Define Sherrington’s law

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist
Define Sherrington’s law

- Sherrington’s law: *Increased* innervation to a muscle is accompanied by *decreased* innervation to its antagonist
Define **Sherrington’s law**

- Sherrington’s law: **Increased** innervation to a muscle is accompanied by **decreased** innervation to its antagonist

What is the full name of Sherrington’s law?
Sherrington’s law of…
Define Sherrington’s law

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

What is the full name of Sherrington’s law?
Sherrington’s law of…reciprocal innervation
Define **Sherrington’s law** and **Hering’s law**

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

- **Hering’s law**: Innervation to two words is equal.
Define **Sherrington’s law** and **Hering’s law**

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist

- **Hering’s law**: Innervation to *yoke muscles* is equal
Define Sherrington’s law and Hering’s law,

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist

- **Hering’s law**: Innervation to yoke muscles is equal

What is the full name of Hering’s law?

Hering’s law of…
Define Sherrington’s law and Hering’s law,

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist
- **Hering’s law**: Innervation to yoke muscles is equal

What is the full name of Hering’s law?
Hering’s law of... *motor correspondence*
Define Sherrington’s law and Hering’s law.

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

To what does the term yoke muscles refer?
Define Sherrington’s law and Hering’s law

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to **yoke muscles** is equal.

*To what does the term *yoke muscles* refer?*
It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington’s law and Hering’s law

- **Sherrington’s Law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s Law**: Innervation to yoke muscles is equal.

 To what does the term yoke muscles refer?
 It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment?

Nine positions are used in evaluating ocular motility and alignment:

- Primary position
- Cardinal positions
- Up and down
Define Sherrington’s law and Hering’s law

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

Speaking of positions of gaze... How many positions are used in evaluating ocular motility and alignment?

Nine

To what does the term yoke muscles refer?

It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington’s law and Hering’s law.

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Hering’s law: Innervation to yoke muscles is equal.

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment? Nine

The nine positions are divided into three groups—what are they?

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington’s law and Hering’s law.

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal. It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Speaking of positions of gaze... How many positions are used in evaluating ocular motility and alignment? Nine.

The nine positions are divided into three groups—

- **Primary position**
- **Cardinal positions**
- **Up and down**

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington’s law and Hering’s law.

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Hering’s law: Innervation to yoke muscles is equal.

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment? Nine. The nine positions are divided into groups—primary position, cardinal positions, and up and down.

OK, I know what primary gaze is, and ‘up and down’ seem obvious. But as for the so-called cardinal positions…First, how many ‘cardinal positions’ are there? Well, we just said that 9 gaze positions are used in evaluating the EOMs. There’s one primary gaze (duh)…and ‘up’ and ‘down’ make three. This implies (correctly) that there are six cardinal positions of gaze.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington’s law and Hering’s law

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Hering’s law: Innervation to yoke muscles is equal.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment?

Nine

The nine positions are divided into three groups—primary position, cardinal positions, and up and down.

OK, I know what primary gaze is, and ‘up and down’ seem obvious. But as for the so-called cardinal positions…First, how many ‘cardinal positions’ are there? Well, we just said that nine gaze positions are used in evaluating the EOMs. This implies that there are six cardinal positions of gaze.
Define Sherrington’s law and Hering’s law

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Hering’s law: Innervation to yoke muscles is equal.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment? Nine. The nine positions are divided into:

- Primary position
- Cardinal positions
- Up and down

OK, I know what primary gaze is, and ‘up and down’ seem obvious. But as for the so-called cardinal positions…First, how many ‘cardinal positions’ are there? Well, we just said that 9 gaze positions are used in evaluating the EOMs. This implies (correctly) that there are six cardinal positions of gaze.
Define Sherrington’s law and Hering’s law.

Sherrington’s law:
- Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

Hering’s law:
- Innervation to yoke muscles is equal.

Speaking of positions of gaze…

Nine positions are used in evaluating ocular motility and alignment.

- Primary position (1)
- Cardinal positions
- Up and down

OK, I know what primary gaze is, and ‘up and down’ seem obvious. But as for the so-called cardinal positions…

First, how many ‘cardinal positions’ are there?

Well, we just said that 9 gaze positions are used in evaluating the EOMs. There’s one primary gaze (duh)…

To what does the term yoke muscles refer?

It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington’s law and Hering’s law

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Hering’s law: Innervation to yoke muscles is equal.

