasma-induced ablation
- Photo-disruption
 - aka plasma-induced disruption

Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to 'light up' the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation.
4) Platelet activation produces thrombosis of the lesion's vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?

Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser. Fluence = Energy/area. The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Before the next PDT question…What does PRP stand for in this context?

Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.

Several thousand laser burns are placed throughout the retinal periphery.

Briefly: What is the most common indication for PRP?

Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?

The goal is to kill most of the cells in the peripheral retina.

Finally (and also briefly): What is the therapeutic rationale? Why kill the peripheral retina?

DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). OTOH, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photothermal ablation**
- **Photochemical ablation**
- **Photo-induced disruption**
- **Plasma-induced ablation**
- **Photoactivation**

Briefly, what steps are involved in a photochemical laser procedure?

1. A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2. The laser is then used to 'light up' the lesion with light of a wavelength that will activate the dye.
3. The activated dye reacts with oxygen to create free radical species which cause local platelet activation.
4. Platelet activation produces thrombosis of the lesion's vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?

Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.

Several thousand laser burns are placed throughout the retinal periphery.

Briefly: What is the most common indication for PRP?

Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

The five modes of laser-tissue interaction:

In the briefest of manners, describe the PRP procedure.

Several thousand laser burns are placed throughout the retinal periphery.

Before the next PDT question…What does PRP stand for in this context?

Panretinal photocoagulation

Briefly: What is the most common indication for PRP?

Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?

Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.

Several thousand laser burns are placed throughout the retinal periphery.

Briefly: What is the most common indication for PRP?

Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)
The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?

DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). OTOH, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.
The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina

Finally (and also briefly): What is the therapeutic rationale? Why kill the peripheral retina?

DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). OTOH, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.
The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery.

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina.

Finally (and also briefly): What is the therapeutic rationale? Why kill the peripheral retina?
DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL).
The five modes of laser-tissue interaction:

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina

Finally (and also briefly): What is the therapeutic rationale? Why kill the peripheral retina?
DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL).
The five modes of laser-tissue interaction:

1. **Plasma-induced ablation**
2. **Photo-disruption** aka plasma-induced disruption
3. **Photochemical ablation**
4. **Photochemical Thermal ablation**
5. **Photo-alteration**

Briefly, what steps are involved in a photochemical laser procedure?

1. A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2. The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye
3. The activated dye reacts with oxygen to create free radical species which cause local platelet activation
4. Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

Before the next PDT question…What does PRP stand for in this context?

Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.

Several thousand laser burns are placed throughout the retinal periphery.

Briefly: What is the most common indication for PRP?

Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?

The goal is to kill most of the cells in the peripheral retina.

Finally (and also briefly): What is the therapeutic rationale? Why kill the peripheral retina?

DM retinopathy renders the peripheral retina hypoxic. Hypoxic cells release VEGF, which leads to the development of PDR, which leads to severe vision loss (SVL). On the other hand, dead cells do **not** release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

1. Photochemical ablation
2. Plasma-induced ablation
3. Photo-disruption aka plasma-induced disruption
4. Photothermal ablation
5. Photomechanical ablation

Briefly, what steps are involved in a photochemical laser procedure?
1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass
2) The laser is then used to 'light up' the lesion with light of a wavelength that will activate the dye
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation
4) Platelet activation produces thrombosis of the lesion's vasculature.

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)

What is PDT used to treat?
Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure.
Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina

Finally (and also briefly): What is the therapeutic rationale? Why kill the peripheral retina?
DM retinopathy renders cells hypoxic, which leads to severe vision loss (SVL). On the other hand, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and SVL is avoided.

What does VEGF stand for in this context?
Vascular endothelial growth factor
Before the next PDT question…What does PRP stand for in this context?
Panretinal photocoagulation

In the briefest of manners, describe the PRP procedure. Several thousand laser burns are placed throughout the retinal periphery

Briefly: What is the most common indication for PRP?
Proliferative diabetic retinopathy (PDR) or severe nonproliferative dz (severe NPDR)

Again, briefly: What is the goal, ie, what are we trying to do to the retina?
The goal is to kill most of the cells in the peripheral retina

Finally (and also briefly): What is the therapeutic rationale? Why kill the peripheral retina?
DM retinopathy renders the peripheral retina hypoxic, which leads to severe vascular endothelial growth factor (VEGF). On the other hand, dead cells do not release VEGF, so by euthanizing the hypoxic retina, the intraocular VEGF burden is reduced, neovascularization is halted, and severe vision loss (SVL) is avoided.

What does VEGF stand for in this context?
Vascular endothelial growth factor
Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?

Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser. Fluence = Energy/area. The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.
The five modes of laser-tissue interaction:

- **Photo-chemical**
 aka *photoactivation*

- **Thermal**

- **Photo-ablation**

- **Plasma-induced ablation**

- **Photo-disruption**
 aka *plasma-induced disruption*

Briefly, what steps are involved in a photochemical laser procedure?

1) A **photosensitizing dye** is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?

Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser.

Fluence = Energy/area
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>aka photoactivation</td>
<td></td>
<td></td>
<td></td>
<td>aka plasma-induced disruption</td>
</tr>
</tbody>
</table>

Briefly, what steps are involved in a photochemical laser procedure?

1) A **photosensitizing dye** is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.

2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.

3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation.

4) Platelet activation produces thrombosis of the lesion’s vasculature.

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?

Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser.

Fluence = Energy/area

The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Intraocular tumors.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photo-chemical
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption
 aka plasma-induced disruption

Briefly, what steps are involved in a photochemical laser procedure?

1) A **photosensitizing dye** is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.

2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.

3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation.

4) Platelet activation produces thrombosis of the lesion’s vasculature.

Of course, another reason PDT doesn’t produce thermal effects like PRP is because the PDT laser is a low power laser, whereas PRP employs a high power laser.

\[\text{Power} = \frac{\text{Energy}}{\text{Time}} \]

The tx time in PRP is measured in ms, whereas the tx time in PDT is measured in seconds. Thus, for a given amount of energy delivered, the power of PRP is orders of magnitude higher than the power of PDT.

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.
Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.
2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.
3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation.
4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?
Photodynamic therapy (PDT)

What is PDT used to treat?
Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?
Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser. Fluence = Energy/area. The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

The five modes of laser-tissue interaction:

- Photo-chemical aka photoactivation
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption aka plasma-induced disruption

Note: All PDT is of low fluence compared to most other laser procedures. However, there is a PDT variant called low- or half-fluence PDT in which the amount of energy delivered is half of the standard PDT dose (there is some evidence that half-fluence PDT is more effective than full-fluence).

\[
\text{half-fluence} = \frac{\text{Energy}}{\text{area}}^2
\]

The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Intraocular tumors.
The five modes of laser-tissue interaction:

- **Photochemical**
 aka *photoactivation*

- Thermal

- Photoablation

- Plasma-induced ablation

- Photo-disruption
 aka *plasma-induced disruption*

Lasers: Pew! Pew!

