Define **Sherrington’s law**

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

 - Violated in...Duane syndrome

- **Hering’s law**: Innervation to yoke muscles is equal.

 - Violated in...dissociated vertical deviation (DVD)

 - Increased vs decreased innervation to a muscle is accompanied by increased vs decreased innervation to its antagonist
Define **Sherrington’s law**

- **Sherrington’s law**: *Increased* innervation to a muscle is accompanied by *decreased* innervation to its antagonist.
Define Sherrington’s law

Sherrington’s law: **Increased** innervation to a muscle is accompanied by **decreased** innervation to its antagonist.

What is the full name of Sherrington’s law?
Sherrington’s law of... two words
Define Sherrington’s law

- **Sherrington’s law:** Increased innervation to a muscle is accompanied by decreased innervation to its antagonist

What is the full name of Sherrington’s law?
Sherrington’s law of…reciprocal innervation
Define Sherrington’s law and Hering’s law

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist

- **Hering’s law**: Innervation to is equal
Define **Sherrington’s law** and **Hering’s law**

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist
- **Hering’s law**: Innervation to *yoke muscles* is equal
Define **Sherrington’s law** and **Hering’s law**

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal. The full name of Hering’s law is **motor correspondence**.

What is the full name of Hering’s law?

Hering’s law of... [two words]
Define **Sherrington’s law** and **Hering’s law**

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

What is the full name of Hering’s law?
Hering’s law of motor correspondence.
Define Sherrington’s law and Hering’s law.

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

Speaking of Hering’s law…What determines the total amount of innervational input?

- **Hering’s law**
Define Sherrington’s law and Hering’s law

- Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist

- Speaking of Hering’s law... What determines the total amount of innervational input? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position
Define Sherrington's law and Hering's law

- Sherrington's law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Speaking of Hering's law…What determines the total amount of innervational input? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating?
Define Sherrington’s law and Hering’s law

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

Violated in Duane syndrome.

Hering’s law: Innervation to yoke muscles is equal.

Speaking of Hering’s law... What determines the total amount of innervational input?
It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating?
When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle that is paretic, which eye is fixating has an enormous effect.
Define Sherrington's law and Hering's law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington's law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering's law**: Innervation to yoke muscles is equal.

Speaking of Hering's law... What determines the total amount of innervational input? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating? When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle is paretic, **which eye is fixating has an enormous effect.**
Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens if he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervation input to the left medial rectus (LMR) is all that is required to get this eye into right gaze. By Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR. Given that it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to abduct the eye, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervation will be sent to the (intact) LMR, causing this eye to way over-adduct, thereby producing a large increase in the measured ET.

Speaking of Hering’s law…What determines the total amount of innervational input? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating? When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle is paretic, which eye is fixating has an enormous effect.
Define Sherrington's law and Hering's law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington's law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

Violated in Duane syndrome.

Hering's law: Innervation to yoke muscles is equal.

Speaking of Hering's law… What determines the total amount of innervational input? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating? When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle is paretic, which eye is fixating has an enormous effect.

Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens if he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye into right gaze. By Hering's law, an equivalent moderate amount of innervational input will be sent to the RLR. Given that it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to abduct the eye, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervation will be sent to the (intact) LMR, causing this eye to way over-adduct, thereby producing a large increase in the measured ET.

The amount of strabismus present while the pt fixates with the nonparetic eye is called the primary deviation. Whereas the amount present while the pt fixates with the paretic eye is called the secondary deviation. Hering’s law is the reason these measurements are not identical, and why the secondary deviation is always larger.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.
 - Speaking of Hering’s law…What determines the total amount of innervational input? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.
 - OK, but both eyes are pointing at the same thing. Why would it matter which is fixating?
 - When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle is paretic, **which eye is fixating has an enormous effect.**

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to abduct the eye, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervation will be sent to the (intact) LMR, causing this eye to way over-adduct, thereby producing a large increase in the measured ET.

Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens if he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye into right gaze. By Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR. Given that it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

The amount of strabismus present while the pt fixates with the nonparetic eye is called the **primary deviation**.
Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens if he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye into right gaze. By Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR. Given that it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to abduct the eye, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervation will be sent to the (intact) LMR, causing this eye to way over-adduct, thereby producing a large increase in the measured ET.

The amount of strabismus present while the pt fixates with the nonparetic eye is called the primary deviation; whereas the amount present while the pt fixates with the paretic eye is called the secondary deviation. Hering’s law is the reason these measurements are not identical, and why the secondary deviation is always larger.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.
 - Speaking of Hering’s law… What determines the total amount of innervational input? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating? When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle is paretic, which eye is fixating has an enormous effect.

Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens if he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye into right gaze. By Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR. Given that it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to abduct the eye, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervation will be sent to the (intact) LMR, causing this eye to way over-adduct, thereby producing a large increase in the measured ET.

The amount of strabismus present while the pt fixates with the nonparetic eye is called the primary deviation; whereas the amount present while the pt fixates with the paretic eye is called the secondary deviation.
Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Hering’s law: Innervation to yoke muscles is equal. Speaking of Hering’s law… What determines the total amount of innervational input? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating? When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle is paretic, which eye is fixating has an enormous effect.

Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens if he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye into right gaze. By Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR. Given that it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

The amount of strabismus present while the pt fixates with the nonparetic eye is called the primary deviation; whereas the amount present while the pt fixates with the paretic eye is called the secondary deviation. Hering’s law is the reason these measurements are not identical, and why the secondary deviation is always larger.

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to abduct the eye, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervation will be sent to the (intact) LMR, causing this eye to way over-adduct, thereby producing a large increase in the measured ET.
Define **Sherrington’s law** and **Hering’s law**, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: *Increased* innervation to a muscle is accompanied by *decreased* innervation to its antagonist.
 - Violated in... **Duane syndrome**

- **Hering’s law**: Innervation to **yoke muscles** is equal...
Define **Sherrington’s law** and **Hering’s law**, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law:** *Increased* innervation to a muscle is accompanied by *decreased* innervation to its antagonist.
 - Violated in... **Duane syndrome**

- **Hering’s law:** Innervation to **yoke muscles** is equal
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in **Duane syndrome**.

- **Hering’s law**: Innervation to yoke muscles is equal. Briefly, what is Duane syndrome?

Duane syndrome is a motility disorder with the following key findings:

- At least some limitation of horizontal movement
- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?

The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.
Define Sherrington's law and Hering's law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington's law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering's law**: Innervation to yoke muscles is equal. A motility disorder with the following key findings:
 - At least some limitation of direction movement
 - Attempted movement causes the globe to move, and may cause it to this or that movement

Duane syndrome

Briefly, what is Duane syndrome? A motility disorder with the following key findings:

- At least some limitation of direction movement
- Attempted movement causes the globe to move, and may cause it to this or that movement

What is the cause? The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist

Violated in: Duane syndrome

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:
--At least some limitation of horizontal movement
--Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

Hering’s law: Innervation to yoke muscles is equal
Define **Sherrington’s law** and **Hering’s law**, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

Violated in: **Duane syndrome**

Hering’s law: Innervation to yoke muscles is equal.

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:
- At least some limitation of horizontal movement
- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - *Violated in:* Duane syndrome

- **Hering’s law**: Innervation to yoke muscles is equal.

Q/A

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:
- At least some limitation of horizontal movement
- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.

Duane syndrome
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:

- At least some limitation of horizontal movement
- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in **Duane syndrome**

- **Hering’s law**: Innervation to yoke muscles is equal.

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:
--- At least some limitation of horizontal movement
--- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III

How does this dysinnervation result in the key findings listed above?
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in **Duane syndrome**.

- **Hering’s law**: Innervation to yoke muscles is equal.

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:
- At least some limitation of horizontal movement
- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.

How does this dysinnervation result in the key findings listed above?
When someone with an intact oculomotor system adducts an eye, Sherrington’s law dictates that innervation is increased to the medial rectus and decreased to the lateral rectus.

(Proceed when ready)
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in **Duane syndrome**

- **Hering’s law**: Innervation to yoke muscles is equal.

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:
- At least some limitation of horizontal movement
- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III

How does this dysinnervation result in the key findings listed above?
When someone with an intact oculomotor system adducts an eye, Sherrington’s law dictates that innervation is increased to the medial rectus and decreased to the lateral rectus. However, in a Duane’s pt CN3 innervates the LR, so when she attempts to adduct her eye, innervation is increased to both the medial rectus and the aberrantly-innervated lateral rectus, so the eye doesn’t adduct.

(Proceed when ready)
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

Violated in: **Duane syndrome**

Hering’s law: Innervation to yoke muscles is equal.

A Briefly, what is Duane syndrome? A motility disorder with the following key findings:

- At least some **limitation of horizontal movement**
- Attempted adduction causes the globe to **retract**, and may cause it to up- or downshoot.

What is the cause? The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.

How does this dysinnervation result in the key findings listed above? When someone with an intact oculomotor system adducts an eye, Sherrington’s law dictates that innervation is increased to the medial rectus and decreased to the lateral rectus. However, in a Duane’s pt CN3 innervates the LR, so when she attempts to adduct her eye, innervation is increased to both the medial rectus and the aberrantly-innervated lateral rectus, so the eye doesn’t adduct. And when two muscles on opposite sides of the eye contract simultaneously, the net result will be that the eye will **retract**.