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment? Nine.
The nine positions are divided into groups—what are they?

1. Primary position
2. Cardinal positions
3. Up and down

OK, I know what primary gaze is, and ‘up and down’ seem obvious. But as for the so-called cardinal positions…First, how many ‘cardinal positions’ are there? Well, we just said that 9 gaze positions are used in evaluating the EOMs. There’s one primary gaze (duh)…plus ‘up’ and ‘down’ make three. This implies (correctly) that there are six cardinal positions of gaze.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington’s law and Hering’s law.

Sherrington’s Law vs Hering’s Law

Speaking of positions of gaze... How many positions are used in evaluating ocular motility and alignment?

Nine

The nine positions are divided into three groups—what are they?

--Primary position (1)
--Cardinal positions (6)
--Up and down (2)

OK, I know what primary gaze is, and 'up and down' seem obvious. But as for the so-called cardinal positions... First, how many 'cardinal positions' are there? Well, we just said that 9 gaze positions are used in evaluating the EOMs. There's one primary gaze (duh)... plus 'up' and 'down' make three. This implies (correctly) that there are six cardinal positions of gaze.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington’s law and Hering’s law

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal. It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment? Nine.

The nine positions are divided into three groups—

- Primary position (1)
- Cardinal positions (6)
- Up and down (2)

OK, I know what primary gaze is, and ‘up and down’ seem obvious. But as for the so-called cardinal positions…First, how many ‘cardinal positions’ are there? Well, we just said that 9 gaze positions are used in evaluating the EOMs. There’s one primary gaze (duh)... plus ‘up’ and ‘down’ make three. This implies (correctly) that there are six cardinal positions of gaze.

What is a cardinal position of gaze?
Define Sherrington’s law and Hering’s law.

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Speaking of positions of gaze... How many positions are used in evaluating ocular motility and alignment? Nine. The nine positions are divided into three groups—

- **Primary position** (1)
- **Cardinal positions** (6)
- **Up and down** (2)

OK, I know what primary gaze is, and ‘up and down’ seem obvious. But as for the so-called cardinal positions... First, how many ‘cardinal positions’ are there? Well, we just said that 9 gaze positions are used in evaluating the EOMs. There’s one primary gaze (duh)... plus ‘up’ and ‘down’ make three. This implies (correctly) that there are six cardinal positions of gaze. What is a cardinal position of gaze? One that corresponds to the field of action for a given EOM.
To what does the term yoke muscles refer?

It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

Violated in…Duane syndrome

Hering’s law: Innervation to yoke muscles is equal.

Sherrington’s Law vs Hering’s Law

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment?

Nine

The nine positions are divided into three groups—what are they?

--Primary position (1)
--Cardinal positions (6)
--Up and down (2)

OK, I know what primary gaze is, and ‘up and down’ seem obvious. But as for the so-called cardinal positions…First, how many ‘cardinal positions’ are there? Well, we just said that 9 gaze positions are used in evaluating the EOMs. There’s one primary gaze (duh)…plus ‘up’ and ‘down’ make three. This implies (correctly) that there are six cardinal positions of gaze?

What is a cardinal position of gaze?

One

Ok, then what is a field of action?

It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Define Sherrington’s law and Hering’s law.

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal. This defines a cardinal position of gaze: One that corresponds to the field of action for a given extraocular muscle (EOM). It is a gaze direction in which the influence of a given EOM is mostly readily apparent. In essence, it’s the position in which a given EOM ‘cannot hide’

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment? Nine. The nine positions are divided into three groups—

- Primary position
- Cardinal positions
- Up and down

OK, I know what primary gaze is, and ‘up and down’ seem obvious. But as for the so-called cardinal positions…First, how many ‘cardinal positions’ are there? Well, we just said that 9 gaze positions are used in evaluating the EOMs. There’s one primary gaze (duh)…plus ‘up’ and ‘down’ make three. This implies (correctly) that there are six cardinal positions of gaze.
To what does the term yoke muscles refer?

It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment?

Nine.

The nine positions are divided into three groups—what are they?

- Primary position (1)
- Cardinal positions (6)
- Up and down (2)

OK, I know what primary gaze is, and ‘up and down’ seem obvious. But as for the so-called cardinal positions…First, how many ‘cardinal positions’ are there? Well, we just said that 9 gaze positions are used in evaluating the EOMs. There’s one primary gaze (duh)…plus ‘up’ and ‘down’ make three. This implies (correctly) that there are six cardinal positions of gaze?