Note: All PDT is of low fluence compared to most other laser procedures. However, there is a PDT variant called *low- or half-fluence PDT* in which the amount of energy delivered is half of the standard PDT dose (there is some evidence that half-fluence PDT is more effective than full-fluence).

half-fluence PDT?

$$\text{half-fluence} \equiv \text{Half-fluence} = \frac{\text{Energy}}{\text{Area}} \times 2$$

Could you produce half-fluence by doubling the denominator instead of halving the numerator?

Intraocular
Briefly, what steps are involved in a photochemical laser procedure?

1) A photosensitizing dye is injected intravenously, and time sufficient to allow concentration of the dye in the target lesion is allowed to pass.

2) The laser is then used to ‘light up’ the lesion with light of a wavelength that will activate the dye.

3) The activated dye reacts with oxygen to create free radical species which cause local platelet activation.

4) Platelet activation produces thrombosis of the lesion’s vasculature.

What therapy is the classic example of photochemical laser?

Photodynamic therapy (PDT)

What is PDT used to treat?

Prior to the development of intravitreal anti-VEGF therapy, PDT was the tx of choice for choroidal neovascular membranes. While it has been largely supplanted for this indication, it is still employed in the tx of central serous chorioretinopathy, as well as for some intraocular tumors.

Why doesn’t the PDT laser cause thermal damage like, say, a PRP laser does?

Because the PDT laser is a low fluence laser, whereas PRP employs a high fluence laser. Fluence = Energy/area. The tx area (ie, spot size) in PRP is measured in microns, whereas the tx area in PDT is measured in centimeters. Thus, for a given amount of energy delivered, the fluence of PRP is orders of magnitude higher than the fluence of PDT.

Note: All PDT is of low fluence compared to most other laser procedures. However, there is a PDT variant called low- or half-fluence PDT in which the amount of energy delivered is half of the standard PDT dose (there is some evidence that half-fluence PDT is more effective than full-fluence).

Why couldn’t you produce half-fluence by doubling the denominator instead of halving the numerator?

Well, you could, but doing so wouldn’t be prudent. In PDT, we’re treating a lesion of a certain size/extent. It would make no therapeutic sense to reduce fluence by doubling the treatment area, because this would entail ‘treating’ the healthy tissue surrounding the lesion.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photo-chemical**
 aka *photoactivation*
 Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn

- **Thermal**

- **Photo-ablation**

- **Plasma-induced ablation**

- **Photo-disruption**
 aka *plasma-induced disruption*

PDT

No question—proceed when ready
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Thermal**
- Photo-chemical
 - Photo-chemical thermal ablation
 - Plasma-induced ablation
 - Photo-disruption

Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn

PDT

Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?

--
--
--
--
--
The five modes of laser-tissue interaction:

Thermal

Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?

--Hypertermia
--Coagulation
--Vaporization
--Carbonization
--Melting

Photo-chemical

aka *photoactivation*

Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn

Photo-atomic ablation

Plasma-induced ablation

Photo-disruption

aka *plasma-induced disruption*
The five modes of laser-tissue interaction:

Thermal ablation

Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?

--Hyperthermia?
--Coagulation?
--Vaporization?
--Carbonization?
--Melting?

Which thermal effect is employed most frequently?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photochemical (aka photoactivation)</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption (aka plasma-induced disruption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
<td>Thermal</td>
<td>Photo-ablation</td>
<td>Plasma-induced ablation</td>
<td>Photo-disruption (aka plasma-induced disruption)</td>
</tr>
</tbody>
</table>

Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?

--Hyperthermia
--Coagulation
--Vaporization
--Carbonization
--Melting

Which thermal effect is employed most frequently?

Coagulation
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Thermal</th>
<th>Photo-chemical</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal ablation</td>
<td>aka photoactivation</td>
<td>aka plasma-induced disruption</td>
<td></td>
</tr>
</tbody>
</table>

Thermal effects on tissue exist on a continuum. What are the five degrees?

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

What does it mean to say that tissue has ‘coagulated’?

Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn

PDT

What does it mean to say a protein has been ‘denatured’?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photochemical</td>
<td>Thermal effects on tissue exist on a continuum. What are the five degrees?</td>
</tr>
<tr>
<td>Photoablation</td>
<td>-- Hyperthermia</td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td>-- Coagulation</td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>-- Vaporization</td>
</tr>
<tr>
<td></td>
<td>-- Carbonization</td>
</tr>
<tr>
<td></td>
<td>-- Melting</td>
</tr>
</tbody>
</table>

What does it mean to say that tissue has ‘coagulated’?

It means the proteins have been denatured.

Which thermal effect is employed most frequently?

Coagulation
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photo-chemical
 aka photoactivation
 Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn
 PDT

- Thermal
 Thermal effects on tissue exist on a continuum. What are the five degrees?
 -- Hyperthermia
 -- Coagulation
 -- Vaporization
 -- Carbonization
 -- Melting
 Which thermal effect is employed most frequently?
 Coagulation

- Photo-ablation

- Plasma-induced ablation

- Photo-disruption
 aka plasma-induced disruption

What does it mean to say that tissue has ‘coagulated’?
It means the proteins have been denatured

OK, what does it mean to say a protein has been ‘denatured’?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).
Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?
Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>aka photoactivation</td>
<td>Thermal effects on tissue exist on a continuum. What are the five degrees?</td>
<td>Hyperthermia</td>
<td>Coagulation</td>
<td>Plasma-induced disruption</td>
</tr>
<tr>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
<td>-- Hyperthermia</td>
<td>-- Coagulation</td>
<td>-- Vaporization</td>
<td>-- Carbonization</td>
</tr>
<tr>
<td>PDT</td>
<td>Which thermal Coagulation</td>
<td>What does it mean to say that tissue has 'coagulated'?</td>
<td>It means the proteins have been denatured</td>
<td>OK, what does it mean to say a protein has been 'denatured'?</td>
</tr>
</tbody>
</table>
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Photo-chemical
aka *photoactivation*

Very-low-power laser energy causes a photosensitive dye to undergo a chemical reaction. **PDT**

Thermal

- Hyperthermia
- **Coagulation**
- Vaporization
- Carbonization
- Melting

Thermal effects on tissue exist on a continuum. What are the five degrees of tissue effects?

- Hyperthermia
- **Coagulation**
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has ‘coagulated’?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been ‘denatured’?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat). Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical (aka photoactivation)</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption (aka plasma-induced disruption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
<td>Photo-chemical (aka photoactivation)</td>
<td>Thermal</td>
<td>Photo-ablation</td>
<td>Plasma-induced ablation</td>
</tr>
<tr>
<td></td>
<td>Thermal</td>
<td>Photo-ablation</td>
<td>Plasma-induced ablation</td>
<td>Photo-disruption (aka plasma-induced disruption)</td>
</tr>
<tr>
<td></td>
<td>Thermal</td>
<td>Photo-ablation</td>
<td>Plasma-induced ablation</td>
<td>Photo-disruption (aka plasma-induced disruption)</td>
</tr>
</tbody>
</table>

Thermal effects on tissue exist on a continuum. What are the five degrees of tissue effects?

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has ‘coagulated’?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been ‘denatured’?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat). Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
The five modes of laser-tissue interaction:

Thermal

Thermal effects on tissue exist on a continuum. What are the five degrees?

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has ‘coagulated’?