(Proceed when ready)
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in **Duane syndrome**

- **Hering’s law**: Innervation to yoke muscles is equal.

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:
- At least some limitation of horizontal movement
- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.

How does this dysinnervation result in the key findings listed above?
When someone with an intact oculomotor system adducts an eye, Sherrington’s law dictates that innervation is increased to the medial rectus and decreased to the lateral rectus. However, in a Duane’s pt CN3 innervates the LR, so when she attempts to adduct her eye, innervation is increased to both the medial rectus and the aberrantly-innervated lateral rectus, so the eye doesn’t adduct. And when two muscles on opposite sides of the eye contract simultaneously, the net result will be that the eye will retract. Further, if this co-contraction is sufficiently vigorous, one or the other rectus muscle might ‘slip’ upwards or downwards, causing the eye to up- or downshoot.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist
 - Violated in… Duane syndrome

- **Hering’s law**: Innervation to yoke muscles is equal
 - Violated in… strabismic condition (3 words)
Define **Sherrington’s law** and **Hering’s law**, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist
 - Violated in... **Duane syndrome**

- **Hering’s law**: Innervation to yoke muscles is equal
 - Violated in... **dissociated vertical deviation (DVD)**
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal. Violated in dissociated vertical deviation (DVD).

Who is the typical DVD pt?

Who is the typical DVD pt?

What is the classic clinical finding?

What is the classic clinical finding?

An eye will slowly elevate and extort, either spontaneously (manifest DVD) or when occluded (latent DVD). A crucial finding occurs when the drifting eye reorients downward, and it is this— the fellow eye does not move downward simultaneously (as would normally be the case).

How does Hering’s law relate to DVD?

As noted, in DVD the downward reorientation movement by the drifting eye is not accompanied by a downward movement of the fellow eye. As the muscles that depress the eyes are yoke muscles, this means that DVD represents a violation of Hering’s law.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist
 - Violated in Duane syndrome

- **Hering’s law**: Innervation to yoke muscles is equal
 - Violated in dissociated vertical deviation (DVD)

Who is the typical DVD pt?
A child with infantile/congenital ET or XT

Hering’s law: Innervation to yoke muscles is equal
Violated in dissociated vertical deviation (DVD)
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.
 - Violated in dissociated vertical deviation (DVD).

Who is the typical DVD pt?
A child with infantile/congenital ET or XT

What is the classic clinical finding?
An eye will slowly elevate and extort, either spontaneously (manifest DVD) or when occluded (latent DVD). A crucial finding occurs when the drifting eye reorients downward, and it is this—the fellow eye does not move downward simultaneously (as would normally be the case).

Hering’s law relates to DVD?
As noted, in DVD the downward reorientation movement by the drifting eye is not accompanied by a downward movement of the fellow eye. As the muscles that depress the eyes are yoke muscles, this means that DVD represents a violation of Hering’s law.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in... Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal. Violated in... dissociated vertical deviation (DVD).

Who is the typical DVD pt?
A child with infantile/congenital ET or XT

What is the classic clinical finding?
An eye will slowly elevate and extort, either spontaneously (manifest DVD) or when occluded (latent DVD). A crucial finding occurs when the drifting eye reorients downward, and it is this—the fellow eye does not move downward simultaneously (as would normally be the case).
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist

Violated in…Duane syndrome

Hering’s law: Innervation to yoke muscles is equal

Violated in…dissociated vertical deviation (DVD)

Who is the typical DVD pt?
A child with infantile/congenital ET or XT

What is the classic clinical finding?
An eye will slowly elevate and extort, either spontaneously (manifest DVD) or when occluded (latent DVD). A crucial finding occurs when the drifting eye reorients downward, and it is this—the fellow eye does not move downward simultaneously (as would normally be the case).

How does Hering’s law relate to DVD?
As noted, in DVD the downward reorientation movement by the drifting eye is not accompanied by a downward movement of the fellow eye. As the muscles that depress the eyes are yoke muscles, this means that DVD represents a violation of Hering’s law.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.
 - Violated in dissociated vertical deviation (DVD).

Who is the typical DVD pt?
A child with infantile/congenital ET or XT

What is the classic clinical finding?
An eye will slowly elevate and extort, either spontaneously (manifest DVD) or when occluded (latent DVD). A crucial finding occurs when the drifting eye reorients downward, and it is this--the fellow eye does not move downward simultaneously (as would normally be the case).

How does Hering’s law relate to DVD?
As noted, in DVD the downward reorientation movement by the drifting eye is not accompanied by a downward movement of the fellow eye. As the muscles that depress the eyes are yoke muscles, this means that DVD represents a violation of Hering’s law.