What is a field of action? It is a gaze direction in which the influence of a given EOM is mostly readily apparent. In essence, it’s the position in which a given EOM ‘cannot hide’—i.e., the gaze direction in which a given muscle will be ‘exposed’ if it is not functioning properly.
Define Sherrington's law and Hering's law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington's law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.
- **Hering's law**: Innervation to yoke muscles is equal.

Sherrington’s Law vs Hering’s Law

Speaking of positions of gaze… How many positions are used in evaluating ocular motility and alignment?

Nine.

The nine positions are divided into three groups—

- **Primary position** (1)
- **Cardinal positions** (6)
- **Up and down** (2)

OK, I know what primary gaze is, and ‘up and down’ seem obvious. But as for the so-called cardinal positions…

First, how many ‘cardinal positions’ are there?

Well, we just said that 9 gaze positions are used in evaluating the EOMs. There’s one primary gaze (duh)… plus ‘up’ and ‘down’ make three. This implies (correctly) **What are the six cardinal positions of gaze?**

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington's law and Hering's law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington's law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering's law**: Innervation to yoke muscles is equal. It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment? Nine. The nine positions are divided into three groups—

- Primary position (1)
- Cardinal positions (6)
- Up and down (2)

OK, I know what primary gaze is, and 'up and down' seem obvious. But as for the so-called cardinal positions…First, how many 'cardinal positions' are there? Well, we just said that 9 gaze positions are used in evaluating the EOMs. There’s one primary gaze (duh)...plus ‘up’ and ‘down’ make three. This implies (correctly) **what are the six cardinal positions of gaze?**

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Sherrington’s Law vs Hering’s Law

Sherrington’s Law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

Violated in Duane syndrome.

Hering’s Law: Innervation to yoke muscles is equal.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Why aren’t straight up and down cardinal positions?

The nine gaze positions are divided into three groups—

- **Primary position (1)**
- **Cardinal positions (6)**
- **Up and down (2)**

We just said that 9 gaze positions are used in evaluating the EOMs. There’s one primary gaze (duh)…plus ‘up’ and ‘down’ make three. This implies (correctly) **What are the six cardinal positions of gaze?**

- **Up?**
 - Up and right
 - Up and left

- **Down?**
 - Down and right
 - Down and left

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment?

Nine

The nine positions are divided into three groups—

- **Primary position (1)**
- **Cardinal positions (6)**
- **Up and down (2)**

Why aren’t straight up and down cardinal positions?

Both involve input from multiple EOMs. Because of this, identifying a deficit in these positions is noncontributory in that it doesn’t allow one to attribute that deficit to the dysfunction of a single, unique EOM.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment? Nine.

The nine positions are divided into three groups—

- **Primary position (1)**
- **Cardinal positions (6)**
- **Up and down (2)**

OK, I know what primary gaze is, and ‘up and down’ seem obvious. But as for the so-called cardinal positions…First, how many ‘cardinal positions’ are there? Well, we just said that 9 gaze positions are used in evaluating the EOMs. There’s one primary gaze (duh)…plus ‘up’ and ‘down’ make three. This implies (correctly) **What are the six cardinal positions of gaze?**

Why aren’t straight up and down cardinal positions? Both involve input from multiple EOMs. Because of this, identifying a deficit in these positions is noncontributory in that it doesn’t allow one to attribute that deficit to the dysfunction of a single, unique EOM.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington's law and Hering's law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington's law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in...Duane syndrome.

- **Hering's law**: Innervation to yoke muscles is equal.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Speaking of positions of gaze... How many positions are used in evaluating ocular motility and alignment? Nine.

The nine positions are divided into three groups—what are they?

- Primary position (1)
- Cardinal positions (6)
- Up and down (2)

OK, let's identify the yoke muscle for the cardinal positions of gaze. Let's start with an easy one. What are the yoke muscle for right gaze? That is, for each eye, which muscle is chiefly responsible for straight-right gaze?
Sherrington’s Law vs Hering’s Law

Sherrington’s Law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Hering’s Law: Innervation to yoke muscles is equal. To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Speaking of positions of gaze... How many positions are used in evaluating ocular motility and alignment? Nine. The nine positions are divided into three groups—what are they?--Primary position (1) --Cardinal positions (6) --Up and down (2)

OK, let’s identify the yoke muscle for the cardinal positions of gaze. Let’s start with an easy one. What are the yoke muscle for right gaze? That is, for each eye, which muscle is chiefly responsible for straight-right gaze?
Define Sherrington's law and Hering's law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington's law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering's law**: Innervation to yoke muscles is equal. To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Speaking of positions of gaze... How many positions are used in evaluating ocular motility and alignment? Nine. The nine positions are divided into three groups—what are they?