It means the proteins have been denatured.

OK, what does it mean to say that a protein has been “denatured”?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat). Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)
The five modes of laser-tissue interaction:

- **Thermal**
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn

Photo-chemical
aka **photoactivation**

PDT

What does it mean to say that tissue has ‘coagulated’?
It means the proteins have been denatured.

OK, what does it mean to say that a protein has been denatured?
It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat). Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?
Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

At what temperature does retinal tissue start to coagulate?
65°C
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Thermal</th>
<th>Photo-chemical</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal effects</td>
<td>Photo-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on tissue exist</td>
<td>ablation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>on a continuum.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>What are the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>five degrees?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperthermia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coagulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaporization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbonization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What does it mean to say that tissue has ‘coagulated’?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been ‘denatured’?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

At what temperature does retinal tissue start to coagulate?

65°C

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP
The five modes of laser-tissue interaction:

- **Thermal**
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Thermal effects on tissue exist on a continuum. What are the five degrees?

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

What does it mean to say that tissue has ‘coagulated’?

- It means the proteins have been denatured.

OK, what does it mean to say that a protein has been ‘denatured’?

- It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).
- Because a protein’s function is inextricably tied to its shape,
- denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

- Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

At what temperature does retinal tissue start to coagulate?

- 65°C

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

- PRP
The five modes of laser-tissue interaction:

- **Thermal**
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Thermal effects on tissue exist on a continuum. What are the five degrees?

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

What does it mean to say that tissue has ‘coagulated’?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been ‘denatured’?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

At what temperature does retinal tissue start to coagulate?

65°C

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That’s convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas.

(No question yet—proceed when ready)
The five modes of laser-tissue interaction:

- **Thermal**
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting
 - Thermal effects on tissue exist on a continuum. What are the five degrees?

- **Photo-chemical**
 - Photodisruption
 - Photo-ablation
 - Photo-disruption

- **Plasma-induced ablation**

What does it mean to say that tissue has ‘coagulated’?
It means the proteins have been denatured.

OK, what does it mean to say that a protein has been ‘denatured’?
It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?
PRP

That’s convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photothermal</td>
<td>Thermal effects on tissue exist on a continuum.</td>
</tr>
<tr>
<td>PHOTOCHEMICAL</td>
<td>Thermal effects on tissue exist on a continuum.</td>
</tr>
<tr>
<td>PLASMA-INDUCED ABLATION</td>
<td>Thermal effects on tissue exist on a continuum.</td>
</tr>
<tr>
<td>PHOTODISRUPTION</td>
<td>Thermal effects on tissue exist on a continuum.</td>
</tr>
</tbody>
</table>

What does it mean to say that tissue has ‘coagulated’?
- It means the proteins have been denatured.

What does it mean to say a protein has been ‘denatured’?
- It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?
- Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

At what temperature does retinal tissue start to coagulate?
- 65°C

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?
- PRP

That’s convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?
- Both procedures employ a dye of sorts to produce the desired therapeutic effect.
The five modes of laser-tissue interaction:

Thermal
- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Thermal effects on tissue exist on a continuum. What are the five degrees?

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

What does it mean to say that tissue has ‘coagulated’?

It means the proteins have been denatured.

However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Thermal effects on tissue exist on a continuum. What are the five degrees of tissue effects?
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Which thermal effect is employed most frequently? Coagulation.

What does it mean to say that tissue has ‘coagulated’? It means the proteins have been denatured.

What does it mean to say a protein has been ‘denatured’? It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation? Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome? PRP.

That’s convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I’ve seen/ performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as ‘natural dyes.’ That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat.

What is a chromophore in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? Hemoglobin and melanin.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Thermal

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently? Coagulation.

What does it mean to say that tissue has ‘coagulated’?

It means the proteins have been denatured.

What does it mean to say a protein has been ‘denatured’?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP.

That’s convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I’ve seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as ‘natural dyes.’

That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.
The five modes of laser-tissue interaction:

1. **Photo-chemical**
2. **Thermal**
3. **Photo-ablation**
4. **Plasma-induced ablation**
5. **Photo-disruption**

Very-low-power laser energy causes a photosensitive dye to undergo chemical reaction, aka photoactivation, aka plasma-induced disruption.

The tissue effects based on thermal energy exist on a continuum. What are the five degrees of tissue effects?

- **Hyperthermia**
- **Coagulation**
- **Vaporization**
- **Carbonization**
- **Melting**

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a *dye* of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.)

From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green

(As noted earlier in the slide-set)
The five modes of laser-tissue interaction:

- Thermal
- Photochemical
- Photothermal
- Plasma-induced ablation
- Photoablation

Very-low-power laser energy causes a photosensitive dye to undergo photoactivation, aka plasma-induced disruption.

The five degrees of tissue effects:

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently? Coagulation.

What does it mean to say that tissue has 'coagulated'? It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'? It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat). Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation? Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome? PRP.

That’s convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I’ve seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as ‘natural dyes.’ That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What is a chromophore in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What wavelength of light is readily absorbed by hemoglobin and melanin? (It’s a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? Hemoglobin and melanin.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photo-chemical
- Plasma-induced ablation
- Photo-ablation
- Photo-disruption
- Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn aka photoactivation aka plasma-induced disruption

Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently? Coagulation

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That’s convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I’ve seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as natural dyes. That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin

What wavelength of light is readily absorbed by hemoglobin and melanin? (It’s a range, BTW.)

From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Thermal**
- **Photochemical**
- **Photoablation**
- **Plasma-induced ablation**
- **Photo- disruption**

Very-low-power laser energy causes a photosensitive dye to undergo chemical reaction aka *photoactivation* aka plasma-induced disruption.

The five degrees (see what I did there?) of tissue effects:

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently? Coagulation.

What does it mean to say that tissue has 'coagulated'? It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'? It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation? Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid.

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome? PRP.

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser? Green.

What is a chromophore in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? Hemoglobin and melanin.

What wavelength is readily absorbed by hemoglobin and melanin? From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance? Argon.
The five modes of laser-tissue interaction:

- **Thermal** effects on tissue exist on a continuum. What are the five degrees of tissue effects?
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Which thermal effect is employed most frequently?
Coagulation

What does it mean to say that tissue has 'coagulated'? It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'? It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat). Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation? Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome? PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; e.g., we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor? Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about? Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance? Argon

What color is the light produced by an argon laser? Green

What is a chromophore in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? Hemoglobin and melanin
The five modes of laser-tissue interaction:

Thermal
- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently? Coagulation

What does it mean to say that tissue has 'coagulated'? It means the proteins have been denatured.

What does it mean to say a protein has been 'denatured'? It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation? Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome? PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor? Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance? Argon

What color is the light produced by an argon laser? Green

What is a chromophore in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? Hemoglobin and melanin
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Thermal

Photochemical

Photoablation

Plasma-induced ablation

Photo disruption

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green

What is a chromophore in this context? A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (i.e., a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures? Hemoglobin and melanin.
The five modes of laser-tissue interaction:

- **Photochemical**
- **Thermal**
- **Photoablation**
- **Plasma-induced ablation**
- **Photo disruption**

Very-low-power laser energy causes a photosensitive dye to undergo a chemical reaction, aka photoactivation, aka plasma-induced disruption.