- **Primary position (1)**
- **Cardinal positions (6)**
- **Up and down (2)**

OK, we know what primary gaze is, and 'up and down' seem obvious. But as for the so-called cardinal positions... First, how many 'cardinal positions' are there? Well, we just said that 9 gaze positions are used in evaluating the EOMs. There's one primary gaze (duh)... plus 'up' and 'down' make three. This implies (correctly) that there are the six cardinal positions of gaze? yoke muscles

So if, say, the right eye cannot turn to the right, the preferred description would be *the right eye has a deficit in the field of action of the lateral rectus.*
Define Sherrington's law and Hering's law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington's law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Hering's law: Innervation to yoke muscles is equal. To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment? Nine. The nine positions are divided into three groups—

---Primary position (1)---
---Cardinal positions (6)---
---Up and down (2)---

So if, say, the right eye cannot turn to the right, the preferred description would be the right eye has a deficit in the field of action of the lateral rectus. That seems unnecessarily wordy. If the right eye won’t turn right, why not simply say ‘Yo, the right LR ain’t working’?

Because an inability of the right eye to abduct is not necessarily indicative of LR dysfunction. For example, LR function might be fully intact, but a medial restrictive process—say, entrapment of the MR in a healed medial-wall fracture—could be present.
Define Sherrington's law and Hering's law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington's law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Hering's law: Innervation to yoke muscles is equal.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Sherrington's Law vs Hering's Law

Speaking of positions of gaze... How many positions are used in evaluating ocular motility and alignment? Nine. The nine positions are divided into three groups—what are they?

--Primary position (1)
--Cardinal positions (6)
--Up and down (2)

That seems unnecessarily wordy. If the right eye won't turn right, why not simply say 'Yo, the right LR ain't working'? Because an inability of the right eye to ABduct is not necessarily indicative of LR dysfunction. For example, LR function might be fully intact, but a medial restrictive process—say, entrapment of the MR in a healed medial-wall fracture—could be present.

So if, say, the right eye cannot turn to the right, the preferred description would be 'the right eye has a deficit in the field of action of the lateral rectus.'
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Hering’s law: Innervation to yoke muscles is equal. To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Speaking of positions of gaze... How many positions are used in evaluating ocular motility and alignment? Nine. The nine positions are divided into three groups—what are they?

- Primary position (1)
- Cardinal positions (6)
- Up and down (2)

Nine, we just said that 9 gaze positions are used in evaluating the EOMs. There’s one primary gaze (duh) plus up and down make three. This implies (correctly) what are the six cardinal positions of gaze?

- Not surprisingly, the yoke muscles for left gaze are the mirror image of those for right gaze.
- LR → OD
- MR → OS
- LR → OS
- MR → OD
- Down and right
- Left
- Up and left
- Right
- Up and right

What are the cardinal positions of gaze? The cardinal positions (6) include:

- Primary position (1)
- Up and down (2)
- Cardi

Sherrington’s Law vs Hering’s Law

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

What are the yoke muscles for gaze up and right?

Sherrington’s Law vs Hering’s Law

- **OD → LR**
- **OS → MR**
- **OD → LR**
- **OS → MR**
- **LR ← OS**
- **MR ← OD**

Speaking of positions of gaze... How many positions are used in evaluating ocular motility and alignment? Nine.

The nine positions are divided into:

- **Primary position (1)**
- **Cardinal positions (6)**
- **Up and down (2)**

What are the six cardinal positions of gaze?

- **Right**
- **Left**
- **Down and right**
- **Down and left**

To what does the term yoke muscles refer?

It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

What are the yoke muscles for gaze up and right?

- **Right Left**
- **Up and right**
- **Down and right**
- **Up and left**
- **Down and left**

To what does the term yoke muscles refer?

It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

To what does the term cardinal positions refer?

To what does the term primary gaze refer?

Left, Right, and Up and Down.

To what does the term nine positions refer?

Nine positions are used in evaluating ocular motility and alignment.

- **Primary position (1)**
 - **Cardinal positions (6)**
 - Up and down (2)

How many cardinal positions are there?

Six cardinal positions of gaze are implied (correctly).

What are the yoke muscle for gaze up and right?
- Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:
 - **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.
 - **Hering’s law**: Innervation to yoke muscles is equal.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

- Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment?
 - Nine

The nine positions are divided into three groups—what are they?
- Primary position (1)
- Cardinal positions (6)
- Up and down (2)

Likewise, the yoke muscles for gaze up and left are again the mirror image of those on the other side.
Sherrington's Law vs Hering's Law

Sherrington's Law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Hering's Law: Innervation to yoke muscles is equal.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington's law and Hering's law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington's law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering's law**: Innervation to yoke muscles is equal.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Sherrington's Law vs Hering's Law

Speaking of positions of gaze…How many positions are used in evaluating ocular motility and alignment? Nine.

The nine positions are divided into three groups—

- Primary position (1)
- Cardinal positions (6)
- Up and down (2)

Well, we just said that 9 gaze positions are used in evaluating the EOMs. There's one primary gaze (plue up and down) make three. This implies that there are six cardinal positions of gaze. What are they?

Right Left

- **Up and right**
- **Down and right**

Down and left

What are the yoke muscle for gaze down and right?...
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

Violated in...Duane syndrome.

Hering’s law: Innervation to yoke muscles is equal.

To what does the term yoke muscles refer? It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.

Sherrington’s Law vs Hering’s Law

Speaking of positions of gaze...How many positions are used in evaluating ocular motility and alignment? Nine.

The nine positions are divided into three groups—what are they?

--Primary position (1)
--Cardinal positions (6)
--Up and down (2)

Likewise, the yoke muscles for gaze down and left are the mirror image of those on the other side.

What are the six cardinal positions of gaze?...
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

To what does the term yoke muscles refer?

It refers to the two muscles—one for each eye—that are responsible for putting the eyes into a given position of gaze.
Define Sherrington’s law and Hering’s law

- Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- Hering’s law: Innervation to yoke muscles is equal. When the oculomotor control system is intact, it doesn’t matter which eye is fixating. But when one eye has a muscle paretic, which eye is fixating has an enormous effect.

Speaking of Hering’s law... What determines the total amount of innervational input?
Define Sherrington’s law and Hering’s law

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal. Speaking of Hering’s law…What determines the total amount of innervational input the eyes receive? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.
Define Sherrington’s law and Hering’s law.

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

Speaking of Hering’s law…What determines the total amount of innervational input the eyes receive? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating?
Sherrington’s Law vs Hering’s Law

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

 - Sherrington’s law is violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

 - Speaking of Hering’s law…What determines the total amount of innervational input the eyes receive?
 - It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

 - OK, but both eyes are pointing at the same thing. Why would it matter which is fixating?
 - When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle paretic, which eye is fixating has an enormous effect on the amount of innervational input.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

Speaking of Hering’s law… What determines the total amount of innervational input the eyes receive? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating? When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle that is paretic, **which eye is fixating has an enormous effect on the amount of innervational input**.

Consider a pt with a paretic right lateral rectus (RLR).
Sherrington’s Law vs Hering’s Law

Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens when he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye into right gaze. And by Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR.

Speaking of Hering’s law…What determines the total amount of innervational input the eyes receive? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating? When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle is paretic, which eye is fixating has an enormous effect on the amount of innervational input.

Hering’s law:

Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
Sherrington’s Law vs Hering’s Law

Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens when he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye into right gaze. And by Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR. Given that it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

Speaking of Hering’s law…What determines the total amount of innervational input the eyes receive? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating? When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle that is paretic, which eye is fixating has an enormous effect on the amount of innervational input.
Sherrington’s Law vs Hering’s Law

Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens when he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervation input to the left medial rectus (LMR) is all that is required to get this eye into right gaze. And by Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR. Given that it is paretic, the moderate innervation input it receives will not produce much abduction, and the measured ET will increase only modestly.

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to cause the eye to ABduct, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervation will be sent to the (intact) LMR, causing this eye to way over-adduct, thereby producing a large increase in the measured ET.

Speaking of Hering’s law... What determines the total amount of innervational input the eyes receive?

It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating?

When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle is paretic, which eye is fixating has an enormous effect on the amount of innervational input.
Sherrington’s Law vs Hering’s Law

Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens when he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye into right gaze. And by Hering’s law, an equivalent moderate amount of innervational input will be sent to the RLR. Given that it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to cause the eye to ABduct, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervational input will be sent to the (intact) LMR, causing this eye to way over-ADduct, thereby producing a large increase in the measured ET.