The five degrees (see what I did there?) of tissue effects:

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat). Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.)

From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too readly absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known?

Diode laser

What is the most common usage of the diode laser in ophthalmology?

Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma

During CPC, the diode laser probe is held against the conjunctiva. Why doesn't the laser energy burn the conj and sclera en route to the CB epithelium?

The laser's wavelength is set so as to be absorbed by melanin, which isn't encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.
The five modes of laser-tissue interaction:

- **Thermal effects on tissue** exist on a continuum. What are five degrees of tissue effects? -- Hyperthermia -- Coagulation -- Vaporization -- Carbonization -- Melting

Which thermal effect is employed most frequently? Coagulation

What does it mean to say that tissue has 'coagulated'? It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'? It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat). Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation? Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome? PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor? Both procedures employ a dye of sorts to produce the desired therapeutic effect.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance? Argon

What color is the light produced by an argon laser? Green

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known? Diode laser

What is the most common usage of the diode laser in ophthalmology? Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma

During CPC, the diode laser probe is held against the conjunctiva. Why doesn't the laser energy burn the conj and sclera en route to the CB epithelium? The laser's wavelength is set so as to be absorbed by melanin, which isn't encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

1. **Thermal effects**
 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.)
From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known?

Diode laser

What is the most common usage of the diode laser in ophthalmology?

Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma

During CPC, the diode laser probe is held against the conjunctiva.

Why doesn't the laser energy burn the conj and sclera en route to the CB epithelium?

The laser's wavelength is set so as to be absorbed by melanin, which isn't encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.
The five modes of laser-tissue interaction:

1. **Photothermal**
2. **Photochemical**
3. **Photoablation**
4. **Photoinduced**
5. **Photo disruption**

Very-low-power laser energy causes a photosensitive dye to undergo chemical reaction:
- aka photoactivation
- aka plasma-induced disruption

Thermal effects on tissue exist on a continuum. What are the five degrees (see what I did there?) of tissue effects?

- **Hyperthermia**
- **Coagulation**
- **Vaporization**
- **Carbonization**
- **Melting**

Which thermal effect is employed most frequently? **Coagulation**

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What wavelength of light is readily absorbed by **hemoglobin** and **melanin**? (It's a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known?

Diode laser

What is the most common usage of the diode laser in ophthalmology?

Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma.

During CPC, the diode laser probe is held against the conjunctiva. Why doesn't the laser energy burn the conj and sclera en route to the CB epithelium?

The laser's wavelength is set so as to be absorbed by melanin, which isn't encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and **melanin**
The five modes of laser-tissue interaction:

- **Thermal**
- **Photochemical**
- **Photoablation**
- **Plasma-induced ablation**
- **Photo disruption**

Very-low-power laser energy causes a photosensitive dye to undergo chemical reaction, aka photoactivation, aka plasma-induced disruption.

The five degrees of tissue effects:

- Hyperthermia
- Coagulation
- Vaporization
- Carbonization
- Melting

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has ‘coagulated’?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been ‘denatured’?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein’s function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it’s a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That’s convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Recall an earlier slide on which it was pointed out that chromophores can serve as ‘natural dyes.’ That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

Two categories of tissue-related factors:

- Composition
- Chromophore

What is a chromophore in this context?

A molecule that absorbs light of a certain wavelength in a manner that results in the generation of heat (ie, a dye).

What two naturally-occurring chromophores found in the eye are exploited in ophthalmic laser procedures?

Hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It’s a range, BTW.) From 400 to 580 nm. However, wavelengths below 500 nm are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known?

Diode laser

What is the most common usage of the diode laser in ophthalmology?

Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma

During CPC, the diode laser probe is held against the conjunctiva. Why doesn’t the laser energy burn the conj and sclera en route to the CB epithelium?

The laser’s wavelength is set so as to be absorbed by melanin, which isn’t encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Thermal effects on tissue exist on a continuum**. What are the five degrees (see what I did there?) of tissue effects?

 - Hyperthermia
 - Coagulation
 - Vaporization
 - Carbonization
 - Melting

Which thermal effect is employed most frequently?

Coagulation

What does it mean to say that tissue has 'coagulated'?

It means the proteins have been denatured.

OK, what does it mean to say a protein has been 'denatured'?

It means the protein has been forced out of its native conformation by some sort of applied stress (in this case, heat).

Because a protein's function is inextricably tied to its shape, denatured proteins do not behave as they do in their native form.

Can you give an example of protein denaturation?

Consider egg albumin. In its native state, it's a clear liquid. But if sufficient heat is applied, it becomes a white solid. (And if sufficient salsa is applied to the white solid, it becomes delish.)

What retinal procedure should come to mind when thinking about thermal laser-tissue interactions that rely on coagulation to produce the desired therapeutic outcome?

PRP

That's convenient, because we already know a little about PRP after comparing and contrasting it with PDT; eg, we know PRP achieves much higher intensity (aka power density, aka irradiance) by employing vastly shorter pulse times and vastly smaller target areas. However, with regard to another laser-tissue interaction factor, PRP and PDT are on the same wavelength (so to speak). What is that factor?

Both procedures employ a dye of sorts to produce the desired therapeutic effect.

Huh? I've seen/performed PRP, and no dye was employed. What are you talking about?

Recall an earlier slide on which it was pointed out that chromophores can serve as 'natural dyes.' That is, if the incoming light is of the right wavelength, chromophores will absorb the energy and convert it into heat. Recall also that the eye contains two chromophores in abundance—hemoglobin and melanin.

What wavelength of light is readily absorbed by hemoglobin and melanin? (It's a range, BTW.)

From 400 to 580 nm. However, wavelengths below 500 are avoided, as they are too-readily absorbed by the xanthophyll pigment found in the macula.

At one time, only one substance was used as the active medium to produce light in the 500-580 range. (Other substances are now available.) What was that original substance?

Argon

What color is the light produced by an argon laser?

Green

Another commonly-employed thermal laser uses solid-state semiconductor technology. By what name is this laser known?

Diode laser

What is the most common usage of the diode laser in ophthalmology?

Cyclophotocoagulation (CPC) of the aqueous-producing epithelium of the ciliary body (CB) in refractory glaucoma

During CPC, the diode laser probe is held against the conjunctiva. Why doesn’t the laser energy burn the conj and sclera en route to the CB epithelium?

The laser’s wavelength is set so as to be absorbed by melanin, which isn’t encountered until the energy has passed through the conj/sclera and reached the pigmented epithelium of the CB.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-chemical</td>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
</tr>
<tr>
<td>Thermal</td>
<td>Laser energy is absorbed → transforms into heat → local thermal damage</td>
</tr>
<tr>
<td>Photo-ablation</td>
<td></td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td></td>
</tr>
<tr>
<td>Photo-disruption</td>
<td></td>
</tr>
</tbody>
</table>

PDT
Argon, diode

No question—proceed when ready
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photo-chemical
- Thermal
- Photo-physical
- Plasma-induced ablation
- Photo-disruption

Are the laser intensities (power densities; irradiiances) employed during photoablation greater than those employed during thermal laser?