Speaking of Hering’s law...What determines the total amount of innervational input the eyes receive? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating? When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle is paretic, which eye is fixating has an enormous effect on the amount of innervational input.
Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens when he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye to right gaze. And by Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR. Even though it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to abduct the eye, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervation will be sent to the (intact) LMR, causing this eye to way over-adduct, thereby producing a large increase in the measured ET.

The amount of strabismus present while the pt fixates with the nonparetic eye is called the primary deviation. Whereas the amount of present while the pt fixates with the paretic eye is called the secondary deviation. Hering’s law is the reason these measurements are not identical, and why the secondary deviation is always larger.

Sherrington’s Law vs Hering’s Law

Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens when he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye to right gaze. And by Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR. Even though it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

Hering’s law

It is determined by the amount of innervation needed for the fixating eye to get into and maintain position

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating?

When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle is paretic, which eye is fixating has an enormous effect on the amount of innervational input.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Hering’s law: Innervation to yoke muscles is equal. Speaking of Hering’s law…What determines the total amount of innervational input the eyes receive? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating? When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle that is paretic, which eye is fixating has an enormous effect on the amount of innervational input.

The amount of strabismus present while the pt fixates with the nonparetic eye is called the *primary* deviation. Whereas the amount present while the pt fixates with the paretic eye is called the *secondary* deviation. Hering’s law is the reason these measurements are not identical, and why the secondary deviation is always larger.

Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens when he looks at an object to his right? *If he fixates with his intact left eye*, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye to right gaze. And by Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR; even though it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to abduct the eye, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervation will be sent to the (intact) LMR, causing this eye to way over-adduct, thereby producing a large increase in the measured ET.

Sherrington’s Law vs Hering’s Law

Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens when he looks at an object to his right? *If he fixates with his intact left eye*, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye to right gaze. And by Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR; even though it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to abduct the eye, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervation will be sent to the (intact) LMR, causing this eye to way over-adduct, thereby producing a large increase in the measured ET.
OD fixating (= primary deviation)

Pt with left LR palsy
Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens when he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye into right gaze. And by Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR. Given that it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to abduct the eye, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervation will be sent to the (intact) LMR, causing this eye to way over-adduct, thereby producing a large increase in the measured ET.

Sherrington’s Law vs Hering’s Law

The amount present while the pt fixates with the paretic eye is called the secondary deviation. The amount present while the pt fixates with the nonparetic eye is called the primary deviation. Hering’s law is the reason these measurements are not identical, and why the secondary deviation is always larger.

Hering’s law

It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating? When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle that is paretic, **which eye is fixating has an enormous effect on the amount of innervational input.**
Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens when he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye into right gaze. And by Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR. Given that it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to abduct the eye, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervation will be sent to the (intact) LMR, causing this eye to way over-adduct, thereby producing a large increase in the measured ET.

The amount present while the pt fixates with the paretic eye is called the secondary deviation.

Hering’s law:

It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating?

When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle is paretic, which eye is fixating has an enormous effect on the amount of innervational input.
Pt with left LR palsy

OS fixating (= secondary deviation)
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

Hering’s law: Innervation to yoke muscles is equal. Speaking of Hering’s law…What determines the total amount of innervational input the eyes receive? It is determined by the amount of innervation needed for the fixating eye to get into and maintain position.

OK, but both eyes are pointing at the same thing. Why would it matter which is fixating? When the oculomotor control system is intact, it doesn’t. But when one eye has a muscle that is paretic, which eye is fixating has an enormous effect on the amount of innervational input.

Consider a pt with a paretic right lateral rectus (RLR). As expected, his muscle balance is ET. What happens when he looks at an object to his right? If he fixates with his intact left eye, a normal, moderate amount of innervational input to the left medial rectus (LMR) is all that is required to get this eye into right gaze. And by Hering’s law, an equivalent moderate amount of innervation will be sent to the RLR. Given that it is paretic, the moderate innervational input it receives will not produce much abduction, and the measured ET will increase only modestly.

Next consider what happens if the pt fixates the same object of regard to his right, but this time with the paretic right eye. To get the paretic RLR to contract enough to abduct the eye, our pt must crank in a massive amount of innervational input. By Hering’s law, we know the same (massive) amount of innervation will be sent to the (intact) LMR, causing this eye to way over-adduct, thereby producing a large increase in the measured ET.