Very-low-power laser energy causes a photosensitive dye to undergo a chemical reaction. Laser energy is absorbed → transforms into heat → local thermal damage.

PDT (Argon) aka photoactivation aka plasma-induced disruption.

The five modes of laser-tissue interaction:

Are the laser intensities (power densities; irradiiances) employed during photoablation greater than those employed during thermal laser?

Yes, significantly so. Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?

You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat.

How is it possible to have greater intensity but less thermal damage?

The pulse durations are too brief to induce molecular motion (which is what heat is).

If not via thermal effects, how does photoablation alter tissue?

By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds.

What therapy is the classic example of photoablation?

Photoablative keratorefractive surgery (eg, LASIK).
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photo-chemical
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so.

Very-low-power laser energy causes a photosensitive dye to undergo chemical reaction. Laser energy is absorbed → transforms into heat → local thermal damage.

PDT Argon, aka photoactivation, aka plasma-induced disruption.

The five modes of laser-tissue interaction:

- Photo-chemical
- Photo-ablation (aka photoreaction)
- Plasma-induced ablation
- Photo-disruption

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so.

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case? You'd think so, but no—photoablation involves essentially no energy transfer in the form of heat.

How is it possible to have greater intensity but less thermal damage? The pulse durations are too brief to induce molecular motion (which is what heat is).

If not via thermal effects, how does photoablation alter tissue? By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds.

What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (eg, LASIK).
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photochemical</td>
<td>Thermal</td>
<td>Photoablation</td>
<td>Plasma-induced ablation</td>
<td>Photo-disruption</td>
</tr>
</tbody>
</table>

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so.

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?
Lasers: Pew! Pew!

Photothermal
Photoablation
Plasma-induced ablation
Photochemical thermal ablation
Photo-dissociation

Very-low-power laser energy causes a photosensitive dye to undergo chemical reactions.

Laser energy is absorbed → transforms into heat → local thermal damage.

PDT (Argon aka photoactivation aka plasma-induced disruption)

The five modes of laser-tissue interaction:

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so.

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?

You'd think so, but no—photoablation involves essentially no energy transfer in the form of heat.

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser.

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser?

Greater.

If not via thermal effects, how does photoablation alter tissue?

By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds.

What therapy is the classic example of photoablation?

Photoablative keratorefractive surgery (e.g., LASIK).
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photochemical**
- **Thermal**
- **Photoablation**
- **Plasma-induced ablation**
- **Photo-disruption**

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser?

Yes, significantly so.

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?

You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat.

How is it possible to have greater intensity but less thermal damage?
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photochemical</td>
<td>Photochemical transformation of a photosensitive dye into a reactive state.</td>
</tr>
<tr>
<td>Thermal</td>
<td>Laser energy is absorbed and transforms into heat to cause local thermal damage.</td>
</tr>
<tr>
<td>Photo-ablation</td>
<td>Laser energy is absorbed and transforms into heat to cause local thermal damage.</td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td>Laser energy is absorbed and transforms into plasma to cause ablation.</td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>Laser energy is absorbed and transforms into plasma to cause disruption.</td>
</tr>
</tbody>
</table>

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so.

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case? You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat.

How is it possible to have greater intensity but less thermal damage? The pulse durations are too brief to induce molecular motion (which is what heat is).
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photochemical**
- **Thermal**
- **Photoablation**
- **Plasma-induced ablation**
- **Photo-disruption**

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so.

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case? You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat.

How is it possible to have greater intensity but less thermal damage? The pulse durations are too brief to induce molecular motion (which is what heat is).

If not via thermal effects, how does photoablation alter tissue?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser?

Yes, significantly so

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?

You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat

How is it possible to have greater intensity but less thermal damage?

The pulse durations are too brief to induce molecular motion (which is what heat is)

If not via thermal effects, how does photoablation alter tissue?

By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds
The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so.

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case? You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat.

How is it possible to have greater intensity but less thermal damage? The pulse durations are too brief to induce molecular motion (which is what heat is).

If not via thermal effects, how does photoablation alter tissue? By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds.

What therapy is the classic example of photoablation?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Photo-chemical

Laser energy causes a photosensitive dye to undergo chemical reactions.

Photo-thermal

Laser energy is absorbed and transformed into heat, leading to local thermal damage.

Photo-ablation

Greater laser intensities (power densities) are employed during photoablation than during thermal laser. Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case? You'd think so, but no—photoablation involves essentially no energy transfer in the form of heat.

Plasma-induced ablation

Pulse durations are too brief to induce molecular motion (which is what heat is).

Photo-disruption

If not via thermal effects, how does photoablation alter tissue? By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds.

What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (eg, LASIK).
The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photochemical ablation</td>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical reaction.</td>
</tr>
<tr>
<td>Thermal ablation</td>
<td>Laser energy is absorbed and transformed into heat, causing local thermal damage.</td>
</tr>
<tr>
<td>Photoablation</td>
<td>Laser energy is transformed into heat, but the pulse durations are too brief for molecular motion.</td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td>Energy transfer in the form of heat is essentially nonexistent.</td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>By breaking covalent carbon-carbon and carbon-nitrogen bonds.</td>
</tr>
</tbody>
</table>

What sort of laser is used to ablate the corneal tissue?

- **Photoablative keratorefractive surgery** (e.g., LASIK)

What is the origin of the word *excimer*?

- It is a portmanteau of the term *excited dimer*.

What is the wavelength of light employed?

- **193 nm**

Is 193 nm in the UV range, or the infrared range?

- **UV**

Does light of this wavelength penetrate tissue?

- Hardly at all (which makes it perfect for surface ablation).

Is this wavelength mutagenic?

- No
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photo-chemical
- Thermal
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption

Do the laser intensities (power densities; irradiances) employed during photoablation differ significantly from those employed during thermal laser?

Yes, significantly so. Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?

You'd think so, but no—photoablation involves essentially no energy transfer in the form of heat.

How is it possible to have greater intensity but less thermal damage?

The pulse durations are too brief to induce molecular motion (which is what heat is).

How does photoablation alter tissue?

By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds.

What therapy is the classic example of photoablation?

Photoablative keratorefractive surgery (eg, LASIK).

What sort of laser is used to ablate the corneal tissue?

An excimer laser.

What is the origin of the word excimer?

It is a portmanteau of the term excited di-mer.

What is the wavelength of light employed?

193 nm.

Is 193 nm in the UV range, or the infrared range?

UV.

Is this wavelength mutagenic?

No.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical ablation
- Thermal ablation
- Plasma-induced ablation
- Photo-disruption
- Photoablative keratorefractive surgery

What sort of laser is used to ablate the corneal tissue? An excimer laser.

What is the origin of the word excimer?

Is 193 nm in the UV range, or the infrared range? UV.

Does light of this wavelength penetrate tissue? Hardly at all (which makes it perfect for surface ablation).

Is this wavelength mutagenic? No.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

1. Photochemical ablation
2. Thermal ablation
3. Plasma-induced ablation
4. Photo-disruption
5. Photo-disruption

What sort of laser is used to ablate the corneal tissue? An excimer laser.

What is the origin of the word excimer? It is a portmanteau of the term ‘excited di-mer’.

What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (e.g., LASIK).

What is the wavelength of light employed? 193 nm.

Is 193 nm in the UV range, or the infrared range? UV.

Does light of this wavelength penetrate tissue? Hardly at all (which makes it perfect for surface ablation).

Is this wavelength mutagenic? No.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- **Photo-chemical**
- **Thermal**
- **Photo-ablation**
- **Plasma-induced ablation**
- **Photo-disruption**

Photoablation

What sort of laser is used to ablate the corneal tissue? An **excimer laser**

What is the origin of the word excimer? It is a portmanteau of the term ‘**excited di-mer**’

To what does excited dimer refer in this context?

Photoablative keratorefractive surgery

- **Photochemical**
- **Thermal**
- **Photoablation**
- **Plasma-induced ablation**
- **Photo-disruption**

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so

Given this, it would seem that photoablation must cause even greater heat-mediated damage? You'd think so, but no—photoablation involves essentially no energy transfer in the form of heat

How is it possible to have greater intensity but less thermal damage? The pulse durations are too brief to induce molecular motion (which is what heat is)

If not via thermal effects, how does photoablation alter tissue? By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds

What therapy is the classic example of photoablation? **Photoablative keratorefractive surgery** (eg, LASIK)

What sort of laser is used to ablate the corneal tissue? An **excimer laser**

What is the origin of the word excimer? It is a portmanteau of the term ‘**excited di-mer**’

To what does excited dimer refer in this context?

Photoablative keratorefractive surgery
The five modes of laser-tissue interaction:

- **Photo-chemical**
- **Photo-ablation**
- **Plasma-induced ablation**
- **Photo-disruption**

What sort of laser is used to ablate the corneal tissue? An excimer laser.

What is the origin of the word excimer? It is a portmanteau of the term 'exci-ted di-mer'.

To what does excited dimer refer in this context? The active medium in an excimer consists of a diatomic combination of two elemental gases.

What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (e.g., LASIK).

What is the wavelength of light employed? 193 nm.

Is 193 nm in the UV range, or the infrared range? UV.

Does light of this wavelength penetrate tissue? Hardly at all (which makes it perfect for surface ablation).

Is this wavelength mutagenic? No.
The five modes of laser-tissue interaction:

- **Photo-chemical**
 - What sort of laser is used to ablate the corneal tissue? An **excimer** laser.
 - What is the origin of the word excimer? It is a portmanteau of the term ‘**exci-ted di-mer**’.
 - To what does excited dimer refer in this context? The active medium in an excimer consists of a diatomic combination of two elemental gases.
 - Which gas combo is most commonly used in ophthalmic excimer lasers? **Argon-fluoride**.

- **Photo-ablation**
 - What therapy is the classic example of photoablation? **Photoablative keratorefractive surgery**.

- **Plasma-induced ablation**
- **Photo-disruption**
The five modes of laser-tissue interaction:

- **Photochemical**
 - What sort of laser is used to ablate the corneal tissue? An excimer laser
 - What is the origin of the word excimer? It is a portmanteau of the term ‘exci-ted di-mer’
 - To what does excited dimer refer in this context? The active medium in an excimer consists of a diatomic combination of two elemental gases
 - Which gas combo is most commonly used in ophthalmic excimer lasers? Argon-fluoride

- **Photoablation**

- **Plasma-induced ablation**
 - What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (eg, LASIK)

- **Photo-disruption**

- **Thermal**
 - Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so
 - Given this, it would seem that photoablation must cause even greater heat-mediated damage? You'd think so, but no—photoablation involves essentially no energy transfer in the form of heat
 - How is it possible to have greater intensity but less thermal damage? The pulse durations are too brief to induce molecular motion (which is what heat is)
 - If not via thermal effects, how does photoablation alter tissue? By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds

- **Photo-disruption**
The five modes of laser-tissue interaction:

Photo-chemical	Thermal	Photo-	Plasma-induced ablation	Photo-	Photo-
Photo-	ablation	disruption	ablative	tion	disrup-
Photo-	ablation	disruption	ablative	tion	disrup-

What sort of laser is used to ablate the corneal tissue?
An **excimer** laser

What is the origin of the word excimer?
It is a portmanteau of the term ‘**exci**-ted di-**mer**’

What is the wavelength of light employed?
193 nm

This wavelength is in the **UV** range and hardly penetrates tissue, making it perfect for **surface ablation**.

Is this wavelength mutagenic?
No.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

1. Photo-chemical ablation
 - Very-low-power laser energy causes a photosensitive dye to undergo chemical reaction.
 - Laser energy is absorbed → transforms into heat → local thermal damage.

2. Photo-ablation
 - Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser?
 - Yes, significantly so.
 - Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case?
 - You'd think so, but no—photoablation involves essentially no energy transfer in the form of heat.
 - How is it possible to have greater intensity but less thermal damage?
 - The pulse durations are too brief to induce molecular motion (which is what heat is).

3. Plasma-induced disruption
 - If not via thermal effects, how does photoablation alter tissue?
 - By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds.

4. Photo-disruption
 - What therapy is the classic example of photoablation?
 - Photoablative keratorefractive surgery (eg, LASIK).

5. Photo-disruption
 - What sort of laser is used to ablate the corneal tissue?
 - An excimer laser.
 - What is the origin of the word excimer?
 - It is a portmanteau of the term ‘exci-ted di-mer’.
 - What is the wavelength of light employed?
 - 193 nm.
 - Is 193 nm in the UV range, or the infrared range?
 - UV.
 - Does light of this wavelength penetrate tissue?
 - Hardly at all (which makes it perfect for surface ablation).
 - Is this wavelength mutagenic?
 - No.
The five modes of laser-tissue interaction:

Photo-chemical

What sort of laser is used to ablate the corneal tissue? An **excimer** laser

What is the origin of the word excimer? It is a portmanteau of the term ‘**exci**-ted di-**mer**’

What is the wavelength of light employed? 193 nm

Is 193 nm in the UV range, or the infrared range?

Photo-ablation

What therapy is the classic example of photoablation? **Photoablative keratorefractive surgery** (e.g., LASIK)

Plasma-induced ablation

Photo-disruption

Lasers: Pew! Pew!

Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so

Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case? You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat

How is it possible to have greater intensity but less thermal damage? The pulse durations are too brief to induce molecular motion (which is what heat is)

Is 193 nm in the UV range, or the infrared range? UV

Is this wavelength mutagenic? No

What does it mean to alter tissue? By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds
The five modes of laser-tissue interaction:

- **Photo-chemical**
- **Photo-ablation**
- **Plasma-induced ablation**
- **Photo-disruption**

What sort of laser is used to ablate the corneal tissue? An **excimer** laser.

What is the origin of the word excimer? It is a portmanteau of the term ‘*exci*-ted di-*mer*’.

What is the wavelength of light employed? 193 nm.

Is 193 nm in the UV range, or the infrared range? UV.