The amount of strabismus present while the pt fixates with the nonparetic eye is called the **primary** deviation. The amount present while the pt fixates with the paretic eye is called the **secondary** deviation. **Hering’s law is the reason these measurements are not identical, and why the secondary deviation is always larger.**
Pt with left LR palsy

OD fixating (= primary deviation)
OS fixating (= secondary deviation)
Define **Sherrington’s law** and **Hering’s law**, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in…

- **Hering’s law**: Innervation to yoke muscles is equal.

OK, now back to a question about Sherrington’s law
Define **Sherrington’s law** and **Hering’s law**, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist
 - Violated in…**Duane syndrome**

- **Hering’s law**: Innervation to yoke muscles is equal
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

Q

Briefly, what is Duane syndrome?

Duane syndrome
Define Sherrington’s law and Hering’s law, and for each state the classic example in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

Briefly, what is Duane syndrome?
An motility disorder with the following key findings:
- At least some limitation of movement
- Attempted movement causes the globe to up- or downshoot, and may cause it to this or that movement.

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

Violated in... Duane syndrome

Hering’s law: Innervation to yoke muscles is equal.

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:
--At least some limitation of horizontal movement
-- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot
Horizontal movement limitation

Downshoot

Globe retraction

Upshoot

Primary

Downshoot

Upshoot/downshoot

Duane syndrome
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:
-- At least some limitation of horizontal movement
-- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?

- The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in: Duane syndrome

- **Hering’s law**: Innervation to yoke muscles is equal.

Q/A

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:

- At least some limitation of horizontal movement
- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist

Violated in: Duane syndrome

Hering’s law: Innervation to yoke muscles is equal

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:
-- At least some limitation of horizontal movement
-- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome

- **Hering’s law**: Innervation to yoke muscles is equal.

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:
- At least some limitation of horizontal movement
- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.

How does this dysinnervation result in the key findings listed above?
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

 Violated in **Duane syndrome**

- **Hering’s law**: Innervation to yoke muscles is equal.

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:

- At least some limitation of horizontal movement
- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.

How does this dysinnervation result in the key findings listed above?
When someone with an intact oculomotor system adducts an eye, Sherrington’s law dictates that innervation is increased to the medial rectus and decreased to the lateral rectus.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in... Duane syndrome.
- **Hering’s law**: Innervation to yoke muscles is equal.

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:
- At least some limitation of horizontal movement
- Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.

How does this dysinnervation result in the key findings listed above?
When someone with an intact oculomotor system adducts an eye, Sherrington’s law dictates that innervation is increased to the medial rectus and decreased to the lateral rectus. However, in a Duane’s pt CN3 innervates the LR, so when she attempts to adduct her eye, innervation is increased to both the medial rectus and the aberrantly-innervated lateral rectus, so the eye doesn’t adduct.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - **Violated in**: Duane syndrome

- **Hering’s law**: Innervation to yoke muscles is equal.

Briefly, what is Duane syndrome?
- A motility disorder with the following key findings:
 - At least some limitation of horizontal movement
 - Attempted adduction causes the globe to retract, and may cause it to up- or downshoot

What is the cause?
- The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.

How does this dysinnervation result in the key findings listed above?
- When someone with an intact oculomotor system adducts an eye, Sherrington’s law dictates that innervation is increased to the medial rectus and decreased to the lateral rectus. However, in a Duane’s pt CN3 innervates the LR, so when she attempts to adduct her eye, innervation is increased to both the medial rectus and the aberrantly-innervated lateral rectus, so the eye doesn’t adduct. And when two muscles on opposite sides of the eye contract simultaneously, the net result will be that the eye will retract.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - *Violated in Duane syndrome*

- **Hering’s law**: Innervation to yoke muscles is equal.

Sherrington’s Law vs Hering’s Law

Briefly, what is Duane syndrome?
A motility disorder with the following key findings:
-- At least some *limitation of horizontal movement*
-- Attempted adduction causes the globe to *retract*, and may cause it to *up- or downshoot*

What is the cause?
The nucleus for cranial nerve VI is missing, and the lateral rectus is innervated by cranial nerve III.