What therapy is the classic example of photoablation? **Photoablative keratorefractive surgery** (e.g., LASIK).
The five modes of laser-tissue interaction:

Photo-chemical
- What sort of laser is used to ablate the corneal tissue? An **excimer** laser.
- What is the origin of the word **excimer**? It is a portmanteau of the term ‘**excit**-ted di-**mer**’.
- What is the wavelength of light employed? 193 nm.
- Is 193 nm in the UV range, or the infrared range? UV.
- Does light of this wavelength penetrate tissue?

Photo-thermal
- How is heat generated? Laser energy is absorbed → transforms into heat → local thermal damage.
- Are the laser intensities (power densities; irradiances) employed during photoablation greater than those employed during thermal laser? Yes, significantly so.
- Given this, it would seem that photoablation must cause even greater heat-mediated damage than does thermal laser. Is this the case? You’d think so, but no—photoablation involves essentially no energy transfer in the form of heat.
- How is it possible to have greater intensity but less thermal damage? The pulse durations are too brief to induce molecular motion (which is what heat is).
- Does light of this wavelength alter tissue? By breaking covalent carbon-carbon bonds and carbon-nitrogen bonds.

Plasma-induced ablation
- What therapy is the classic example of photoablation? **Photoablative keratorefractive surgery** (e.g., LASIK).
- What sort of laser is used to ablate the corneal tissue? An **excimer** laser.
- What is the origin of the word **excimer**? It is a portmanteau of the term ‘**excit**-ted di-**mer**’.
- What is the wavelength of light employed? 193 nm.
- Is 193 nm in the UV range, or the infrared range? UV.
- Does light of this wavelength penetrate tissue?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption

Photoablation

What sort of laser is used to ablate the corneal tissue? An **excimer** laser.

What is the origin of the word excimer? It is a portmanteau of the term ‘exci-ted di-mer’.

What is the wavelength of light employed? 193 nm.

Is 193 nm in the UV range, or the infrared range? UV.

Does light of this wavelength penetrate tissue? Hardly at all (which makes it perfect for surface ablation).

What therapy is the classic example of photoablation? **Photoablative keratorefractive surgery** (eg, LASIK).

Does light of this wavelength penetrate tissue? Hardly at all (which makes it perfect for surface ablation).
The five modes of laser-tissue interaction:

Photo-chemical

Thermal

Photo-ablation

Plasma-induced ablation

Photo-disruption

What sort of laser is used to ablate the corneal tissue? An excimer laser.

What is the origin of the word excimer? It is a portmanteau of the term ‘excited di-mer’.

What is the wavelength of light employed? 193 nm.

Is 193 nm in the UV range, or the infrared range? UV.

Does light of this wavelength penetrate tissue? Hardly at all (which makes it perfect for surface ablation).

Is this wavelength mutagenic? No.

Photoablative keratorefractive surgery (eg, LASIK)
The five modes of laser-tissue interaction:

- **Photo-chemical**
- **Thermal**
- **Photo-ablation**
- **Plasma-induced ablation**
- **Photo-disruption**

What sort of laser is used to ablate the corneal tissue? An excimer laser.

What is the origin of the word excimer? It is a portmanteau of the term ‘exci-ted di-mer’.

What is the wavelength of light employed? 193 nm.

Is 193 nm in the UV range, or the infrared range? UV.

Does light of this wavelength penetrate tissue? Hardly at all (which makes it perfect for surface ablation).

Is this wavelength mutagenic? No.

What therapy is the classic example of photoablation? Photoablative keratorefractive surgery (e.g., LASIK).
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical aka photoactivation</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption aka plasma-induced disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
<td>Laser energy is absorbed \rightarrow transforms into heat \rightarrow local thermal damage</td>
<td>Laser energy disrupts covalent bonds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PDT

| Argon, diode | Excimer |

No question—proceed when ready
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical ablation</th>
<th>Thermal ablation</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption ablation</th>
</tr>
</thead>
</table>

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical ablation</th>
<th>Thermal ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-chemical ablation</td>
<td>Thermal ablation</td>
<td>Photo-disruption</td>
</tr>
</tbody>
</table>

Plasma-induced ablation

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation? Indeed they are.

How does plasma-induced ablation alter tissue?

In addition to breaking covalent bonds, the laser 'strips' electrons from molecules (thereby transforming the molecules into ions) and accelerates them. The accelerated electrons fly off and smash into other molecules, in turn ionizing them and accelerating their electrons. This cascade ionization process results in the transformation of tissue into plasma (a gas composed of ions and free electrons). In this manner, the tissue sort of 'goes away.'

What therapy is the classic example of plasma-induced ablation?

The femtosecond laser
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo-chemical ablation</td>
<td>Laser energy is absorbed → transforms into heat → local thermal damage</td>
</tr>
<tr>
<td>Thermal ablation</td>
<td>Laser energy disrupts covalent bonds</td>
</tr>
<tr>
<td>Photo-ablation</td>
<td>Photo-sensitive dye undergoes chemical rxn</td>
</tr>
<tr>
<td>Plasma-induced ablation</td>
<td>Laser energy disrupts covalent bonds, strips electrons from molecules, ions</td>
</tr>
<tr>
<td>Photo-disruption</td>
<td>Causes tissue to transform into plasma</td>
</tr>
</tbody>
</table>

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation? Indeed they are.

Are the pulse durations short enough to preclude thermal effects?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical ablation
- Thermal ablation
- Photoablation
- Plasma-induced ablation
- Photo-disruption

Plasma-induced ablation

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation?
Indeed they are

Are the pulse durations short enough to preclude thermal effects?
Yes (in fact, the durations are significantly shorter than are those of photoablation)
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical ablation
- Thermal ablation
- Plasma-induced ablation
- Photo-disruption

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation?
Indeed they are

Are the pulse durations short enough to preclude thermal effects?
Yes (in fact, the durations are significantly shorter than are those of photoablation)

How does plasma-induced ablation alter tissue?

In addition to breaking covalent bonds, the laser ‘strips’ electrons from molecules (thereby transforming the molecules into ions) and accelerates them. The accelerated electrons fly off and smash into other molecules, in turn ionizing them and accelerating their electrons. This cascade ionization process results in the transformation of tissue into plasma (a gas composed of ions and free electrons). In this manner, the tissue sort of ‘goes away.’
The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Plasma-induced ablation
- Photo-disruption (aka plasma-induced disruption)

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation? Indeed they are.

Are the pulse durations short enough to preclude thermal effects? Yes (in fact, the durations are significantly shorter than are those of photoablation).

How does plasma-induced ablation alter tissue? In addition to breaking covalent bonds, the laser ‘strips’ electrons from molecules (thereby transforming the molecules into ions) and accelerates them. The accelerated electrons fly off and smash into other molecules, in turn ionizing them and accelerating their electrons.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
</tr>
</thead>
</table>

Plasma-induced ablation

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation? Indeed they are

Are the pulse durations short enough to preclude thermal effects? Yes (in fact, the durations are significantly shorter than are those of photoablation)

How does plasma-induced ablation alter tissue? In addition to breaking covalent bonds, the laser ‘strips’ electrons from molecules (thereby transforming the molecules into ions) and accelerates them. The accelerated electrons fly off and smash into other molecules, in turn ionizing them and accelerating their electrons. This *cascade ionization* process results in the transformation of tissue into plasma (a gas composed of ions and free electrons). In this manner, the tissue sort of ‘goes away.’
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical
- Thermal
- Photoablation
- Photo-disruption
- Plasma-induced ablation

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation? Indeed they are.