How does this dysinnervation result in the key findings listed above?
When someone with an intact oculomotor system adducts an eye, Sherrington’s law dictates that innervation is increased to the medial rectus and decreased to the lateral rectus. However, in a Duane’s pt CN3 innervates the LR, so when she attempts to adduct her eye, innervation is increased to both the medial rectus and the aberrantly-innervated lateral rectus, so the eye doesn’t adduct. And when two muscles on opposite sides of the eye contract simultaneously, the net result will be that the eye will *retract*. Further, if this co-contraction is sufficiently vigorous, one or the other rectus muscle might ‘slip’ upwards or downwards, causing the eye to *up- or downshoot*.
Define **Sherrington’s law** and **Hering’s law**, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist
 - Violated in… **Duane syndrome**

- **Hering’s law**: Innervation to **yoke muscles** is equal
 - Violated in… **strabismic condition** (3 words)
Define **Sherrington’s law** and **Hering’s law**, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist
 - Violated in…Duane syndrome

- **Hering’s law**: Innervation to yoke muscles is equal
 - Violated in…dissociated vertical deviation (DVD)
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in…Duane syndrome.

Hering’s law: Innervation to yoke muscles is equal. Violated in…dissociated vertical deviation (DVD).

Who is the typical DVD pt?

A child with infantile/congenital ET or XT.

What is the classic clinical finding?

An eye will slowly elevate and extort, either spontaneously (manifest DVD) or when occluded (latent DVD). A crucial finding occurs when the drifting eye reorients downward, and it is this—the fellow eye does not move downward simultaneously (as would normally be the case).

How does Hering’s law relate to DVD?

As noted, in DVD the downward reorientation movement by the drifting eye is not accompanied by a downward movement of the fellow eye. As the muscles that depress the eyes are yoke muscles, this means that DVD represents a violation of Hering’s law.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.
 - Violated in dissociated vertical deviation (DVD).

Who is the typical DVD pt?
A child with infantile/congenital ET or XT.

Hering’s law: Innervation to **yoke** muscles is equal.

Dissociated vertical deviation (DVD)
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal. Violated in dissociated vertical deviation (DVD).

Who is the typical DVD pt?
A child with infantile/congenital ET or XT

What is the classic clinical finding?
An eye will slowly elevate and extort, either spontaneously (manifest DVD) or when occluded (latent DVD). A crucial finding occurs when the drifting eye reorients downward, and it is this--the fellow eye does not move downward simultaneously (as would normally be the case).

How does Hering’s law relate to DVD?
As noted, in DVD the downward reorientation movement by the drifting eye is not accompanied by a downward movement of the fellow eye. As the muscles that depress the eyes are yoke muscles, this means that DVD represents a violation of Hering’s law.
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.
 - Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal.
 - Violated in dissociated vertical deviation (DVD).

Who is the typical DVD pt?
A child with infantile/congenital ET or XT.

What is the classic clinical finding?
An eye will slowly elevate and extort, either spontaneously (manifest DVD) or when occluded (latent DVD). A crucial finding occurs when the drifting eye reorients downward, and it is this—the fellow eye does not move downward simultaneously (as would normally be the case).
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

- **Sherrington’s law**: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist. Violated in Duane syndrome.

- **Hering’s law**: Innervation to yoke muscles is equal. Violated in dissociated vertical deviation (DVD).

Who is the typical DVD pt?
A child with infantile/congenital ET or XT

What is the classic clinical finding?
An eye will slowly elevate and extort, either spontaneously (manifest DVD) or when occluded (latent DVD). A crucial finding occurs when the drifting eye reorients downward, and it is this—the fellow eye does not move downward simultaneously (as would normally be the case).

How does Hering’s law relate to DVD?

Hering’s law: Innervation to yoke muscles is equal

Violated in dissociated vertical deviation (DVD)
Define Sherrington’s law and Hering’s law, and for each state the classic example of a strabismus-type in which it is violated:

Sherrington’s law: Increased innervation to a muscle is accompanied by decreased innervation to its antagonist.

- Violated in Duane syndrome.

Hering’s law: Innervation to yoke muscles is equal.

- Violated in dissociated vertical deviation (DVD).

Who is the typical DVD pt?
A child with infantile/congenital ET or XT.

What is the classic clinical finding?
An eye will slowly elevate and extort, either spontaneously (manifest DVD) or when occluded (latent DVD). A crucial finding occurs when the drifting eye reorients downward, and it is this—the fellow eye does not move downward simultaneously (as would normally be the case).

How does Hering’s law relate to DVD?
As noted, in DVD the downward reorientation movement by the drifting eye is not accompanied by a downward movement of the fellow eye. As the muscles that depress the eyes are yoke muscles, this means that DVD represents a violation of Hering’s law.