Are the pulse durations short enough to preclude thermal effects? Yes (in fact, the durations are significantly shorter than are those of photoablation).

How does plasma-induced ablation alter tissue? In addition to breaking covalent bonds, the laser ‘strips’ electrons from molecules (thereby transforming the molecules into ions) and accelerates them. The accelerated electrons fly off and smash into other molecules, in turn ionizing them and accelerating their electrons. This cascade ionization process results in the transformation of tissue into plasma (a gas composed of ions and free electrons). In this manner, the tissue sort of ‘goes away.’

What therapy is the classic example of plasma-induced ablation?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photochemical ablation
- Thermal ablation
- Photo-ablation
- Plasma-induced ablation
- Photo-disruption

Plasma-induced ablation

Are the laser intensities (power densities; irradiances) employed during plasma-induced ablation greater than those employed during ‘regular’ photoablation? Indeed they are.

Are the pulse durations short enough to preclude thermal effects? Yes (in fact, the durations are significantly shorter than are those of photoablation).

How does plasma-induced ablation alter tissue? In addition to breaking covalent bonds, the laser ‘strips’ electrons from molecules (thereby transforming the molecules into ions) and accelerates them. The accelerated electrons fly off and smash into other molecules, in turn ionizing them and accelerating their electrons. This cascade ionization process results in the transformation of tissue into plasma (a gas composed of ions and free electrons). In this manner, the tissue sort of ‘goes away.’

What therapy is the classic example of plasma-induced ablation? The femtosecond laser.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photochemical aka photoactivation</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption aka plasma-induced disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn</td>
<td>Laser energy is absorbed \rightarrow transforms into heat \rightarrow local thermal damage</td>
<td>Laser energy disrupts covalent bonds</td>
<td>Laser energy produces minute amount of plasma, causing local vaporization of tissue</td>
<td></td>
</tr>
<tr>
<td>PDT</td>
<td>Argon, diode</td>
<td>Excimer</td>
<td>Femtosecond</td>
<td>No question—proceed when ready</td>
</tr>
</tbody>
</table>
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photo-chemical Thermal Photo-ablation
- Plasma-induced ablation
- Photo-disruption

Very-low-power laser energy causes a photosensitive dye to undergo chemical reaction. Laser energy is absorbed → transforms into heat → local thermal damage.

PDT Argon
aka photoactivation
aka plasma-induced disruption

Like plasma-induced ablation, photodisruption involves the creation of plasma. How do they differ in that regard?

In plasma-induced ablation, a modest amount of energy is used, resulting in the production of a relatively small amount of plasma. In contrast, photodisruption employs much more energy, resulting in the creation of a great deal more plasma.

OK, so photodisruption involves substantially more plasma. Why does this justify classifying it as a separate mode of laser-tissue interaction?

Because the increased plasma creation results in the production of mechanical forces (shock waves; acoustic waves) that propagate well beyond the laser spot, causing tissue to be torn apart remote from the area of laser application.

What therapy is the classic example of photodisruption?

YAG capsulotomy
The five modes of laser-tissue interaction:

- Photochemical Thermal
- Photoablation
- Plasma-induced ablation
- Photo disruption
- Like plasma-induced ablation, photodisruption involves the creation of plasma. How do they differ in that regard?
 - In plasma-induced ablation, a modest amount of energy is used, resulting in the production of a relatively small amount of plasma. In contrast, photodisruption employs much more energy, resulting in the creation of a great deal more plasma.

Plasma-induced ablation aka plasma-induced disruption
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

- Photo-chemical
- Thermal
- Photo-
disruption
- Plasmainduced

Like plasma-induced ablation, photodisruption involves the creation of plasma. How do they differ in that regard?

In plasma-induced ablation, a modest amount of energy is used, resulting in the production of a relatively small amount of plasma. In contrast, photodisruption employs much more energy, resulting in the creation of a great deal more plasma.

OK, so photodisruption involves substantially more plasma. Why does this justify classifying it as a separate mode of laser-tissue interaction?
The five modes of laser-tissue interaction:

Like plasma-induced ablation, photodisruption involves the creation of plasma. How do they differ in that regard?
In plasma-induced ablation, a modest amount of energy is used, resulting in the production of a relatively small amount of plasma. In contrast, photodisruption employs much more energy, resulting in the creation of a great deal more plasma.

OK, so photodisruption involves substantially more plasma. Why does this justify classifying it as a separate mode of laser-tissue interaction? Because the increased plasma creation results in the production of mechanical forces (shock waves; acoustic waves) that propagate well beyond the laser spot, causing tissue to be torn apart remote from the area of laser application.
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Photo-

chemical Thermal Photo-

ablation Plasma-induced Photo-

disruption

Like plasma-induced ablation, photodisruption involves the creation of plasma. How do they differ in that regard? In plasma-induced ablation, a modest amount of energy is used, resulting in the production of a relatively small amount of plasma. In contrast, photodisruption employs much more energy, resulting in the creation of a great deal more plasma.

OK, so photodisruption involves substantially more plasma. Why does this justify classifying it as a separate mode of laser-tissue interaction? Because the increased plasma creation results in the production of mechanical forces (shock waves; acoustic waves) that propagate well beyond the laser spot, causing tissue to be torn apart remote from the area of laser application.

What therapy is the classic example of photodisruption?
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

Photo-chemical Thermal Photo-
ablation Plasma-induced Photo-
disruption

Like plasma-induced ablation, photodisruption involves the creation of plasma. How do they differ in that regard?

In plasma-induced ablation, a modest amount of energy is used, resulting in the production of a relatively small amount of plasma. In contrast, photodisruption employs much more energy, resulting in the creation of a great deal more plasma.

OK, so photodisruption involves substantially more plasma. Why does this justify classifying it as a separate mode of laser-tissue interaction?

Because the increased plasma creation results in the production of mechanical forces (shock waves; acoustic waves) that propagate well beyond the laser spot, causing tissue to be torn apart remote from the area of laser application.

What therapy is the classic example of photodisruption?
YAG capsulotomy
Lasers: Pew! Pew!

The five modes of laser-tissue interaction:

<table>
<thead>
<tr>
<th>Photo-chemical</th>
<th>Thermal</th>
<th>Photo-ablation</th>
<th>Plasma-induced ablation</th>
<th>Photo-disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>aka photoactivation</td>
<td>Laser energy is absorbed \rightarrow transforms into heat \rightarrow local thermal damage</td>
<td>Laser energy disrupts covalent bonds</td>
<td>Laser energy produces minute amount of plasma, causing local vaporization of tissue</td>
<td>Laser energy produces large amount of plasma, causing mechanical disruption of tissue</td>
</tr>
</tbody>
</table>

- Very-low-power laser energy causes a photosensitive dye to undergo chemical rxn
- PDT
- Argon, diode
- Excimer
- Femtosecond
- YAG cap

No question—review slide